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This study aims to improve energy efficiency and routing performance in dynamic 

Wireless Sensor Networks (WSNs), where node mobility and limited power are major 

challenges. The objective was to enhance energy efficiency and extend the network 

lifetime of the dynamic WSN for the implementation of a time-sensitive IoT-based 

system. We proposed an integrated methodology compounding three key techniques. 

The Adaptive Nest Competition Algorithm (ANCA) is used for optimal placement of 

sensor nodes to ensure wide coverage and strong connectivity. Fuzzy C-Means (FCM) 

clustering groups of nearby nodes to minimize communication within clusters. A Deep 

Q-Learning (DQL) algorithm that learns and adapts routing decisions based on

changing network conditions to ensure efficient data transmission. The proposed

framework outperforms traditional methods such as Artificial Bee Colony (ABC),

Particle Swarm Optimization (PSO), and Grey Wolf Optimizer (GWO) in simulations.

It achieves a Network Lifetime improved by 20–25%, Average Energy Consumption

reduced by 15–25%, Packet Delivery Ratio (PDR) increased by 10–18%, End-to-End

Delay decreased by 20–30%, and Routing Overhead reduced by 15–28%. This hybrid

ANCA-FCM-DQL model provides a robust and adaptive solution for energy-aware

node deployment and intelligent routing in dynamic WSNs, making it suitable for real-

time, mobile, and energy-constrained applications.
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1. INTRODUCTION

Wireless Sensor Networks (WSNs) play a critical role in 

numerous real-time applications such as smart agriculture, 

environmental monitoring, and disaster management. 

Efficient performance of WSNs relies heavily on two 

interdependent factors: optimal node placement and energy-

efficient routing. Node placement influences coverage and 

connectivity, while routing determines the energy 

consumption and network lifetime. Achieving a balance 

between these factors in a dynamic environment, where node 

mobility and energy constraints are predominant, remains an 

open challenge. Existing methods that use metaheuristic 

algorithms such as Particle Swarm Optimization (PSO) or 

Artificial Bee Colony (ABC) often exhibit limitations in 

convergence or adaptability to dynamic conditions. To address 

these limitations, Optimization and intelligent routing in 

WSNs have attracted extensive research, focusing on 

metaheuristic algorithms, clustering techniques, and machine 

learning approaches. Recent advancements in WSNs have 

explored hybrid optimization, fuzzy logic, and machine 

learning-based approaches to address challenges in routing, 

clustering, and energy efficiency. Meshram et al. [1] 

introduced IBOOST, a lightweight, secure identity-based 

online/offline signature mechanism employing Fuzzy C-

Means (FCM) for 5G-based WSNs. It ensured provable 

security for massive device authentication but lacked adaptive 

routing strategies. Gangwar et al. [2] proposed a Game 

Theory-Based Fuzzy Routing (GTFR) protocol, which 

improved routing decisions in dynamic topologies. However, 

the model's energy efficiency under high mobility scenarios 

remained a limitation. Sikarwar and Tomar [3] combined 

Modified FCM with PSO for efficient tree-based routing. 

Though clustering was optimized, the approach did not 

account for network reconfiguration under node failure. Khedr 

et al. [4] presented a fuzzy-based multi-layered clustering 

model and Ant Colony Optimization (ACO)-driven sink path 

planning for optimal coverage. While enhancing network 

longevity, it did not fully address scalability in dense 

deployments. Cheng et al. [5] developed an FCM and 

hierarchical voting-based Received Signal Strength Indicator 

(RSSI) localization algorithm for sensor node positioning. Its 

accuracy was significant, yet performance degraded with 

increased environmental noise. Hiyagarajan and 

Shanmugasundaram [6] evaluated clustering techniques (K-

Means, K-Medoids, FCM) for WSNs. Their comparative 

analysis offered insights into performance trade-offs, but real-

time dynamic adaptability was absent. Bensaid and Boujemaa 

[7] proposed a combined cluster-chain routing protocol to

extend network lifespan. Though energy consumption was
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reduced, the protocol was not robust under unpredictable node 

mobility. Sree et al. [8] utilized FCM with Cat Swarm 

Optimization (CSO) for energy-efficient data gathering. 

Despite performance gains, it required frequent cluster 

reformation, increasing computation overhead. 

Mohan et al. [9] introduced a Fuzzy Median Graph-Based 

Energy Efficient Clustering Protocol that minimized 

communication costs through median-based fuzzy decision-

making. Zaier et al. [10] proposed an Interval Type-2 Fuzzy 

Unequal Clustering and Sleep Scheduling Protocol to handle 

uncertainty and balance energy consumption effectively in 

IoT-based WSNs. Rahmani et al. [11] introduced collective 

Gray Wolf Optimization with Fuzzy Clustering and multi-

criteria decision-making approaches, improving throughput 

and reducing delay through optimized cluster head selection. 

Shokouhifar et al. [12] reviewed AI-driven clustering and 

routing protocols, emphasizing fuzzy, metaheuristic, and 

learning-based methods, and highlighting the need for 

adaptive and intelligent models in dynamic WSNs. Devika et 

al. [13] proposed an energy-efficient routing approach using 

ant-cuckoo hybrid techniques, enhancing data compression 

and energy savings. However, the scalability under 

heterogeneous nodes was limited. In a related work, Devika et 

al. [14] earlier introduced Ant Cuckoo optimized using 

Energy-Efficient Data aggregation (ACEED), a bio-inspired 

routing scheme combining ant and cuckoo behaviors. Though 

it addressed routing complexity, real-time performance under 

failure scenarios was insufficient. Karthikeyan and 

Venkatalakshmi [15] optimized clustering using PSO 

integrated with CS. The method effectively reduced energy 

use, yet suffered from slow convergence in large networks. 

Chang et al. [16] focused on recharge scheduling in WSNs via 

CS, improving node lifespan. Nonetheless, it overlooked 

optimal path selection during recharge intervals. 

Ramadhan et al. [17] proposed an optimized event-based 

PID control mechanism to improve energy efficiency in 

Wireless Sensor Networks. Their approach dynamically 

adjusts control actions based on event triggers, reducing 

unnecessary energy consumption and extending network 

lifetime. Taheri et al. [18] introduced Probability Density 

Based Adaptive Clustering - Low Energy Adaptive Clustering 

Hierarchy (PDBAC-LEACH) an advanced clustering 

approach designed to optimize the lifespan of WSNs. The 

scheme enhances cluster-head selection and load balancing, 

thereby improving energy efficiency and extending network 

longevity. Chen et al. [19] proposed a trust-based, self-

adaptive coverage model to ensure intrusion tolerance. While 

robust in hostile environments, the energy model used was 

static and non-adaptive. With the growing complexity of 

dynamic IoT networks, researchers have increasingly turned 

to Deep Reinforcement Learning (DRL) for adaptive and 

intelligent routing. Song et al. [20] presented High-Efficiency 

Routing Protocols for Heterogeneous WSNs (HWSNs) using 

DRL, where a deep Q-network (DQN) optimized routing 

based on residual energy, relay distance, and transmission 

delay, achieving superior energy balance and prolonged 

lifetime. Suresh et al. [21] proposed a Federated DRL-based 

Intelligent Data Routing Strategy for IoT-enabled WSNs, in 

which distributed learning among nodes improved scalability, 

reduced latency, and avoided single points of failure. Shekar 

et al. [22] Implemented Learning-Based Energy-Efficient 

Routing Protocols combining adaptive learning and clustering 

for IoT applications, demonstrating significant gains in energy 

conservation and load distribution under variable network 

conditions. Similarly, Liu et al. [23] introduced Reinforcement 

Learning-Based Routing for energy-sensitive IoT mesh 

networks, which effectively balanced exploration and 

exploitation to achieve stable communication paths and 

reduced power consumption. Finally, Lingam et al. [24] 

applied PSO on deep reinforcement learning for spam bot 

detection in social networks. Though not directly WSN-

related, the hybrid model showcased the effectiveness of 

combining metaheuristics with deep learning. The limitations 

of existing methods are summarized as follows: 

⚫ Metaheuristic-only approaches [2, 3, 5, 6] focus on

deployment or clustering but lack adaptability in

routing.

⚫ FCM-based clustering techniques [9-12] improve

energy balancing but do not dynamically adjust routing

paths.

⚫ DQL-based routing models [17-21] excel in path

learning but assume static network structures, leading

to suboptimal routing in dynamically placed nodes.

The positioning of this article is summarized as follows: 

⚫ Adaptive Nest Competition Algorithm (ANCA) is

proposed as an improved variant of CS, offering better

exploration and exploitation during node deployment.

⚫ FCM is integrated to enable energy-aware clustering

based on soft membership, reducing intra-cluster

communication costs.

⚫ DQL is incorporated for adaptive routing, leveraging

real-time learning of optimal paths based on dynamic

WSN parameters.

⚫ Comparative evaluation with ABC, PSO, and Grey

Wolf Optimizer (GWO) on metrics including Average

Energy Consumption, Packet Delivery Ratio (PDR),

End-to-End Delay, Routing Overhead, and Network

Lifetime.

2. METHODOLOGY

Figure 1 shows the flow diagram of the proposed 

framework. 

2.1 System overview 

The proposed framework for optimizing energy efficiency 

and routing in dynamic WSNs is depicted in Figure 1. The 

overall system is structured into a sequential pipeline 

comprising four major stages: network parameter 

initialization, node placement, clustering, and deep 

reinforcement learning-based optimized routing. The system's 

performance is evaluated through key performance metrics. 

Network parameter initialization: the process begins with the 

initialization of essential network parameters, including node 

density, initial energy, communication range, and mobility 

patterns. These parameters define the simulation environment 

and influence all subsequent processes. The second stage is 

node placement using ANCA: To maximize coverage and 

maintain connectivity, an ANCA is employed for optimal node 

placement. ANCA, inspired by the nest competition behavior 

of birds, strategically distributes sensor nodes across the 

monitored region to ensure balanced energy consumption and 

coverage. 

Clustering using FCM is the third stage after the node 

placement. Sensor nodes are logically grouped into clusters 

using the FCM clustering algorithm. FCM allows nodes to 
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have degrees of membership in multiple clusters, enabling 

flexible and energy-aware grouping. This step minimizes 

intra-cluster communication cost and enhances local data 

aggregation. The next stage is Optimized Clustering & 

Routing using DQL. The clustered network structure is further 

optimized using DQL for routing. DQL dynamically learns the 

best routing paths by interacting with the environment and 

adapting to changes such as node mobility and energy 

depletion. The objective is to find energy-efficient routes from 

cluster members to the sink while minimizing delay and 

Routing Overhead. The effectiveness of the proposed ANCA-

FCM-DQL framework is measured using the following key 

performance metrics: Network Lifetime, Average Energy 

Consumed, PDR, End-to-End Delay, and Routing Overhead. 

This integrated model aims to strike a balance between 

energy efficiency and robust communication in dynamic 

environments, offering a scalable and adaptive solution for 

real-world WSN deployments. 

Figure 1. System flow 

Figure 2. DQL for WSN 

Figure 2 illustrates the interaction between the DQL model 

and the WSN environment. The DRL model (DQL) agent 

observes the network state, selects an optimal routing action, 

and receives feedback based on network performance. This 

feedback is used to update the Q-values, enabling the model to 

learn better routing policies over time. The loop ensures 

continuous adaptation to dynamic WSN conditions, enhancing 

energy efficiency and reliability. 

2.2 ANCA for node placement 

The ANCA draws inspiration from the natural reproductive 

strategy of cuckoo birds, particularly their unique approach of 

laying eggs in the nests of other bird species. In this biological 

process, if a host bird detects that an egg does not belong to it, 

it either discards the egg or abandons the nest entirely to 

construct a new one. Analogously, in the context of 

optimization, each nest represents a candidate solution, and 

each cuckoo egg symbolizes a promising or improved 

solution. The optimization process evolves by refining these 

solutions iteratively to identify the optimal outcome. In this 

model, a population of nests, each containing a potential 

solution, is maintained. The selection of the nest for laying the 

egg mimics the stochastic behavior of cuckoos and is governed 

by Levy flight, a random walk strategy that ensures 

exploration across a wide solution space. To further refine the 

search capability and enhance exploitation, an adaptive 

competition-based learning mechanism is introduced. This 

strategy incorporates an elite selection and rivalry mechanism, 

in which members with superior performance are engaged in 

a competitive learning framework to generate more efficient 

solutions. This process promotes solution refinement without 

requiring entirely new individuals, thus improving 

convergence while preserving diversity. 

Key Concepts of ANCA Competitive Strategy: 

(1). Elite selection: Two high-performing candidates are 

selected from the top-performing subset of the population (top 

5% based on fitness). 

(2). Competition and replacement: The two candidates 

undergo a competitive evaluation, and based on the outcome, 

the weaker candidate is modified using the traits of the 

stronger one. 

(3). Fitness evaluation: After modification, both solutions 

are evaluated. The one with better fitness may replace the 

current global best if it outperforms it. 

2.2.1 Algorithm steps: ANCA 

Step 1: 

Select two individuals (C1 and C2) at random from the top 

5% elite set of the population. 

C1 ← Random selection from elite pool 

C2 ← Another random selection from the elite pool 

Step 2:  

Perform a competitive learning phase between C1 and C2 

to generate modified versions. 

[C1', C2'] ← Competitive_Update (C1, C2) 

Step 3:  

Evaluate the fitness of updated candidates. 

fitness_C1' ← Evaluate (C1') 

fitness_C2' ← Evaluate (C2') 

Step 4: 

Update the global best solution if either C1' or C2' has better 

fitness. 

If fitness_C1' > Global_Best_Fitness: 

        Global_Best ← C1' 

If fitness_C2' > Global_Best_Fitness: 
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        Global_Best ← C2' 

Step 5: 

Repeat this competitive update across the population until 

convergence or a termination condition is met. 

This approach significantly enhances the exploitation 

ability of the search process by continuously reusing and 

refining individuals near the global optimum. It also ensures 

rapid convergence through focused competition among elite 

candidates, making it particularly suitable for high-

dimensional optimization tasks such as sensor node 

deployment in dynamic WSNs. 

2.3 FCM clustering 

In the proposed hybrid architecture for dynamic WSNs, 

FCM clustering plays a central role in managing energy-

efficient data transmission by organizing sensor nodes into 

flexible, overlapping clusters. Unlike hard clustering methods, 

FCM minimizes intra-cluster distances while maintaining 

flexibility in cluster formation, which is critical in dynamic 

WSN environments. In the proposed system, FCM is 

employed after optimal node placement to form energy-aware 

clusters. This soft clustering strategy enhances load balancing 

and improves local data aggregation, thereby reducing overall 

energy consumption and communication overhead. This 

characteristic is advantageous in dynamic or mobile 

environments where node energy levels and topology change 

frequently.  

2.4 DQL-based routing 

To accompany the clustering framework, DQL is employed 

to dynamically manage routing both within and between 

clusters. DQL empowers sensor nodes to act as intelligent 

agents that learn optimal data forwarding paths by interacting 

with the environment and receiving feedback in the form of 

rewards or penalties. DQL is a value-based reinforcement 

learning algorithm that leverages deep neural networks to 

approximate the optimal action-value function. In the 

proposed framework, DQL is utilized to optimize the routing 

process within the clustered Wireless Sensor Network. Each 

sensor node acts as an agent that learns to select the most 

energy-efficient routing path based on a reward mechanism 

that considers factors such as residual energy, hop count, and 

link reliability. 

The DQL agent interacts with the dynamic WSN 

environment, continuously updating its Q-values to adapt to 

node failures, mobility, and energy depletion. This learning-

based routing approach ensures robust and adaptive 

communication from cluster members to the base station, 

effectively minimizing End-to-End Delay, Routing Overhead, 

and energy consumption. By integrating DQL, the system 

achieves intelligent decision-making capabilities that enhance 

the overall network lifetime and performance. 

2.5 Mathematical models 

(1). FCM clustering 

Objective: Partition a set of sensor nodes into c clusters with

soft membership, allowing each node to belong to multiple 

clusters.

Let: 

N = {n1, nc, ..., nk}: Set of sensor nodes 

C = {c1, c2, ..., cm}: Set of initial cluster centers from FCM 

CH: Set of refined Cluster Heads selected by DQL 

BS: Base Station location 

E(ni): Residual energy of node ni 

dij: Distance between nodes ni and nj 

D: End-to-End Delay 

Eavg: Average Energy Consumed 

L: Network Lifetime 

R: Set of possible routes 

(2). Initial clustering using FCM (soft assignment) 

The membership matrix U=[uij] is computed as: 

𝑢𝑖𝑗 =
1

∑ (
||𝑥𝑖 − 𝑐𝑗||

||𝑥𝑖 − 𝑐𝑘||
)

2
𝑚−1

𝑚
𝑘=1

(1) 

where: 

xi: Feature vector of node ni  

cj: Cluster center 

m: Fuzziness factor (typically 2) 

Update cluster centers: 

𝑐𝑗 =
∑ 𝑢𝑖𝑗

𝑚𝑛
𝑖=1 𝑥𝑖

∑ 𝑢𝑖𝑗
𝑚𝑛

𝑖=1

(2) 

(3). DQL state-space definition for clustering and 

routing 

Each state s is defined as: 

𝑠 = [
𝐸(𝑛𝑖), 𝑑(𝑛𝑖, 𝐵𝑆), 𝑃𝐷𝑅(𝑛𝑖), hop count,

buffer size, cluster assignment
] (3) 

Each action a  A can be: 

Clustering: Elect node ni as cluster head 

Routing: Forward packet to neighbor nj 

The Q-value update is: 

𝑄(𝑠𝑡 , 𝑎𝑡) ← 𝑄(𝑠𝑡 , 𝑎𝑡)

+𝛼 [𝑟𝑡 + 𝛾max
𝑎′

𝑄(𝑠𝑡+1, 𝑎′) − 𝑄(𝑠𝑡 , 𝑎𝑡)]
(4) 

where: 

𝑠𝑡: Current state

𝑎𝑡: Action taken

𝑟𝑡: Reward received

𝛼: Learning rate 

𝛾: Discount factor for future rewards 

max𝑎′𝑄(𝑠𝑡+1,  𝑎′): Maximum expected future reward from

the next state 

(4). Reward function 𝒓𝒕

In the proposed DQL-based routing mechanism, each 

sensor node (agent) learns to choose the most suitable next-

hop node based on the current state of the network. The state-

space is defined using key network parameters that reflect the 

current condition of a node and its neighbors. These 

parameters include: 

⚫ Residual Energy (E) of the node

⚫ PDR of the link

⚫ Distance (D) to the destination or cluster head

⚫ Hop Count (H) from the current node to the sink

The agent evaluates these states to decide the best action, 

i.e., selecting the next-hop node for forwarding the data

packet. The reward function guides the learning process by

providing feedback after each action. It is designed to
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encourage energy-efficient and reliable routing. The reward at 

time t is calculated as: 

𝑟𝑡 = 𝑤1 ⋅ Δ𝐸 + 𝑤2 ⋅ 𝑃𝐷𝑅 + 𝑤3 ⋅
1

𝐷
+ 𝑤4 ⋅

1

𝐻
(5) 

where: 

ΔE: Change in residual energy (preferably low) 

PDR: Packet Delivery Ratio (higher is better) 

D: Distance to destination (shorter is preferred) 

H: Hop count to sink (fewer hops are ideal) 

𝑤1, 𝑤2, 𝑤3, 𝑤4: Weight factors controlling the influence of

each metric: 

𝑤1 + 𝑤2 + 𝑤3 + 𝑤4 = 1

PDR = "Total packets received at destination" / "Total 

packets sent by sources"  

Let: 

𝑃𝑟𝑒𝑐𝑣: Total successfully received packets.

𝑃𝑠𝑒𝑛𝑡: Total packets sent.

So: 

𝑃𝐷𝑅 =
𝑃𝑟𝑒𝑐𝑣

𝑃𝑠𝑒𝑛𝑡
(6) 

End-to-End Delay D =
∑ (𝑁

𝑖=1 𝑡𝑟𝑒𝑐𝑣,𝑖−𝑡𝑠𝑒𝑛𝑡,𝑖)

𝑃𝑟𝑒𝑐𝑣
(7) 

where: 

𝑡𝑟𝑒𝑐𝑣,𝑖: Time packet i was received.

𝑡𝑠𝑒𝑛𝑡,𝑖: Time packet i was sent.

𝑃𝑟𝑒𝑐𝑣: Number of packets successfully received.

Hop Count 𝑯 =
∑ ℎ𝑖

𝑃𝑟𝑒𝑐𝑣
𝑖=1

𝑃𝑟𝑒𝑐𝑣

(8) 

where: 

ℎ𝑖: Number of hops taken by packet i.

𝑃𝑟𝑒𝑐𝑣: Total packets received.

3. RESULT AND DISCUSSION

This section presents the performance evaluation of the 

proposed ANC-DQL approach in comparison with existing 

optimization and routing schemes, including Artificial Bee 

Colony (ABC), Particle Swarm Optimization (PSO), and Grey 

Wolf Optimizer (GWO). The simulations were conducted 

using MATLAB with identical network settings to ensure 

fairness. The network and radio model simulation parameters 

are described in Table 1 and Table 2, respectively. Table 3 

consists of performance parameters. 

The proposed method consistently outperformed baseline 

algorithms across all evaluated metrics, as shown in Figures 3 

to 7. 

- Network Lifetime improved by 20–35%.

- Average Energy Consumption reduced by 15–25%.

- PDR increased by 10–18%.

- End-to-End Delay decreased by 20–30%.

- Routing Overhead reduced by 15–28%.

These improvements are attributed to the synergistic design

of ANCA (for optimized node placement), FCM (for flexible 

and energy-aware clustering), and DQL (for adaptive, 

intelligent routing). The model shows strong scalability with 

increasing node density and is especially effective in both 

static and mobile node environments, suggesting suitability for 

real-world applications like smart agriculture, disaster 

response, and industrial monitoring. 

Table 1. Network simulation parameters 

System Parameter Specification 

Base Station Position Center 

Simulation area 200 m × 200 m 

Initial energy (Eo) 0.1-0.5 J 

Number of Nodes 100, 200, 300, …500 

Node Position Fixed and Mobile 

Traffic Patterns CBR 

Table 2. Radio model parameters 

System Parameter Specification 

Threshold Distance (do) √Efs Emps⁄

Energy consumed per bit (Eelec) 50 nJ /bit

Receiver Power Consumption (ERX) 50 nJ/bit

Transmission Power Consumption (ETX) 50 nJ /bit

Multipath Amplification Factor (Emp) 0.0013 pJ/bit/m4 

Free Space Amplification Factor (Efs) 10 pJ/bit/m2 

Message bits (K) 2000 bits 

Table 3. Performance metrics 

Parameter Meaning 

Network Lifetime 
Number of rounds until the first 

and last node dies. 

Energy Consumption 
Total residual energy of the 

network over time. 

PDR 
Ratio of successfully received 

packets to total sent packets. 

End-to-End Delay 
Average time taken for packets to 

reach the sink. 

Routing Overhead 

Number of control packets 

generated per data packet 

delivered. 

Network Lifetime 
Number of rounds until the first 

and last node dies. 

Energy Consumption 
Total residual energy of the 

network over time. 

Figure 3. Network lifetime vs number of nodes 
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Figure 4. Average energy consumed vs number of nodes 

Figure 5. Packet Delivery Ratio vs. number of nodes 

Figure 6. End-to-End Delay vs. number of nodes 

Figure 3 shows network lifetime across varying node 

densities (50–500 nodes). The ANCA-FCM-DQL approach 

extends lifetime by up to 35%, due to balanced energy 

distribution achieved through adaptive nest-based placement 

and energy-aware clustering. Unlike PSO, GWO, and ABC, 

which cause energy holes around the sink, ANCA dynamically 

adjusts node engagement to avoid early node death. 

Figure 4 illustrates Average Energy Consumption. ANCA-

FCM-DQL shows 15–25% lower consumption, thanks to 

FCM’s compact clusters and DQL’s ability to avoid long or 

congested routes through real-time learning. PSO, GWO, and 

ABC lack this adaptability and frequently trigger redundant 

transmissions. 

Figure 5 displays the PDR, where our method maintains the 

highest delivery rates, even as node count increases. This is 

due to DQL’s policy learning for selecting reliable, stable 

paths, while the proposed system ensures fewer re-clustering 

events. Compared to traditional algorithms, the improvement 

in PDR is 10–18% on average.  

Figure 6 shows the End-to-End Delay, which is 20–30% 

lower in our proposed method. DQL selects low-hop, high-

quality routes and avoids route rediscovery, resulting in faster 

data transmission ideal for time-sensitive applications like 

surveillance and healthcare. 

Figure 7 compares Routing Overhead. ANCA-FCM-DQL 

exhibits the lowest control packet overhead due to the stable, 

learned routing policies and minimal re-clustering. This 

reduces bandwidth consumption, making the protocol more 

scalable for dense or large-area WSN deployments. 

Figure 7. Routing Overhead vs. number of nodes 

4. CONCLUSION

In this research, we proposed a novel, energy-efficient, and 

intelligent framework for WSNs by integrating the ANCA for 

optimal node placement, FCM for clustering, and DQL for 

dynamic routing. The hybrid ANCA–FCM–DQL approach 

effectively addresses challenges such as uneven energy 

depletion, suboptimal cluster formation, and inefficient 

routing under dynamic network conditions. 

Comprehensive simulation experiments demonstrated that 

the proposed method significantly outperforms benchmark 

algorithms like ABC, PSO, and GWO in multiple performance 

metrics: 

 Up to 20–35% improvement in network lifetime.

 15–25% reduction in Average Energy Consumption.

 Enhanced PDR by 10–18%.

 Lower End-to-End Delay and reduced Routing Overhead.

These improvements are attributed to the synergistic

combination of ANCA’s global optimization for node 

placement, FCM’s adaptive clustering capabilities, and DQL’s 
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intelligent, feedback-driven routing decisions. 

Implications 

 The framework demonstrates strong adaptability in

dynamic WSN environments, with performance scaling

effectively as node density increases.

 The integration of machine learning and bio-inspired

algorithms opens new avenues for real-time decision-

making in distributed sensor deployments.

 The proposed system architecture is generalizable and can

be adapted for IoT-based monitoring, smart agriculture, and

disaster-response systems, where energy efficiency and

reliability are critical.

Future scope

 Amalgamation with real-time hardware testbeds (e.g.,

Arduino, Raspberry Pi with XBee modules) will be pursued

to validate practical performance under real deployment

conditions.

 Exploration of transfer learning or meta-reinforcement

learning can reduce DQL training time in dynamic

environments.
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NOMENCLATURE 

CH Cluster Heads 

DQL Deep-Q-Learning 

BS Base Station location 

E(ni) Residual energy of node ni 

dij Distance between nodes ni and nj 

PDR Packet Delivery Ratio 

D End-to-End Delay 

Eavg Average Energy Consumed 

L Network Lifetime 

R Set of possible routes 
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