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This study aims to improve energy efficiency and routing performance in dynamic
Wireless Sensor Networks (WSNs), where node mobility and limited power are major
challenges. The objective was to enhance energy efficiency and extend the network
lifetime of the dynamic WSN for the implementation of a time-sensitive IoT-based
system. We proposed an integrated methodology compounding three key techniques.
The Adaptive Nest Competition Algorithm (ANCA) is used for optimal placement of
sensor nodes to ensure wide coverage and strong connectivity. Fuzzy C-Means (FCM)
clustering groups of nearby nodes to minimize communication within clusters. A Deep
Q-Learning (DQL) algorithm that learns and adapts routing decisions based on
changing network conditions to ensure efficient data transmission. The proposed
framework outperforms traditional methods such as Artificial Bee Colony (ABC),
Particle Swarm Optimization (PSO), and Grey Wolf Optimizer (GWO) in simulations.
It achieves a Network Lifetime improved by 20-25%, Average Energy Consumption
reduced by 15-25%, Packet Delivery Ratio (PDR) increased by 10-18%, End-to-End
Delay decreased by 20-30%, and Routing Overhead reduced by 15-28%. This hybrid
ANCA-FCM-DQL model provides a robust and adaptive solution for energy-aware
node deployment and intelligent routing in dynamic WSNs, making it suitable for real-
time, mobile, and energy-constrained applications.

1. INTRODUCTION

Wireless Sensor Networks (WSNs) play a critical role in
numerous real-time applications such as smart agriculture,
environmental monitoring, and disaster management.
Efficient performance of WSNs relies heavily on two
interdependent factors: optimal node placement and energy-
efficient routing. Node placement influences coverage and
connectivity, while routing determines the energy
consumption and network lifetime. Achieving a balance
between these factors in a dynamic environment, where node
mobility and energy constraints are predominant, remains an
open challenge. Existing methods that use metaheuristic
algorithms such as Particle Swarm Optimization (PSO) or
Artificial Bee Colony (ABC) often exhibit limitations in
convergence or adaptability to dynamic conditions. To address
these limitations, Optimization and intelligent routing in
WSNs have attracted extensive research, focusing on
metaheuristic algorithms, clustering techniques, and machine
learning approaches. Recent advancements in WSNs have
explored hybrid optimization, fuzzy logic, and machine
learning-based approaches to address challenges in routing,
clustering, and energy efficiency. Meshram et al. [1]
introduced IBOOST, a lightweight, secure identity-based
online/offline signature mechanism employing Fuzzy C-
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Means (FCM) for 5G-based WSNs. It ensured provable
security for massive device authentication but lacked adaptive
routing strategies. Gangwar et al. [2] proposed a Game
Theory-Based Fuzzy Routing (GTFR) protocol, which
improved routing decisions in dynamic topologies. However,
the model's energy efficiency under high mobility scenarios
remained a limitation. Sikarwar and Tomar [3] combined
Modified FCM with PSO for efficient tree-based routing.
Though clustering was optimized, the approach did not
account for network reconfiguration under node failure. Khedr
et al. [4] presented a fuzzy-based multi-layered clustering
model and Ant Colony Optimization (ACO)-driven sink path
planning for optimal coverage. While enhancing network
longevity, it did not fully address scalability in dense
deployments. Cheng et al. [5] developed an FCM and
hierarchical voting-based Received Signal Strength Indicator
(RSSI) localization algorithm for sensor node positioning. Its
accuracy was significant, yet performance degraded with
increased  environmental noise.  Hiyagarajan  and
Shanmugasundaram [6] evaluated clustering techniques (K-
Means, K-Medoids, FCM) for WSNs. Their comparative
analysis offered insights into performance trade-offs, but real-
time dynamic adaptability was absent. Bensaid and Boujemaa
[7] proposed a combined cluster-chain routing protocol to
extend network lifespan. Though energy consumption was
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reduced, the protocol was not robust under unpredictable node
mobility. Sree et al. [8] utilized FCM with Cat Swarm
Optimization (CSO) for energy-efficient data gathering.
Despite performance gains, it required frequent cluster
reformation, increasing computation overhead.

Mohan et al. [9] introduced a Fuzzy Median Graph-Based
Energy Efficient Clustering Protocol that minimized
communication costs through median-based fuzzy decision-
making. Zaier et al. [10] proposed an Interval Type-2 Fuzzy
Unequal Clustering and Sleep Scheduling Protocol to handle
uncertainty and balance energy consumption effectively in
IoT-based WSNs. Rahmani et al. [11] introduced collective
Gray Wolf Optimization with Fuzzy Clustering and multi-
criteria decision-making approaches, improving throughput
and reducing delay through optimized cluster head selection.
Shokouhifar et al. [12] reviewed Al-driven clustering and
routing protocols, emphasizing fuzzy, metaheuristic, and
learning-based methods, and highlighting the need for
adaptive and intelligent models in dynamic WSNs. Devika et
al. [13] proposed an energy-efficient routing approach using
ant-cuckoo hybrid techniques, enhancing data compression
and energy savings. However, the scalability under
heterogeneous nodes was limited. In a related work, Devika et
al. [14] earlier introduced Ant Cuckoo optimized using
Energy-Efficient Data aggregation (ACEED), a bio-inspired
routing scheme combining ant and cuckoo behaviors. Though
it addressed routing complexity, real-time performance under
failure scenarios was insufficient. Karthikeyan and
Venkatalakshmi [15] optimized clustering using PSO
integrated with CS. The method effectively reduced energy
use, yet suffered from slow convergence in large networks.
Chang et al. [16] focused on recharge scheduling in WSNs via
CS, improving node lifespan. Nonetheless, it overlooked
optimal path selection during recharge intervals.

Ramadhan et al. [17] proposed an optimized event-based
PID control mechanism to improve energy efficiency in
Wireless Sensor Networks. Their approach dynamically
adjusts control actions based on event triggers, reducing
unnecessary energy consumption and extending network
lifetime. Taheri et al. [18] introduced Probability Density
Based Adaptive Clustering - Low Energy Adaptive Clustering
Hierarchy (PDBAC-LEACH) an advanced clustering
approach designed to optimize the lifespan of WSNs. The
scheme enhances cluster-head selection and load balancing,
thereby improving energy efficiency and extending network
longevity. Chen et al. [19] proposed a trust-based, self-
adaptive coverage model to ensure intrusion tolerance. While
robust in hostile environments, the energy model used was
static and non-adaptive. With the growing complexity of
dynamic IoT networks, researchers have increasingly turned
to Deep Reinforcement Learning (DRL) for adaptive and
intelligent routing. Song et al. [20] presented High-Efficiency
Routing Protocols for Heterogeneous WSNs (HWSNs) using
DRL, where a deep Q-network (DQN) optimized routing
based on residual energy, relay distance, and transmission
delay, achieving superior energy balance and prolonged
lifetime. Suresh et al. [21] proposed a Federated DRL-based
Intelligent Data Routing Strategy for IoT-enabled WSNs, in
which distributed learning among nodes improved scalability,
reduced latency, and avoided single points of failure. Shekar
et al. [22] Implemented Learning-Based Energy-Efficient
Routing Protocols combining adaptive learning and clustering
for IoT applications, demonstrating significant gains in energy
conservation and load distribution under variable network
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conditions. Similarly, Liu et al. [23] introduced Reinforcement
Learning-Based Routing for energy-sensitive IoT mesh
networks, which effectively balanced exploration and
exploitation to achieve stable communication paths and
reduced power consumption. Finally, Lingam et al. [24]
applied PSO on deep reinforcement learning for spam bot
detection in social networks. Though not directly WSN-
related, the hybrid model showcased the effectiveness of
combining metaheuristics with deep learning. The limitations
of existing methods are summarized as follows:
® Metaheuristic-only approaches [2, 3, 5, 6] focus on
deployment or clustering but lack adaptability in
routing.

® FCM-based clustering techniques [9-12] improve
energy balancing but do not dynamically adjust routing
paths.

® DQL-based routing models [17-21] excel in path

learning but assume static network structures, leading
to suboptimal routing in dynamically placed nodes.
The positioning of this article is summarized as follows:
® Adaptive Nest Competition Algorithm (ANCA) is
proposed as an improved variant of CS, offering better
exploration and exploitation during node deployment.
FCM is integrated to enable energy-aware clustering
based on soft membership, reducing intra-cluster
communication costs.
DQL is incorporated for adaptive routing, leveraging
real-time learning of optimal paths based on dynamic
WSN parameters.
Comparative evaluation with ABC, PSO, and Grey
Wolf Optimizer (GWO) on metrics including Average
Energy Consumption, Packet Delivery Ratio (PDR),
End-to-End Delay, Routing Overhead, and Network
Lifetime.

2. METHODOLOGY

Figure 1
framework.

shows the flow diagram of the proposed

2.1 System overview

The proposed framework for optimizing energy efficiency
and routing in dynamic WSNs is depicted in Figure 1. The
overall system is structured into a sequential pipeline
comprising four major stages: network parameter
initialization, node placement, clustering, and deep
reinforcement learning-based optimized routing. The system's
performance is evaluated through key performance metrics.
Network parameter initialization: the process begins with the
initialization of essential network parameters, including node
density, initial energy, communication range, and mobility
patterns. These parameters define the simulation environment
and influence all subsequent processes. The second stage is
node placement using ANCA: To maximize coverage and
maintain connectivity, an ANCA is employed for optimal node
placement. ANCA, inspired by the nest competition behavior
of birds, strategically distributes sensor nodes across the
monitored region to ensure balanced energy consumption and
coverage.

Clustering using FCM is the third stage after the node
placement. Sensor nodes are logically grouped into clusters
using the FCM clustering algorithm. FCM allows nodes to



have degrees of membership in multiple clusters, enabling
flexible and energy-aware grouping. This step minimizes
intra-cluster communication cost and enhances local data
aggregation. The next stage is Optimized Clustering &
Routing using DQL. The clustered network structure is further
optimized using DQL for routing. DQL dynamically learns the
best routing paths by interacting with the environment and
adapting to changes such as node mobility and energy
depletion. The objective is to find energy-efficient routes from

cluster members to the sink while minimizing delay and
Routing Overhead. The effectiveness of the proposed ANCA-
FCM-DQL framework is measured using the following key
performance metrics: Network Lifetime, Average Energy
Consumed, PDR, End-to-End Delay, and Routing Overhead.

This integrated model aims to strike a balance between
energy efficiency and robust communication in dynamic
environments, offering a scalable and adaptive solution for
real-world WSN deployments.

’ —— Node Placement using usmg ~ Optimized
thwork Parameter Adaptive Nest Clustenng Clustermg &
¢ Initialization N Competition usmg FCM Rautmg Deep Q
— _— \___ Algorithm _ Learning
Performance
Parameters
S S ————
Network E\.:rage Packet End-to-End Routing
Lifetime 18y Delivery Ratio Delay Overhead
) \_ Consumed . ) )\
Figure 1. System flow
Reward strategy incorporates an elite selection and rivalry mechanism,

Action WSN Environment for

DRL Model (Deep Q-

Learning)

Routing

Observations

Figure 2. DQL for WSN

Figure 2 illustrates the interaction between the DQL model
and the WSN environment. The DRL model (DQL) agent
observes the network state, selects an optimal routing action,
and receives feedback based on network performance. This
feedback is used to update the Q-values, enabling the model to
learn better routing policies over time. The loop ensures
continuous adaptation to dynamic WSN conditions, enhancing
energy efficiency and reliability.

2.2 ANCA for node placement

The ANCA draws inspiration from the natural reproductive
strategy of cuckoo birds, particularly their unique approach of
laying eggs in the nests of other bird species. In this biological
process, if a host bird detects that an egg does not belong to it,
it either discards the egg or abandons the nest entirely to
construct a new one. Analogously, in the context of
optimization, each nest represents a candidate solution, and
each cuckoo egg symbolizes a promising or improved
solution. The optimization process evolves by refining these
solutions iteratively to identify the optimal outcome. In this
model, a population of nests, each containing a potential
solution, is maintained. The selection of the nest for laying the
egg mimics the stochastic behavior of cuckoos and is governed
by Levy flight, a random walk strategy that ensures
exploration across a wide solution space. To further refine the
search capability and enhance exploitation, an adaptive
competition-based learning mechanism is introduced. This
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in which members with superior performance are engaged in
a competitive learning framework to generate more efficient
solutions. This process promotes solution refinement without
requiring entirely new individuals, thus improving
convergence while preserving diversity.

Key Concepts of ANCA Competitive Strategy:

(1). Elite selection: Two high-performing candidates are
selected from the top-performing subset of the population (top
5% based on fitness).

(2). Competition and replacement: The two candidates
undergo a competitive evaluation, and based on the outcome,
the weaker candidate is modified using the traits of the
stronger one.

(3). Fitness evaluation: After modification, both solutions
are evaluated. The one with better fitness may replace the
current global best if it outperforms it.

2.2.1 Algorithm steps: ANCA

Step 1:

Select two individuals (C1 and C2) at random from the top
5% elite set of the population.

C1 « Random selection from elite pool

C2 « Another random selection from the elite pool

Step 2:

Perform a competitive learning phase between C1 and C2
to generate modified versions.

[C1', C2"] « Competitive Update (C1, C2)

Step 3:

Evaluate the fitness of updated candidates.

fitness C1' «— Evaluate (C1")

fitness C2' «— Evaluate (C2")

Step 4:

Update the global best solution if either C1' or C2' has better
fitness.

If fitness_C1'> Global Best Fitness:

Global Best « C1'
If fitness_C2'> Global Best Fitness:



Global Best «— C2'

Step S:

Repeat this competitive update across the population until
convergence or a termination condition is met.

This approach significantly enhances the exploitation
ability of the search process by continuously reusing and
refining individuals near the global optimum. It also ensures
rapid convergence through focused competition among elite
candidates, making it particularly suitable for high-
dimensional optimization tasks such as sensor node
deployment in dynamic WSNs.

2.3 FCM clustering

In the proposed hybrid architecture for dynamic WSNs,
FCM clustering plays a central role in managing energy-
efficient data transmission by organizing sensor nodes into
flexible, overlapping clusters. Unlike hard clustering methods,
FCM minimizes intra-cluster distances while maintaining
flexibility in cluster formation, which is critical in dynamic
WSN environments. In the proposed system, FCM is
employed after optimal node placement to form energy-aware
clusters. This soft clustering strategy enhances load balancing
and improves local data aggregation, thereby reducing overall
energy consumption and communication overhead. This
characteristic is advantageous in dynamic or mobile
environments where node energy levels and topology change
frequently.

2.4 DQL-based routing

To accompany the clustering framework, DQL is employed
to dynamically manage routing both within and between
clusters. DQL empowers sensor nodes to act as intelligent
agents that learn optimal data forwarding paths by interacting
with the environment and receiving feedback in the form of
rewards or penalties. DQL is a value-based reinforcement
learning algorithm that leverages deep neural networks to
approximate the optimal action-value function. In the
proposed framework, DQL is utilized to optimize the routing
process within the clustered Wireless Sensor Network. Each
sensor node acts as an agent that learns to select the most
energy-efficient routing path based on a reward mechanism
that considers factors such as residual energy, hop count, and
link reliability.

The DQL agent interacts with the dynamic WSN
environment, continuously updating its Q-values to adapt to
node failures, mobility, and energy depletion. This learning-
based routing approach ensures robust and adaptive
communication from cluster members to the base station,
effectively minimizing End-to-End Delay, Routing Overhead,
and energy consumption. By integrating DQL, the system
achieves intelligent decision-making capabilities that enhance
the overall network lifetime and performance.

2.5 Mathematical models

(1). FCM clustering

Objective: Partition a set of sensor nodes into ¢ clusters with
soft membership, allowing each node to belong to multiple
clusters.

Let:

N = {ny, n, ..., ng}: Set of sensor nodes

C = {c1, ¢2, ..., ¢m}: Set of initial cluster centers from FCM

CH: Set of refined Cluster Heads selected by DQL
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BS: Base Station location

E(nj): Residual energy of node n;

dji: Distance between nodes n; and n;

D: End-to-End Delay

Eave: Average Energy Consumed

L: Network Lifetime

R: Set of possible routes

(2). Initial clustering using FCM (soft assignment)
The membership matrix U=[u;j] is computed as:

1

Y = z_
||xi —Cj|| "

||xi—Ck||

. (1)
k=1

where:
x;: Feature vector of node n;
¢j: Cluster center
m: Fuzziness factor (typically 2)
Update cluster centers:

n m
L= Ui X

2)

=1 Ui
(3). DQL state-space definition for clustering and
routing
Each state s is defined as:

E(n;),d(n;, BS), PDR(n;), hop count,
= . . 3)
buffer size, cluster assignment
Each action a € A can be:
Clustering: Elect node n; as cluster head
Routing: Forward packet to neighbor n;
The Q-value update is:

Q(st ar) < Q(st, ar) y
ta [rt + VH;E}XQ(SHL a) — Q(se at)] @
where:

S¢: Current state

a;: Action taken

1;: Reward received

a: Learning rate

y: Discount factor for future rewards

max,’Q(S¢41, a'): Maximum expected future reward from
the next state

(4). Reward function r,

In the proposed DQL-based routing mechanism, each
sensor node (agent) learns to choose the most suitable next-
hop node based on the current state of the network. The state-
space is defined using key network parameters that reflect the
current condition of a node and its neighbors. These
parameters include:

® Residual Energy (E) of the node

® PDR of the link

® Distance (D) to the destination or cluster head

® Hop Count (H) from the current node to the sink

The agent evaluates these states to decide the best action,
i.e., selecting the next-hop node for forwarding the data
packet. The reward function guides the learning process by
providing feedback after each action. It is designed to



encourage energy-efficient and reliable routing. The reward at
time t is calculated as:

1

1
rt=W1'AE+W2'PDR+W3'E+W4'E (5)

where:

AE: Change in residual energy (preferably low)

PDR: Packet Delivery Ratio (higher is better)

D: Distance to destination (shorter is preferred)

H: Hop count to sink (fewer hops are ideal)

Wy, W,, Wz, w,: Weight factors controlling the influence of
each metric:

W1+W2+W3+W4=1

PDR = "Total packets received at destination" / "Total
packets sent by sources"

Let:

Pyec: Total successfully received packets.

Pyene: Total packets sent.

So:
P
PDR = =% (6)
Psent
End-to-End Delay D = Zi=1{recvi—tsenc) (7
PTBC'I}
where:
trecy,i: Time packet i was received.
tsent,i: Time packet i was sent.
P,ec: Number of packets successfully received.
Precv .
Hop Count H = Zisy (®)
P’)"EC‘D

where:
h;: Number of hops taken by packet i.
Pecr: Total packets received.

3. RESULT AND DISCUSSION

This section presents the performance evaluation of the
proposed ANC-DQL approach in comparison with existing
optimization and routing schemes, including Artificial Bee
Colony (ABC), Particle Swarm Optimization (PSO), and Grey
Wolf Optimizer (GWO). The simulations were conducted
using MATLAB with identical network settings to ensure
fairness. The network and radio model simulation parameters
are described in Table 1 and Table 2, respectively. Table 3
consists of performance parameters.

The proposed method consistently outperformed baseline
algorithms across all evaluated metrics, as shown in Figures 3
to 7.

- Network Lifetime improved by 20—-35%.

- Average Energy Consumption reduced by 15-25%.

- PDR increased by 10-18%.

- End-to-End Delay decreased by 20—30%.

- Routing Overhead reduced by 15-28%.

These improvements are attributed to the synergistic design
of ANCA (for optimized node placement), FCM (for flexible
and energy-aware clustering), and DQL (for adaptive,
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intelligent routing). The model shows strong scalability with
increasing node density and is especially effective in both
static and mobile node environments, suggesting suitability for

real-world applications like smart agriculture, disaster
response, and industrial monitoring.
Table 1. Network simulation parameters
System Parameter Specification
Base Station Position Center
Simulation area 200 m x 200 m
Initial energy (Eo) 0.1-0.57J
Number of Nodes 100, 200, 300, ...500
Node Position Fixed and Mobile
Traffic Patterns CBR
Table 2. Radio model parameters
System Parameter Specification
Threshold Distance (do) VEss/Emps
Energy consumed per bit (Eelec) 50 nJ /bit
Receiver Power Consumption (Erx) 50 nJ/bit
Transmission Power Consumption (ETx) 50 nJ /bit
Multipath Amplification Factor (Emp) 0.0013 pJ/bit/m*
Free Space Amplification Factor (Ef) 10 pJ/bit/m?
Message bits (K) 2000 bits

Table 3. Performance metrics

Parameter Meaning
Number of rounds until the first
and last node dies.
Total residual energy of the
network over time.

Ratio of successfully received
packets to total sent packets.
Average time taken for packets to
reach the sink.

Number of control packets

Network Lifetime
Energy Consumption
PDR

End-to-End Delay

Routing Overhead generated per data packet
delivered.
Network Lifetime Number of rounds until the first

and last node dies.
Total residual energy of the

Energy Consumption -
gy P network over time.
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Figure 3. Network lifetime vs number of nodes



Energy Consumed vs Number of Nodes
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Figure 4. Average energy consumed vs number of nodes
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Figure 5. Packet Delivery Ratio vs. number of nodes

End-to-End Delay Comparison
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Figure 6. End-to-End Delay vs. number of nodes

Figure 3 shows network lifetime across varying node
densities (50-500 nodes). The ANCA-FCM-DQL approach
extends lifetime by up to 35%, due to balanced energy
distribution achieved through adaptive nest-based placement
and energy-aware clustering. Unlike PSO, GWO, and ABC,
which cause energy holes around the sink, ANCA dynamically
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adjusts node engagement to avoid early node death.

Figure 4 illustrates Average Energy Consumption. ANCA-
FCM-DQL shows 15-25% lower consumption, thanks to
FCM’s compact clusters and DQL’s ability to avoid long or
congested routes through real-time learning. PSO, GWO, and
ABC lack this adaptability and frequently trigger redundant
transmissions.

Figure 5 displays the PDR, where our method maintains the
highest delivery rates, even as node count increases. This is
due to DQL’s policy learning for selecting reliable, stable
paths, while the proposed system ensures fewer re-clustering
events. Compared to traditional algorithms, the improvement
in PDR is 10-18% on average.

Figure 6 shows the End-to-End Delay, which is 20-30%
lower in our proposed method. DQL selects low-hop, high-
quality routes and avoids route rediscovery, resulting in faster
data transmission ideal for time-sensitive applications like
surveillance and healthcare.

Figure 7 compares Routing Overhead. ANCA-FCM-DQL
exhibits the lowest control packet overhead due to the stable,
learned routing policies and minimal re-clustering. This
reduces bandwidth consumption, making the protocol more
scalable for dense or large-area WSN deployments.

Routing Overhead Comparison
T T T T

0.45G T T
—6— ABC
—&B—PSO
GWO
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0.4
o
8
5
=
S 0.35
o0
£
]
[
03
0.25 I I I I I I | |
100 150 200 250 300 350 400 450 5

Number of Nodes

Figure 7. Routing Overhead vs. number of nodes

4. CONCLUSION

In this research, we proposed a novel, energy-efficient, and
intelligent framework for WSNs by integrating the ANCA for
optimal node placement, FCM for clustering, and DQL for
dynamic routing. The hybrid ANCA-FCM-DQL approach
effectively addresses challenges such as uneven energy
depletion, suboptimal cluster formation, and inefficient
routing under dynamic network conditions.

Comprehensive simulation experiments demonstrated that
the proposed method significantly outperforms benchmark
algorithms like ABC, PSO, and GWO in multiple performance
metrics:

* Up to 20-35% improvement in network lifetime.

* 15-25% reduction in Average Energy Consumption.

* Enhanced PDR by 10-18%.

* Lower End-to-End Delay and reduced Routing Overhead.

These improvements are attributed to the synergistic
combination of ANCA’s global optimization for node
placement, FCM’s adaptive clustering capabilities, and DQL’s



intelligent, feedback-driven routing decisions.
Implications

e The framework demonstrates

strong adaptability in

dynamic WSN environments, with performance scaling
effectively as node density increases.

* The integration of machine learning and bio-inspired
algorithms opens new avenues for real-time decision-
making in distributed sensor deployments.

* The proposed system architecture is generalizable and can
be adapted for [oT-based monitoring, smart agriculture, and
disaster-response systems, where energy efficiency and
reliability are critical.

Future scope

¢ Amalgamation with real-time hardware testbeds (e.g.,
Arduino, Raspberry Pi with XBee modules) will be pursued
to validate practical performance under real deployment
conditions.

* Exploration of transfer learning or meta-reinforcement
learning can reduce DQL training time in dynamic
environments.
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NOMENCLATURE

CH Cluster Heads

DQL  Deep-Q-Learning

BS Base Station location

E(nj))  Residual energy of node n;
dij Distance between nodes n; and n;
PDR  Packet Delivery Ratio

D End-to-End Delay

Eave Average Energy Consumed
L Network Lifetime

R Set of possible routes
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