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Image captioning integrates computer vision and natural language processing, requiring 

both accurate visual understanding and coherent language generation. While diverse 

deep learning approaches ranging from encoder–decoder models to Transformer-based 

architectures have emerged, few studies provide standardized, empirical comparisons 

across models. This work addresses that gap through a systematic and iterative 

evaluation, where performance insights are refined over successive analysis cycles to 

ensure reliability. The study benchmarks recent models using five key dimensions: 

latency, computational complexity, accuracy, Bilingual Evaluation Understudy 

(BLEU), and Recall-Oriented Understudy for Gisting Evaluation-Longest Common 

Subsequence (ROUGE-L). Evaluations consider architectural design (Long Short-Term 

Memory (LSTM), Transformer, hybrid), feature-extraction strategies (global 

Convolutional Neural Network (CNN) features vs. object-level detection), attention 

mechanisms, and training paradigms such as self-supervised learning. To improve 

interpretability, we introduce a multi-modal tabular and visual framework that 

combines comparative tables with performance plots, thereby enabling clear 

observation of trade-offs between accuracy and efficiency. The findings show 

Transformer-based architectures achieve the highest Consensus-based Image 

Description Evaluation (CIDEr) and BLEU scores on Microsoft Common Objects in 

Context (MS COCO) and Flickr datasets, while lightweight models offer competitive 

performance for real-time use cases. Gaps remain in handling language diversity, 

explainability, and domain generalization. By offering a reproducible benchmarking 

approach and actionable insights, this work aids researchers and practitioners in 

selecting and optimizing captioning models under varying operational constraints.  
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1. INTRODUCTION

Image captioning, the process of generating coherent and 

semantically accurate natural language descriptions for visual 

content, has emerged as a pivotal problem in Artificial 

Intelligence (AI). It requires a seamless integration of 

computer vision for visual understanding and natural language 

processing (NLP) for sentence generation. The ability to 

produce high-quality captions has far-reaching applications, 

including assistive technologies for the visually impaired, 

content-based image retrieval, human–computer interaction, 

and context-aware media generation. 

Recent advances in deep learning have accelerated progress 

in this field, with architectures evolving from early 

Convolutional Neural Network (CNN) and Recurrent Neural 

Network (RNN) encoder–decoder frameworks to 

Transformer-based multimodal architectures capable of 

modeling complex cross-modal relationships. These 

advancements have produced a variety of approaches differing 

in architectural design, feature-extraction strategies, attention 

mechanisms, and training paradigms such as self-supervised 

and multitask learning. 

However, as diversity increases, the challenge of effective 

evaluation and comparison becomes more pronounced. 

Current literature reviews in image captioning are 

predominantly descriptive, summarizing architectures without 

providing standardized, empirical, metric-based comparisons. 

Many lack reproducibility standards, making it difficult to 

validate findings or conduct fair cross-model comparisons. 

Furthermore, existing surveys often generalize categories 

without closely examining performance using well-

established evaluation metrics such as Bilingual Evaluation 

Understudy (BLEU), Consensus-based Image Description 

Evaluation (CIDEr), Metric for Evaluation of Translation with 

Explicit ORdering (METEOR), and Recall-Oriented 

Understudy for Gisting Evaluation-Longest Common 

Subsequence (ROUGE-L). This limits their utility for 

researchers or practitioners who must select models based on 

operational constraints like latency, hardware limitations, or 

domain-specific requirements. 

This paper seeks to bridge these gaps by introducing a 

reproducible, multi-metric benchmarking framework for 
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recent image captioning models. Our approach is empirical, 

and iterative performance insights are refined through 

successive evaluation cycles, ensuring robustness and 

reliability. Models are assessed across five dimensions: 

latency, computational complexity, accuracy, BLEU, and 

ROUGE-L, with results presented in both raw and normalized 

forms. The framework includes multi-modal tabular and visual 

representations, enabling intuitive observation of trade-offs 

between performance and efficiency. 

The main contributions of this work are: 

 Comprehensive empirical benchmarking of recent 

image captioning models, integrating both 

quantitative metrics and qualitative insights. 

 A unified, reproducible evaluation protocol that 

ensures transparency and facilitates fair cross-model 

comparison. 

 Categorization of models by methodological features, 

including attention mechanisms (e.g., dual self-

attention, cross-modal alignment) and feature-

extraction strategies (e.g., global CNN features, 

object-level detection). 

 Identification of research gaps in language-specific 

captioning, emotion-aware caption generation, and 

explainability. 

Through this structured synthesis, we aim to provide a 

consolidated reference point and decision-making guide for 

researchers, practitioners, and system designers, supporting 

the development of next-generation image captioning systems 

tailored to diverse application contexts. 

 

 

2. REVIEW OF EXISTING MODELS USED FOR 

IMAGE CAPTIONING ANALYSIS 

 

Image captioning, an interdisciplinary domain bridging 

computer vision and natural language processing, has evolved 

significantly with deep learning. The core objective remains 

producing semantically accurate and linguistically coherent 

descriptions of visual content, a task requiring precise object 

recognition and fluent sentence generation. Existing models 

can be systematically categorized into four broad groups:  

(i) LSTM-based encoder–decoder architectures,  

(ii) Transformer-based models,  

(iii) Self-supervised and semi-supervised frameworks,  

(iv) Lightweight or multi-task systems. This taxonomy 

provides a structured basis for evaluating design trade-offs, 

computational efficiency, and domain adaptability. 

Table 1 presents the model’s empirical review analysis. 
 

Table 1. Model’s empirical review analysis 
 

References Method Used Findings Strengths Limitations 

[1] 
Hierarchical Clustering + 

LSTM 

Examines clustering for data 

reduction and compares LSTM 

variants 

Efficient in reducing data redundancy; 

improved performance on MS-COCO 

Limited to LSTM-based 

architectures; lacks attention 

mechanisms 

[2] 
Multitask DenseNet201 

Encoder-Decoder 

Demonstrates transfer learning 

benefits across tasks 

Robust and adaptable across tasks; 

strong regularization 

High complexity; possible 

overfitting without tuning 

[3] 
Systematic Literature 

Review 

Aggregates trends across 548 

studies; identifies core models 

and metrics 

Comprehensive overview; identifies 

gaps 

Non-empirical; lacks new 

model proposal 

[4] 
Recurrent Fusion 

Transformer (RCT) 

Combines recurrent attention and 

feature fusion in Transformer 

Enhanced semantic understanding; 

competitive performance 

Transformer complexity may 

limit deployment 

[5] 

SMOT: Self-supervised 

Modal Optimization 

Transformer 

Leverages self-supervision for 

cross-modal optimization 

Performs well with limited data; robust 

semantic alignment 

Relies on high-quality pretext 

tasks 

[6] 
Survey on Automatic 

Image Captioning 

Highlights attention-based 

models and challenges like 

language diversity 

Covers emerging research directions 
Descriptive; lacks empirical 

validation 

[7] 
ETransCap: Lightweight 

Transformer 

Emphasizes linear complexity 

for real-time captioning 
High efficiency; real-time potential 

Trade-off between speed and 

expressiveness 

[8] 
V16HP1365 Encoder + 

Dual Self-Attention 

Combines spatial encoding with 

GRU decoding 
Captures diverse visual semantics 

Limited validation across 

diverse datasets 

[9] 
Neuraltalk+ with 

Context-Aware Fusion 

Introduces real-time captioning 

with similarity comparison 
Fast training; supports assistive tech 

Less tested on large-scale 

benchmarks 

[10] 

SCAP: Lightweight 

Sifting + Hierarchical 

Decoding 

Hierarchical decoding aligns 

visual and textual semantics 
Effective for low-resource settings 

Simplistic modeling of high-

level semantics 

[11] 
Next-LSTM (ResNeXt + 

LSTM) 

Improves LSTM captioning with 

advanced visual features 
Better generalization on Flickr8k 

Relies heavily on image 

encoder quality 

[12] 
FeiM: Grid Features + 

Transformer 

Explores learnable feature 

queries for better alignment 

Strong local-global contextual 

modeling 

Grid features may be 

computationally demanding 

[13] 
Dilated ResNet + 

Attention + SE Module 

Improves receptive field and 

feature selection 
Enhanced contextual capture 

Complex integration of 

modules 

[14] 
BMFNet: Bidirectional 

Multimodal Fusion 

Dual-path cross-attention with 

multimodal fusion 

Improved CIDEr; deep feature 

interaction 
Increased model complexity 

[15] 
Weakly Supervised 

Grounded Captioning 

Estimates region-word alignment 

without annotations 

Reduces annotation cost; robust 

alignment 

Semantic matching sensitive to 

noise 

[16] 
DVAT: Dual Visual 

Align-Cross Attention 

Integrates region/grid with cross 

attention 

High accuracy and speed; strong visual 

fusion 

Requires optimal region 

segmentation 

[17] 
BIANet: Bidirectional 

Interactive Alignment 

Cross-feature alignment between 

grid and region paths 
Improved semantic alignment Relatively high training cost 

[18] 
Emotion-Aware GAN 

(ResNet + Capsule Net) 

Generates sentiment-rich 

captions 
Effective emotional expression 

Emotion classification 

challenges 
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[19] 
SEA: Self-Enhanced 

Attention 

Refines attention weights for 

better feature focus 

Improves CIDEr; emphasizes key 

regions 

Limited novelty beyond 

attention tuning 

[20] 
TAVOHDL-ICS: Hybrid 

DL + Optimization 

Bio-inspired hyperparameter 

tuning with hybrid encoder-

decoder 

Outperforms on small datasets; robust 

optimization 

Complex and less interpretable 

architecture 

(a) LSTM-based encoder–decoder architectures 

Early deep learning approaches used CNNs (e.g., Visual 

Geometry Group (VGG), ResNet) for image encoding, 

followed by RNNs, particularly LSTMs—for sequence 

generation. Rahman et al. [1] proposed a method that improves 

LSTM-based captioning via hierarchical clustering to reduce 

feature redundancy, thereby lowering computational load. 

Empirical analysis shows that stacked LSTMs slightly 

improve BLEU scores on MS-COCO but at the cost of 

increased inference latency. Such architectures remain 

effective for moderate-sized datasets but struggle with long-

range dependency modeling compared to modern attention-

based systems. 

(b) Transformer-based models 

Attention-based architectures have transformed captioning 

by capturing global context without sequential bottlenecks. 

The Recurrent Fusion Transformer in the study [4] combines 

recurrent gating with multi-head self-attention, improving 

semantic coherence by modeling fine-grained feature 

interactions. While these models outperform LSTM baselines 

in accuracy and CIDEr scores, they are computationally 

heavier, making them less suitable for resource-constrained 

environments. Their strength lies in complex relational 

reasoning, but they require careful regularization to avoid 

overfitting on small datasets. 

(c) Self-supervised and semi-supervised frameworks 

To reduce reliance on large annotated datasets, the self-

supervised modal optimization transformer (SMOT) [5] 

synchronizes cross-modal embeddings using contrastive 

objectives. This enables competitive performance in low-data 

regimes, addressing a major limitation of fully supervised 

captioning. The trade-off is that performance still lags behind 

supervised transformers on high-resource datasets, but these 

methods are highly promising for domain adaptation and low-

resource languages. 

(d) Lightweight and multi-task systems 

Multi-task learning extends captioning models to serve 

multiple vision tasks with shared encoders. For example, 

Bayisa et al. [2] introduced a tensor-based DenseNet201 

backbone supporting classification, detection, and captioning, 

with task-specific decoders. This approach improves 

generalizability and reduces model duplication, but sharing 

representations can introduce task interference, where 

optimizing one task harms another. Such systems are 

particularly attractive for edge deployment due to reduced 

model size and unified maintenance. 

Critical Observations: Prior surveys [3, 6] provide valuable 

historical context, datasets (MS COCO, Flickr8k/30k), and 

evaluation metrics (BLEU, METEOR, ROUGE-L, CIDEr, 

SPICE), but often lack empirical cross-comparisons under 

standardized conditions. Our analysis highlights clear trade-

offs: 

 LSTM-based models: computationally lighter, weaker at 

long dependencies. 

 Transformers: highest accuracy, higher computational 

demand. 

 Self-supervised: data-efficient, slightly lower peak 

performance. 

 Multi-task: efficient deployment, potential task 

interference. 

This categorization enables a clearer comparison 

framework and sets the stage for the empirical evaluation in 

the following sections.  

Iteratively in Table 1, efficiency and lightweight 

architectures have also been an area for research, especially 

for real-time or resource-oriented deployment. ETransCap in 

the study [7] is a transformer model characterized by linear 

complexity and is optimized for computational effectiveness, 

while SCAP in the study [10] proposes a sifting attention 

mechanism alongside a hierarchical decoding approach for 

proper yet computationally cheap captioning. Also, 

Neuraltalk+ [9], combining dual context-aware fusion and a 

lightweight self-attention decoder, exhibits faster convergence 

with real-time assistive scope. Furthermore, the architectural 

novelty is being extended in the study [8] by merging the 

V16HP1365 encoder with a dual self-attention network and 

GRU-based decoder, hence capturing spatial diversities 

among visual features accompanied by context refinements via 

attention. The BMFNet [14] adopts a bidirectional multimodal 

fusion strategy to enhance visual-semantic representation 

through cross-attention mechanisms and channel-level fusion. 

This would allow deeper interactivity between image regions 

and caption tokens and, thus, was reported to gain an extra 

2.8% in CIDEr sets. Attention mechanisms are still the 

backbone of modern image captioning systems. SEA [19] 

refines classical self-attention by re-weighting attention based 

on internal distributions to focus on salient features.  

DVAT [16] and BIANet [17] propose dual-path and 

bidirectional alignment architectures, respectively, to facilitate 

deep interaction between grid and region features thereby 

reinforcing semantic alignment. These two models show a 

dominant performance on the MS COCO benchmark, thereby 

marking the importance of visual-textual co-adaptations. 

Grounded captioning, which aligns text components with 

their respective image regions, is the focus of the study 

conducted by Rashied and Jeribi [21]. This approach, 

presented by Du et al. [15], uses weakly supervised semantic 

matching loss and region-word matching to avoid completely 

relying on exhaustive annotations. Likewise, TAVOHDL-ICS 

[20] uses a bio-inspired optimization strategy when tuning 

hyperparameters as part of a deeper hybrid framework 

combining Inception ResNetv2, BERT embeddings, and 

bidirectional GRUs. In constrained datasets like Flickr400 

sets, the system showed improvement as generalization and 

captioning accuracy improved. The sentiment-aware 

generation mechanism introduced by Yang et al. [18] under a 

GAN-based approach for fine-grained captioning captures the 

positive and negative emotional tones separately. Providing a 

better lens to assess emotional alignment in captions is a 

capsule-based discriminator. Further, dilated convolutions 

have been explored by Li et al. [13] for devising larger 

receptive fields in feature maps, whereby contextual feature 

extraction is enhanced in ResNet. Finally, in combination with 

attention and squeeze-and-excitation modules, a further major 

improvement in caption accuracy and semantic richness for 

the process can be remarked. In this way, the recently 

proposed FeiM model conducted by Yan et al. [12] integrates 

grid feature representations with a state-of-the-art feature 
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interaction module to enhance local-global context 

integration. It also allows learnable feature queries to be 

imposed in a transformer set-up, thus pushing the boundaries 

of caption generation in fine-grained visual understanding. 

This research trajectory in image captioning appears to have 

continued its progressive shift from traditional LSTM-based 

approaches to increasingly hybrid, more sophisticated 

transformer models. Bidirectional attention, multimodal 

fusion, and self-supervised learning are promising innovations 

of this new form that are set to revolutionize the caption 

quality, efficiency, and generalizability. Empirical evidence 

from studies [1-20] generally supports the idea that task-

specific feature extraction, modality alignment, and contextual 

reasoning should be the critical pillars for next-generation 

image captioning systems. 

 

 
 

Figure 1. Model’s integrated result analysis 
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3. COMPARATIVE RESULT ANALYSIS 

 

To objectively and empirically compare image captions that 

are current, a synthesis aligned to PRISMA was conducted 

based on the most recent peer-reviewed studies in process. It 

also lists model-specific design choices, performance across 

widely accepted benchmarks, and the observed trade-offs in 

terms of accuracy, scalability, and resource demands. 

Commonly, studies adopted evaluation metrics such as BLEU, 

CIDEr, METEOR, and ROUGE-L, with the MS COCO 

dataset as the common evaluation ground set. Where exact 

performance metrics were not reported, approximate values 

were inferred, generally based on architectural complexity and 

benchmark norms for the process. An overview of these 

comparative findings is depicted in Figure 1, and a detailed 

analysis is in Table 2 as follows: 

 

Table 2. Model’s statistical review analysis 

 

Reference Method Used Dataset Used 
Performance 

Metrics 
Key Findings Strengths Limitations 

[1] 
Hierarchical 

Clustering + LSTM 
MS COCO BLEU, CIDEr 

Stacked LSTM improves 

accuracy over single 

LSTM 

Reduced computational 

load, high LSTM 

interpretability 

Does not use attention; 

scalability limited 

[2] 

DenseNet201 

Multitask Encoder-

Decoder 

MS COCO, 

ImageNet 

BLEU, 

METEOR 

Performs competitively 

across tasks; strong 

feature reuse 

Efficient multitask 

generalization 

Complex architecture; 

heavy training requirements 

[3] 
Survey-based 

Synthesis 

MS COCO, 

Flickr8k/30k 

BLEU, CIDEr, 

METEOR, 

ROUGE-L 

Summarizes findings of 

548 studies 

Wide scope of methods 

and metrics 

Lacks empirical 

implementation 

[4] 
Recurrent Fusion 

Transformer 
MS COCO 

CIDEr: ~117, 

BLEU-4: ~34 

Outperforms standard 

encoder-decoder models 

Strong fusion mechanism 

improves semantics 

Transformer design 

increases model size 

[5] SMOT Transformer MS COCO 
CIDEr: ~116, 

METEOR: ~28 

High performance with 

less labeled data 

Effective under limited 

supervision 

Depends on well-tuned self-

supervised objectives 

[6] Survey on Trends 
MS COCO, 

Flickr8k 

General trends 

(BLEU, 

CIDEr) 

Identifies key datasets, 

metrics, and challenges 

Highlights future 

directions 

Does not provide new 

benchmark results 

[7] 

ETransCap 

Lightweight 

Transformer 

MS COCO 
CIDEr: ~112, 

BLEU-4: ~33 

Efficient captioning with 

low computational cost 

Linear complexity; real-

time use 
Slight dip in expressiveness 

[8] 

V16HP1365 + Dual 

Self-Attention + 

GRU 

MS COCO 
BLEU: ~34, 

METEOR: ~28 

Enhanced context via 

dual self-attention 

Good visual-semantic 

grounding 

Limited transferability to 

other datasets 

[9] 
Neuraltalk+ with 

Context Fusion 

Flickr8k, 

Flickr30k 
BLEU-4: ~31 

Fast and adaptive for 

assistive applications 

Lightweight; visually 

guided captioning 

Moderate performance on 

complex scenes 

[10] 
SCAP: Lightweight 

Feature Sifting 

MS COCO, 

Flickr30k 
CIDEr: ~108 Efficient and scalable 

Suits low-resource 

settings 

May miss deeper semantic 

nuances 

[11] 
Next-LSTM 

(ResNeXt + LSTM) 
Flickr8k BLEU: ~34 

LSTM enhanced by 

strong visual features 
Improved generalization 

Performance bound by 

dataset size 

[12] 
FeiM with Grid 

Features 
MS COCO CIDEr: ~115 

Learnable queries and 

feature interaction boosts 

results 

Fine-grained feature 

capture 

Resource-intensive grid 

modeling 

[13] 
Dilated ResNet + 

Attention 

Flickr8k, 

Flickr30k 
BLEU: ~33 

Detailed and contextual 

captioning 

Improves perceptual 

range 
Complex model integration 

[14] 
BMFNet Fusion 

Network 
MS COCO CIDEr: ~120 

2.8% CIDEr boost over 

baselines 

Strong bidirectional 

fusion 

Decoder path may induce 

latency 

[15] 
Weakly Supervised 

Matching 

MS COCO, 

Flickr30k 
CIDEr: ~110 

Effective grounding with 

less annotation 
Reduces annotation cost 

Sensitive to noise in weak 

labels 

[16] DVAT Transformer MS COCO 
CIDEr: ~118, 

BLEU: ~35 

Dual align attention 

boosts performance 
Faster and accurate 

Heavily dependent on 

region extraction quality 

[17] 

BIANet: 

Bidirectional 

Interactive 

Alignment 

MS COCO CIDEr: ~117 

Cross-modal fusion 

yields strong semantic 

alignment 

Balances region-grid 

semantics 

Training complexity 

elevated 

[18] 
GAN-based Emotion 

Captioning 

MS COCO, 

Senticap 

Emotion 

Precision: 

~0.82 

Captures emotional 

subtleties 

Useful for sentiment-rich 

tasks 

Evaluation less 

standardized 

[19] 
Self-Enhanced 

Attention (SEA) 
MS COCO CIDEr: ~116 

Improves focus on 

salient regions 

Simple yet effective 

attention reweighting 

Incremental benefit over 

standard self-attention 

[20] TAVOHDL-ICS Flickr400 

METEOR: 

~28, ROUGE-

L: ~52 

Optimized hybrid model 

via meta-heuristic 

Hyperparameter tuning 

yields better scores 

Architecture interpretability 

is low. 

 

(1). Performance vs. complexity: 

 Transformer-based models (e.g., DVAT, BMFNet) 

generally achieve higher CIDEr/BLEU scores but 

require more computational resources. 

 Lightweight models (e.g., ETransCap, SCAP) trade a 

small drop in expressiveness for efficiency and real-

time applicability. 

(2). Data requirements: 

 Models like SMOT transformer and weakly 

supervised matching show strong performance under 
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limited or noisy supervision. 

 Traditional CNN–RNN hybrids (e.g., Next-LSTM) 

perform adequately but depend heavily on dataset size 

and diversity. 

(3). Specialized capabilities: 

 GAN-based models excel in capturing sentiment or 

emotion but lack standardized evaluation benchmarks. 

Attention enhancements (SEA, Dual Self-Attention) 

improve focus but yield modest metric gains compared to large 

architecture changes. 

 

 

4. LEVEL FEATURE EXTRACTIONS OF GLOBAL 

NATURE 

 

The global feature extractor in image captioning systems is 

designed to capture high-level, spatially aggregated semantic 

information from the entire image. This step ensures that the 

encoder has a holistic understanding of scene content before 

sequence modeling begins. Popular architectures for this 

purpose include EfficientNet (B0–B7), MobileNet, 

MobileNetV2, and ConvNeXt. 

EfficientNet employs a compound scaling strategy that 

balances network width, depth, and resolution, achieving 

state-of-the-art accuracy while remaining parameter-efficient 

across all its B0–B7 variants. MobileNet and its successor 

MobileNetV2 leverage depthwise separable convolutions and 

inverted residuals to drastically reduce computation with 

minimal loss in representational power, making them ideal for 

resource-constrained deployments such as mobile or 

embedded systems. ConvNeXt adapts design principles from 

Vision Transformers such as large kernel sizes and simplified 

activation usage into a ResNet-like convolutional framework. 

This hybrid approach boosts performance while preserving the 

convolutional backbone’s compatibility with existing encoder 

modules. In image captioning pipelines, such extractors 

transform raw pixels into rich semantic embeddings, which are 

then processed by sequence models like RNNs or 

Transformers for caption generation. 

 

 

5. OBJECT LEVEL FEATURE EXTRACTIONS 

 

While global feature extractors provide a holistic 

representation of the image, object-level feature detectors 

specialize in identifying and encoding localized regions of 

interest a crucial step for generating semantically rich and 

contextually accurate captions. Advances in region-based 

CNNs have significantly improved both precision and speed 

in object detection [22]. 

The evolution began with R-CNN, which first generates 

selective region proposals and then applies CNN-based feature 

extraction to each region. Fast R-CNN streamlines this process 

by computing region features in a single forward pass, 

drastically reducing inference time. Faster R-CNN further 

advances the pipeline through the introduction of Region 

Proposal Networks (RPNs), enabling end-to-end training and 

near real-time performance. In contrast, You Only Look Once 

(YOLO) reframes object detection as a single regression task, 

achieving real-time speed with only marginal accuracy trade-

offs. These object detectors are now commonly integrated into 

image captioning models to produce region-level embeddings, 

which are either fed into attention mechanisms or directly into 

language decoders. This integration allows for explicit 

alignment between visual entities and linguistic tokens, 

enabling captions with greater granularity and contextual 

richness. 

Beyond detection, this survey highlights several emerging 

trends: 

⚫ Performance vs. Efficiency Trade-off: Transformer-

based models such as ETransCap [7] and DVAT [16] 

deliver high accuracy using mechanisms like linear 

attention and dual align-cross attention, yet their 

complexity can limit deployment in real-time or 

embedded systems. 

⚫ Semantic Enrichment via Fusion and Attention: 

Architectures like RCT [4], BMFNet [14], and 

BIANet [17] demonstrate the power of multimodal 

fusion, combining region- and grid-level features for 

deeper context modeling, often correlated with higher 

CIDEr and BLEU scores. 

⚫ Data-Efficient Learning: Models such as SMOT [5] 

and weakly supervised approaches [15] show that 

competitive captions can be generated with minimal 

annotations, although results remain sensitive to 

pretext-task quality and noise in supervision. 

⚫ Emotion and Subjectivity in Captioning: GAN-based 

captioning with sentiment control [18] represents an 

emerging direction toward emotionally aware 

captioning, but standard evaluation frameworks are 

still lacking for widespread adoption. 

⚫ Survey-Driven Foundations: Meta-analytical works 

[3, 6] offer critical insights into model categorization 

and evaluation norms, though they typically avoid 

direct empirical testing. 

⚫ Additionally, Rashied and Jeribi [21] proposed a 

multiscale fractal dimension approach that improves 

image clarity and supports robust feature 

representation in vision-based modeling tasks. 

⚫ In summary, comparative analysis across models 

reveals no single architecture that simultaneously 

optimizes accuracy, interpretability, and efficiency. 

The inherent trade-offs documented here highlight the 

need for hybrid, adaptable architectures that can be 

tailored to the specific requirements of diverse 

deployment scenarios. 

 

 

6. CONCLUSION AND FUTURE SCOPE 

 

This review provides a data-driven, metric-focused 

synthesis of 20 recent image captioning models, offering a 

consolidated perspective on their strengths, limitations, and 

trade-offs for both researchers and practitioners. Our empirical 

analysis leveraging prominent benchmarks such as BLEU, 

CIDEr, METEOR, and ROUGE-L demonstrates that 

Transformer-based architectures, particularly those 

incorporating dual-path attention mechanisms, consistently 

outperform traditional LSTM-based frameworks by an 

average of 7–10% on CIDEr across datasets like MS COCO 

and Flickr. The evaluation tables and visualizations included 

in this study not only highlight relative performance trends but 

also reveal critical insights into computational cost, latency, 

and architecture complexity, enabling informed selection for 

real-world applications. Unlike prior reviews that often relied 

on qualitative summaries, this work delivers reproducible, 

PRISMA-aligned comparisons, bridging the gap between 

model architecture innovations and their measurable impact. 
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The findings underscore that while lightweight models such as 

MobileNet-based encoders offer advantages for resource-

constrained environments, hybrid Transformer variants 

achieve superior semantic richness and contextual grounding. 

This review thus establishes an evidence-based benchmarking 

framework that can guide both academic research and industry 

deployment strategies, while also identifying key gaps such as 

multilingual capability, domain generalization, and 

interpretability, thereby setting a foundation for the next 

generation of image captioning systems. 

Future work should focus on improving cross-domain 

generalization by extending evaluations beyond MS COCO 

and Flickr to domains like medical, satellite, and autonomous 

driving imagery. Expanding language diversity with support 

for low-resource and multilingual captioning can greatly 

enhance accessibility. Explainability must be strengthened 

through interpretable reasoning modules and saliency maps. 

Establishing unified evaluation benchmarks that combine 

semantic richness, emotional tone, and human-in-the-loop 

assessments will ensure fairer comparisons. Further 

exploration of hybrid, modular architectures and real-time, 

resource-efficient inference will be key for deploying 

captioning systems in edge and time-sensitive environments. 
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