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Image captioning integrates computer vision and natural language processing, requiring
both accurate visual understanding and coherent language generation. While diverse
deep learning approaches ranging from encoder—decoder models to Transformer-based
architectures have emerged, few studies provide standardized, empirical comparisons
across models. This work addresses that gap through a systematic and iterative
evaluation, where performance insights are refined over successive analysis cycles to
ensure reliability. The study benchmarks recent models using five key dimensions:
latency, computational complexity, accuracy, Bilingual Evaluation Understudy
(BLEU), and Recall-Oriented Understudy for Gisting Evaluation-Longest Common
Subsequence (ROUGE-L). Evaluations consider architectural design (Long Short-Term
Memory (LSTM), Transformer, hybrid), feature-extraction strategies (global
Convolutional Neural Network (CNN) features vs. object-level detection), attention
mechanisms, and training paradigms such as self-supervised learning. To improve
interpretability, we introduce a multi-modal tabular and visual framework that
combines comparative tables with performance plots, thereby enabling clear
observation of trade-offs between accuracy and efficiency. The findings show
Transformer-based architectures achieve the highest Consensus-based Image
Description Evaluation (CIDEr) and BLEU scores on Microsoft Common Objects in
Context (MS COCO) and Flickr datasets, while lightweight models offer competitive
performance for real-time use cases. Gaps remain in handling language diversity,
explainability, and domain generalization. By offering a reproducible benchmarking
approach and actionable insights, this work aids researchers and practitioners in
selecting and optimizing captioning models under varying operational constraints.

1. INTRODUCTION

and multitask learning.
However, as diversity increases, the challenge of effective

Image captioning, the process of generating coherent and
semantically accurate natural language descriptions for visual
content, has emerged as a pivotal problem in Artificial
Intelligence (AI). It requires a seamless integration of
computer vision for visual understanding and natural language
processing (NLP) for sentence generation. The ability to
produce high-quality captions has far-reaching applications,
including assistive technologies for the visually impaired,
content-based image retrieval, human—computer interaction,
and context-aware media generation.

Recent advances in deep learning have accelerated progress
in this field, with architectures evolving from early
Convolutional Neural Network (CNN) and Recurrent Neural

Network  (RNN)  encoder—decoder  frameworks to
Transformer-based multimodal architectures capable of
modeling complex cross-modal relationships. These

advancements have produced a variety of approaches differing
in architectural design, feature-extraction strategies, attention
mechanisms, and training paradigms such as self-supervised
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evaluation and comparison becomes more pronounced.
Current literature reviews in image captioning are
predominantly descriptive, summarizing architectures without
providing standardized, empirical, metric-based comparisons.
Many lack reproducibility standards, making it difficult to
validate findings or conduct fair cross-model comparisons.
Furthermore, existing surveys often generalize categories
without closely examining performance using well-
established evaluation metrics such as Bilingual Evaluation
Understudy (BLEU), Consensus-based Image Description
Evaluation (CIDEr), Metric for Evaluation of Translation with
Explicit ORdering (METEOR), and Recall-Oriented
Understudy for Gisting Evaluation-Longest Common
Subsequence (ROUGE-L). This limits their utility for
researchers or practitioners who must select models based on
operational constraints like latency, hardware limitations, or
domain-specific requirements.

This paper seeks to bridge these gaps by introducing a
reproducible, multi-metric benchmarking framework for
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recent image captioning models. Our approach is empirical,
and iterative performance insights are refined through
successive evaluation cycles, ensuring robustness and
reliability. Models are assessed across five dimensions:
latency, computational complexity, accuracy, BLEU, and
ROUGE-L, with results presented in both raw and normalized
forms. The framework includes multi-modal tabular and visual
representations, enabling intuitive observation of trade-offs
between performance and efficiency.

The main contributions of this work are:

. Comprehensive empirical benchmarking of recent
image captioning models, integrating both
quantitative metrics and qualitative insights.

* A unified, reproducible evaluation protocol that
ensures transparency and facilitates fair cross-model
comparison.

. Categorization of models by methodological features,
including attention mechanisms (e.g., dual self-
attention, cross-modal alignment) and feature-
extraction strategies (e.g., global CNN features,
object-level detection).

. Identification of research gaps in language-specific
captioning, emotion-aware caption generation, and

Through this structured synthesis, we aim to provide a
consolidated reference point and decision-making guide for
researchers, practitioners, and system designers, supporting
the development of next-generation image captioning systems
tailored to diverse application contexts.

2. REVIEW OF EXISTING MODELS USED FOR
IMAGE CAPTIONING ANALYSIS

Image captioning, an interdisciplinary domain bridging
computer vision and natural language processing, has evolved
significantly with deep learning. The core objective remains
producing semantically accurate and linguistically coherent
descriptions of visual content, a task requiring precise object
recognition and fluent sentence generation. Existing models
can be systematically categorized into four broad groups:

(i) LSTM-based encoder—decoder architectures,

(i1) Transformer-based models,

(iii) Self-supervised and semi-supervised frameworks,

(iv) Lightweight or multi-task systems. This taxonomy
provides a structured basis for evaluating design trade-offs,
computational efficiency, and domain adaptability.

explainability. Table 1 presents the model’s empirical review analysis.
Table 1. Model’s empirical review analysis
References Method Used Findings Strengths Limitations
[1] Hierarchical Clustering + ri;;irg:;ezncéu:;f;mi ::i%%;;d Efficient in reducing data redundancy; argﬁ?gﬁiﬂgﬁiﬁ;ﬁiﬁﬁiﬂ
LSTM p improved performance on MS-COCO ?

variants
Demonstrates transfer learning
benefits across tasks
Aggregates trends across 548
studies; identifies core models
and metrics

Multitask DenseNet201
Encoder-Decoder

Systematic Literature
Review

Recurrent Fusion

[4] Transformer (RCT) feature fusion in Transformer
SMOT: Self-supervised
[3] Modal Optimization cross-modal optimization
Transformer

Highlights attention-based

models and challenges like
language diversity

ETransCap: Lightweight Emphasizes linear complexity

Survey on Automatic
Image Captioning

Transformer for real-time captioning
[8] V16HP1365 Encoder + Combines spatial encoding with
Dual Self-Attention GRU decoding
Neuraltalk+ with Introduces real-time captioning

Context-Aware Fusion
SCAP: Lightweight
[10] Sifting + Hierarchical

Decoding

with similarity comparison

Hierarchical decoding aligns
visual and textual semantics

Next-LSTM (ResNeXt + Improves LSTM captioning with

(1] LSTM) advanced visual features
[12] FeiM: Grid Features + Explores learnable feature
Transformer queries for better alignment
Dilated ResNet + Improves receptive field and

feature selection
Dual-path cross-attention with
multimodal fusion

Attention + SE Module
BMFNet: Bidirectional
Multimodal Fusion
Grounded Captioning without annotations
DVAT: Dual Visual

Align-Cross Attention attention

Robust and adaptable across tasks;
Comprehensive overview; identifies

Combines recurrent attention and Enhanced semantic understanding;

Covers emerging research directions

High efficiency; real-time potential

Fast training; supports assistive tech

Effective for low-resource settings

Weakly Supervised  Estimates region-word alignment
Integrates region/grid with cross High accuracy and speed; strong visual

BIANet: Bidirectional Cross-feature alignment between

mechanisms
High complexity; possible

strong regularization overfitting without tuning

Non-empirical; lacks new

gaps model proposal

Transformer complexity may

competitive performance limit deployment

Leverages self-supervision for Performs well with limited data; robust Relies on high-quality pretext

semantic alignment tasks
Descriptive; lacks empirical
validation

Trade-off between speed and
expressiveness
Limited validation across
diverse datasets
Less tested on large-scale
benchmarks

Captures diverse visual semantics

Simplistic modeling of high-
level semantics

Relies heavily on image
encoder quality
Grid features may be
computationally demanding
Complex integration of
modules

Better generalization on Flickr8k

Strong local-global contextual
modeling

Enhanced contextual capture

Improved CIDEr; deep feature Increased model complexity

interaction
Reduces annotation cost; robust Semantic matching sensitive to
alignment noise
Requires optimal region
fusion segmentation

Improved semantic alignment Relatively high training cost

Interactive Alignment grid and region paths
[18] Emotion-Aware GAN Generates sentiment-rich Effective emotional expression Emotion classification
(ResNet + Capsule Net) captions P challenges
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SEA: Self-Enhanced
Attention

TAVOHDL-ICS: Hybrid

[19] better feature focus

Bio-inspired hyperparameter

Refines attention weights for

Improves CIDEr; emphasizes key
regions

Limited novelty beyond
attention tuning

Outperforms on small datasets; robust Complex and less interpretable

[20] DL + Optimization tuning with hybrid encoder- optimization architecture
decoder
(a) LSTM-based encoder—decoder architectures interference.
Early deep learning approaches used CNNs (e.g., Visual This categorization enables a clearer comparison

Geometry Group (VGG), ResNet) for image encoding,
followed by RNNs, particularly LSTMs—for sequence
generation. Rahman et al. [1] proposed a method that improves
LSTM-based captioning via hierarchical clustering to reduce
feature redundancy, thereby lowering computational load.
Empirical analysis shows that stacked LSTMs slightly
improve BLEU scores on MS-COCO but at the cost of
increased inference latency. Such architectures remain
effective for moderate-sized datasets but struggle with long-
range dependency modeling compared to modern attention-
based systems.

(b) Transformer-based models

Attention-based architectures have transformed captioning
by capturing global context without sequential bottlenecks.
The Recurrent Fusion Transformer in the study [4] combines
recurrent gating with multi-head self-attention, improving
semantic coherence by modeling fine-grained feature
interactions. While these models outperform LSTM baselines
in accuracy and CIDEr scores, they are computationally
heavier, making them less suitable for resource-constrained
environments. Their strength lies in complex relational
reasoning, but they require careful regularization to avoid
overfitting on small datasets.

(c) Self-supervised and semi-supervised frameworks

To reduce reliance on large annotated datasets, the self-
supervised modal optimization transformer (SMOT) [5]
synchronizes cross-modal embeddings using contrastive
objectives. This enables competitive performance in low-data
regimes, addressing a major limitation of fully supervised
captioning. The trade-off is that performance still lags behind
supervised transformers on high-resource datasets, but these
methods are highly promising for domain adaptation and low-
resource languages.

(d) Lightweight and multi-task systems

Multi-task learning extends captioning models to serve
multiple vision tasks with shared encoders. For example,
Bayisa et al. [2] introduced a tensor-based DenseNet201
backbone supporting classification, detection, and captioning,
with task-specific decoders. This approach improves
generalizability and reduces model duplication, but sharing
representations can introduce task interference, where
optimizing one task harms another. Such systems are
particularly attractive for edge deployment due to reduced
model size and unified maintenance.

Critical Observations: Prior surveys [3, 6] provide valuable
historical context, datasets (MS COCO, Flickr8k/30k), and
evaluation metrics (BLEU, METEOR, ROUGE-L, CIDEtr,
SPICE), but often lack empirical cross-comparisons under
standardized conditions. Our analysis highlights clear trade-
offs:

¢ LSTM-based models: computationally lighter, weaker at
long dependencies.

Transformers: highest accuracy, higher computational

demand.

* Self-supervised: data-efficient, slightly lower peak
performance.

e Multi-task: efficient deployment, potential task

3129

framework and sets the stage for the empirical evaluation in
the following sections.

Iteratively in Table 1, efficiency and lightweight
architectures have also been an area for research, especially
for real-time or resource-oriented deployment. ETransCap in
the study [7] is a transformer model characterized by linear
complexity and is optimized for computational effectiveness,
while SCAP in the study [10] proposes a sifting attention
mechanism alongside a hierarchical decoding approach for
proper yet computationally cheap captioning. Also,
Neuraltalk+ [9], combining dual context-aware fusion and a
lightweight self-attention decoder, exhibits faster convergence
with real-time assistive scope. Furthermore, the architectural
novelty is being extended in the study [8] by merging the
V16HP1365 encoder with a dual self-attention network and
GRU-based decoder, hence capturing spatial diversities
among visual features accompanied by context refinements via
attention. The BMFNet [14] adopts a bidirectional multimodal
fusion strategy to enhance visual-semantic representation
through cross-attention mechanisms and channel-level fusion.
This would allow deeper interactivity between image regions
and caption tokens and, thus, was reported to gain an extra
2.8% in CIDEr sets. Attention mechanisms are still the
backbone of modern image captioning systems. SEA [19]
refines classical self-attention by re-weighting attention based
on internal distributions to focus on salient features.

DVAT [16] and BIANet [17] propose dual-path and
bidirectional alignment architectures, respectively, to facilitate
deep interaction between grid and region features thereby
reinforcing semantic alignment. These two models show a
dominant performance on the MS COCO benchmark, thereby
marking the importance of visual-textual co-adaptations.

Grounded captioning, which aligns text components with
their respective image regions, is the focus of the study
conducted by Rashied and Jeribi [21]. This approach,
presented by Du et al. [15], uses weakly supervised semantic
matching loss and region-word matching to avoid completely
relying on exhaustive annotations. Likewise, TAVOHDL-ICS
[20] uses a bio-inspired optimization strategy when tuning
hyperparameters as part of a deeper hybrid framework
combining Inception ResNetv2, BERT embeddings, and
bidirectional GRUs. In constrained datasets like Flickr400
sets, the system showed improvement as generalization and
captioning accuracy improved. The sentiment-aware
generation mechanism introduced by Yang et al. [18] under a
GAN-based approach for fine-grained captioning captures the
positive and negative emotional tones separately. Providing a
better lens to assess emotional alignment in captions is a
capsule-based discriminator. Further, dilated convolutions
have been explored by Li et al. [13] for devising larger
receptive fields in feature maps, whereby contextual feature
extraction is enhanced in ResNet. Finally, in combination with
attention and squeeze-and-excitation modules, a further major
improvement in caption accuracy and semantic richness for
the process can be remarked. In this way, the recently
proposed FeiM model conducted by Yan et al. [12] integrates
grid feature representations with a state-of-the-art feature



interaction module to enhance local-global context
integration. It also allows learnable feature queries to be
imposed in a transformer set-up, thus pushing the boundaries
of caption generation in fine-grained visual understanding.
This research trajectory in image captioning appears to have
continued its progressive shift from traditional LSTM-based
approaches to increasingly hybrid, more sophisticated
transformer models. Bidirectional attention, multimodal

fusion, and self-supervised learning are promising innovations
of this new form that are set to revolutionize the caption
quality, efficiency, and generalizability. Empirical evidence
from studies [1-20] generally supports the idea that task-
specific feature extraction, modality alignment, and contextual
reasoning should be the critical pillars for next-generation
image captioning systems.

Comparative Analysis of Image Captioning Metrics Across 20 Papers
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3. COMPARATIVE RESULT ANALYSIS

To objectively and empirically compare image captions that
are current, a synthesis aligned to PRISMA was conducted
based on the most recent peer-reviewed studies in process. It
also lists model-specific design choices, performance across
widely accepted benchmarks, and the observed trade-offs in
terms of accuracy, scalability, and resource demands.

Commonly, studies adopted evaluation metrics such as BLEU,
CIDEr, METEOR, and ROUGE-L, with the MS COCO
dataset as the common evaluation ground set. Where exact
performance metrics were not reported, approximate values
were inferred, generally based on architectural complexity and
benchmark norms for the process. An overview of these
comparative findings is depicted in Figure 1, and a detailed
analysis is in Table 2 as follows:

Table 2. Model’s statistical review analysis

Reference  Method Used Dataset Used Pel;f;:;g:ce Key Findings Strengths Limitations
Hicrarchical Stacked LSTM improves Reduced computational Does not use attention:
[1] . MS COCO BLEU, CIDEr accuracy over single load, high LSTM e 1 ’
Clustering + LSTM . o scalability limited
LSTM interpretability
D;nseNet201 MS COCO, BLEU, Performs competitively Efficient multitask Complex architecture;
[2] Multitask Encoder- across tasks; strong . .. .
ImageNet METEOR generalization heavy training requirements
Decoder feature reuse
Survey-based MS COCO, BLEU, CIDEr, Summarizes findings of Wide scope of methods Lacks empirical
3] Synthesis Flickr8k/30k METEOR, 548 studies and metrics implementation
Y ROUGE-L p
[4] Recurrent Fusion MS COCO CIDEr: ~117, Outperforms standard Strong fusion mechanism  Transformer design
Transformer BLEU-4: ~34 encoder-decoder models  improves semantics increases model size
CIDEr: ~116, High performance with Effective under limited Depends on well-tuned self-
[5] SMOT Transformer  MS COCO METEOR: ~28 less labeled data supervision supervised objectives
MS COCO, General trends Identifies key datasets, Highlights future Does not provide new
[6] Survey on Trends . (BLEU, . Lo
Flickr8k CIDEr) metrics, and challenges directions benchmark results
ETransCap . . . . .
. . CIDEr: ~112, Efficient captioning with Linear complexity; real- . . .
[7] Lightweight MS COCO BLEU-4: ~33 low computational cost time use Slight dip in expressiveness
Transformer
[8] Végg}:égst;l?}:al MS COCO BLEU: ~34, Enhanced context via ~ Good visual-semantic ~ Limited transferability to
GRU METEOR: ~28  dual self-attention grounding other datasets
[9] Neuraltalk+ with Flickr8k, BLEU-4: ~31 Fast and adaptive for ~ Lightweight; visually =~ Moderate performance on
Context Fusion Flickr30k ’ assistive applications guided captioning complex scenes
[10] SCAP: ngh.tv&{elght MS. COCO, CIDEr ~108  Efficient and scalable Suits low-resource May miss deeper semantic
Feature Sifting Flickr30k settings nuances
Next-LSTM . . LSTM enhanced by . Performance bound by
(1] (ResNeXt + LSTM) Flickr8k BLEU: ~34 strong visual features Improved generalization dataset size
. . . Learnable queries and . . . . .
[12] FeiM with Grid MS COCO  CIDEr ~115 feature interaction boosts Fine-grained feature Resource-mtepswe grid
Features results capture modeling
Dilated ResNet + Flickr8k, . Detailed and contextual — Improves perceptual . .
[13] Attention Flickr30k BLEU: ~33 captioning range Complex model integration
. o Lo .
[14] BMFNet Fusion MS COCO  CIDEr ~120 2.8% CIDEr.boost over  Strong blqlrectlonal Decoder path may induce
Network baselines fusion latency
Weakly Supervised MS COCO, . Effective grounding with . Sensitive to noise in weak
[15] Matching Flickr30k CIDEr: ~110 less annotation Reduces annotation cost labels
CIDEr: ~118,  Dual align attention Heavily dependent on
[16] DVAT Transformer -~ MS COCO BLEU: ~35 boosts performance Faster and accurate region extraction quality
BIANet: .
Bidirectional Cross-modal fusion Balances region-grid Training complexity
[17] . MS COCO  CIDEr: ~117 yields strong semantic .
Interactive . semantics elevated
. alignment
Alignment
. Emotion . . . .
GAN-based Emotion MS COCO, . Captures emotional ~ Useful for sentiment-rich Evaluation less
[18] - . Precision: . .
Captioning Senticap ~0.82 subtleties tasks standardized
Self-Enhanced . Improves focus on Simple yet effective Incremental benefit over
[19] Attention (SEA) MS €OCO  CIDEr: ~116 salient regions attention reweighting standard self-attention
METEOR: _ . . . . -
[20] TAVOHDL-ICS Flickr400  ~28, ROUGE- Optlmlzed hybrlq model Hyperparameter tuning Archltectufe interpretability
L:~52 via meta-heuristic yields better scores is low.

(1). Performance vs. complexity:

small drop in expressiveness for efficiency and real-

. Transformer-based models (e.g., DVAT, BMFNet)
generally achieve higher CIDEr/BLEU scores but
require more computational resources.

. Lightweight models (e.g., ETransCap, SCAP) trade a

time applicability.

(2). Data requirements:

. Models like SMOT transformer and weakly
supervised matching show strong performance under
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limited or noisy supervision.
Traditional CNN-RNN hybrids (e.g., Next-LSTM)
perform adequately but depend heavily on dataset size
and diversity.

(3). Specialized capabilities:

*  GAN-based models excel in capturing sentiment or

emotion but lack standardized evaluation benchmarks.

Attention enhancements (SEA, Dual Self-Attention)
improve focus but yield modest metric gains compared to large
architecture changes.

4. LEVEL FEATURE EXTRACTIONS OF GLOBAL
NATURE

The global feature extractor in image captioning systems is
designed to capture high-level, spatially aggregated semantic
information from the entire image. This step ensures that the
encoder has a holistic understanding of scene content before
sequence modeling begins. Popular architectures for this
purpose include EfficientNet (B0-B7), MobileNet,
MobileNetV2, and ConvNeXt.

EfficientNet employs a compound scaling strategy that
balances network width, depth, and resolution, achieving
state-of-the-art accuracy while remaining parameter-efficient
across all its BO—B7 variants. MobileNet and its successor
MobileNetV?2 leverage depthwise separable convolutions and
inverted residuals to drastically reduce computation with
minimal loss in representational power, making them ideal for
resource-constrained deployments such as mobile or
embedded systems. ConvNeXt adapts design principles from
Vision Transformers such as large kernel sizes and simplified
activation usage into a ResNet-like convolutional framework.
This hybrid approach boosts performance while preserving the
convolutional backbone’s compatibility with existing encoder
modules. In image captioning pipelines, such extractors
transform raw pixels into rich semantic embeddings, which are
then processed by sequence models like RNNs or
Transformers for caption generation.

5. OBJECT LEVEL FEATURE EXTRACTIONS

While global feature extractors provide a holistic
representation of the image, object-level feature detectors
specialize in identifying and encoding localized regions of
interest a crucial step for generating semantically rich and
contextually accurate captions. Advances in region-based
CNNs have significantly improved both precision and speed
in object detection [22].

The evolution began with R-CNN, which first generates
selective region proposals and then applies CNN-based feature
extraction to each region. Fast R-CNN streamlines this process
by computing region features in a single forward pass,
drastically reducing inference time. Faster R-CNN further
advances the pipeline through the introduction of Region
Proposal Networks (RPNs), enabling end-to-end training and
near real-time performance. In contrast, You Only Look Once
(YOLO) reframes object detection as a single regression task,
achieving real-time speed with only marginal accuracy trade-
offs. These object detectors are now commonly integrated into
image captioning models to produce region-level embeddings,
which are either fed into attention mechanisms or directly into
language decoders. This integration allows for explicit
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alignment between visual entities and linguistic tokens,
enabling captions with greater granularity and contextual
richness.

Beyond detection, this survey highlights several emerging
trends:

®  Performance vs. Efficiency Trade-off: Transformer-
based models such as ETransCap [7] and DVAT [16]
deliver high accuracy using mechanisms like linear
attention and dual align-cross attention, yet their
complexity can limit deployment in real-time or
embedded systems.
Semantic Enrichment via Fusion and Attention:
Architectures like RCT [4], BMFNet [14], and
BIANet [17] demonstrate the power of multimodal
fusion, combining region- and grid-level features for
deeper context modeling, often correlated with higher
CIDEr and BLEU scores.
Data-Efficient Learning: Models such as SMOT [5]
and weakly supervised approaches [15] show that
competitive captions can be generated with minimal
annotations, although results remain sensitive to
pretext-task quality and noise in supervision.
Emotion and Subjectivity in Captioning: GAN-based
captioning with sentiment control [18] represents an
emerging direction toward emotionally aware
captioning, but standard evaluation frameworks are
still lacking for widespread adoption.
Survey-Driven Foundations: Meta-analytical works
[3, 6] offer critical insights into model categorization
and evaluation norms, though they typically avoid
direct empirical testing.
Additionally, Rashied and Jeribi [21] proposed a
multiscale fractal dimension approach that improves
image clarity and supports robust feature
representation in vision-based modeling tasks.
In summary, comparative analysis across models
reveals no single architecture that simultaneously
optimizes accuracy, interpretability, and efficiency.
The inherent trade-offs documented here highlight the
need for hybrid, adaptable architectures that can be
tailored to the specific requirements of diverse
deployment scenarios.

6. CONCLUSION AND FUTURE SCOPE

This review provides a data-driven, metric-focused
synthesis of 20 recent image captioning models, offering a
consolidated perspective on their strengths, limitations, and
trade-offs for both researchers and practitioners. Our empirical
analysis leveraging prominent benchmarks such as BLEU,
CIDEr, METEOR, and ROUGE-L demonstrates that
Transformer-based  architectures,  particularly  those
incorporating dual-path attention mechanisms, consistently
outperform traditional LSTM-based frameworks by an
average of 7-10% on CIDEr across datasets like MS COCO
and Flickr. The evaluation tables and visualizations included
in this study not only highlight relative performance trends but
also reveal critical insights into computational cost, latency,
and architecture complexity, enabling informed selection for
real-world applications. Unlike prior reviews that often relied
on qualitative summaries, this work delivers reproducible,
PRISMA-aligned comparisons, bridging the gap between
model architecture innovations and their measurable impact.



The findings underscore that while lightweight models such as
MobileNet-based encoders offer advantages for resource-
constrained environments, hybrid Transformer variants
achieve superior semantic richness and contextual grounding.
This review thus establishes an evidence-based benchmarking
framework that can guide both academic research and industry
deployment strategies, while also identifying key gaps such as
multilingual  capability, domain generalization, and
interpretability, thereby setting a foundation for the next
generation of image captioning systems.

Future work should focus on improving cross-domain
generalization by extending evaluations beyond MS COCO
and Flickr to domains like medical, satellite, and autonomous
driving imagery. Expanding language diversity with support
for low-resource and multilingual captioning can greatly
enhance accessibility. Explainability must be strengthened
through interpretable reasoning modules and saliency maps.
Establishing unified evaluation benchmarks that combine
semantic richness, emotional tone, and human-in-the-loop
assessments will ensure fairer comparisons. Further
exploration of hybrid, modular architectures and real-time,
resource-efficient inference will be key for deploying
captioning systems in edge and time-sensitive environments.
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