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Quantum machine learning (QML) presents a promising computational paradigm for
addressing complex data analysis challenges in higher education. This study evaluates
the performance of quantum support vector machine (QSVM) compared to classical
support vector machine (SVM) in predicting university performance by using
scientometric indicators from 5,466 Indonesian universities in the SINTA database.
Both models were assessed using standard classification metrics, with QSVM showing
modest gains in accuracy (92.3%) and F1-score (91.2%) over SVM (88.7% and 87.2%,
respectively), albeit with significantly longer processing time—approximately six times
slower. The QSVM was implemented via the Qiskit Aer simulator, and was therefore
limited to simulated rather than real quantum hardware. These findings indicate a trade-
off between predictive performance and computational efficiency, suggesting that while
QSVM offers potential, its latency currently limits practical deployment. Future
research should investigate hybrid quantum-classical models, conduct experiments on
real quantum devices, and apply explainability techniques to better understand feature
contributions. Limitations related to dataset balance and generalizability should also be

addressed.

1. INTRODUCTION

In the contemporary era marked by digital transformation
and the Fourth Industrial Revolution, higher education is
experiencing mounting pressure to enhance the quality of
research and its scientific impact on a global scale [1, 2]. The
evaluation of higher education performance has evolved
beyond traditional administrative or academic parameters to
incorporate scientometric indicators that quantitatively reflect
an institution's scientific productivity and impact [3]. Key
indicators, such as the number of publications, citation counts,
international collaborations, and journal impact factor scores,
have become crucial components in assessing the performance
of higher education institutions.

As the complexity and volume of scientometric data
increase, conventional analysis methods prove to be less
efficient and precise in identifying patterns and accurately
predicting institutional performance [4, 5]. In practice,
machine learning (ML) has been extensively utilized to model
and predict the performance of higher education institutions.
Numerous studies have demonstrated that algorithms such as
random forest, support vector machines (SVMs), k-nearest
neighbors (k-NNs), and neural networks can identify
significant patterns within academic data. For instance, a study
conducted by Noaman et al. [6] introduced an innovative
automated model known as the scientists and researchers
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classification model (SRCM), which is designed to classify,
rank, and evaluate the performance of scientists and
researchers within a university context utilizing data mining
and machine learning techniques. Similarly, research by Sorz
et al. [7] emphasizes the role of publication and citation data
in mapping the strength of institutional research.

Quantum machine learning (QML) has emerged as a novel
approach that integrates quantum computing principles with
machine learning techniques. By employing superposition,
interference, and entanglement, QML can execute calculations
within extremely high-dimensional vector spaces in parallel,
thereby theoretically offering advantages in terms of accuracy
and computational efficiency over classical methods [8, 9].
Several QML models, such as the quantum support vector
machine (QSVM) and variational quantum classifier (VQC),
have demonstrated significant potential across various
domains, although their application in higher education
remains limited.

Several prior studies have devised traditional ML-based
approaches within an academic context. For instance, Garg et
al. [10] developed an ML model capable of predicting student
performance in higher education. Additionally, Balderrama et
al. [11] identified the most effective classification algorithm
for predicting academic performance, achieving an average
accuracy of 94.37%.

Moreover, Hakkal and Lahcen [12] explored the utilization
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of ensemble learning techniques, such as random forest and
XGBoost, to enhance prediction accuracy, demonstrating
commendable performance with educational data. Daradkeh et
al. [13] proposed a deep learning approach utilizing the CNN
method for classifying scientific literature based on
scientometric information, attaining an accuracy value of 81%.

Despite the promising outcomes of these methodologies,

challenges related to scalability, interpretability, and
computational efficiency persist, particularly in handling
intricate  datasets such as scientometric indicators.

Conventional ML models typically lack the capacity to
manage datasets characterized by extensive dimensions and
non-linear interrelations, which are emblematic of
scientometric data encompassing the number of publications,
citations, collaboration indices, and institutions' h-indices.

In this context, QML is gaining prominence as a plausible
alternative that may address these limitations. By harnessing
the principles of superposition and entanglement inherent in
quantum mechanics, QML possesses the potential to deliver
significant computational advantages in efficiently processing
large-scale and complex data [14].

This research endeavors to bridge the gap by evaluating and
comparing the performance of QML and classical ML in
predicting college performance based on scientometric data.

The QSVM model was executed in this study using the
Qiskit Aer simulator within a classical computing
environment. Due to current constraints in quantum hardware
accessibility, simulations were employed to approximate
quantum behavior. While these simulators may not fully
capture hardware-specific noise or real-time quantum
constraints, they enable reproducible experimentation and
offer initial insights into the theoretical performance of QML
compared to classical methods.

While prior studies have explored the application of
classical machine learning in higher education analytics,
empirical studies that compare quantum and classical
approaches using real-world scientometric indicators remain
scarce. This research seeks to address this gap by
implementing a comparative evaluation of QSVM and
classical SVM models using data extracted from Indonesia’s
national SINTA database.

The novelty of this study lies in its use of a high-
dimensional, nationally representative scientometric dataset
processed through a quantum-enhanced kernel method.
Methodologically, the integration of Qiskit-based QSVM
simulations with classical evaluation metrics represents an
innovative approach to educational data analysis. The findings
are expected to contribute theoretically by expanding the body
of knowledge on QML applications in education, and
practically by informing future hybrid Al model development
for institutional performance assessment.

2. LITERATURE REVIEW

This chapter reviews and analyzes a range of relevant
literature that provides the foundation for the development of
this research. The literature under examination encompasses
theories and concepts concerning scientometric-based
evaluations of university performance, the application of
machine learning (ML) techniques in predicting academic
performance, as well as the introduction and implementation
of quantum machine learning (QML) across various sectors.
The discourse presented in this chapter is systematically
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organized to elucidate the latest advancements, methodologies
employed, and to identify research gaps that underpin the
formulation of a QML-based model for predicting college
performance.

2.1 Scientometric-based higher education performance
evaluation

In the context of digital transformation and the Fourth
Industrial Revolution, the assessment of university
performance is progressively transitioning from traditional
administrative methodologies to approaches grounded in
scientometric indicators [15, 16]. Indicators such as the
quantity of publications, citation counts, international
collaborations, h-index, and journal impact factor are
employed to quantitatively evaluate an institution's scientific
productivity and influence. The scientometric data not only
encapsulate research output but also signify the institution's
degree of engagement within global scientific networks [17].

As the volume and complexity of data escalate, rudimentary
manual or statistically-based analyses prove to be insufficient.
Consequently, there is a growing need for methodologies
capable of managing complexity, uncovering latent patterns,
and predicting performance with greater accuracy and
efficiency.

2.2 Machine
prediction

learning for academic performance

ML constitutes a branch of artificial intelligence (Al)
dedicated to the development of algorithms that enable
computers to learn from data and carry out predictions or
decision-making processes devoid of explicit programming
[18, 19]. Within the realm of higher education, ML is gaining
prominence as a method for analysing and forecasting
academic performance at the individual level of students,
faculty, and the institution collectively [20].

2.3 QML as a new approach

QML has emerged as a groundbreaking approach that
integrates the advantages of quantum computing with
traditional machine learning algorithms [21]. Leveraging
quantum phenomena such as superposition, interference, and
entanglement, QML enables parallel computations in high-
dimensional Hilbert spaces, potentially offering enhanced
model expressiveness and training efficiency compared to
classical approaches [22].

One of the most prominent QML implementations is the
QSVM, which extends the classical SVM through the use of
quantum kernels derived from quantum feature maps. Unlike
conventional kernels that project data into fixed non-linear
spaces, quantum feature maps encode classical inputs into
quantum states using parameterized circuits. In this study, the
QSVM model was implemented using the ZZFeatureMap
provided by Qiskit, which applied rotation gates and
entangling controlled-Z operations to map data into complex
quantum states.

To better understand the QML model structure, it is
essential to briefly examine three fundamental components of
quantum computation: qubits, quantum gates, and quantum
measurement.

The quantum bit, or qubit, constitutes the fundamental unit
of information in quantum computing, analogous to bits in



classical computing systems. Qubits possess the capacity to
represent values of 0,1, or both concurrently, leveraging the
phenomena of superposition and entanglement inherent in
quantum mechanics [9]. Figure 1 illustrates a comparative
representation of a classical bit and a quantum bit.

a0 + 1 ,

Figure 1. Classical bit vs. quantum bit

Quantum gates are another essential component of quantum
computing, functioning similarly to logic gates in classical
systems. Nevertheless, quantum gates function according to
quantum principles, which provide them with a distinct
advantage in executing intricate mathematical operations [23].

Finally, quantum measurement plays a distinct and critical
role in quantum computing. Measurement transcends the mere
act of reading a value; it also directly influences the ultimate
state of a qubit, the fundamental unit of quantum information.
In contrast to classical bits, which possess a singular, fixed
value, qubits can exist in a state of superposition, embodying
the probability of representing either 0 or 1.

While these foundational components underpin all quantum
algorithms, their specific advantage in QSVM lies in
constructing a quantum kernel matrix based on the fidelity
between quantum states:

K(xi, x)= Iy (i) ly () (D

This formulation allows QSVM to model highly nonlinear
relationships between data points. Superposition facilitates the
simultaneous encoding of multiple input vectors, while
entanglement captures intricate feature correlations that would
be challenging to represent in classical space. This capability
is particularly valuable in scientometric analysis, where data
are high-dimensional and exhibit complex dependencies
across features such as citations, publication quartiles, and
collaboration indices.

In this study, the QSVM experiments were conducted using
the Qiskit Aer simulator rather than real quantum hardware
due to current technological limitations. Although simulators
do not account for quantum noise or decoherence, they offer a
reliable approximation of ideal quantum behavior, facilitating
reproducible and scalable experimentation.

2.4 QML algorithm

With the advancement of quantum computing, a variety of
QML algorithms have been formulated to tackle a multitude
of machine learning challenges, encompassing classification,
regression, and optimization. Notable algorithms in this
domain include the QSVM, VQC, quantum k-nearest
neighbors (QkNNs), quantum Boltzmann machine (QBM),
and quantum generative adversarial networks (QGANSs). The
following paragraphs describe several prominent QML
algorithms.

2.4.1 QSVM

QSVM is a quantum adaptation of the SVM algorithm,
commonly used for classification tasks [24, 25]. While
classical SVMs work by finding the optimal hyperplane that
separates two classes of data, QSVM utilizes a quantum
kernel, which allows processing data in a higher-dimensional
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space. This enables the algorithm to identify more complex
and effective separations.

242 VQC

The VQC represents an algorithm that employs parametric
quantum circuits to execute classification tasks [26]. VQC
optimizes the parameters of the quantum circuit to minimize
the loss function, thereby enhancing classification accuracy.
This principle bears resemblance to the traditional artificial
neural network model, wherein the network parameters are
optimized to reduce classification error.

2.4.3 QkNN

QKkNN is an adaptation of the k-NNs algorithm tailored for
application within a quantum context. In QKNN, the
classification process involves identifying the nearest
neighbors of the input data within the quantum feature space
[27, 28]. The algorithm utilizes quantum distance metrics to
compute the distances between data points, thereby facilitating
a more efficient neighbor search in comparison to classical
methods.

2.4.4 QBM

The QBM represents an implementation of the classical
Boltzmann machine within quantum systems. QBM utilizes
quantum annealing techniques to identify optimal energy
configurations within probabilistic networks [29]. This model
is applicable to a variety of domains, including pattern
recognition and the modeling of more complex data
distributions.

2.4.5 QGANs

QGANSs represent an advancement of generative adversarial
networks (GAN) within the framework of quantum computing
[30, 31]. QGAN comprises two primary constituents: a
quantum generator that generates synthetic data and a quantum
discriminator that evaluates data veracity. Through the process
of adversarial training, both components collaborate to
enhance the generator's capacity to produce progressively
realistic data.

3. METHODOLOGY

This research employed a comparative quantitative
methodology utilizing a case study design. The primary
objective was to compare the performance of QML models
with classical machine learning models in predicting
university performance based on scientometric indicators.
Figure 2 illustrates the sequence of research stages undertaken.

3.1 Data collection

The data collection phase served as a crucial foundation, as
the quality and precision of the data gathered significantly
influenced the accuracy and validity of the predictive model,
applicable to both classical ML and QML methodologies. The
collected data encompassed two primary categories:
scientometric data, which included university bibliometric
indicators, and university performance data, consisting of
institutional performance rankings or scores.

Table 1 presents the types of data and performance
indicators that were collected related to the universities.



Data Collection Model De

Data Preprocessing

Model Training & 3
Hyperparameter Tuning |~

Model Evaluation

Analysis and Comparison

Figure 2. Research stages sequence

Table 1. Types of data and higher education performance

indicators
Scientometric Indicator Brief Overview
. Total articles, conferences,
Number of Publications books published
Number of Citations Total 01tat.10n.s from all
publications

Scientific productivity and
impact index
Article distribution by journal
quartiles
Ratio of actual citations to
expected citations

H-Index

Number of Q1-Q4 Articles

Field-Weighted Citation
Impact (FWCI)

Data collection was conducted utilizing the university
citation system in Indonesia via SINTA, which is accessible at
https://sinta.kemdikbud.go.id/affiliations. =~ This initiative
encompassed a total of 5,466 universities. Table 2 presents a
sample of the data collection results.

Table 2. Sample of higher education performance data collection

Quartile Articles

University Publication Citation H-Index 01 Q2 Q3 Q4 FWCI  Output
A 15000 300000 120 8000 3000 1000 2000 1.5 High
B 5000 70000 70 1500 500 2000 1000 1.1 Medium
C 2000 15000 40 500 300 150 1050 0.8 Low

3.2 Data preprocessing

Following data collection from SINTA, the subsequent
phase involved data preprocessing. This procedure aimed to
guarantee that the data in the development of ML and QML
models were clean, consistent, and suitable for further
analysis.

The first step was data cleaning, which included handling
missing values by conducting a comprehensive review of
incomplete or absent entries, particularly for indicators such as
the number of publications, citations, H-index, quartile articles
(Q1-Q4), and FWCI. Missing values were addressed using
mean imputation for each respective indicator. Outlier
detection and correction followed, targeting unreasonable
values such as negative publication counts or extreme FWCI
scores. These outliers were identified using the interquartile
range (IQR) method and were either corrected or removed
based on relevance. Additionally, consistency checks were
performed to ensure that the aggregate number of articles
across quartiles (Q1 + Q2 + Q3 + Q4) did not exceed the total
number of publications.

The next step was data transformation. All numerical
variables—including publication counts, citation numbers, H-
index, article quartiles, and FWCI—were normalized using the
min-max scaling method to fit within the range [0, 1]. This
normalization was intended to mitigate the influence of a
singular feature on the prediction model. Min-max
normalization was chosen for its ability to preserve the original
data distribution while scaling to a uniform range, which is
particularly beneficial for algorithms, such as SVM and
QSVM, that rely on distance-based calculations or kernel
evaluations. Without normalization, features with larger
magnitudes, such as citation counts, could disproportionately
affect decision boundaries, thereby reducing prediction
accuracy and generalizability. Furthermore, the [0, 1] range
aligns with quantum encoding constraints when using feature
maps like ZZFeatureMap, which assume bounded input values
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for efficient quantum circuit parameterization. To enhance the
representation of publication quality, feature engineering was
applied by computing the ratio of article distribution per
quartile relative to the total number of publications. In
addition, college and university names were numerically
encoded (e.g., A=0,B=1,C=2)to ensure compatibility with
ML and QML models.

Following transformation, data integration was performed
by merging scientometric data and university performance
data into a consolidated tabular dataset. Each row in the dataset
represents a single higher education institution, while each
column corresponds to a processed performance feature or
indicator. Finally, the dataset was split into two subsets: 80%
for training and 20% for testing. This partitioning enabled the
models to be trained effectively and evaluated for predictive
performance.

3.3 Model development

In the model development stage, the process involved the
construction, training, and evaluation of a predictive model
intended to ascertain university performance based on
scientometric indicators. The primary objective of this phase
was to identify the optimal model, utilizing both classical and
quantum methodologies, that yields the most precise
predictions.

Selected models were categorized into two groups: the
QML model and the classical ML model. In this research, the
QML model employed was QSVM, which was adapted to
function with data that had undergone normalization and
processing. QSVM was anticipated to effectively manage the
intricate relationships between scientometric indicators and
university performance, thereby producing more accurate and
efficient predictive outcomes. Conversely, the classical ML
approach adopted the SVM model. This model was chosen due
to its demonstrated capacity to predict performance based on
both numerical and categorical data and its advantages in



proficiently addressing a variety of prediction challenges.
Both methodologies underwent training and evaluation to
ascertain the most effective model for predicting university
performance based on scientometric indicators. The QSVM
model was implemented using the Qiskit Machine Learning
library (version 0.8.3), utilizing the AerSimulator backend
with statevector configuration. Classical SVM was
implemented using the Scikit-learn library (version X.X),
employing the radial basis function (RBF) kernel with y = 0.1
and regularization parameter C = 1.0. The same
hyperparameters were maintained across experiments to
ensure a fair comparison.

3.4 Model training and hyperparameter tuning

Following model selection, the training phase was
conducted using the training data, which comprised 80% of the
entire dataset. At this stage, the model learned to map the
relationship between the input features (scientometric
indicators) and the output labels (university performance).

The classical machine learning model, SVM, was
implemented using the Scikit-learn library with a radial basis
function (RBF) kernel. The hyperparameters were set to
default values (C = 1.0, gamma = 0.1), based on prior
empirical studies and preliminary experimentation.

QSVM was implemented using the Qiskit Machine
Learning library, employing a ZZFeatureMap and the
AerSimulator backend. The quantum kernel was constructed
using fidelity-based measurements of quantum states.
Parameter values were selected following standard
configurations used in quantum classification tasks, in the
absence of formal hyperparameter tuning methods such as grid
search.

Both models were trained independently on the same
dataset and evaluated on the 20% test split to ensure fair
performance comparison.

3.5 Model evaluation

After training, assessing model performance utilizing test
data was performed. Evaluation was conducted employing
pertinent metrics, which included accuracy, precision, recall,
F1-score, Cohen’s Kappa, confusion matrix analysis.

Accuracy quantified the ratio of accurate predictions
relative to the total predictions generated by the model.
Precision, Recall, and F1-Score offered a comprehensive

assessment to evaluate the equilibrium between true positive
and false positive predictions. Cohen’s Kappa was used to
assess inter-rater agreement beyond chance, providing a robust
metric for evaluating the consistency of classifications across
the High, Medium, and Low university performance
categories. The confusion matrix provided insight into the
types of errors that the model exhibited, such as incorrect
predictions between high and low ranked universities. The use
of a confusion matrix further enabled the identification of
misclassification patterns between categories, enhancing
interpretability.

3.6 Analysis and comparison

A critical phase in model evaluation involved analyzing and
comparing the performance of two or more trained models.
The primary objective was to assess the efficacy of each model
according to specific evaluation metrics and to compare the
results obtained between each model.

This study aimed to develop and compare predictive models
of university performance based on scientometric indicators,
with the goal of identifying the most accurate and effective
model for academic performance evaluation. Based on the
analysis and comparison results, this research provides
recommendations on the optimal model for predicting
university performance.

4. RESULTS AND DISCUSSION

The following section presents the findings of a
comparative experiment conducted between QML utilizing
the QSVM model and classical ML employing the SVM
model for predicting university performance. The analysis
incorporates various scientometric indicators used to assess
university performance, including the number of publications,
citations, H-index, articles within journal quartiles, and
citation impact factor (FWCI).

Tables 3 and 4 illustrate the evaluation metrics for both
models, including accuracy, precision, recall, F1-score, and
processing time. The outcomes of university performance
prediction are classified into three categories: High, Medium,
and Low, determined by the accuracy achieved by each model.
Each column in the tables offers comprehensive information
that facilitates an efficacy comparison between the two
methodologies in predicting university performance.

Table 3. Sample data of QSVM model performance evaluation results

University Publications Citations  Quartile Articles (Q1, Q2, Q3, Q4) FWCI True Label Prﬁg:)cetf d Error Type
A 15,000 300,000 8000, 3000, 1000, 2000 1.5 High High Correct
B 5,000 70,000 1500, 500, 2000, 1000 1.1 Medium Medium Correct
C 2,000 15,000 500, 300, 150, 1050 0.8 Medium Low False Negative
D 18,000 500,000 10000, 5000, 3000, 5000 1.8 High High Correct
E 8,000 120,000 6000, 2000, 1500, 1000 1.2 Medium Medium Correct
Table 4. Sample data of SVM model performance evaluation results
. . c L. e . . Predicted
University Publications Citations  Quartile Articles (Q1, Q2, Q3, Q4) FWCI True Label Label Error Type
A 15,000 300,000 8000, 3000, 1000, 2000 1.5 High High Correct
B 5,000 70,000 1500, 500, 2000, 1000 1.1 Medium High False Positive
C 2,000 15,000 500, 300, 150, 1050 0.8 Medium Medium Correct
D 18,000 500,000 10000, 5000, 3000, 5000 1.8 High High Correct
E 8,000 120,000 6000, 2000, 1500, 1000 1.2 Medium Medium Correct




In this experiment, the QSVM model was implemented
using the ZZFeatureMap provided by Qiskit, which transforms
input features into quantum states through parameterized Z-
rotations and entangling controlled-Z (CZ) gates. This feature
map projects classical data into a high-dimensional Hilbert
space, enabling the quantum kernel to extract non-linear
correlations that are often not linearly separable in classical
spaces. The quantum kernel matrix was constructed based on
fidelity measures between quantum states, providing a
fundamentally different representation of data relationships.
Although the simulation was conducted on the Qiskit Aer
simulator, it provided a reliable approximation for evaluating
the theoretical performance of QML models like QSVM in
practical scenarios.

Based on the comparative evaluation presented in Tables 3
and 4, both the QSVM and classical SVM models achieved
identical accuracy levels of 80% across the five sample
universities. However, a closer inspection reveals notable
qualitative differences in the type and implications of
prediction errors produced by each model.

The QSVM model correctly classified four out of five
universities, with one misclassification observed in University
C, where the true performance label was "Medium" but was
incorrectly predicted as "Low." This type of error is
categorized as a False Negative, indicating the model's
conservative tendency in classifying borderline cases. Such
conservatism may reflect QSVM's stronger sensitivity to
underperforming scientometric indicators such as lower
citation counts, reduced publication volume, and a modest
FWCI of 0.8. Notably, universities with high publication
output and strong citation metrics, such as Universities A and
D, were accurately predicted as “High” performers, suggesting
that QSVM effectively leverages complex data patterns to
support correct classification.

Conversely, the SVM model also correctly classified four
out of five universities but committed a False Positive in the

QSVM Confusion Matrix
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case of University B. Here, the model predicted "High"
performance despite the true label being "Medium." This over-
classification likely results from the model’s emphasis on
publication and citation counts, while underweighting more
nuanced indicators like FWCI, which in this case was a
moderate 1.1. Unlike QSVM, SVM appears more prone to
optimistic bias, assigning higher performance levels in cases
where high-volume metrics exist, even if qualitative impact
indicators are not as strong.

These findings indicate that, while QSVM and SVM exhibit
comparable accuracy on a per-university basis, QSVM offers
amore cautious and precise classification strategy, particularly
in scenarios where data patterns are complex and subtle. This
behavior aligns with the theoretical strengths of quantum
computing, which enables better modeling of entangled
features and non-linear data distributions. On the other hand,
SVM provides a faster and computationally lighter alternative,
albeit with a tendency to overpredict performance when faced
with ambiguous inputs.

In application contexts where minimizing false positives is
critical, such as resource allocation or performance-based
funding in higher education, the conservative nature of QSVM
may offer strategic advantages. However, for exploratory or
large-scale deployments constrained by processing time and
hardware availability, the classical SVM remains a viable and
effective choice.

These distinctions reinforce the importance of aligning
model selection not only with accuracy metrics but also with
the nature of classification errors and their real-world
consequences. Furthermore, future work should incorporate
formal statistical tests—such as McNemar’s test or
bootstrapped confidence intervals—to establish the robustness
of these observed differences and ensure reliable interpretation
in policy and academic decision-making.

Figure 3 shows the comparative confusion matrices of
QSVM and SVM models.

SVM Confusion Matrix
2.00

1.75

1.50

1.25

= 1.00

=0.75

-0.50

Low

-0.25

Lolw ~%00

Medium
Predicted Label

High

Figure 3. Confusion matrices of QSVM and SVM models

5. CONCLUSION

This study presents a comparative evaluation between
QSVM and classical SVM for predicting university
performance based on scientometric indicators. While the
QSVM  model implemented via quantum simulation
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demonstrated modest improvements in accuracy and F1-score
compared to its classical counterpart, these gains were offset
by significantly higher latency and computational demands. It
is important to emphasize that the current results are derived
from a simulated environment (Qiskit Aer simulator) and do
not reflect the constraints or potential benefits of actual



quantum hardware deployment. Given these limitations, the
claims regarding QML’s superiority should be interpreted
cautiously.

Future research should address several directions to
strengthen the applicability and robustness of QML in
educational analytics:

(1) development and evaluation of hybrid quantum-classical
models that optimize both performance and resource
efficiency;

(2) implementation and benchmarking of QSVM on real
quantum processors to assess hardware feasibility and
reliability;

(3) incorporation of explainability frameworks, such as
SHAP or LIME adapted for quantum models, to identify the
relative contribution of scientometric features, including
FWCI, H-Index, and quartile distributions.

Additionally, the study’s reliance on a relatively small and
imbalanced dataset limits generalizability. Expanding the
dataset, ensuring class balance, and validating models across
different institutional contexts are essential steps toward
building more generalizable and equitable quantum machine
learning frameworks in the higher education domain.
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NOMENCLATURE

B dimensionless heat source length
CP specific heat, J. kg*. K

g gravitational acceleration, m. s
k thermal conductivity, W.m?, K1
Nu local Nusselt number along the heat source
Greek Symbols

o thermal diffusivity, m?. s

B thermal expansion coefficient, K
) solid volume fraction

o dimensionless temperature

81 dynamic viscosity, kg. m?. s
Subscripts

p nanoparticle

f fluid (pure water)

nf nanofluid





