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Quantum machine learning (QML) presents a promising computational paradigm for 

addressing complex data analysis challenges in higher education. This study evaluates 

the performance of quantum support vector machine (QSVM) compared to classical 

support vector machine (SVM) in predicting university performance by using 

scientometric indicators from 5,466 Indonesian universities in the SINTA database. 

Both models were assessed using standard classification metrics, with QSVM showing 

modest gains in accuracy (92.3%) and F1-score (91.2%) over SVM (88.7% and 87.2%, 

respectively), albeit with significantly longer processing time—approximately six times 

slower. The QSVM was implemented via the Qiskit Aer simulator, and was therefore 

limited to simulated rather than real quantum hardware. These findings indicate a trade-

off between predictive performance and computational efficiency, suggesting that while 

QSVM offers potential, its latency currently limits practical deployment. Future 

research should investigate hybrid quantum-classical models, conduct experiments on 

real quantum devices, and apply explainability techniques to better understand feature 

contributions. Limitations related to dataset balance and generalizability should also be 

addressed. 
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1. INTRODUCTION

In the contemporary era marked by digital transformation 

and the Fourth Industrial Revolution, higher education is 

experiencing mounting pressure to enhance the quality of 

research and its scientific impact on a global scale [1, 2]. The 

evaluation of higher education performance has evolved 

beyond traditional administrative or academic parameters to 

incorporate scientometric indicators that quantitatively reflect 

an institution's scientific productivity and impact [3]. Key 

indicators, such as the number of publications, citation counts, 

international collaborations, and journal impact factor scores, 

have become crucial components in assessing the performance 

of higher education institutions. 

As the complexity and volume of scientometric data 

increase, conventional analysis methods prove to be less 

efficient and precise in identifying patterns and accurately 

predicting institutional performance [4, 5]. In practice, 

machine learning (ML) has been extensively utilized to model 

and predict the performance of higher education institutions. 

Numerous studies have demonstrated that algorithms such as 

random forest, support vector machines (SVMs), k-nearest 

neighbors (k-NNs), and neural networks can identify 

significant patterns within academic data. For instance, a study 

conducted by Noaman et al. [6] introduced an innovative 

automated model known as the scientists and researchers 

classification model (SRCM), which is designed to classify, 

rank, and evaluate the performance of scientists and 

researchers within a university context utilizing data mining 

and machine learning techniques. Similarly, research by Sorz 

et al. [7] emphasizes the role of publication and citation data 

in mapping the strength of institutional research. 

Quantum machine learning (QML) has emerged as a novel 

approach that integrates quantum computing principles with 

machine learning techniques. By employing superposition, 

interference, and entanglement, QML can execute calculations 

within extremely high-dimensional vector spaces in parallel, 

thereby theoretically offering advantages in terms of accuracy 

and computational efficiency over classical methods [8, 9]. 

Several QML models, such as the quantum support vector 

machine (QSVM) and variational quantum classifier (VQC), 

have demonstrated significant potential across various 

domains, although their application in higher education 

remains limited. 

Several prior studies have devised traditional ML-based 

approaches within an academic context. For instance, Garg et 

al. [10] developed an ML model capable of predicting student 

performance in higher education. Additionally, Balderrama et 

al. [11] identified the most effective classification algorithm 

for predicting academic performance, achieving an average 

accuracy of 94.37%. 

Moreover, Hakkal and Lahcen [12] explored the utilization 
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of ensemble learning techniques, such as random forest and 

XGBoost, to enhance prediction accuracy, demonstrating 

commendable performance with educational data. Daradkeh et 

al. [13] proposed a deep learning approach utilizing the CNN 

method for classifying scientific literature based on 

scientometric information, attaining an accuracy value of 81%.  

Despite the promising outcomes of these methodologies, 

challenges related to scalability, interpretability, and 

computational efficiency persist, particularly in handling 

intricate datasets such as scientometric indicators. 

Conventional ML models typically lack the capacity to 

manage datasets characterized by extensive dimensions and 

non-linear interrelations, which are emblematic of 

scientometric data encompassing the number of publications, 

citations, collaboration indices, and institutions' h-indices. 

In this context, QML is gaining prominence as a plausible 

alternative that may address these limitations. By harnessing 

the principles of superposition and entanglement inherent in 

quantum mechanics, QML possesses the potential to deliver 

significant computational advantages in efficiently processing 

large-scale and complex data [14].  

This research endeavors to bridge the gap by evaluating and 

comparing the performance of QML and classical ML in 

predicting college performance based on scientometric data.  

The QSVM model was executed in this study using the 

Qiskit Aer simulator within a classical computing 

environment. Due to current constraints in quantum hardware 

accessibility, simulations were employed to approximate 

quantum behavior. While these simulators may not fully 

capture hardware-specific noise or real-time quantum 

constraints, they enable reproducible experimentation and 

offer initial insights into the theoretical performance of QML 

compared to classical methods. 

While prior studies have explored the application of 

classical machine learning in higher education analytics, 

empirical studies that compare quantum and classical 

approaches using real-world scientometric indicators remain 

scarce. This research seeks to address this gap by 

implementing a comparative evaluation of QSVM and 

classical SVM models using data extracted from Indonesia’s 

national SINTA database. 

The novelty of this study lies in its use of a high-

dimensional, nationally representative scientometric dataset 

processed through a quantum-enhanced kernel method. 

Methodologically, the integration of Qiskit-based QSVM 

simulations with classical evaluation metrics represents an 

innovative approach to educational data analysis. The findings 

are expected to contribute theoretically by expanding the body 

of knowledge on QML applications in education, and 

practically by informing future hybrid AI model development 

for institutional performance assessment. 

 

  

2. LITERATURE REVIEW 

 

This chapter reviews and analyzes a range of relevant 

literature that provides the foundation for the development of 

this research. The literature under examination encompasses 

theories and concepts concerning scientometric-based 

evaluations of university performance, the application of 

machine learning (ML) techniques in predicting academic 

performance, as well as the introduction and implementation 

of quantum machine learning (QML) across various sectors. 

The discourse presented in this chapter is systematically 

organized to elucidate the latest advancements, methodologies 

employed, and to identify research gaps that underpin the 

formulation of a QML-based model for predicting college 

performance.  

 

2.1 Scientometric-based higher education performance 

evaluation 

 

In the context of digital transformation and the Fourth 

Industrial Revolution, the assessment of university 

performance is progressively transitioning from traditional 

administrative methodologies to approaches grounded in 

scientometric indicators [15, 16]. Indicators such as the 

quantity of publications, citation counts, international 

collaborations, h-index, and journal impact factor are 

employed to quantitatively evaluate an institution's scientific 

productivity and influence. The scientometric data not only 

encapsulate research output but also signify the institution's 

degree of engagement within global scientific networks [17].  

As the volume and complexity of data escalate, rudimentary 

manual or statistically-based analyses prove to be insufficient. 

Consequently, there is a growing need for methodologies 

capable of managing complexity, uncovering latent patterns, 

and predicting performance with greater accuracy and 

efficiency. 

 

2.2 Machine learning for academic performance 

prediction 

 

ML constitutes a branch of artificial intelligence (AI) 

dedicated to the development of algorithms that enable 

computers to learn from data and carry out predictions or 

decision-making processes devoid of explicit programming 

[18, 19]. Within the realm of higher education, ML is gaining 

prominence as a method for analysing and forecasting 

academic performance at the individual level of students, 

faculty, and the institution collectively [20]. 

 

2.3 QML as a new approach 

 

QML has emerged as a groundbreaking approach that 

integrates the advantages of quantum computing with 

traditional machine learning algorithms [21]. Leveraging 

quantum phenomena such as superposition, interference, and 

entanglement, QML enables parallel computations in high-

dimensional Hilbert spaces, potentially offering enhanced 

model expressiveness and training efficiency compared to 

classical approaches [22].  

One of the most prominent QML implementations is the 

QSVM, which extends the classical SVM through the use of 

quantum kernels derived from quantum feature maps. Unlike 

conventional kernels that project data into fixed non-linear 

spaces, quantum feature maps encode classical inputs into 

quantum states using parameterized circuits. In this study, the 

QSVM model was implemented using the ZZFeatureMap 

provided by Qiskit, which applied rotation gates and 

entangling controlled-Z operations to map data into complex 

quantum states. 

To better understand the QML model structure, it is 

essential to briefly examine three fundamental components of 

quantum computation: qubits, quantum gates, and quantum 

measurement. 

The quantum bit, or qubit, constitutes the fundamental unit 

of information in quantum computing, analogous to bits in 
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classical computing systems. Qubits possess the capacity to 

represent values of 0,1, or both concurrently, leveraging the 

phenomena of superposition and entanglement inherent in 

quantum mechanics [9]. Figure 1 illustrates a comparative 

representation of a classical bit and a quantum bit.  

 

 
 

Figure 1. Classical bit vs. quantum bit 

 

Quantum gates are another essential component of quantum 

computing, functioning similarly to logic gates in classical 

systems. Nevertheless, quantum gates function according to 

quantum principles, which provide them with a distinct 

advantage in executing intricate mathematical operations [23]. 

Finally, quantum measurement plays a distinct and critical 

role in quantum computing. Measurement transcends the mere 

act of reading a value; it also directly influences the ultimate 

state of a qubit, the fundamental unit of quantum information. 

In contrast to classical bits, which possess a singular, fixed 

value, qubits can exist in a state of superposition, embodying 

the probability of representing either 0 or 1. 

While these foundational components underpin all quantum 

algorithms, their specific advantage in QSVM lies in 

constructing a quantum kernel matrix based on the fidelity 

between quantum states: 

 

K(xi, xj)=∣⟨ψ(xi)∣ψ(xj)⟩}|2 (1) 

 

This formulation allows QSVM to model highly nonlinear 

relationships between data points. Superposition facilitates the 

simultaneous encoding of multiple input vectors, while 

entanglement captures intricate feature correlations that would 

be challenging to represent in classical space. This capability 

is particularly valuable in scientometric analysis, where data 

are high-dimensional and exhibit complex dependencies 

across features such as citations, publication quartiles, and 

collaboration indices. 

In this study, the QSVM experiments were conducted using 

the Qiskit Aer simulator rather than real quantum hardware 

due to current technological limitations. Although simulators 

do not account for quantum noise or decoherence, they offer a 

reliable approximation of ideal quantum behavior, facilitating 

reproducible and scalable experimentation. 

 

2.4 QML algorithm 

 

With the advancement of quantum computing, a variety of 

QML algorithms have been formulated to tackle a multitude 

of machine learning challenges, encompassing classification, 

regression, and optimization. Notable algorithms in this 

domain include the QSVM, VQC, quantum k-nearest 

neighbors (QkNNs), quantum Boltzmann machine (QBM), 

and quantum generative adversarial networks (QGANs). The 

following paragraphs describe several prominent QML 

algorithms. 

 

2.4.1 QSVM 

QSVM is a quantum adaptation of the SVM algorithm, 

commonly used for classification tasks [24, 25]. While 

classical SVMs work by finding the optimal hyperplane that 

separates two classes of data, QSVM utilizes a quantum 

kernel, which allows processing data in a higher-dimensional 

space. This enables the algorithm to identify more complex 

and effective separations. 

 

2.4.2 VQC 

The VQC represents an algorithm that employs parametric 

quantum circuits to execute classification tasks [26]. VQC 

optimizes the parameters of the quantum circuit to minimize 

the loss function, thereby enhancing classification accuracy. 

This principle bears resemblance to the traditional artificial 

neural network model, wherein the network parameters are 

optimized to reduce classification error. 

 

2.4.3 QkNN 

QkNN is an adaptation of the k-NNs algorithm tailored for 

application within a quantum context. In QkNN, the 

classification process involves identifying the nearest 

neighbors of the input data within the quantum feature space 

[27, 28]. The algorithm utilizes quantum distance metrics to 

compute the distances between data points, thereby facilitating 

a more efficient neighbor search in comparison to classical 

methods. 

 

2.4.4 QBM 

The QBM represents an implementation of the classical 

Boltzmann machine within quantum systems. QBM utilizes 

quantum annealing techniques to identify optimal energy 

configurations within probabilistic networks [29]. This model 

is applicable to a variety of domains, including pattern 

recognition and the modeling of more complex data 

distributions. 

 

2.4.5 QGANs 

QGANs represent an advancement of generative adversarial 

networks (GAN) within the framework of quantum computing 

[30, 31]. QGAN comprises two primary constituents: a 

quantum generator that generates synthetic data and a quantum 

discriminator that evaluates data veracity. Through the process 

of adversarial training, both components collaborate to 

enhance the generator's capacity to produce progressively 

realistic data. 

 

 

3. METHODOLOGY 

 

This research employed a comparative quantitative 

methodology utilizing a case study design. The primary 

objective was to compare the performance of QML models 

with classical machine learning models in predicting 

university performance based on scientometric indicators. 

Figure 2 illustrates the sequence of research stages undertaken.  

 

3.1 Data collection 

 

The data collection phase served as a crucial foundation, as 

the quality and precision of the data gathered significantly 

influenced the accuracy and validity of the predictive model, 

applicable to both classical ML and QML methodologies. The 

collected data encompassed two primary categories: 

scientometric data, which included university bibliometric 

indicators, and university performance data, consisting of 

institutional performance rankings or scores.  

Table 1 presents the types of data and performance 

indicators that were collected related to the universities.  
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Figure 2. Research stages sequence 

 

Table 1. Types of data and higher education performance 

indicators 

 
Scientometric Indicator Brief Overview 

Number of Publications 
Total articles, conferences, 

books published 

Number of Citations 
Total citations from all 

publications 

H-Index 
Scientific productivity and 

impact index 

Number of Q1-Q4 Articles 
Article distribution by journal 

quartiles 

Field-Weighted Citation 

Impact (FWCI) 

Ratio of actual citations to 

expected citations 

 

Data collection was conducted utilizing the university 

citation system in Indonesia via SINTA, which is accessible at 

https://sinta.kemdikbud.go.id/affiliations. This initiative 

encompassed a total of 5,466 universities. Table 2 presents a 

sample of the data collection results.  

 

Table 2. Sample of higher education performance data collection 

 

University Publication Citation H-Index 
Quartile Articles 

FWCI Output 
Q1 Q2 Q3 Q4 

A 15000 300000 120 8000 3000 1000 2000 1.5 High 

B 5000 70000 70 1500 500 2000 1000 1.1 Medium 

C 2000 15000 40 500 300 150 1050 0.8 Low 

 

3.2 Data preprocessing 

 

Following data collection from SINTA, the subsequent 

phase involved data preprocessing. This procedure aimed to 

guarantee that the data in the development of ML and QML 

models were clean, consistent, and suitable for further 

analysis.  

The first step was data cleaning, which included handling 

missing values by conducting a comprehensive review of 

incomplete or absent entries, particularly for indicators such as 

the number of publications, citations, H-index, quartile articles 

(Q1-Q4), and FWCI. Missing values were addressed using 

mean imputation for each respective indicator. Outlier 

detection and correction followed, targeting unreasonable 

values such as negative publication counts or extreme FWCI 

scores. These outliers were identified using the interquartile 

range (IQR) method and were either corrected or removed 

based on relevance. Additionally, consistency checks were 

performed to ensure that the aggregate number of articles 

across quartiles (Q1 + Q2 + Q3 + Q4) did not exceed the total 

number of publications. 

The next step was data transformation. All numerical 

variables—including publication counts, citation numbers, H-

index, article quartiles, and FWCI—were normalized using the 

min-max scaling method to fit within the range [0, 1]. This 

normalization was intended to mitigate the influence of a 

singular feature on the prediction model. Min-max 

normalization was chosen for its ability to preserve the original 

data distribution while scaling to a uniform range, which is 

particularly beneficial for algorithms, such as SVM and 

QSVM, that rely on distance-based calculations or kernel 

evaluations. Without normalization, features with larger 

magnitudes, such as citation counts, could disproportionately 

affect decision boundaries, thereby reducing prediction 

accuracy and generalizability. Furthermore, the [0, 1] range 

aligns with quantum encoding constraints when using feature 

maps like ZZFeatureMap, which assume bounded input values 

for efficient quantum circuit parameterization. To enhance the 

representation of publication quality, feature engineering was 

applied by computing the ratio of article distribution per 

quartile relative to the total number of publications. In 

addition, college and university names were numerically 

encoded (e.g., A = 0, B = 1, C = 2) to ensure compatibility with 

ML and QML models. 

Following transformation, data integration was performed 

by merging scientometric data and university performance 

data into a consolidated tabular dataset. Each row in the dataset 

represents a single higher education institution, while each 

column corresponds to a processed performance feature or 

indicator. Finally, the dataset was split into two subsets: 80% 

for training and 20% for testing. This partitioning enabled the 

models to be trained effectively and evaluated for predictive 

performance. 

 

3.3 Model development 

 

In the model development stage, the process involved the 

construction, training, and evaluation of a predictive model 

intended to ascertain university performance based on 

scientometric indicators. The primary objective of this phase 

was to identify the optimal model, utilizing both classical and 

quantum methodologies, that yields the most precise 

predictions.  

Selected models were categorized into two groups: the 

QML model and the classical ML model. In this research, the 

QML model employed was QSVM, which was adapted to 

function with data that had undergone normalization and 

processing. QSVM was anticipated to effectively manage the 

intricate relationships between scientometric indicators and 

university performance, thereby producing more accurate and 

efficient predictive outcomes. Conversely, the classical ML 

approach adopted the SVM model. This model was chosen due 

to its demonstrated capacity to predict performance based on 

both numerical and categorical data and its advantages in 
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proficiently addressing a variety of prediction challenges. 

Both methodologies underwent training and evaluation to 

ascertain the most effective model for predicting university 

performance based on scientometric indicators. The QSVM 

model was implemented using the Qiskit Machine Learning 

library (version 0.8.3), utilizing the AerSimulator backend 

with statevector configuration. Classical SVM was 

implemented using the Scikit-learn library (version X.X), 

employing the radial basis function (RBF) kernel with γ = 0.1 

and regularization parameter C = 1.0. The same 

hyperparameters were maintained across experiments to 

ensure a fair comparison. 

 

3.4 Model training and hyperparameter tuning 

 

Following model selection, the training phase was 

conducted using the training data, which comprised 80% of the 

entire dataset. At this stage, the model learned to map the 

relationship between the input features (scientometric 

indicators) and the output labels (university performance). 

The classical machine learning model, SVM, was 

implemented using the Scikit-learn library with a radial basis 

function (RBF) kernel. The hyperparameters were set to 

default values (C = 1.0, gamma = 0.1), based on prior 

empirical studies and preliminary experimentation. 

QSVM was implemented using the Qiskit Machine 

Learning library, employing a ZZFeatureMap and the 

AerSimulator backend. The quantum kernel was constructed 

using fidelity-based measurements of quantum states. 

Parameter values were selected following standard 

configurations used in quantum classification tasks, in the 

absence of formal hyperparameter tuning methods such as grid 

search. 

Both models were trained independently on the same 

dataset and evaluated on the 20% test split to ensure fair 

performance comparison. 

 

3.5 Model evaluation 

 

After training, assessing model performance utilizing test 

data was performed. Evaluation was conducted employing 

pertinent metrics, which included accuracy, precision, recall, 

F1-score, Cohen’s Kappa, confusion matrix analysis. 

Accuracy quantified the ratio of accurate predictions 

relative to the total predictions generated by the model. 

Precision, Recall, and F1-Score offered a comprehensive 

assessment to evaluate the equilibrium between true positive 

and false positive predictions. Cohen’s Kappa was used to 

assess inter-rater agreement beyond chance, providing a robust 

metric for evaluating the consistency of classifications across 

the High, Medium, and Low university performance 

categories. The confusion matrix provided insight into the 

types of errors that the model exhibited, such as incorrect 

predictions between high and low ranked universities. The use 

of a confusion matrix further enabled the identification of 

misclassification patterns between categories, enhancing 

interpretability. 

 

3.6 Analysis and comparison 

 

A critical phase in model evaluation involved analyzing and 

comparing the performance of two or more trained models. 

The primary objective was to assess the efficacy of each model 

according to specific evaluation metrics and to compare the 

results obtained between each model.  

This study aimed to develop and compare predictive models 

of university performance based on scientometric indicators, 

with the goal of identifying the most accurate and effective 

model for academic performance evaluation. Based on the 

analysis and comparison results, this research provides 

recommendations on the optimal model for predicting 

university performance. 

 

 

4. RESULTS AND DISCUSSION 

 

The following section presents the findings of a 

comparative experiment conducted between QML utilizing 

the QSVM model and classical ML employing the SVM 

model for predicting university performance. The analysis 

incorporates various scientometric indicators used to assess 

university performance, including the number of publications, 

citations, H-index, articles within journal quartiles, and 

citation impact factor (FWCI).  

Tables 3 and 4 illustrate the evaluation metrics for both 

models, including accuracy, precision, recall, F1-score, and 

processing time. The outcomes of university performance 

prediction are classified into three categories: High, Medium, 

and Low, determined by the accuracy achieved by each model. 

Each column in the tables offers comprehensive information 

that facilitates an efficacy comparison between the two 

methodologies in predicting university performance. 

 

Table 3. Sample data of QSVM model performance evaluation results 

 

University Publications Citations Quartile Articles (Q1, Q2, Q3, Q4) FWCI True Label 
Predicted 

Label 
Error Type 

A 15,000 300,000 8000, 3000, 1000, 2000 1.5 High High Correct 

B 5,000 70,000 1500, 500, 2000, 1000 1.1 Medium Medium Correct 

C 2,000 15,000 500, 300, 150, 1050 0.8 Medium Low False Negative 

D 18,000 500,000 10000, 5000, 3000, 5000 1.8 High High Correct 

E 8,000 120,000 6000, 2000, 1500, 1000 1.2 Medium Medium Correct 
 

Table 4. Sample data of SVM model performance evaluation results 

 

University Publications Citations Quartile Articles (Q1, Q2, Q3, Q4) FWCI True Label 
Predicted 

Label 
Error Type 

A 15,000 300,000 8000, 3000, 1000, 2000 1.5 High High Correct 

B 5,000 70,000 1500, 500, 2000, 1000 1.1 Medium High False Positive 

C 2,000 15,000 500, 300, 150, 1050 0.8 Medium Medium Correct 

D 18,000 500,000 10000, 5000, 3000, 5000 1.8 High High Correct 

E 8,000 120,000 6000, 2000, 1500, 1000 1.2 Medium Medium Correct 
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In this experiment, the QSVM model was implemented 

using the ZZFeatureMap provided by Qiskit, which transforms 

input features into quantum states through parameterized Z-

rotations and entangling controlled-Z (CZ) gates. This feature 

map projects classical data into a high-dimensional Hilbert 

space, enabling the quantum kernel to extract non-linear 

correlations that are often not linearly separable in classical 

spaces. The quantum kernel matrix was constructed based on 

fidelity measures between quantum states, providing a 

fundamentally different representation of data relationships. 

Although the simulation was conducted on the Qiskit Aer 

simulator, it provided a reliable approximation for evaluating 

the theoretical performance of QML models like QSVM in 

practical scenarios. 

Based on the comparative evaluation presented in Tables 3 

and 4, both the QSVM and classical SVM models achieved 

identical accuracy levels of 80% across the five sample 

universities. However, a closer inspection reveals notable 

qualitative differences in the type and implications of 

prediction errors produced by each model. 

The QSVM model correctly classified four out of five 

universities, with one misclassification observed in University 

C, where the true performance label was "Medium" but was 

incorrectly predicted as "Low." This type of error is 

categorized as a False Negative, indicating the model's 

conservative tendency in classifying borderline cases. Such 

conservatism may reflect QSVM's stronger sensitivity to 

underperforming scientometric indicators such as lower 

citation counts, reduced publication volume, and a modest 

FWCI of 0.8. Notably, universities with high publication 

output and strong citation metrics, such as Universities A and 

D, were accurately predicted as “High” performers, suggesting 

that QSVM effectively leverages complex data patterns to 

support correct classification. 

Conversely, the SVM model also correctly classified four 

out of five universities but committed a False Positive in the 

case of University B. Here, the model predicted "High" 

performance despite the true label being "Medium." This over-

classification likely results from the model’s emphasis on 

publication and citation counts, while underweighting more 

nuanced indicators like FWCI, which in this case was a 

moderate 1.1. Unlike QSVM, SVM appears more prone to 

optimistic bias, assigning higher performance levels in cases 

where high-volume metrics exist, even if qualitative impact 

indicators are not as strong. 

These findings indicate that, while QSVM and SVM exhibit 

comparable accuracy on a per-university basis, QSVM offers 

a more cautious and precise classification strategy, particularly 

in scenarios where data patterns are complex and subtle. This 

behavior aligns with the theoretical strengths of quantum 

computing, which enables better modeling of entangled 

features and non-linear data distributions. On the other hand, 

SVM provides a faster and computationally lighter alternative, 

albeit with a tendency to overpredict performance when faced 

with ambiguous inputs. 

In application contexts where minimizing false positives is 

critical, such as resource allocation or performance-based 

funding in higher education, the conservative nature of QSVM 

may offer strategic advantages. However, for exploratory or 

large-scale deployments constrained by processing time and 

hardware availability, the classical SVM remains a viable and 

effective choice. 

These distinctions reinforce the importance of aligning 

model selection not only with accuracy metrics but also with 

the nature of classification errors and their real-world 

consequences. Furthermore, future work should incorporate 

formal statistical tests—such as McNemar’s test or 

bootstrapped confidence intervals—to establish the robustness 

of these observed differences and ensure reliable interpretation 

in policy and academic decision-making. 

Figure 3 shows the comparative confusion matrices of 

QSVM and SVM models. 

 

 
 

Figure 3. Confusion matrices of QSVM and SVM models 

 

 

5. CONCLUSION 

 

This study presents a comparative evaluation between 

QSVM and classical SVM for predicting university 

performance based on scientometric indicators. While the 

QSVM model implemented via quantum simulation 

demonstrated modest improvements in accuracy and F1-score 

compared to its classical counterpart, these gains were offset 

by significantly higher latency and computational demands. It 

is important to emphasize that the current results are derived 

from a simulated environment (Qiskit Aer simulator) and do 

not reflect the constraints or potential benefits of actual 
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quantum hardware deployment. Given these limitations, the 

claims regarding QML’s superiority should be interpreted 

cautiously.  

Future research should address several directions to 

strengthen the applicability and robustness of QML in 

educational analytics:  

(1) development and evaluation of hybrid quantum-classical 

models that optimize both performance and resource 

efficiency;  

(2) implementation and benchmarking of QSVM on real 

quantum processors to assess hardware feasibility and 

reliability;   

(3) incorporation of explainability frameworks, such as 

SHAP or LIME adapted for quantum models, to identify the 

relative contribution of scientometric features, including 

FWCI, H-Index, and quartile distributions. 

Additionally, the study’s reliance on a relatively small and 

imbalanced dataset limits generalizability. Expanding the 

dataset, ensuring class balance, and validating models across 

different institutional contexts are essential steps toward 

building more generalizable and equitable quantum machine 

learning frameworks in the higher education domain. 
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NOMENCLATURE 

B dimensionless heat source length 

CP specific heat, J. kg-1. K-1 

g gravitational acceleration, m. s-2 

k thermal conductivity, W.m-1. K-1 

Nu local Nusselt number along the heat source 

Greek Symbols 

 thermal diffusivity, m2. s-1 

 thermal expansion coefficient, K-1 

 solid volume fraction 

Ɵ dimensionless temperature 

µ dynamic viscosity, kg. m-1. s-1 

Subscripts 

p nanoparticle 

f fluid (pure water) 

nf nanofluid 
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