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To balance food production and environmental health, sustainable agricultural methods 

are crucial. Corn (Zea mays L.) is one of the most important food crops widely 

cultivated in various countries, including Indonesia. As a primary food source and 

industrial raw material, corn plays a crucial role in the agricultural economy. However, 

the productivity of corn plants is often hindered by various diseases that attack the stems 

and leaves, such as Erwinia carotovora, Pythium, Stenocarpella, and Gibberella. These 

diseases can lead to a decline in crop quality and significant economic losses. Therefore, 

this study classifies corn stem diseases using a Convolutional Neural Network (CNN) 

with the 50-layer Residual Network (ResNet-50) architecture. The dataset consists of 

750 Red, Green, Blue (RGB) images divided into five categories: healthy corn and four 

categories of infected corn. The study was conducted both with and without data 

augmentation, and the classification performance was compared using different color 

spaces (RGB and Hue, Saturation, Value (HSV)). The results showed that the use of 

data augmentation significantly improved the model's accuracy. The highest accuracy 

achieved was 92.76% with augmented RGB images and 90.13% with HSV images. 
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1. INTRODUCTION

Corn (Zea mays L.) is one of the important food crops 

widely cultivated in various countries, including Indonesia [1, 

2]. As a primary food source and industrial raw material, corn 

plays a crucial role in the agricultural economy [3]. However, 

the productivity of corn plants is often hindered by various 

types of diseases that attack the stems and leaves [4], such as 

Erwinia carotovora, Pythium, Stenocarpella, and Gibberella. 

Reduced crop quality and substantial economic losses can 

result from these diseases. The diseases affecting corn stems 

can significantly impact crop yields because the stem plays an 

essential role in supporting plant growth and nutrient 

distribution, which sustains the plant structure and serves as 

the main pathway for transporting water, nutrients, and 

photosynthesis products from the leaves to other parts of the 

plant, including the cobs and seeds [5]. When the stem is 

infected by pathogens, its function as a support and nutrient 

transporter is disrupted, which can cause various serious 

problems. For example, Gibberella is one of the pathogens that 

causes stem rot in corn. This disease usually starts with rot at 

the base of the stem, which then spreads throughout the stem, 

making it weak and prone to breaking. Severe infections can 

lead to reduced yields. Therefore, an effective and efficient 

system is needed to detect and classify these diseases early, so 

that proper handling can be carried out immediately [6]. 

With advancements in digital technology and artificial 

intelligence, Convolutional Neural Network (CNN) based 

pattern recognition methods have become widely used for 

diverse image classification tasks, including applications in 

agriculture. Network architectures like ResNet50 enable high-

accuracy classification through their ability to learn from 

complex features in plant disease images. This method is 

expected to provide a solution for detecting corn stem diseases 

more quickly and accurately compared to conventional 

methods based on manual visual observation.  

CNNs are a type of artificial neural network architecture 

specifically designed to handle grid-like data, such as images 

[7]. CNN consists of several convolutional layers that extract 

essential features from input images. ResNet50, as a variant of 

CNN, it is recognized for its ability to address the vanishing 

gradient problem, a common issue in deep networks [8]. Using 

the concept of skip connections, ResNet50 can perform more 

stable learning even with many layers, making it very suitable 

for complex image classification tasks, such as identifying 

plant diseases. 

There have been several previous studies that have shown 

the effectiveness of CNN-ResNet50 in image classification, 

such as research on colorectal cancer classification using 

residual network 50 and 18 architectures [9]. The results 
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obtained showed that the approach using 50-layer Residual 

Network (ResNet-50) provided better accuracy, reaching 88% 

with a data split of 80 for training data and 20 for testing data. 

Moreover, a study in 2023 compared the performance of 

VGG-16 and ResNet50 models [10]. The results showed that 

the ResNet50 architecture was superior in classifying complex 

problems in the study. Based on previous research results, 

using CNN architecture has proven effective in recognizing 

complex patterns that cannot be manually detected by humans. 

ResNet50 was chosen in this study due to its ability to maintain 

accuracy even in deeper networks. 

This study used two approaches to test the effectiveness of 

the proposed method, namely with and without data 

augmentation, on two image formats, Red, Green, Blue (RGB), 

Hue, Saturation, Value (HSV). Using these two-color spaces 

provides opportunities to leverage the advantages of each. 

Sometimes, the model can perform better in one color space 

than another, depending on the characteristics of the disease 

being detected. By testing and comparing the results from both 

color spaces, researchers can determine the most optimal 

approach for classifying corn stem diseases.  

As a whole, using data augmentation and exploring various 

color spaces allows the model to be more flexible and accurate 

in tackling pattern recognition challenges in corn stem disease 

images, improving detection performance and facilitating 

faster treatment in the field. This research is expected to 

provide clear guidance on the effectiveness and efficiency of 

the CNN-ResNet50 method in classifying corn stem diseases 

and contribute to developing plant disease classification 

systems in the future.  

 

 

2. MATERIALS AND METHODS 

 

This study focused on developing a corn stem disease 

classification model using the CNN ResNet-50 architecture. 

The main goal of this research was to create a model that can 

accurately identify and classify five types of corn stem 

conditions: healthy corn, and diseases caused by Erwinia 

carotovora, Pythium, Stenocarpella, and Gibberella. 

Classification is one of the main techniques in data mining. 

Data mining is the process of extracting useful information or 

knowledge from large and complex datasets [11]. This 

technique involves analyzing and discovering hidden patterns 

in the data, which can be used to make decisions or develop 

predictive models. Data mining encompasses various 

techniques, such as classification, clustering, regression, and 

association, all designed to uncover valuable insights from 

data [12]. Classification itself is a technique in machine 

learning aimed at grouping data into predefined categories 

based on certain features [13]. In this context, classification 

models learn from labeled training data to recognize patterns 

or characteristics that distinguish one category from another, 

enabling them to predict the category of new, unseen data. 

 

2.1 Color space  

 

Color space is a system for representing color in numerical 

format that allows computers to process and display digital 

images [14]. Color space defines how colors are represented 

through combinations of different color channels, facilitating 

visual analysis and image processing. In the field of image 

processing, selecting the right color space is crucial because it 

can affect how well the visual features of an image can be 

identified and processed by algorithms [15]. Common color 

spaces include RGB, HSV, YCbCr, and LAB, each with 

specific advantages and characteristics. In this research, two 

types of color spaces are used, namely RGB and HSV, to 

explore the model's effectiveness in detecting corn stem 

diseases. The selection of these two-color spaces is based on 

their ability to capture different visual features, with RGB 

working with basic color intensities, while HSV emphasizes 

hue, saturation, and brightness which is more similar to human 

perception. 

 

A. RGB 

The RGB color space is one of the most common and widely 

used color models in digital image processing [16]. In this 

model, each color is represented as a combination of three 

primary colors: red (R), green (G), and blue (B) [17]. The 

value of each color channel typically ranges from 0 to 255 in 

8-bit representation, enabling more than 16 million different 

color combinations. The combination of intensities from these 

three channels produces various color spectrums visible on 

monitor screens, televisions, digital cameras, and other visual 

devices. 

The color formation process in RGB color space follows the 

additive color model principle, where the primary colors (red, 

green, and blue) are added at various intensities to produce the 

final color. For example, when all three channels are given 

maximum values (255, 255, 255), the result is white, while if 

all values are zero (0, 0, 0), the result is black [18]. Other value 

combinations will produce different spectrum colors such as 

purple, brown, yellow, and others. 

The advantage of RGB color space lies in its ease of digital 

image processing, as sensors in cameras and other digital 

devices also capture images in this format. Additionally, many 

image processing algorithms, such as edge detection, color 

segmentation, and pattern recognition, use RGB as standard 

input due to its simplicity in managing color based on intensity. 

However, one weakness of RGB is its dependence on lighting 

conditions, which can affect color recognition performance in 

different environments [19]. This makes RGB less effective 

when variations in light intensity or shadows affect the image, 

leading to other color spaces like HSV being often chosen for 

such situations. 

In this research, the use of RGB color space enables the 

model to learn from differences in primary color intensities in 

detecting disease symptoms in corn stems. Images are 

processed in RGB format, where color changes in disease-

infected stems can be recognized by the model based on 

intensity variations in each color channel. 

 

B. HSV 

The HSV color space is designed to more closely match 

human color perception compared to the RGB color space. 

HSV separates color information (hue), intensity (value), and 

clarity (saturation), enabling easier analysis under various 

lighting conditions [20]. In this color space, each color is 

represented by three main components: Hue (H), which 

describes the tone or type of basic color such as red, green, 

blue, and others; Saturation (S), which indicates how pure or 

saturated the color is; and Value (V), which represents the 

brightness level of the color [21]. 

Calculations in HSV involve transforming RGB values into 

cylindrical coordinates. Hue is measured in degrees from 0° to 

360°, where 0° represents red, 120° green, and 240° blue, with 

intermediate values producing mixed colors. Saturation ranges 
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from 0% (no saturation, resulting in grayscale) to 100% (full 

color without white mixing). Value or brightness is also 

measured in percentages, with 0% being total black and 100% 

being the brightest color [22]. 

The main advantage of HSV color space is its ability to 

isolate color hue from lighting and saturation, allowing color 

differences to be recognized even when images are taken 

under varying lighting conditions [23]. This is particularly 

useful in image processing tasks such as color segmentation, 

object detection, and image analysis in real-world 

environments, where light changes can affect image 

appearance. For example, in plant recognition, HSV allows the 

model to more easily detect color changes caused by disease 

without being overly affected by shadows or uneven lighting. 

Therefore, in this research, HSV color space is used as an 

alternative to RGB to test the model's ability to identify corn 

stem diseases. By separating hue from lighting, HSV enables 

more stable detection of color changes in infected areas, which 

might be more difficult to detect in RGB color space. Thus, 

the model can be more adaptive to lighting variations while 

remaining accurate in detecting early signs of disease in corn 

stems. 

 

2.2 Data augmentation  

 

Data augmentation is a method in machine learning and deep 

learning employed to increase the size and diversity of training 

datasets by modifying existing data. In the context of image 

processing, data augmentation generates new images are 

generated by applying different transformations to the original 

images, such as cropping, horizontal or vertical flips, scaling, 

rotation, contrast and brightness adjustments, and noise 

addition [24]. The main purpose of data augmentation is to 

introduce new variations into the training data so that the 

model can learn from more examples without needing to 

collect large additional datasets. 

Augmentation techniques are particularly important when 

the original dataset size is limited, as deep learning models like 

CNN tend to require large amounts of data to effectively 

recognize complex patterns. If the training dataset is too small 

or lacks variation, the model can experience overfitting, where 

it learns too specifically from the training data and is unable to 

generalize to new data. Data augmentation helps address this 

issue by providing various examples of variations, making the 

model more accurate and having better generalization 

capabilities. 

Several commonly used data augmentation methods include 

[25]: 

a) Rotation and Flip: Changing image orientation by rotating 

or flipping to create new variations. This helps the model learn 

to recognize objects from various angles and orientations. 

b) Scaling and Cropping: Modifying image size or cropping 

certain parts of the image to introduce variations in scale. This 

technique helps the model learn to recognize objects despite 

varying sizes. 

c) Contrast and Brightness Adjustment: Altering image light 

intensity or contrast to simulate different lighting conditions. 

This is useful so that the model doesn't become too dependent 

on specific lighting conditions when recognizing objects. 

In this research, data augmentation is used to expand the 

variation of the collected corn stem image dataset. The 

augmentation techniques applied include rotation, flip, and 

brightness adjustment to ensure the model can recognize 

patterns from various angles and lighting conditions. Thus, the 

developed ResNet-50 model will be more robust and accurate 

in classifying types of corn stem diseases under different 

conditions. These augmentation techniques not only help 

improve model accuracy but also reduce the risk of overfitting, 

resulting in better model performance when applied to new 

data or real data in the field. 

 

2.3 ResNet-50 

 

ResNet-50 architecture is a CNN model consisting of 50 

layers with a residual mechanism. This approach was 

introduced to address the degradation problem that commonly 

occurs in very deep networks, where accuracy tends to 

decrease as the number of layers increases. ResNet50 uses the 

concept of skip connections in other words also called as 

shortcut connections that allow signals to bypass one or more 

layers, it is making easier for the network to learn more 

complex features without experiencing the vanishing gradient 

problem [8]. 

ResNet50 uses residual blocks that allow the network to 

learn the identity function from previous layers. These blocks 

consist of two or three layers with direct connections known 

as skip connections or shortcuts. The main concept of residual 

blocks is to simplify the network's learning of the differences 

(residuals) between the input and output, rather than learning 

the complete transformation function. In general, the 

ResNet50 architecture consists of the following parts [26]: 

a. 1 initial convolutional layer (7 × 7 kernel) 

b. 4 main residual blocks, each having a different number of 

layers 

c. Global average pooling layer at the end 

d. Fully connected layer as output 

The ResNet-50 architecture is shown in the Table 1. 

 

Table 1. ResNet-50 architecture 

 
Layers Output Size ResNet-50 

Con 1 112 × 112 7 × 7 conv, stride 2 

Con 2_x 56 × 56 

3 × 3 max pool, stride 2 

[
1 × 1.64
3 × 3.64
1 × 1.256

] × 3  

Con 3_x 28 × 28 [
1 × 1.128
3 × 3.128
1 × 1.512

] × 4  

Con 4_x 14 × 14 [
1 × 1.256
3 × 3.256
1 × 1.1024

] × 6  

Con 5_x 7 × 7 [
1 × 1.512
3 × 3.512
1 × 1.2048

] × 3  

 1 × 1 
Average pool, 1000-d fc, 

Softmax 

FLOPs 3.8 × 109 

 

In this research, the ResNet-50 architecture was used to 

classify corn stem diseases from RGB and HSV images. This 

model was chosen due to its proven capabilities in various 

image classification tasks, including object recognition and 

plant disease detection. The basic ResNet-50 architecture 

consists of several residual blocks containing convolution 

layers, ReLU activation, and batch normalization. These 

residual blocks are equipped with shortcut paths that connect 

input directly to output, thus accelerating convergence and 

improving model performance during training. 
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2.4 Confusion matrix 

 

In this research, a confusion matrix was used to assess the 

performance of the ResNet-50 model in classifying corn stem 

diseases. A confusion matrix is an evaluation tool used to 

measure the effectiveness of classification models by 

providing detailed insights about model predictions compared 

to actual values [27, 28]. 

This matrix will help identify how well the model 

recognizes each different category and examine if certain 

categories are frequently misclassified by the model. Thus, the 

results from the confusion matrix can be used for further 

analysis in optimizing the model or identifying specific 

weaknesses that need improvement, such as adding more 

training data for less accurate classes or using more 

appropriate augmentation techniques. 

 

 
 

Figure 1. Confusion matrix 

 

Figure 1 illustrates the use of a confusion matrix for 

evaluating model performance. The matrix includes four key 

elements: True Positive (TP), False Positive (FP), True 

Negative (TN), and False Negative (FN), arranged in a matrix 

format. In multi-class classification, the confusion matrix can 

be extended to assess the model’s accuracy in classifying each 

class separately. Below are explanations of these four 

components. 

◆ The first metric is the true positive rate (TP), which is 

the percentage of times the model gets the sample 

labels right. For example, the model predicts 'disease 

A' and the original label is also 'disease A'. 

◆ The number of cases where the model correctly 

identifies that a sample is not part of the target class is 

the definition of the true negative rate. For example, 

the model predicts 'not disease A' and the original label 

is also 'not disease A'. 

◆ The false positive rate is the number of cases where 

the model incorrectly classifies samples as the target 

class when they should not be. 

◆ The false negative rate is the number of cases where 

the model fails to identify samples as the target class 

when they should be. 

We can compute a number of model performance 

evaluation metrics, that include recall, accuracy, precision, and 

F1-score, using data from the confusion matrix [29]. Here are 

the equations: 

⚫ Accuracy 

 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
  (1) 

⚫ Precision  

 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑇𝑃

𝑇𝑃+𝐹𝑃
×  100%  (2) 

 

⚫ Recall  

 

𝑅𝑒𝑐𝑎𝑙𝑙 =  
𝑇𝑁

𝑇𝑁+𝐹𝑁
×  100%  (3) 

 

⚫ F1 Score 

 

𝐹 − 𝑚𝑒𝑎𝑠𝑢𝑟𝑒 = 2 ×  
𝑅𝑒𝑐𝑎𝑙𝑙 × 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛

𝑅𝑒𝑐𝑎𝑙𝑙+𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛
×  100%  (4) 

 

 

3. MAIN RESULTS 

 

3.1 Data gathering 

 

Dataset collection is a crucial first step in developing a corn 

stem disease classification model using ResNet-50. In this 

research, the dataset consists of corn stem images covering 

five categories: healthy corn and four types of diseases, 

namely Erwinia carotovora, Pythium, Stenocarpella, and 

Gibberella. Each disease category has different visual 

characteristics, such as color changes, spots, or rotting areas 

on the stem, which serve as important indicators in 

classification. Table 2 shows detailed information about the 

dataset used in this research. 

 
Table 2. Dataset 

 
No. Class Real Augmentation 

1 Healthy 90 220 

2 Erwina carotovora 102 220 

3 Pythium 131 220 

4 Stenocarpella 210 220 

5 Gibberella 217 220 

Total 750 1100 

 

 

 

Figure 2. Citra input RGB 

 

 
 

Figure 3. Citra input RGB 
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Each image was taken under varying natural lighting 

conditions to reflect actual field situations, ensuring the model 

can recognize disease patterns despite changes in light 

intensity. Therefore, this research uses datasets with different 

color spaces, namely RGB as shown in Figure 2 and HSV as 

shown in Figure 3. 

 

3.2 Analysis 

 

This subsection explains the research process flow, which 

is divided into three main components: the input process, the 

classification process, and the output process. The input 

process involves the collection and preparation of a corn image 

dataset, including images of healthy corn and those infected 

with various types of diseases. These images are processed and 

prepared using augmentation techniques to enhance data 

variability, and they are transformed into two different color 

spaces, namely RGB and HSV, to explore the effectiveness of 

detection across different color representations. As a 

continuation, in the classification process, the CNN-ResNet50 

model is developed and trained using the prepared dataset. 

Finally, the output process displays the model's classification 

results, where performance is evaluated using metrics such as 

accuracy, precision, recall, and F1-score. For clarity, the IPO 

diagram is shown in Figure 4. 

 

 
 

Figure 4. IPO diagram 

 

Referring to the illustration presented in Figure 4, this 

classification system is constructed with three main 

components: the input stage, the main stage, and the output 

stage. Below is an explanation detail of each of the three 

components in these phases. 

i. Input Process 

The process begins with the collection of corn images in two 

color spaces: RGB and HSV. The total dataset for each of these 

consists of 750 records with 5 target classes. 

ii. Preprocessing Data 

The collected images are then processed to standardize the 

image quality. This preprocessing step includes resizing the 

images, normalizing the colors, and enhancing the image 

quality to meet the model's input requirements. 

iii. Splitting Data 

The collected images are then processed to standardize the 

image quality. This preprocessing step includes resizing the 

images, normalizing the colors, and enhancing the image 

quality to meet the model's input requirements. The processed 

dataset will be divided into two main parts: 80% for training 

data and 20% for testing data. This division is made to ensure 

that the model can learn from the majority of the available data, 

while the remaining portion is used to test the model's ability 

to recognize patterns in new, unseen data. 

iv. Augmentation 

To enhance the variation in the training data and avoid 

overfitting, augmentation techniques are applied. 

Augmentation includes modifications to the images such as 

rotation, flipping, brightness adjustment, and others, which 

create more variation from the original dataset. 

v. Classification 

After augmentation, the obtained data is used to train the 

classification model using the CNN-ResNet50 architecture. 

This model is capable of recognizing visual patterns and 

classifying images based on the diseases present on the corn 

stalks. 

vi. Output 

The model produces outputs in the form of predicted classes 

of diseases present on the corn stalks. This output can assist 

farmers or relevant parties in taking immediate action against 

the detected diseases. The model’s prediction results are 

evaluated using metrics like f1-score, recall, accuracy, and 

precision. This evaluation offers insights into the model’s 

effectiveness and reliability in detecting corn diseases and 

highlights areas that require further improvement. 

 

 

4. DISCUSSION 
 

In this study, a CNN model with the ResNet50 architecture 

was used to classify corn stalk diseases based on images 

processed in two main scenarios: without augmentation and 

with data augmentation. The parameters applied in training the 

model include an input image size of 224 × 224 pixels, a batch 

size of 8, and a total of 10 epochs. The optimizer used is Adam 

with a learning rate of 0.001, aimed at accelerating 

convergence during the training process. The available image 

data is split with 80% allocated for training and 20% for testing 

data. In order to make the model better at identifying various 

disease patterns, data is also added to the training dataset to 

increase image variability. The classification results using the 

proposed method are displayed in the Table 3. 

 

Table 3. Result of classification using ResNet-50 

 
Testing Scenario Accuracy Precision Recall F1-Score Running Time 

RGB 
Without 80.00% 80.78% 80.30% 80.54% 2410.38 s 

With Augmentation 97.76% 91.91% 92.43% 92.17% 5752.3 s 

HSV 
Without 86.67% 83.54% 87.05% 85.26% 2565.45 s 

With Augmentation 90.13% 87.81% 87.81% 87.81% 5302.75 s 
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Table 3 shows that the results indicate that data 

augmentation significantly improves model performance 

across both RGB and HSV color spaces. In the RGB color 

space, accuracy improved from 80.00% to 97.76% after 

augmentation, with corresponding increases in precision, 

recall, and F1-score. However, this improvement comes at the 

cost of increased running time, from 2410.38 seconds to 

5752.3 seconds seen in Figure 5 and Figure 6. 

On the other hand, in the HSV color space, accuracy also 

increased—from 86.67% to 90.13% with augmentation. The 

F1-score improved from 85.26% to 87.81%, showing more 

consistent gains across all metrics compared to the 

unaugmented version, although with increased computation 

time as well, from 2565.45 seconds to 5302.75 seconds seen 

in Figure 7 and Figure 8. 

Overall, RGB with augmentation achieved the highest 

accuracy (97.76%), but HSV without augmentation already 

outperformed RGB without augmentation. This suggests that 

HSV may inherently provide better feature separation, while 

augmentation further enhances performance by providing 

more diverse training data. 

 

 
 

Figure 5. Confusion matrix for augmentation RGB 

 

 
 

Figure 6. Training and validation for augmentation RGB 

 
 

Figure 7. Confusion matrix for augmentation RGB 

 

 
 

Figure 8. Training and validation for augmentation RGB 

 

The results of the testing indicate that data augmentation has 

a significant impact on enhancing the model's performance 

when utilizing RGB images. In the absence of augmentation, 

the model achieved an accuracy of 80.00%, with precision at 

80.78%, recall at 80.30%, and an F1-score of 80.54%. 

Following the implementation of data augmentation, the 

accuracy drastically increased to 92.76%, accompanied by 

corresponding improvements in precision (91.91%), recall 

(92.43%), and F1-score (92.17%).  

These findings suggest that data augmentation facilitates the 

model's ability to learn more effectively from the variations in 

features present within the dataset, thereby enhancing its 

capability to recognize distinct patterns in images of healthy 

and diseased corn stalks. However, it is noteworthy that the 

training duration increased to 5752.3 seconds due to the model 

processing a larger volume of data during the learning phase. 

Additionally, the table shows a comparison of performance 

between the models trained using images in RGB format and 

HSV format. In the scenario without augmentation, the model 

using HSV images demonstrated better performance 

compared to RGB, with an accuracy of 86.67% compared to 
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80.00% for RGB. The precision value was 83.54%, recall was 

87.05%, and F1-score was 85.26%, all of which were higher 

for HSV. This suggests that the model is more effective at 

recognizing disease patterns when using images in the HSV 

color format. This may be due to the different ways colors are 

represented in the HSV format, allowing the model to focus 

more on variations in hue, saturation, and value, which enables 

better separation between areas infected by pathogens and 

healthy areas. 

However, in the application of augmentation, images in the 

RGB color space perform better in classifying the dataset 

compared to those in the HSV space. Therefore, both data 

augmentation techniques and the selection of appropriate color 

representations are crucial for improving the performance of 

deep learning models. 

 

 

5. CONCLUSIONS 

 

The results of the research indicate that data augmentation 

significantly enhances classification performance. For RGB 

images without augmentation, the accuracy reached 80.00%, 

whereas with augmentation, the accuracy increased to 92.76%. 

The use of HSV images also demonstrates favorable results, 

with an accuracy of 86.67% without augmentation and 90.13% 

with augmentation. The estimation of training time indicates 

that data augmentation requires more time compared to 

scenarios without augmentation; however, it produces more 

accurate and reliable results. The analysis results show that 

RGB images with augmentation provide the best performance 

in classifying corn stalk diseases. 

 

 

ACKNOWLEDGMENT 

 

We express our gratitude to the University of Trunojoyo 

Madura for providing guidance for this research endeavor. We 

express our gratitude to INTI University Malaysia and Institut 

Teknologi Adhi Tama Surabaya, and University of Airlangga, 

for their support of this research endeavor. 

 

 

REFERENCES  

 

[1] Rachmad, A., Fuad, M., Rochman, E.M.S. (2023). 

Convolutional neural network-based classification 

model of corn leaf disease. Mathematical Modelling of 

Engineering Problems, 10(2): 530-536. 

https://doi.org/10.18280/mmep.100220  

[2] Viana, C.M., Freire, D., Abrantes, P., Rocha, J., Pereira, 

P. (2022). Agricultural land systems importance for 

supporting food security and sustainable development 

goals: A systematic review. Science of the Total 

Environment, 806: 150718. 

https://doi.org/10.1016/j.scitotenv.2021.150718 

[3] Grote, U., Fasse, A., Nguyen, T.T., Erenstein, O. (2021). 

Food security and the dynamics of wheat and maize value 

chains in Africa and Asia. Frontiers in Sustainable Food 

Systems, 4: 617009. 

https://doi.org/10.3389/fsufs.2020.617009 

[4] Xue, Z.P., Liu, Q.Y., Emmanuel, P., Qin, J.W., Liu, D.J., 

Gao, W., Gong, Y.J., Bai, X.W. (2017). Analysis on the 

effects of pre-heating temperature on mechanical 

properties of pellets made from corn stalk powder. 

International Journal of Heat and Technology, 35(2): 

421-425. https://doi.org/10.18280/ijht.350227 

[5] Sumpala, A.T., Rasyid, R. (2019). Expert system for corn 

plant disease diagnosis with the breadth-first search 

method. IOP Conference Series: Earth and 

Environmental Science, 382: 012001. 

https://doi.org/10.1088/1755-1315/382/1/012001 

[6] Rajeena P.P., F., S.U., A., Moustafa, M.A., Ali, M.A.S. 

(2023). Detecting plant disease in corn leaf using 

EfficientNet architecture—An analytical approach. 

Electronics, 12(8): 1938. 

https://doi.org/10.3390/electronics12081938  

[7] Yamashita, R., Nishio, M., Do, R.K.G., Togashi, K. 

(2018). Convolutional neural networks: An overview and 

application in radiology. Insight into Imaging, 9: 611-

629. https://doi.org/10.1007/s13244-018-0639-9 

[8] Rachmad, A., Sonata, F., Hutagalung, J., Hapsari, D., 

Fuad, M., Rochman, E.M.S. (2023). An automated 

system for osteoarthritis severity scoring using residual 

neural networks. Mathematical Modelling of 

Engineering Problems, 10(5): 1849-1856. 

https://doi.org/10.18280/mmep.100538 

[9] Sainda, D., Pradisa, R.H., Bustamam, A., Anggia, P. 

(2021). Deep learning in image classification using 

residual network (ResNet) variants for detection of 

colorectal cancer. Procedia Computer Science, 179: 432-

431. https://doi.org/10.1016/j.procs.2021.01.025 

[10] Tey, H.C., Chong, L.Y., Chong, S.C. (2023). 

Comparative analysis of VGG-16 and ResNet-50 for 

occluded ear recognition. International Journal on 

Informatics Visualization, 7(4): 2247-2257. 

https://doi.org/10.62527/joiv.7.4.2276 

[11] Rajab Asaad, R., Masoud Abdulhakim, R. (2021). The 

concept of data mining and knowledge extraction 

techniques. Qubahan Academic Journal, 1(2): 17-20. 

https://doi.org/10.48161/qaj.v1n2a43 

[12] Alasadi, S.A., Bhaya, W.S. (2017). Review of data 

preprocessing techniques in data mining. Journal of 

Engineering and Applied Sciences, 12(16): 4102-4107. 

[13] Ali, A.R.B., Mahani, A. (2020). Classification problem 

in imbalanced datasets. Recent Trends in Computational 

Intelligence, IntechOpen. 

https://doi.org/10.5772/intechopen.89603 

[14] Gowda, S.N., Yuan, C. (2019). ColorNet: Investigating 

the importance of color spaces for image classification. 

In Computer Vision – ACCV 2018. ACCV 2018. Lecture 

Notes in Computer Science, Springer, Cham. 

https://doi.org/10.1007/978-3-030-20870-7_36 

[15] Gateri, J., Rimiru, R., Kimwele, M. (2023). COLORNET: 

Importance of color spaces in content based image 

retrieval. International Journal of Computer Science and 

Network Security, 23(5): 33-41. 

[16] Shishmanova, S., Rinaldi, A. (2018). RGB color wheel 

intended to create color harmony compositions in 

modern art and design. International Journal of Science 

and Engineering, 4(4): 45-57. 

https://doi.org/10.53555/eijse.v4i4.163 

[17] Mary, G.G., Rani, M.M.S. (2016). A study on secret 

image hiding in diverse color spaces. International 

Journal of Advanced Research in Computer and 

Communication Engineering, 5(5): 779-783. 

https://doi.org/10.17148/IJARCCE.2016.55191 

[18] EL-Azazy, A.M. (2018). Inspect the potential of using 

leaf image analysis procedure in estimating nitrogen 

3125



 

status in citrus leaves. Middle East Journal of Agriculture 

Research, 7(3): 1059-1071.  

[19] Mamadou, D., Ayikpa, K.J., Ballo, A.B., Kouassi, B.M. 

(2023). Analysis of the impact of color spaces on skin 

cancer diagnosis using deep learning techniques. Revue 

d'Intelligence Artificielle, 37(6): 1377-1385. 

https://doi.org/10.18280/ria.370601 

[20] Chernov, V., Alander, J. Bochko, V. (2015). Integer-

based accurate conversion between RGB and HSV color 

spaces. Computers & Electrical Engineering, 46: 328-

337. https://doi.org/10.1016/j.compeleceng.2015.08.005 

[21] Kurniaastuti, I., Yuliati, E.N.I., Yudianto, F., Wulan, T.D. 

(2022). Determination of Hue Saturation Value (HSV) 

color feature in kidney histology image. Journal of 

Physics: Conference Series, 2157: 012020. 

https://doi.org/10.1088/1742-6596/2157/1/012020 

[22] Islami, F. (2021). Implementation of HSV-based 

thresholding method for iris detection. Journal of 

Computer Networks, Architecture and High Performance 

Computing, 3(1): 97-104. 

https://doi.org/10.47709/cnahpc.v3i1.939 

[23] Kartika, D.S.Y., Herumurti, D., Yuniarti, A. (2018). 

Butterfly image classification using color quantization 

method on HSV color space and local binary pattern. 

IPTEK Journal of Proceedings Series, (1): 78-82. 

[24] Oza, P., Sharma, P., Patel, S., Adedoyin, F., Bruno, A. 

(2022). Image augmentation techniques for mammogram 

analysis. Journal of Imaging, 8(5): 141. 

https://doi.org/10.3390/jimaging8050141 

[25] Alomar, K., Aysel, H.I., Cai, X. (2023). Data 

augmentation in classification and segmentation: A 

survey and new strategies. Journal of Imaging, 9(2): 46. 

https://doi.org/10.3390/jimaging9020046 

[26] He, K., Zhang, X., Ren, S., Sun, J. (2016). Deep residual 

learning for image recognition. In 2016 IEEE Conference 

on Computer Vision and Pattern Recognition (CVPR), 

Las Vegas, NV, USA, pp. 770-778. 

https://doi.org/10.1109/CVPR.2016.90 

[27] Rachmad, A., Husni, Hutagalung, J., Hapsari, D., 

Hernawati, S., Syarief, M., Rochman, E.M.S., Asmara, 

Y.P. (2024). Deep learning optimization of the 

EfficienNet architecture for classification of tuberculosis 

bacteria. Mathematical Modelling of Engineering 

Problems, 11(10): 2664-2670. 

https://doi.org/10.18280/mmep.111008 

[28] Mehdiyev, N., Enke, D., Fettke, P., Loos, P. (2016). 

Evaluating forecasting methods by considering different 

accuracy measures. Procedia Computer Science, 95: 264-

271. https://doi.org/10.1016/j.procs.2016.09.332 

[29] Leow, J.R., Khoh, W.H., Pang, Y.H., Yap, H.Y. (2023). 

Breast cancer classification with histopathological image 

based on machine learning. International Journal of 

Electrical & Computer Engineering, 13(5): 5885-5897. 

https://doi.org/10.11591/ijece.v13i5.pp5885-5897 

 

 

3126




