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To balance food production and environmental health, sustainable agricultural methods
are crucial. Corn (Zea mays L.) is one of the most important food crops widely
cultivated in various countries, including Indonesia. As a primary food source and
industrial raw material, corn plays a crucial role in the agricultural economy. However,
the productivity of corn plants is often hindered by various diseases that attack the stems
and leaves, such as Erwinia carotovora, Pythium, Stenocarpella, and Gibberella. These
diseases can lead to a decline in crop quality and significant economic losses. Therefore,
this study classifies corn stem diseases using a Convolutional Neural Network (CNN)
with the 50-layer Residual Network (ResNet-50) architecture. The dataset consists of
750 Red, Green, Blue (RGB) images divided into five categories: healthy corn and four
categories of infected corn. The study was conducted both with and without data
augmentation, and the classification performance was compared using different color
spaces (RGB and Hue, Saturation, Value (HSV)). The results showed that the use of
data augmentation significantly improved the model's accuracy. The highest accuracy

achieved was 92.76% with augmented RGB images and 90.13% with HSV images.

1. INTRODUCTION

Corn (Zea mays L.) is one of the important food crops
widely cultivated in various countries, including Indonesia [1,
2]. As a primary food source and industrial raw material, corn
plays a crucial role in the agricultural economy [3]. However,
the productivity of corn plants is often hindered by various
types of diseases that attack the stems and leaves [4], such as
Erwinia carotovora, Pythium, Stenocarpella, and Gibberella.

Reduced crop quality and substantial economic losses can
result from these diseases. The diseases affecting corn stems
can significantly impact crop yields because the stem plays an
essential role in supporting plant growth and nutrient
distribution, which sustains the plant structure and serves as
the main pathway for transporting water, nutrients, and
photosynthesis products from the leaves to other parts of the
plant, including the cobs and seeds [5]. When the stem is
infected by pathogens, its function as a support and nutrient
transporter is disrupted, which can cause various serious
problems. For example, Gibberella is one of the pathogens that
causes stem rot in corn. This disease usually starts with rot at
the base of the stem, which then spreads throughout the stem,
making it weak and prone to breaking. Severe infections can
lead to reduced yields. Therefore, an effective and efficient
system is needed to detect and classify these diseases early, so
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that proper handling can be carried out immediately [6].

With advancements in digital technology and artificial
intelligence, Convolutional Neural Network (CNN) based
pattern recognition methods have become widely used for
diverse image classification tasks, including applications in
agriculture. Network architectures like ResNet50 enable high-
accuracy classification through their ability to learn from
complex features in plant disease images. This method is
expected to provide a solution for detecting corn stem diseases
more quickly and accurately compared to conventional
methods based on manual visual observation.

CNNs are a type of artificial neural network architecture
specifically designed to handle grid-like data, such as images
[7]. CNN consists of several convolutional layers that extract
essential features from input images. ResNet50, as a variant of
CNN, it is recognized for its ability to address the vanishing
gradient problem, a common issue in deep networks [8]. Using
the concept of skip connections, ResNet50 can perform more
stable learning even with many layers, making it very suitable
for complex image classification tasks, such as identifying
plant diseases.

There have been several previous studies that have shown
the effectiveness of CNN-ResNet50 in image classification,
such as research on colorectal cancer classification using
residual network 50 and 18 architectures [9]. The results
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obtained showed that the approach using 50-layer Residual
Network (ResNet-50) provided better accuracy, reaching 88%
with a data split of 80 for training data and 20 for testing data.
Moreover, a study in 2023 compared the performance of
VGG-16 and ResNet50 models [10]. The results showed that
the ResNet50 architecture was superior in classifying complex
problems in the study. Based on previous research results,
using CNN architecture has proven effective in recognizing
complex patterns that cannot be manually detected by humans.
ResNet50 was chosen in this study due to its ability to maintain
accuracy even in deeper networks.

This study used two approaches to test the effectiveness of
the proposed method, namely with and without data
augmentation, on two image formats, Red, Green, Blue (RGB),
Hue, Saturation, Value (HSV). Using these two-color spaces
provides opportunities to leverage the advantages of each.
Sometimes, the model can perform better in one color space
than another, depending on the characteristics of the disease
being detected. By testing and comparing the results from both
color spaces, researchers can determine the most optimal
approach for classifying corn stem diseases.

As a whole, using data augmentation and exploring various
color spaces allows the model to be more flexible and accurate
in tackling pattern recognition challenges in corn stem disease
images, improving detection performance and facilitating
faster treatment in the field. This research is expected to
provide clear guidance on the effectiveness and efficiency of
the CNN-ResNet50 method in classifying corn stem diseases
and contribute to developing plant disease classification
systems in the future.

2. MATERIALS AND METHODS

This study focused on developing a corn stem disease
classification model using the CNN ResNet-50 architecture.
The main goal of this research was to create a model that can
accurately identify and classify five types of corn stem
conditions: healthy corn, and diseases caused by Erwinia
carotovora, Pythium, Stenocarpella, and Gibberella.

Classification is one of the main techniques in data mining.
Data mining is the process of extracting useful information or
knowledge from large and complex datasets [11]. This
technique involves analyzing and discovering hidden patterns
in the data, which can be used to make decisions or develop
predictive models. Data mining encompasses various
techniques, such as classification, clustering, regression, and
association, all designed to uncover valuable insights from
data [12]. Classification itself is a technique in machine
learning aimed at grouping data into predefined categories
based on certain features [13]. In this context, classification
models learn from labeled training data to recognize patterns
or characteristics that distinguish one category from another,
enabling them to predict the category of new, unseen data.

2.1 Color space

Color space is a system for representing color in numerical
format that allows computers to process and display digital
images [14]. Color space defines how colors are represented
through combinations of different color channels, facilitating
visual analysis and image processing. In the field of image
processing, selecting the right color space is crucial because it
can affect how well the visual features of an image can be

3120

identified and processed by algorithms [15]. Common color
spaces include RGB, HSV, YCbCr, and LAB, each with
specific advantages and characteristics. In this research, two
types of color spaces are used, namely RGB and HSV, to
explore the model's effectiveness in detecting corn stem
diseases. The selection of these two-color spaces is based on
their ability to capture different visual features, with RGB
working with basic color intensities, while HSV emphasizes
hue, saturation, and brightness which is more similar to human
perception.

A.RGB

The RGB color space is one of the most common and widely
used color models in digital image processing [16]. In this
model, each color is represented as a combination of three
primary colors: red (R), green (G), and blue (B) [17]. The
value of each color channel typically ranges from 0 to 255 in
8-bit representation, enabling more than 16 million different
color combinations. The combination of intensities from these
three channels produces various color spectrums visible on
monitor screens, televisions, digital cameras, and other visual
devices.

The color formation process in RGB color space follows the
additive color model principle, where the primary colors (red,
green, and blue) are added at various intensities to produce the
final color. For example, when all three channels are given
maximum values (255, 255, 255), the result is white, while if
all values are zero (0, 0, 0), the result is black [18]. Other value
combinations will produce different spectrum colors such as
purple, brown, yellow, and others.

The advantage of RGB color space lies in its ease of digital
image processing, as sensors in cameras and other digital
devices also capture images in this format. Additionally, many
image processing algorithms, such as edge detection, color
segmentation, and pattern recognition, use RGB as standard
input due to its simplicity in managing color based on intensity.
However, one weakness of RGB is its dependence on lighting
conditions, which can affect color recognition performance in
different environments [19]. This makes RGB less effective
when variations in light intensity or shadows affect the image,
leading to other color spaces like HSV being often chosen for
such situations.

In this research, the use of RGB color space enables the
model to learn from differences in primary color intensities in
detecting disease symptoms in corn stems. Images are
processed in RGB format, where color changes in disease-
infected stems can be recognized by the model based on
intensity variations in each color channel.

B. HSV

The HSV color space is designed to more closely match
human color perception compared to the RGB color space.
HSV separates color information (hue), intensity (value), and
clarity (saturation), enabling easier analysis under various
lighting conditions [20]. In this color space, each color is
represented by three main components: Hue (H), which
describes the tone or type of basic color such as red, green,
blue, and others; Saturation (S), which indicates how pure or
saturated the color is; and Value (V), which represents the
brightness level of the color [21].

Calculations in HSV involve transforming RGB values into
cylindrical coordinates. Hue is measured in degrees from 0° to
360°, where 0° represents red, 120° green, and 240° blue, with
intermediate values producing mixed colors. Saturation ranges



from 0% (no saturation, resulting in grayscale) to 100% (full
color without white mixing). Value or brightness is also
measured in percentages, with 0% being total black and 100%
being the brightest color [22].

The main advantage of HSV color space is its ability to
isolate color hue from lighting and saturation, allowing color
differences to be recognized even when images are taken
under varying lighting conditions [23]. This is particularly
useful in image processing tasks such as color segmentation,
object detection, and image analysis in real-world
environments, where light changes can affect image
appearance. For example, in plant recognition, HSV allows the
model to more easily detect color changes caused by disease
without being overly affected by shadows or uneven lighting.

Therefore, in this research, HSV color space is used as an
alternative to RGB to test the model's ability to identify corn
stem diseases. By separating hue from lighting, HSV enables
more stable detection of color changes in infected areas, which
might be more difficult to detect in RGB color space. Thus,
the model can be more adaptive to lighting variations while
remaining accurate in detecting early signs of disease in corn
stems.

2.2 Data augmentation

Data augmentation is a method in machine learning and deep
learning employed to increase the size and diversity of training
datasets by modifying existing data. In the context of image
processing, data augmentation generates new images are
generated by applying different transformations to the original
images, such as cropping, horizontal or vertical flips, scaling,
rotation, contrast and brightness adjustments, and noise
addition [24]. The main purpose of data augmentation is to
introduce new variations into the training data so that the
model can learn from more examples without needing to
collect large additional datasets.

Augmentation techniques are particularly important when
the original dataset size is limited, as deep learning models like
CNN tend to require large amounts of data to effectively
recognize complex patterns. If the training dataset is too small
or lacks variation, the model can experience overfitting, where
it learns too specifically from the training data and is unable to
generalize to new data. Data augmentation helps address this
issue by providing various examples of variations, making the
model more accurate and having better generalization
capabilities.

Several commonly used data augmentation methods include
[25]:

a) Rotation and Flip: Changing image orientation by rotating
or flipping to create new variations. This helps the model learn
to recognize objects from various angles and orientations.

b) Scaling and Cropping: Modifying image size or cropping
certain parts of the image to introduce variations in scale. This
technique helps the model learn to recognize objects despite
varying sizes.

c) Contrast and Brightness Adjustment: Altering image light
intensity or contrast to simulate different lighting conditions.
This is useful so that the model doesn't become too dependent
on specific lighting conditions when recognizing objects.

In this research, data augmentation is used to expand the
variation of the collected corn stem image dataset. The
augmentation techniques applied include rotation, flip, and
brightness adjustment to ensure the model can recognize
patterns from various angles and lighting conditions. Thus, the
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developed ResNet-50 model will be more robust and accurate
in classifying types of corn stem diseases under different
conditions. These augmentation techniques not only help
improve model accuracy but also reduce the risk of overfitting,
resulting in better model performance when applied to new
data or real data in the field.

2.3 ResNet-50

ResNet-50 architecture is a CNN model consisting of 50
layers with a residual mechanism. This approach was
introduced to address the degradation problem that commonly
occurs in very deep networks, where accuracy tends to
decrease as the number of layers increases. ResNet50 uses the
concept of skip connections in other words also called as
shortcut connections that allow signals to bypass one or more
layers, it is making easier for the network to learn more
complex features without experiencing the vanishing gradient
problem [8].

ResNet50 uses residual blocks that allow the network to
learn the identity function from previous layers. These blocks
consist of two or three layers with direct connections known
as skip connections or shortcuts. The main concept of residual
blocks is to simplify the network's learning of the differences
(residuals) between the input and output, rather than learning
the complete transformation function. In general, the
ResNet50 architecture consists of the following parts [26]:

a. 1 initial convolutional layer (7 % 7 kernel)

b. 4 main residual blocks, each having a different number of
layers

c. Global average pooling layer at the end

d. Fully connected layer as output

The ResNet-50 architecture is shown in the Table 1.

Table 1. ResNet-50 architecture

Layers Output Size ResNet-50
Con 1 112 x 112 7 x 7 conv, stride 2
3 x 3 max pool, stride 2
1 x 1.64
Con2 x 56 x 56 l3 % 3-64lX3
1 x 1.256
1 x 1.128
Con3 _x 28 x 28 [3 X 3.128] X 4
1 x 1.512
1 x 1.256
Con4 x 14 x 14 [3 x  3.256 l X 6
1 x 1.1024
1 x 1512
Con 5 x 7x7 3 x 3512 l X3
1 x 1.2048
%1 Average pool, 1000-d fc,
Softmax
FLOPs 3.8 x109

In this research, the ResNet-50 architecture was used to
classify corn stem diseases from RGB and HSV images. This
model was chosen due to its proven capabilities in various
image classification tasks, including object recognition and
plant disease detection. The basic ResNet-50 architecture
consists of several residual blocks containing convolution
layers, ReLU activation, and batch normalization. These
residual blocks are equipped with shortcut paths that connect
input directly to output, thus accelerating convergence and
improving model performance during training.



2.4 Confusion matrix

In this research, a confusion matrix was used to assess the
performance of the ResNet-50 model in classifying corn stem
diseases. A confusion matrix is an evaluation tool used to
measure the effectiveness of classification models by
providing detailed insights about model predictions compared
to actual values [27, 28].

This matrix will help identify how well the model
recognizes each different category and examine if certain
categories are frequently misclassified by the model. Thus, the
results from the confusion matrix can be used for further
analysis in optimizing the model or identifying specific
weaknesses that need improvement, such as adding more
training data for less accurate classes or using more
appropriate augmentation techniques.

PREDICTED

A

Positive Negative

TRUE POSITIVE (TP) FALSE NEGATIVE (FN)

Positive

Type Il Error

ACTUAL

FALSE POSITIVE (FP)
Type | Error

TRUE NEGATIVE (TN)

Negative

Figure 1. Confusion matrix

Figure 1 illustrates the use of a confusion matrix for
evaluating model performance. The matrix includes four key
elements: True Positive (TP), False Positive (FP), True
Negative (TN), and False Negative (FN), arranged in a matrix
format. In multi-class classification, the confusion matrix can
be extended to assess the model’s accuracy in classifying each
class separately. Below are explanations of these four
components.

@ The first metric is the true positive rate (TP), which is
the percentage of times the model gets the sample
labels right. For example, the model predicts 'disease
A" and the original label is also 'disease A'.

The number of cases where the model correctly
identifies that a sample is not part of the target class is
the definition of the true negative rate. For example,
the model predicts 'not disease A' and the original label
is also not disease A'.

The false positive rate is the number of cases where
the model incorrectly classifies samples as the target
class when they should not be.

The false negative rate is the number of cases where
the model fails to identify samples as the target class
when they should be.

We can compute a number of model performance
evaluation metrics, that include recall, accuracy, precision, and
F1-score, using data from the confusion matrix [29]. Here are
the equations:

® Accuracy

*

TP+TN
TP+TN+FP+FN

(1)

Accuracy =
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® Precision

Precision = %x 100% 2)
® Recall
Recall = TNT:VFN x 100% 3)
® F1 Score
F — measure =2 x SecallxPrecision 100% 4

Recall+Precision

3. MAIN RESULTS
3.1 Data gathering

Dataset collection is a crucial first step in developing a corn
stem disease classification model using ResNet-50. In this
research, the dataset consists of corn stem images covering
five categories: healthy corn and four types of diseases,
namely FErwinia carotovora, Pythium, Stenocarpella, and
Gibberella. Each disease category has different visual
characteristics, such as color changes, spots, or rotting areas
on the stem, which serve as important indicators in
classification. Table 2 shows detailed information about the
dataset used in this research.

Table 2. Dataset
No. Class Real Augmentation
1 Healthy 90 220
2 Erwina carotovora 102 220
3 Pythium 131 220
4 Stenocarpella 210 220
5 Gibberella 217 220
Total 750 1100
Gibberella

!

Figure 2. Citra input RGB

Gibberella

Figure 3. Citra input RGB



Each image was taken under varying natural lighting
conditions to reflect actual field situations, ensuring the model
can recognize disease patterns despite changes in light
intensity. Therefore, this research uses datasets with different
color spaces, namely RGB as shown in Figure 2 and HSV as
shown in Figure 3.

3.2 Analysis

This subsection explains the research process flow, which
is divided into three main components: the input process, the
classification process, and the output process. The input
process involves the collection and preparation of a corn image
dataset, including images of healthy corn and those infected
with various types of diseases. These images are processed and
prepared using augmentation techniques to enhance data
variability, and they are transformed into two different color
spaces, namely RGB and HSV, to explore the effectiveness of
detection across different color representations. As a
continuation, in the classification process, the CNN-ResNet50
model is developed and trained using the prepared dataset.
Finally, the output process displays the model's classification
results, where performance is evaluated using metrics such as
accuracy, precision, recall, and F1-score. For clarity, the I[PO
diagram is shown in Figure 4.

InputImage | | Preprocesing
RGB and HSV (Resize)
4
Augmentation

Data

\

Splitting Data

Y

/

Training Testing
ResNeiSO/
Model — Result

Figure 4. IPO diagram

Referring to the illustration presented in Figure 4, this
classification system is constructed with three main
components: the input stage, the main stage, and the output
stage. Below is an explanation detail of each of the three
components in these phases.

i. Input Process
The process begins with the collection of corn images in two

color spaces: RGB and HSV. The total dataset for each of these
consists of 750 records with 5 target classes.

ii.  Preprocessing Data

The collected images are then processed to standardize the
image quality. This preprocessing step includes resizing the
images, normalizing the colors, and enhancing the image
quality to meet the model's input requirements.

iii.  Splitting Data

The collected images are then processed to standardize the
image quality. This preprocessing step includes resizing the
images, normalizing the colors, and enhancing the image
quality to meet the model's input requirements. The processed
dataset will be divided into two main parts: 80% for training
data and 20% for testing data. This division is made to ensure
that the model can learn from the majority of the available data,
while the remaining portion is used to test the model's ability
to recognize patterns in new, unseen data.

iv.  Augmentation
To enhance the variation in the training data and avoid
overfitting, = augmentation  techniques are  applied.

Augmentation includes modifications to the images such as
rotation, flipping, brightness adjustment, and others, which
create more variation from the original dataset.

v. Classification

After augmentation, the obtained data is used to train the
classification model using the CNN-ResNet50 architecture.
This model is capable of recognizing visual patterns and
classifying images based on the diseases present on the corn
stalks.

vi.  Output

The model produces outputs in the form of predicted classes
of diseases present on the corn stalks. This output can assist
farmers or relevant parties in taking immediate action against
the detected diseases. The model’s prediction results are
evaluated using metrics like fl-score, recall, accuracy, and
precision. This evaluation offers insights into the model’s
effectiveness and reliability in detecting corn diseases and
highlights areas that require further improvement.

4. DISCUSSION

In this study, a CNN model with the ResNet50 architecture
was used to classify corn stalk diseases based on images
processed in two main scenarios: without augmentation and
with data augmentation. The parameters applied in training the
model include an input image size of 224 x 224 pixels, a batch
size of 8, and a total of 10 epochs. The optimizer used is Adam
with a learning rate of 0.001, aimed at accelerating
convergence during the training process. The available image
data is split with 80% allocated for training and 20% for testing
data. In order to make the model better at identifying various
disease patterns, data is also added to the training dataset to
increase image variability. The classification results using the
proposed method are displayed in the Table 3.

Table 3. Result of classification using ResNet-50

Testing Scenario Accuracy Precision  Recall F1-Score Running Time
RGB Without 80.00% 80.78%  80.30%  80.54% 2410.38 s
With Augmentation ~ 97.76% 91.91% 92.43% 92.17% 57523 s
HSV Without 86.67% 83.54%  87.05%  85.26% 2565.45 s
With Augmentation  90.13% 87.81% 87.81% 87.81% 5302.75 s
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Table 3 shows that the results indicate that data
augmentation significantly improves model performance
across both RGB and HSV color spaces. In the RGB color
space, accuracy improved from 80.00% to 97.76% after
augmentation, with corresponding increases in precision,
recall, and F1-score. However, this improvement comes at the
cost of increased running time, from 2410.38 seconds to
5752.3 seconds seen in Figure 5 and Figure 6.

On the other hand, in the HSV color space, accuracy also
increased—ifrom 86.67% to 90.13% with augmentation. The
Fl-score improved from 85.26% to 87.81%, showing more
consistent gains across all metrics compared to the
unaugmented version, although with increased computation
time as well, from 2565.45 seconds to 5302.75 seconds seen
in Figure 7 and Figure 8.

Overall, RGB with augmentation achieved the highest
accuracy (97.76%), but HSV without augmentation already
outperformed RGB without augmentation. This suggests that
HSV may inherently provide better feature separation, while
augmentation further enhances performance by providing
more diverse training data.

Healthy

ErwiniaCarotovora

Pythium

Stenocarpella

Gibberella

Healthy
Pythium
Stenocarpella
Gibberella

Ll
@
1~
5]
>
3]

2
©
2
]

Q

=
£

w

Figure 5. Confusion matrix for augmentation RGB

Training and validation accuracy

—— Training accuracy

0.9

— Validation accuracy

0.8 4

0.7 1

0.6

0.5 4

0.4 4

Figure 6. Training and validation for augmentation RGB
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ErwiniaCarotovora
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Figure 7. Confusion matrix for augmentation RGB
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—— Training accuracy

— Validation accuracy

0.8 1
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0.4
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Figure 8. Training and validation for augmentation RGB

The results of the testing indicate that data augmentation has
a significant impact on enhancing the model's performance
when utilizing RGB images. In the absence of augmentation,
the model achieved an accuracy of 80.00%, with precision at
80.78%, recall at 80.30%, and an Fl-score of 80.54%.
Following the implementation of data augmentation, the
accuracy drastically increased to 92.76%, accompanied by
corresponding improvements in precision (91.91%), recall
(92.43%), and F1-score (92.17%).

These findings suggest that data augmentation facilitates the
model's ability to learn more effectively from the variations in
features present within the dataset, thereby enhancing its
capability to recognize distinct patterns in images of healthy
and diseased corn stalks. However, it is noteworthy that the
training duration increased to 5752.3 seconds due to the model
processing a larger volume of data during the learning phase.

Additionally, the table shows a comparison of performance
between the models trained using images in RGB format and
HSV format. In the scenario without augmentation, the model
using HSV images demonstrated better performance
compared to RGB, with an accuracy of 86.67% compared to



80.00% for RGB. The precision value was 83.54%, recall was
87.05%, and F1-score was 85.26%, all of which were higher
for HSV. This suggests that the model is more effective at
recognizing disease patterns when using images in the HSV
color format. This may be due to the different ways colors are
represented in the HSV format, allowing the model to focus
more on variations in hue, saturation, and value, which enables
better separation between areas infected by pathogens and
healthy areas.

However, in the application of augmentation, images in the
RGB color space perform better in classifying the dataset
compared to those in the HSV space. Therefore, both data
augmentation techniques and the selection of appropriate color
representations are crucial for improving the performance of
deep learning models.

5. CONCLUSIONS

The results of the research indicate that data augmentation
significantly enhances classification performance. For RGB
images without augmentation, the accuracy reached 80.00%,
whereas with augmentation, the accuracy increased to 92.76%.
The use of HSV images also demonstrates favorable results,
with an accuracy of 86.67% without augmentation and 90.13%
with augmentation. The estimation of training time indicates
that data augmentation requires more time compared to
scenarios without augmentation; however, it produces more
accurate and reliable results. The analysis results show that
RGB images with augmentation provide the best performance
in classifying corn stalk diseases.
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