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This study employs an Autoregressive Moving Average (ARMA) statistical model to 

generate artificial seismograms, an innovative approach to address the lack of real-

world data. The model is driven by white Gaussian noise and modulated by an 

amplitude envelope function, allowing it to faithfully reproduce the characteristics of 

seismic motion. This model proved particularly effective in simulating the non-

stationary behavior of accelerograms from historical earthquakes in Algeria, including 

those in Boumerdès, Asnam, and Affroun. A comparative analysis of key parameters 

such as peak acceleration and shaking duration confirmed the validity of the 

simulations. Beyond simple reproduction, the generated seismograms made it possible 

to assess damage potential. The researchers measured crucial structural demand 

indicators, such as ductility demand and hysteretic energy, to assess potential damage. 

The response spectra of the simulations match well with those of the real recordings, 

which reinforces the reliability of the damage predictions. The quasi-linear correlation 

between the damage index and the initial structural period reinforces this observation. 

In summary, the ARMA(2,1) approach offers a practical and reliable framework for 

damage assessment and the design of earthquake-resistant structures. 
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1. INTRODUCTION

The limited availability and inherent variability of natural 

accelerogram records often hinder a full analysis of structural 

response. Consequently, the generation of artificial ground 

motions has become an essential and widely accepted practice 

in earthquake engineering. These simulated accelerograms 

allow for a systematic evaluation of structures under both 

linear and nonlinear conditions, offering enhanced control 

over crucial parameters such as amplitude, duration, and 

frequency content. Response spectra play a central role in 

seismic design, particularly for single-degree-of-freedom 

(SDOF) systems 1. When multiple records are used to 

develop design spectra, a significant degree of variability 

emerges 2. To address this, records are frequently 

normalized with respect to peak parameters, such as 

acceleration or velocity 3. This approach has been widely 

used, for example, in the seismic design of nuclear power 

plants 4. 

This study aims to develop minimal stochastic models for 

earthquake ground motions to address these shortcomings. 

The objective is to create a simple yet descriptive modeling 

method that captures the damage-relevant characteristics of 

seismic input. To achieve this, we propose using a time-

varying Auto Regressive Moving Average (ARMA) process, 

specifically a low-order ARMA(2,1) model. This model is 

driven by white noise and modulated by an envelope function, 

which allows it to effectively reproduce the non-stationary 

behavior of seismic events. 

The methodology, applied to Algerian earthquakes recorded 

on dense soils, confirmed that the model generates ground 

motions closely matching actual seismic records. The study's 

results demonstrate that the model can accurately predict the 

mean values and variances of key spectral response ordinates. 

The simulations show a good correspondence for key damage 

indicators, including peak displacement, ductility demand, and 

hysteretic energy dissipation. These findings confirm the 

validity of our approach as a valuable tool for assessing 

damage potential in seismic design applications. 

2. FORMULATION OF THE ARMA MODEL

This study analyzes seismic ground motion in the time 

domain using ARMA models, a method initially introduced by 

Jebb and Tay 5, and later adapted for structural dynamics by 

Gao et al. 6. The ARMA framework was chosen for its 

ability to create simplified stochastic models that accurately 

capture ground motion characteristics while maintaining a 

clear physical interpretation. This interpretability is highly 

beneficial for structural design, as it allows a direct correlation 

between model parameters and measurable quantities like 
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acceleration or displacement. 

The ARMA model at any time step, k, is represented by the 

following equation: 

 

𝐴𝑘 − 𝜑1𝐴𝑘−1 −⋯− 𝜑𝑝𝐴𝑘−𝑝 

= 𝑊𝑘 − 𝜃1𝐴𝑘−1 −⋯− 𝜃𝑝𝑊𝑘−𝑝 
(1) 

 

where, i, θj are constant coefficients. 

The left-hand side of this equation is the autoregressive 

(AR) part of order p, while the right-hand side is the moving 

average (MA) part of order q. In this context, Zt represents the 

time series of measured data, and the sequence at is a set of 

independent, identically distributed Gaussian random 

variables.  

The constant coefficients, φi and θj, along with the model 

orders (p, q), are estimated from the data using a maximum 

likelihood approach. The seismic accelerograms from Table 1 

were selected for this study. 

 

Table 1. Real earthquakes characteristic 

 
Event Boumerdes Asnam Affroun 

Magnitude 6.8 5.8 6.8 

Duration (second) 25.96 21.7 80 

Max Acceleration × (g) 0.215 0.189 0.03 

Number of points 1299 1087 16001 

 

 

3. MODELING PROCEDURE 

 

In this research, the modeling process begins by 

normalizing the digitized seismic acceleration data to simplify 

the fitting of the model. For each time step, k, a moving 

window of 100 time steps centered at k is used to compute the 

root mean square Sk value.  

This process generates a normalized time series, Zk = Ak/Sk, 

with a zero mean and unit variance. This series is then modeled 

as a second-order stationary process using the ARMA 

formulation Eq. (1). 

The comprehensive procedure for fitting an ARMA model 

to a seismic acceleration record includes the following steps: 

Normalization: Compute the experimental envelope 

function Sk and use it to normalize the raw acceleration data. 

Envelope function: Define an analytical expression for Sk 

and estimate its parameters through least-squares analysis. 

Stabilization: Remove any non-stationary trends from the 

original record using the envelope function to stabilize the 

signal. 

Correlation analysis: Compute the autocorrelation and 

partial autocorrelation functions of the stabilized, normalized 

signal. 

Order selection: Choose the appropriate order p for the AR 

component and order q for the MA component of the ARMA 

model (Eq. (1)). 

Coefficient estimation: Estimate the coefficients φi and θj 

using maximum likelihood analysis. 

Model validation: Validate the model by re-computing the 

autocorrelation and partial autocorrelation functions of the 

residuals to confirm that the selected orders are adequate and 

that the process is stationary. 

Alternative model evaluation: Use the Akaike Information 

Criterion (AIC), denoted as AIC(p, q), to evaluate alternative 

model orders and select the one that minimizes the AIC value 

7. 

3.1 ARMA model and its parameters 

 

From a parameter count perspective, the ARMA model 

offers a more efficient representation for simulating 

earthquake phenomena, particularly when data is affected by 

noise. A crucial step in evaluating ARMA parameters is 

analyzing the autocorrelation of the seismic trace. The 

relationship between autocorrelation and AR parameters 

highlights the primary importance of the AR part of the model 

as follows Eq. (4). 

 

[

1 𝑅1 ⋯ 𝑅𝑘−1
𝑅1 ⋯ ⋯ 𝑅𝑘−2
⋮ ⋯ ⋱ ⋮

𝑅𝑘−1 1 ⋯ 1

] [

∅1
∅2
⋮
∅𝑘

] = [

𝑅1
𝑅2
⋮
𝑅𝑘

] (2) 

 

Once the AR component is identified, the MA part can be 

constructed. For selecting the order of the ARMA(p, q) model, 

the minimum of the Akaike Information Criterion (AIC) is 

used, as investigated by Korte et al. 8. For this purpose, the 

minimum of the AIC index: 

 

𝐴𝐼𝐶(𝑝, 𝑞) = 𝑁. 𝑙𝑛(𝜎𝑎
2) + 2(𝑝 + 𝑞) (3) 

 

where, N is the sample size, and σa
2 is the estimated variance 

from the residual maximum likelihood. 

A comparison between several models for each earthquake: 

ARMA(1,1), ARMA(1,2), ARMA(2,1) and ARMA(2,2), 

using the AIC criterion described in Table 2.  

 

Table 2. Application of AIC criteria to the different models 

 

Parameter 
ARMA Model 

(1,1) (1,2) (2,1) (2,2) 

Asnam -1145.4 -1157.9 -1158.3* -1155.0 

Boumerdes -1170.3 -1185.5 -1190.2* -1186.5 

Affroun -3.64068 -4.78432 -5.09023 -5.26325* 
* Indicates that the model has the minimum AIC. 

 

The final model parameters for each earthquake are 

presented in Table 3. 

 

Table 3. Parameters of the selected model 

 
Parameter AR(1) AR(2) MA(1) σa 

Asnam 0.359 -0.222 0.181 0.559 

Boumerdes 0.359 -0.869 -0.304 0.551 

Affroun 1.80244 -0.888599 -0.888599 -0.888599 

 

This research selects an ARMA(2,1) model, which provided 

the best fit for the input accelerograms. This model can be 

represented by: 

 

𝐴𝑘 − 𝜑1𝐴𝑘−1 − 𝜑2𝐴𝑘−2 = 𝑊𝑘 − 𝜃1𝑊𝑘−1 (4) 

 

For the simulation, the envelope function is given by the 

expression:  

 

𝑆𝑘 = 𝑎. 𝑡𝑏 . 𝑒−𝑐𝑘 (5) 

 

The parameters a, b, and c are estimated through nonlinear 

regression analysis (Table 4). 

The foundational assumption of this analysis is that an 

earthquake can be considered a single realization from a 

population of earthquakes characterized by an ARMA process. 
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Table 4. The parameters of the envelope function 

 

Event 
Envelope Function Parameters 

A B C 

Boumerdes 1.2198 1.1077 0.671 

Asnam 1.1567 0.8810 0.689 

Affroun 9.61e-9 10.91 0.6055 

 

To simulate the acceleration time series using this approach, 

we first generate a white noise signal with a zero mean and a 

variance equal to the estimated variance. This white noise is 

then used as input to the ARMA model to produce a stationary 

time series. Finally, this stationary series is multiplied by the 

envelope function, S(k), to obtain the non-stationary simulated 

acceleration series. 

Since the ARMA model is a linear combination of previous 

values and Gaussian random variables, simulated earthquakes 

can be generated inductively. For the ARMA(2,1) model, the 

recursive equation is used. To initiate the calculations, the first 

p values of Ak (in this case, A0 and A−1) are assumed to be 

zero. Gaussian random variables (Wk) with variance σa
2 are 

generated as the white noise input. 

Early simulations indicated that the Fourier spectra and 

responses derived from the simulated earthquakes had large 

values at low frequencies, which the original filtered 

earthquakes did not exhibit. This common issue is addressed 

by applying a low-pass filter to the simulated data to eliminate 

these low-frequency components. 

The ARMA coefficients and the white noise standard 

deviation (σw) are detailed in Table 5. 
 

Table 5. ARMA coefficients and white noise standard 

deviation 
 

Event 
ARMA Parameters 

1 2 3 σw 

Boumerdes 0.6626 -0.0738 -0.521 0.555 

Asnam 0.4244 0.2411 -0.613 0.560 

Affroun 1.8635 -0.922845 -1.28836 0.0407843 

 

For the estimator used, we provide the SSE, R-squared, 

adjusted R-squared, and RMSE in Table 6. 

 

Table 6. Summary of fit metrics for the envelope function 

 
Event SSE R² Adjusted R² RMSE 

Affroun 2.674e + 04 0.6978 0.6978 1.293 

 

A comparison of the key characteristics of real and 

simulated earthquakes (Table 7) shows that the events are 

well-characterized by the ARMA(2,1) process and the defined 

envelope function parameters. 

 

Table 7. Characteristics earthquakes and simulated ones 

 

Header 
Earthquakes 

Characteristics Boumerdes Asnam Affroun 

Real 

Maximal 

acceleration × (g) 
0.152 0.189 0.030 

Duration (sec) 25.96 21.7 80 

Simulated 

Maximal 

acceleration × (g) 
0.141 0.107 0.022 

Duration (sec) 20 20 80 

 

 
 

Figure 1. Modulation functions and envelope Boumerdes 

 

 
 

Figure 2. Modulation functions and envelope Asnam 

 

 
 

Figure 3. Modulation functions and envelope Affroun 
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Figures 1-3 show the appearance of the modulation 

functions and envelope functions corresponding to the 

Boumerdes, Asnam and Affroun earthquakes.  

 

 

4. EVALUATION OF SEISMIC DAMAGE INDICES 

 

A range of damage measures has been developed to quantify 

the effects of seismic excitation on both linear and nonlinear 

structural systems 9-13. Researchers have explored diverse 

approaches, as highlighted by Grigoriu's comparative 

evaluation 14. While frequency spectra are a common way 

to present structural response data, any single measure is 

acknowledged to be an imperfect predictor of damage due to 

the variety of potential failure modes. Consequently, this study 

evaluates damage potential using a set of general and 

composite criteria, referred to as damage indices. 

One such index, proposed by Park [15] is based on the ratio 

of structural demand to capacity. This index is a linear 

combination of the maximum relative deformation and the 

relative energy dissipation. The general form of the Park-Ang 

damage index is the frequency, damping and the yield force of 

a structure. 

 

𝐷𝐼 =
𝑈𝑚𝑎𝑥(𝑡)

𝑈𝑚𝑎𝑥

+
𝛽. [𝐸𝐻]

𝑅𝑌. 𝑈𝑚𝑎𝑥

 (6) 

 

where, Umax(t) is the maximum displacement under seismic 

loading. Uu is the ultimate deformation capacity under 

monotonic loading. RY is the yield force. EH is the hysteretic 

energy dissipated through inelastic deformation. β is a non-

negative parameter that represents the structure's energy 

absorption capacity. 

To calculate a spectrum of damage indices, it is necessary 

to specify the value of β and the structural parameters, 

including natural frequency, damping ratio, and yield force. 

The structural responses (Umax(t)) were calculated through 

numerical integration of the equations of motion, assuming a 

linear acceleration within each time step 16-21. To 

accurately model the energy absorption of structures, a bilinear 

hysteretic model was adopted.  

This model is defined by three key parameters:  

uy: initial yield displacement, 

k1: initial elastic stiffness, 

ky: post-yield stiffness. 

During monotonic loading, the restoring force R(u, t) 

follows: 

 

R(u, t) = K1.u(t); u(t) ≤ uy (7) 

 

R(u, t) = Ky.(u(t)-uz); u(t)  uy (8) 

 

During unloading, the stiffness reverts to the initial elastic 

stiffness until the displacement again intersects the yield 

envelope. This elastoplastic behavior is captured by setting Ky 

= 0 and R(u, t) = Ky.uy for u(t)  uy. 

This simplified yet effective model is widely used in seismic 

analysis to estimate damage potential. 

 

 

5. NUMERICAL RESULTS 

 

The dataset for this study includes two recorded earthquake 

ground motions: 

•The 2003 Boumerdes (NS) earthquake, with a moment 

magnitude M = 6.8, yielding 1299 data points at 0.02-second 

intervals. 

•The 1980 Asnam (NE) earthquake, with a moment 

magnitude M = 5.8, providing 1087 data points at 0.02-second 

intervals. 

•The 1988 Affroun earthquake, with a moment magnitude 

M = 6.8, yielding 1601 points. 

Various ARMA models were fitted to these records. For 

each earthquake, 20 synthetic acceleration records were 

generated using the identified ARMA models. These synthetic 

records were then used as input for elastoplastic SDOF 

systems, which were modeled with a bilinear hysteresis law 

(Figure 4). 

 

 
 

Figure 4. Response of SDOF system 

 

The analyses were performed with damping ratios of 0.02 

and 0.05, and yield strength ratios (Y = RY/M⋅g) of 0.05, 0.10, 

and 0.15 to represent different levels of structural ductility. For 

the damage index calculations, the β parameter in the Park-

Ang index was set to 0.05, which is a value reflecting the 

average energy dissipation capacity of typical steel structures. 

The resulting damage index spectra (Figures 5-7) were 

obtained by evaluating the Park-Ang index across a range of 

natural frequencies. These spectra are a combination of two 

fundamental response measures: the ductility demand 

spectrum and the hysteretic energy demand spectrum. 

As shown in Figure 2, the damage index spectra for 

individual earthquakes display notable irregularities due to the 

inherent randomness of ground motion characteristics. This 

highlights the importance of using ensemble averages or 

statistically representative simulations for damage assessment. 

 

 
 

Figure 5. Seismic damage spectra for the 1980 Asnam and 

2003 Boumerdes events 
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Figure 6. Average spectral damage from synthetic motions 

for the 1980 Asnam and 2003 Boumerdes events 

 

 
 

Figure 7. Average spectral damage vs strength reduction 

factor for the 2003 Boumerdes events 

 

 

6. CONCLUSION 

 

This study confirms that ARMA(2,1) time-domain models 

are a compact and effective tool for simulating earthquake 

ground motions. Despite the model’s simplicity, the simulated 

response spectra show good agreement with real records. 

However, some discrepancies were noted for long-period 

motions, likely due to residual low-frequency components 

from filtering. The envelope function successfully controls the 

amplitude and duration of the synthetic motions, which are key 

characteristics of seismic inputs. 

The results also emphasize the significant influence of the 

soil behavior model on seismic response, underscoring the 

need to incorporate realistic, and potentially nonlinear, site 

effects into simulations. The ARMA(2,1) based approach 

therefore provides a practical framework for generating site-

specific synthetic records for performance-based seismic 

design. 

Furthermore, the irregularities in the damage index spectra 

of individual records appear to be the result of stochastic 

variability rather than intrinsic features of the seismic source. 

A nearly linear correlation was observed between the 

logarithm of the average damage index and the logarithm of 

the initial structural period. If validated with larger datasets, 

this trend could greatly improve the predictive power of 

structural damage models and lead to more accurate seismic 

hazard assessments. The observed decrease in the average 

damage index as the structural period increases supports the 

established understanding that long-period structures are 

generally less vulnerable. 

In summary, these findings advocate for a combined 

approach using ARMA-based modeling and period-dependent 

damage assessment to develop next-generation, performance-

oriented methodologies for earthquake-resistant design. 
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NOMENCLATURE 

 

Zt time series of measured data 

at, Wk Gaussian random variables 

Sk root mean square value 

Zk normalized time series 

AIC Akaike Information Criterion  

N sample size 

a, b, c parameters of the envelope function 

S(k) envelope function 

DI damage index 

uy initial yield displacement 

k1 initial elastic stiffness 

ky post-yield stiffness 

SDOF single-degree-of-freedom 

, Ɵ ARMA constant coefficients 

σa
2 estimated variance 

σw standard deviation 

(p, q) model orders 
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