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This study employs an Autoregressive Moving Average (ARMA) statistical model to
generate artificial seismograms, an innovative approach to address the lack of real-
world data. The model is driven by white Gaussian noise and modulated by an
amplitude envelope function, allowing it to faithfully reproduce the characteristics of
seismic motion. This model proved particularly effective in simulating the non-
stationary behavior of accelerograms from historical earthquakes in Algeria, including
those in Boumerdes, Asnam, and Affroun. A comparative analysis of key parameters
such as peak acceleration and shaking duration confirmed the validity of the
simulations. Beyond simple reproduction, the generated seismograms made it possible
to assess damage potential. The researchers measured crucial structural demand
indicators, such as ductility demand and hysteretic energy, to assess potential damage.
The response spectra of the simulations match well with those of the real recordings,
which reinforces the reliability of the damage predictions. The quasi-linear correlation
between the damage index and the initial structural period reinforces this observation.
In summary, the ARMA(2,1) approach offers a practical and reliable framework for
damage assessment and the design of earthquake-resistant structures.

1. INTRODUCTION

The limited availability and inherent variability of natural
accelerogram records often hinder a full analysis of structural
response. Consequently, the generation of artificial ground
motions has become an essential and widely accepted practice
in earthquake engineering. These simulated accelerograms
allow for a systematic evaluation of structures under both
linear and nonlinear conditions, offering enhanced control
over crucial parameters such as amplitude, duration, and
frequency content. Response spectra play a central role in
seismic design, particularly for single-degree-of-freedom
(SDOF) systems [1]. When multiple records are used to
develop design spectra, a significant degree of variability
emerges [2]. To address this, records are frequently
normalized with respect to peak parameters, such as
acceleration or velocity [3]. This approach has been widely
used, for example, in the seismic design of nuclear power
plants [4].

This study aims to develop minimal stochastic models for
earthquake ground motions to address these shortcomings.
The objective is to create a simple yet descriptive modeling
method that captures the damage-relevant characteristics of
seismic input. To achieve this, we propose using a time-
varying Auto Regressive Moving Average (ARMA) process,
specifically a low-order ARMA(2,1) model. This model is
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driven by white noise and modulated by an envelope function,
which allows it to effectively reproduce the non-stationary
behavior of seismic events.

The methodology, applied to Algerian earthquakes recorded
on dense soils, confirmed that the model generates ground
motions closely matching actual seismic records. The study's
results demonstrate that the model can accurately predict the
mean values and variances of key spectral response ordinates.
The simulations show a good correspondence for key damage
indicators, including peak displacement, ductility demand, and
hysteretic energy dissipation. These findings confirm the
validity of our approach as a valuable tool for assessing
damage potential in seismic design applications.

2. FORMULATION OF THE ARMA MODEL

This study analyzes seismic ground motion in the time
domain using ARMA models, a method initially introduced by
Jebb and Tay [5], and later adapted for structural dynamics by
Gao et al. [6]. The ARMA framework was chosen for its
ability to create simplified stochastic models that accurately
capture ground motion characteristics while maintaining a
clear physical interpretation. This interpretability is highly
beneficial for structural design, as it allows a direct correlation
between model parameters and measurable quantities like
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acceleration or displacement.
The ARMA model at any time step, , is represented by the
following equation:

A — 01451 —
=W — 6,44 —

— @A)
i 0
p"Vk-p
where, ¢, 6; are constant coefficients.

The left-hand side of this equation is the autoregressive
(AR) part of order p, while the right-hand side is the moving
average (MA) part of order ¢. In this context, Z; represents the
time series of measured data, and the sequence a; is a set of
independent, identically distributed Gaussian random
variables.

The constant coefficients, ¢; and 6;, along with the model
orders (p, q), are estimated from the data using a maximum
likelihood approach. The seismic accelerograms from Table 1
were selected for this study.

Table 1. Real earthquakes characteristic

Event Boumerdes Asnam  Affroun
Magnitude 6.8 5.8 6.8
Duration (second) 25.96 21.7 80
Max Acceleration X (g) 0.215 0.189 0.03
Number of points 1299 1087 16001
3. MODELING PROCEDURE

In this research, the modeling process begins by
normalizing the digitized seismic acceleration data to simplify
the fitting of the model. For each time step, k£, a moving
window of 100 time steps centered at k is used to compute the
root mean square Sy value.

This process generates a normalized time series, Zy= Ax/Sk,
with a zero mean and unit variance. This series is then modeled
as a second-order stationary process using the ARMA
formulation Eq. (1).

The comprehensive procedure for fitting an ARMA model
to a seismic acceleration record includes the following steps:

Normalization: Compute the experimental envelope
function S; and use it to normalize the raw acceleration data.

Envelope function: Define an analytical expression for Sk
and estimate its parameters through least-squares analysis.

Stabilization: Remove any non-stationary trends from the
original record using the envelope function to stabilize the
signal.

Correlation analysis: Compute the autocorrelation and
partial autocorrelation functions of the stabilized, normalized
signal.

Order selection: Choose the appropriate order p for the AR
component and order q for the MA component of the ARMA
model (Eq. (1)).

Coefficient estimation: Estimate the coefficients ¢; and 6
using maximum likelihood analysis.

Model validation: Validate the model by re-computing the
autocorrelation and partial autocorrelation functions of the
residuals to confirm that the selected orders are adequate and
that the process is stationary.

Alternative model evaluation: Use the Akaike Information
Criterion (AIC), denoted as AIC(p, q), to evaluate alternative
model orders and select the one that minimizes the AIC value

(7.
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3.1 ARMA model and its parameters

From a parameter count perspective, the ARMA model
offers a more efficient representation for simulating
earthquake phenomena, particularly when data is affected by
noise. A crucial step in evaluating ARMA parameters is
analyzing the autocorrelation of the seismic trace. The
relationship between autocorrelation and AR parameters
highlights the primary importance of the AR part of the model
as follows Eq. (4).

1 R Ri—1 Ry
Ri-1 1 Ry

Once the AR component is identified, the MA part can be
constructed. For selecting the order of the ARMA(p, q) model,
the minimum of the Akaike Information Criterion (AIC) is
used, as investigated by Korte et al. [8]. For this purpose, the
minimum of the AIC index:

AIC(p,q) = N.In(62) +2(p + q) 3)
where, N is the sample size, and o, is the estimated variance
from the residual maximum likelihood.

A comparison between several models for each earthquake:
ARMA(1,1), ARMA(1,2), ARMA(2,1) and ARMA(2,2),
using the AIC criterion described in Table 2.

Table 2. Application of AIC criteria to the different models

Parameter ARMA Model
(1) (1,2) 2.1) (2,2)
Asnam -11454  -1157.9  -11583*  -1155.0
Boumerdes  -11703  -1185.5  -1190.2*  -1186.5
Affroun  -3.64068  -4.78432  -5.09023  -5.26325*

* Indicates that the model has the minimum AIC.

The final model parameters for each earthquake are
presented in Table 3.

Table 3. Parameters of the selected model

Parameter AR(1) AR(2) MAQ) Ca
Asnam 0.359 -0.222 0.181 0.559

Boumerdes 0.359 -0.869 -0.304 0.551
Affroun 1.80244  -0.888599  -0.888599  -0.888599

This research selects an ARMA(2,1) model, which provided
the best fit for the input accelerograms. This model can be
represented by:

A = 14k-1 — Q2Ag2 = W — 0. W4 4)

For the simulation, the envelope function is given by the
expression:

Sy =a.tP.e ck (5)

The parameters a, b, and c are estimated through nonlinear
regression analysis (Table 4).

The foundational assumption of this analysis is that an
earthquake can be considered a single realization from a
population of earthquakes characterized by an ARMA process.



Table 4. The parameters of the envelope function

Envelope Function Parameters

Event A B C
Boumerdes 1.2198 1.1077 0.671

Asnam 1.1567 0.8810 0.689

Affroun 9.61¢-9 10.91 0.6055

To simulate the acceleration time series using this approach,
we first generate a white noise signal with a zero mean and a
variance equal to the estimated variance. This white noise is
then used as input to the ARMA model to produce a stationary
time series. Finally, this stationary series is multiplied by the
envelope function, S(k), to obtain the non-stationary simulated
acceleration series.

Since the ARMA model is a linear combination of previous
values and Gaussian random variables, simulated earthquakes
can be generated inductively. For the ARMA(2,1) model, the
recursive equation is used. To initiate the calculations, the first
p values of Ay (in this case, Ap and A-|) are assumed to be
zero. Gaussian random variables (W) with variance 6,2 are
generated as the white noise input.

Early simulations indicated that the Fourier spectra and
responses derived from the simulated earthquakes had large
values at low frequencies, which the original filtered
earthquakes did not exhibit. This common issue is addressed
by applying a low-pass filter to the simulated data to eliminate
these low-frequency components.

The ARMA coefficients and the white noise standard
deviation (oy) are detailed in Table 5.

Table 5. ARMA coefficients and white noise standard

deviation
Event ARMA Parameters
ven o Iy b ou
Boumerdes 0.6626 -0.0738 -0.521 0.555
Asnam 0.4244 0.2411 -0.613 0.560
Affroun 1.8635 -0.922845 -1.28836 0.0407843

For the estimator used, we provide the SSE, R-squared,
adjusted R-squared, and RMSE in Table 6.

Table 6. Summary of fit metrics for the envelope function

Event SSE R?
Affroun 2.674e +04  0.6978

Adjusted R* RMSE
0.6978 1.293

A comparison of the key characteristics of real and

simulated earthquakes (Table 7) shows that the events are
well-characterized by the ARMA(2,1) process and the defined

envelope function parameters.

Table 7. Characteristics earthquakes and simulated ones

Header Earthquakes
Characteristics Boumerdes Asnam Affroun
Maximal
Real acceleration X (g) 0.152 0.189 0.030
Duration (sec) 25.96 21.7 80
Maximal
Simulated acceleration x (g) 0.141 0.107 0.022
Duration (sec) 20 20 80
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Figure 1. Modulation functions and envelope Boumerdes
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Figure 2. Modulation functions and envelope Asnam
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Figure 3. Modulation functions and envelope Affroun
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Figures 1-3 show the appearance of the modulation
functions and envelope functions corresponding to the
Boumerdes, Asnam and Affroun earthquakes.

4. EVALUATION OF SEISMIC DAMAGE INDICES

A range of damage measures has been developed to quantify
the effects of seismic excitation on both linear and nonlinear
structural systems [9-13]. Researchers have explored diverse
approaches, as highlighted by Grigoriu's comparative
evaluation [14]. While frequency spectra are a common way
to present structural response data, any single measure is
acknowledged to be an imperfect predictor of damage due to
the variety of potential failure modes. Consequently, this study
evaluates damage potential using a set of general and
composite criteria, referred to as damage indices.

One such index, proposed by Park [15] is based on the ratio
of structural demand to capacity. This index is a linear
combination of the maximum relative deformation and the
relative energy dissipation. The general form of the Park-Ang
damage index is the frequency, damping and the yield force of
a structure.

B-[Ey]
RY' Umax

Unax (t)

Umax

DI =

(6)

where, Una(?) is the maximum displacement under seismic
loading. U, is the ultimate deformation capacity under
monotonic loading. Ry is the yield force. Ey is the hysteretic
energy dissipated through inelastic deformation. f is a non-
negative parameter that represents the structure's energy
absorption capacity.

To calculate a spectrum of damage indices, it is necessary
to specify the value of £ and the structural parameters,
including natural frequency, damping ratio, and yield force.

The structural responses (Una(f)) were calculated through
numerical integration of the equations of motion, assuming a
linear acceleration within each time step [16-21]. To
accurately model the energy absorption of structures, a bilinear
hysteretic model was adopted.

This model is defined by three key parameters:

u,: initial yield displacement,

k;: initial elastic stiffness,

ky: post-yield stiffness.

During monotonic loading, the restoring force R(u, t)
follows:

R(u, t) = Kyi.u(t); u(t) <uy @)

R(u, t) = Ky.(u(t)-uy); u(t) > uy ®)
During unloading, the stiffness reverts to the initial elastic
stiffness until the displacement again intersects the yield
envelope. This elastoplastic behavior is captured by setting K,
=0 and R(u, t) = K, uy for u(t) > u,.
This simplified yet effective model is widely used in seismic
analysis to estimate damage potential.

5. NUMERICAL RESULTS

The dataset for this study includes two recorded earthquake
ground motions:
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*The 2003 Boumerdes (NS) earthquake, with a moment
magnitude M = 6.8, yielding 1299 data points at 0.02-second
intervals.

*The 1980 Asnam (NE) earthquake, with a moment
magnitude M = 5.8, providing 1087 data points at 0.02-second
intervals.

*The 1988 Affroun earthquake, with a moment magnitude
M = 6.8, yielding 1601 points.

Various ARMA models were fitted to these records. For
each earthquake, 20 synthetic acceleration records were
generated using the identified ARMA models. These synthetic
records were then used as input for elastoplastic SDOF
systems, which were modeled with a bilinear hysteresis law
(Figure 4).

u(t)

1{:‘2(_/
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W=M.g
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c K2

Figure 4. Response of SDOF system

The analyses were performed with damping ratios of 0.02
and 0.05, and yield strength ratios (Y = Ry/M-g) of 0.05, 0.10,
and 0.15 to represent different levels of structural ductility. For
the damage index calculations, the § parameter in the Park-
Ang index was set to 0.05, which is a value reflecting the
average energy dissipation capacity of typical steel structures.

The resulting damage index spectra (Figures 5-7) were
obtained by evaluating the Park-Ang index across a range of
natural frequencies. These spectra are a combination of two
fundamental response measures: the ductility demand
spectrum and the hysteretic energy demand spectrum.

As shown in Figure 2, the damage index spectra for
individual earthquakes display notable irregularities due to the
inherent randomness of ground motion characteristics. This
highlights the importance of using ensemble averages or
statistically representative simulations for damage assessment.
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Figure 5. Seismic damage spectra for the 1980 Asnam and
2003 Boumerdes events
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Figure 6. Average spectral damage from synthetic motions
for the 1980 Asnam and 2003 Boumerdes events
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Figure 7. Average spectral damage vs strength reduction
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6. CONCLUSION

This study confirms that ARMA(2,1) time-domain models
are a compact and effective tool for simulating earthquake
ground motions. Despite the model’s simplicity, the simulated
response spectra show good agreement with real records.
However, some discrepancies were noted for long-period
motions, likely due to residual low-frequency components
from filtering. The envelope function successfully controls the
amplitude and duration of the synthetic motions, which are key
characteristics of seismic inputs.

The results also emphasize the significant influence of the
soil behavior model on seismic response, underscoring the
need to incorporate realistic, and potentially nonlinear, site
effects into simulations. The ARMA(2,1) based approach
therefore provides a practical framework for generating site-
specific synthetic records for performance-based seismic
design.

Furthermore, the irregularities in the damage index spectra
of individual records appear to be the result of stochastic
variability rather than intrinsic features of the seismic source.
A nearly linear correlation was observed between the
logarithm of the average damage index and the logarithm of

3117

the initial structural period. If validated with larger datasets,
this trend could greatly improve the predictive power of
structural damage models and lead to more accurate seismic
hazard assessments. The observed decrease in the average
damage index as the structural period increases supports the
established understanding that long-period structures are
generally less vulnerable.

In summary, these findings advocate for a combined
approach using ARMA-based modeling and period-dependent
damage assessment to develop next-generation, performance-
oriented methodologies for earthquake-resistant design.
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NOMENCLATURE

Z time series of measured data

ay, W Gaussian random variables

Sk root mean square value

Zx normalized time series

AIC Akaike Information Criterion

N sample size

a,b,c parameters of the envelope function

S(k) envelope function

DI damage index

Uy initial yield displacement

ki initial elastic stiffness

ky post-yield stiffness

SDOF  single-degree-of-freedom

¢, © ARMA constant coefficients

G’ estimated variance

Ow standard deviation

(P, q) model orders





