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Accurate forecasting of global horizontal irradiance (GHI) is essential for optimizing
solar power generation and ensuring reliable grid operation. Long-term predictions
enhance grid planning and mitigate challenges arising from the inherent variability of
solar radiation. This study addresses GHI forecasting for Mosul, Iraq, using the satellite-
based MERRA-2 dataset and the XGBoost algorithm with tuned hyperparameters. The
contributions are twofold: first, a systematic evaluation of rolling window sizes
demonstrates that shorter windows substantially improve accuracy, with the best results
achieved at a two-day window augmented by meteorological features, yielding an
NRMSE of 0.0855, MAE of 546.6, and R? 0of 0.907 compared to 0.83 NRMSE at a one-
year window; second, a comparative benchmarking against LightGBM and LSTM
establishes that XGBoost consistently outperforms these baselines, achieving lower
error rates (LightGBM NRMSE = 0.251; LSTM NRMSE = 0.103) and greater stability
across forecasting horizons. These findings highlight the decisive role of windowing
strategies in boosting machine learning performance for solar irradiance forecasting and
provide actionable insights for the design of more robust and efficient solar energy

infrastructures.

1. INTRODUCTION

In recent decades, Iraq has become fully dependent on oil
and its derivatives. Although it relies heavily on oil, Iraq’s
industrial and transportation sectors face significant
challenges, so the Iraqi government is moving toward better
power resources to cover the country's electricity needs; one
of the most promising resources is solar energy. Iraq is in a
very sunny area that has good solar irradiance every year [1].
In general, Iraq enjoys an average of 3,316 hours/year of solar
radiation, of which 501 watts/m? of solar energy incident on
the Earth daily. In winter, Global Solar Radiation may
decrease to 1.68 kW hr/m?, which is still high at this time of
year. Mosul serves as a representative location for analyzing
solar irradiance due to its substantial seasonal fluctuations.
From very little irradiance during winter to fully sunny days in
summer [2, 3]. In Iraq, as in other third-world countries, solar
power measurements, transmission, and other infrastructure
are very poor and difficult to obtain; incident solar radiation
consists of a wide range of electromagnetic waves. Spectral
wavelengths between 300—4000 nm are used to generate solar
energy. The solar rays that fall within this range and reach
Earth are divided into two parts: the reflected rays and the
Global Horizontal Irradiance (GHI) we receive.

The relationship between extra-terrestrial radiation and
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global solar irradiance is represented by the term clarity index,
indicated in Eq. (1), a high value of the clarity index indicates
a sunny day and vice versa [4].

o (1)

where, Kt represents the clearness index, horizontal radiation
H, and Ho is the extraterrestrial radiation on a horizontal
surface. Due to the variability of solar irradiance and
according to the resolution factor and its variation throughout
the year, month, week, and even day, historical records are
used to build different statistical, physical, and machine
learning models to obtain optimal power generation and grid
construction [5-7].

The main contributions of this study are twofold:

(1). A systematic evaluation of rolling window sizes in the
XGBoost framework for solar irradiance forecasting. By
testing multiple window lengths, the study demonstrates how
temporal context affects predictive accuracy, highlighting the
trade-off between capturing long-term seasonal dynamics and
short-term fluctuations.

(2). A comparative benchmarking against two widely used
baseline models, LightGBM and LSTM, implemented under
standard configurations with basic hyperparameter tuning.
This design isolates the unique impact of the rolling window
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strategy in XGBoost and shows that the proposed approach
achieves superior accuracy relative to methods that do not
employ such a mechanism.

This paper is divided into six sections. In Section II, related
works that involve different solar irradiance forecasting
methods are discussed. In Section III, we introduce
implemented methods in our work w. In Section IV, the
implemented models and their results are explained. In Section
V, the results are discussed further. Finally, in Section IV, the
conclusions are discussed regarding future work.

2. RELATED WORK
2.1 Traditional methods

Nowadays, long-term solar irradiance forecasting is critical
for power generation and grid construction. Numerous
researchers have explored various approaches to achieve
optimal system designs that provide more effective and
quicker forecasting models. These models are crucial for
constructing dependable and optimized solar power
transportation networks along with other solar energy
infrastructures. Multi-linear predictors are used on daily
recorded data for the prediction of long-term GHI [8, 9].

2.2 Deep learning approaches

In recent discussions on artificial intelligence techniques for
solar radiation estimation within renewable energy
applications, several key methods have arisen that
significantly enhance prediction accuracy and overall system
efficiency [10]. One central approach is the use of Long Short-
Term Memory (LSTM) networks, which have been effectively
employed not only to forecast daily power generation but also
to achieve reliable long-term seasonal predictions [11]. An
important advancement involves the development of a hybrid
model that combines Complete Ensemble Empirical Mode
Decomposition with Adaptive Noise, Convolutional Neural
Networks, and Long Short-Term Memory (CEEMDAN-
CNN-LSTM). This innovative model is specifically designed
for predicting hourly GHI and has been strictly evaluated using
real-world datasets, showing promising results in terms of
accuracy and applicability [12].

2.3 Hybrid deep learning models

Recent advancements in forecasting GHI have been
significantly impacted by deep learning techniques,
particularly when incorporating multi-site real data. Research
suggests that prioritizing records from nearby weather stations
can enhance the accuracy of these predictions [13]. A
comprehensive review of existing deep learning models
dedicated to GHI forecasting indicates a particular focus on
hybrid architecture, especially those that combine CNN with
LSTM networks. These hybrid models have shown
considerable promise, improving the precision of forecasts by
leveraging the strengths of both deep learning approaches [14].
The development of a hybrid CNN-LSTM approach has
demonstrated the potential of integrating various deep learning
techniques to yield more reliable GHI predictions, showcasing
the continual evolution of forecasting methodologies in this
field [15].
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2.4 Gradient boosting models

To construct a strong forecasting system, various machine
learning techniques are utilized, particularly Gradient
Boosting Regression Trees (GBRT), XGBoost, random
forests, and Gaussian Process Regression (GPR). These
methods serve as different layers in a stacking ensemble,
improving the overall predictive accuracy for both daily and
monthly forecasts. Among these techniques, XGBoost has
emerged as a particularly effective approach, renowned for its
ability to deliver precise long-term predictions [16]. The
XGBoost method is one of the new machine learning methods
that produce more accurate results in long-term forecasting.
The MERRA-2 database consists of 1490 days with solar
irradiance taken daily. At the time of maximum daily
irradiance, these 1490 records are divided into the training set
and the test set [17].

2.5 Other advanced methods

Using a more modern method, LightGBM outclasses other
machine learning and empirical models to forecast solar
photovoltaic energy production [18]. A recent study employed
Multi-Layer Perceptron Gated Recurrent Unit (GRU)
combined with Principal Component Analysis (PCA) and grid
search optimization for multi-horizon solar irradiance
forecasting using multivariate datasets, demonstrating
improved accuracy across different time scales due to effective
feature reduction and hyperparameter tuning [19].

While previous studies have investigated various
forecasting techniques, most did not systematically examine
the effect of rolling window sizes on model accuracy,
particularly when using gradient boosting approaches. This
study addresses this gap by evaluating the impact of different
rolling window sizes on XGBoost performance using the
MERRA-2 dataset for Mosul, Iraq.

3. METHODOLOGY
3.1 Performance analysis

Due to fluctuating power reaching the earth, any forecasting
method will suffer from some errors, and the predicted data
will not be very accurate. To decide if the implemented
method was good or not, Root Means Square Error (RMSE),
Normalized Root Means Square Error (NRMSE), Mean
Absolute Error (MAE), and Coefficient of Determination (R?)
are used to measure the deviation of forecast measurements
due to their importance in time-series regression tasks:

1
RMSE = \/;* Z(Ppred — Prean)?

where, Ppq are the forecast values at each time, Ppeqy are
the measured values at each time, and in the number of sample
data for the period, from Eq. (2), if RMSE is lower, it means
that the predicted values are closer to the real measures.

The NRMSE is the root mean square error normalized by
the range or mean of the observed data, which allows for
comparison across different scales. It is defined as in the Eq.
(3) below:

2)



1
\/HZ(Ppred - Pacttual)2
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NRMSE = )

R? on the other hand, measures how well the predicted
values fit with actual data [8, 20], from zero to one. R? can give
its results from the following Eq. (4):

e 1 i-9?
RZ =1- i=1\Vi™Ji
Xt i) “)
MAE on the other hand measures the average magnitude of
the errors of the prediction; from Eq. (5) MAE can give its
measurements:

1 A
MAE = 3 Xi-qlyi =il )
where, y; are the actual values, ¥; are the predicted values, ¥;
is the mean of the actual values, and » is the number of data

points.
3.2 Model architecture and data description

3.2.1 XGBoost

The tree boosting method is one of the promising machine
learning methods that is currently developing rapidly, due to
its speed and accuracy relatively XGBoost method took an
important role in various sciences due to its cache access
routines, data compression, and shredding which are crucial
segments for building any flexible end-to-end system for tree-
boosting, The model iteratively improves prediction accuracy
by minimizing residuals from previous rounds. XGBoost and
among the 29 challenge-winning solutions at Kaggle in 2015,
17 of which utilized XGBoost. Among these solutions, eight
exclusively used XGBoost to train the model, while others
predominantly mixed XGBoost with neural nets in costumes.
For comparison, the second most popular method was used in
11 solutions [7, 21] simple prediction model shown in the Eq.
(6) below:

y = Tk fi () ©)
where, y represents the predicted value, the number of trees
were denoted by k, f; represents individual tree prediction,
which is given in the following Eq. (7):

fre(@) = we(x) (7)
where, g(x) structure function mapping for the leaf index in the
tree, w, (x) is the denotation of leaf score, fj(x) is influenced
by tree depth d, regularization parameters, and learning rate.
This hyper-parameter is affected by the data window size;
increasing window size reduces the depth needed, and could
also benefit from stronger regularization to prevent over-
fitting [21-23]:

y = Yon.T(W,d).regularization(e, 1) (8)
where, a in Eq. (8) is a regularization term on weights
(operates as Lasso regression) and A is a regularization term
on weights (operates as Ridge regression) that are used to
reduce over-fitting. The rolling window is another important
parameter to be modified when the model needs more accurate
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data. The rolling window captures the data pattern to have
better performance. With a predefined window size, the rolling
window is rolled after each forecast, so it keeps the data pattern
in the same shape [23, 24]:

Verr = f(xe), Xev1 = We—n+1Ve-n+2 -9t} )

Eq. (9) gives an idea about how the previous data can affect
the upcoming forecast, where ¥,,; is the predicted value for
the next step, and it becomes part of the input window for
predicting §,,, and so on.

In time series forecasting, the window size plays a key role
in how we use historical data to predict future values. If the
window size is large, we can see long-term trends and seasonal
patterns, but it might dampen down the effect of more recent
detailed changes, leading to predictions that aren't very
responsive. On the other hand, a smaller window size zooms
in on the latest tiny changes, making the model more attuned
to short-term shifts and oscillations. This balance is really
important, especially in areas like solar irradiance, where
levels can change quickly due to weather. Smaller windows
can often lead to better predictions because they capture those
immediate patterns more effectively.

Selection of window sizes

The selected window sizes of 365, 180, 30, 7, and 2 days
were chosen to reflect the inherent temporal patterns observed
in solar irradiance data. The 365-day window represents a full
year and is intended to capture long-term seasonal trends and
annual cycles. The 180-day window corresponds to
approximately half a year, capturing major seasonal
differences, particularly between summer and winter. The 30-
day window reflects monthly variations, which are often
relevant in energy management and operational planning. The
7-day window corresponds to weekly fluctuations, commonly
influenced by short-term weather changes. The smallest
window, 2 days, was included to evaluate the model’s
sensitivity to very short-term variations while still providing a
minimal temporal context. These specific window sizes were
selected to systematically examine the trade-off between
capturing longer-term trends and adapting to short-term
fluctuations in solar irradiance forecasting.

3.2.2 LightGBM

Another gradient boosting method implemented here is
LightGBM. This new method was introduced in 2017. It is a
histogram-based algorithm that groups continuous feature
values into discrete bins, reducing split points and working in
less time. Due to its leaf-wise algorithm, it is more efficient for
a bigger dataset, by using this algorithm error will be reduced,
and that leads to more accurate results. LightGBM, like
XGBoost, has different hyperparameters that are used in
digging to get more accurate results:

x = Xil(yi,y) + a(T) (10)
where, [(y;,¥;) in Eq. (10) is a loss function which represents
the difference between actual and predicted values, a(T) is a
regularization part that is useful to reduce over-fitting, it is
obtained from the equation below:

a(T) = yT + A2 F(W}) (11)
where, y controls the complexity of the model by controlling
the number of leaves in the tree, and is called a regularization



parameter, and 7 number of terminals in the tree, 1 here
represents the regularization parameters that deal with large
weights, w; also represents weight, but for the leaf node.
These hyperparameters enable the construction of a well-

balanced prediction tree that enhances model performance [25,
26].

3.23LST™M

LSTM is a type of Recurrent Neural Network (RNN)
architecture that solves the problems of long-term prediction,
memory cells that store data over a longer time to use it in
future forecasting. LSTM is used mainly in sequential data
predictions. It is divided into four parts to make a good
workflow. These parts are the cell state, forget gate, input gate,
and output gate. These parts work according to the following
Egs. (12)-(17):

* Forget Gate:

ft = og(Wp X xp + Up X he_q + by) (12)
* Input Gate:
ip = og(W; Xx +U; X hey + b;) (13)
Cr = a;(W, xx; + U, X hy_y + b,) (14)
* Cell State Update:
Ce = felceer +ic-Cp) (15)
* Output Gate:
o = og(Wy Xx¢ + Uy X he_y + by) (16)
he = o.0.(C;) a7

where, o; is the sigmoid activation function, W, and b,
represent the weights and biases of the gates, h; is the hidden
state at time t, x; is the input at time t.

* C; is the cell state [8, 15].

Dataset figure of merit

The utilized dataset encompasses different attributes,
including date, humidity, speed of wind speed, snowfall, and
rainfal. MERRA-2, which originates from the recent
Retrospective analysis for research and applications, has been
used in so many articles before, which provide us way to test
our results [27-29]. The dataset, which spans 1490 days,
records solar irradiance; these data are taken at two meters
above the ground [8, 17]. The dataset started from the end of
2016 to the end of 2020 in the city of Mosul, Iraq. This dataset
is divided into training and testing with a ratio of 80 to 20.

Hyperparameter tuning and model configurations

The hyperparameters for the XGBoost and LightGBM
models were optimized using the GridSearchCV function
from the scikit-learn library. A grid of candidate values for
each hyperparameter was specified, and the best combination
was selected based on cross-validated performance on the
training data. Specifically, 3-fold cross-validation was
employed for XGBoost and 3-fold cross-validation for
LightGBM, reflecting a balance between computational
efficiency and reliability. The optimal XGBoost
hyperparameters obtained were: colsample-bytree 0.9,
gamma = 0.1, lambda = 1.0, learning-rate = 0.1, max-depth =

3, n-estimators
subsample

100, objective
0.8.  Similarly,

for LightGBM,

hyperparameters tuned through GridSearchCV resulted in
0.8, bagging-freq = 5, boosting-type =
'dart', feature-fraction = 0.8, learning-rate = 0.1, max-depth =
3, min-child-samples = 20, and num-leaves = 31, ensuring fair

bagging-fraction

and robust configurations for both models.

On the other hand, the LSTM model was implemented as a
baseline using a standard two-layer architecture, each with 50
units and 25% dropout to mitigate overfitting. The model was
trained for up to 50 epochs with a batch size of 32, using the
Adam optimizer and mean squared error loss function. Early
stopping was applied based on validation loss with a patience
of 3 epochs. No hyperparameter optimization was performed
for LSTM, as it was intended to serve as a benchmark with a
reasonable and commonly used configuration rather than the

focus of the optimization process.
Train-test split strategy

The train-test split was performed in a way that preserves
the order of the time series data to avoid data leakage.
Specifically, the dataset was divided into training and testing
subsets using a fixed proportion split without shuffling,
ensuring that all training data precedes the testing data in time.
For all models, 80% of the earliest records were used for
training and the remaining 20% for testing. This approach
enables the models to be evaluated on unseen future data,

consistent with the temporal nature of the forecasting task.

4. RESULTS AND DISCUSSION

4.1 Results

The MERRA-2 was used with Python to produce annual
forecasts. The implemented models rely on the XGBoost
method. By using specific hyperparameters with varying
window sizes to show the effectiveness of the window size.
The hyper-parameters are examined to improve the better of
the database by using the GridSearchCV function in Python
code; the hyper-parameters used had the best performance
over others. The best hyperparameters are colsample-bytree:
0.9, gamma: 0.1, lambda: 1.0, learning-rate: 0.1, max-depth:
3, n-estimators: 100, objective reg: squared-error, sub-sample:
0.8. The hyperparameters are chosen by trying different values
for every parameter. The data is split into two parts: two years
for training data and one year for testing data. The outliers are

set to the average, so they do not affect the results.

4.1.1 One-year forecasting

In the first part, each window size is 365 days, which

represents the one-year forecast, as shown in Figure 1.

'reg:squared-error', and

— Actual Solar Irradiance
o Forecasted Solar Irradiance
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Figure 1. Window of 365
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Figure 2. Window 365-NRMSE

Obviously, the results are very bad because of the non-
linearity of solar radiation, the prediction method has a large
latency in the prediction pattern, and the NRMSE of the result
will be very large (0.83013), as shown in Figure 2.

4.1.2 Half-year forecasting

From the bad results shown in the annual forecast, it is
necessary to reduce the window size by half. With windows of
180 days, the results are going to be better, as shown in Figure
3.
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Figure 3. Window of 180
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Figure 4. Window of 180-NRMSE
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Figure 5. Window of 30

Now the error has become smaller, but still too large
(0.3200) with a pattern shown in Figure 4.

4.1.3 Monthly forecasting

Working with data as a 30-day window may give better
performance, as shown in Figure 5, the forecast data curve is
moving closer to the real data.

And the overall NRMSE is 0.188 with the curve as in Figure

0.44
03
w
wn
z
S 0.2
0.1
0.0
Apr May Jun Jul Aug Sep Oct Nov Dec
Months

Figure 6. Window of 30-NRMSE

4.1.4 Weekly forecasting

Working with solar power data needs more accurate steps.
To do that, the window is defined to have 7 days for each, and
the results curve is as in Figure 7.

Actual Solar Irradiance
Forecasted Solar Irradiance

8000 4

6000 4

4000

Solar Irradiance

2000 1

T T T T T T T T T
Apr May Jun Jul Aug Sep Oct Nov Dec
Months

Figure 7. Window of 7

The generated RMSE was 0.1672 with the curve shown in
Figure 8.

0.5 — NRMSE
0.4
w 0.3
w
=
g
0.2 4
0.14
0.01
Apr May Jun Jul Aug Sep Oct Nov Dec
Months

Figure 8. Window of 7-NRMSE

4.1.5 Two days forecasting

For one one-week window couldn’t give accurate results, a
two-day model was implemented (the smallest possible
window) to decide which window size is better. Window size
2 is shown in Figure 9.

3181



Actual Solar Irradiance
8000 4 W] ‘\JM“"I o » Forecasted Solar Irradiance
° M c L
2 6000 |
]
k)
e
E 4000 4
[=]
)
2000
Apr May Jun Jul Aug Sep Oct Nov Dec
Months
Figure 9. Window of 2
051 —— NRMSE
0.4 4
0.3
w
w
s
x
Z 0.2
0.14
0.0
Apr May Jun Jul Aug Sep Oct Nov Dec
Months

Figure 10. Window of 2-NRMSE

As we move closer to real data, it is normal to have better
RMSE results, with an overall NRMSE of 0.0926; the NRMSE
curve is shown in Figure 10, which still provides highly loss
forecasting, so a multi-condition was taken next.

In addition, other weather parameters are taken to forecast
irradiance, Pressure, Wind speed, Wind direction, Rainfall,
Snowfall, Snow depth, and Relative Humidity can give a good
idea about the solar irradiance state. The results are shown in
Figure 11.
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Figure 11. Window 2 with multiple conditions
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Figure 12. Window 2 with multiple condition-NRMSE

With NRMSE 0.0855, which represents the best results
from another implementation, with the NRMSE curve shown
in Figure 12.

4.1.6 LightGBM forecasting

For comparison, another Gradient boosting method is used.
This method is used with its basic hyper-parameters and
without rolling window resizing; the hyper-parameters are set
after using Python cross-validation code for best performance.
The hyperparameters were bagging-fraction 0.8, bagging-freq
5, boosting-type dart, feature-fraction 0.8, learning-rate 0.1,
max-depth 3, min-child-samples 20, and num-leaves: 31. The
boosting-type type set to dart to overcome the over-fitting. The
results are visualized in Figure 13.
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Figure 13. LightGBM performance

Although it is a new method, in solar irradiance for casting,
it is clear that the LightGBM model has poor results compared
to our method, with an overall NRMSE = 0.2509, with an
annual curve shown in Figure 14.
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Figure 14. LightGBM-NRMSE
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Figure 15. LSTM performance
4.1.7 LSTM

This model represents the traditional solution for long-term
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forecasting. The model used contains two layers are applied
with a dropout layer of 25% for each layer to reduce overfitting
with the ADAM optimizer and an early stopping function. The
output is introduced in Figure 15.

From Figure 15, it is clear that the model tries to have the
average of the values, which can lead to inaccurate results,
with an average of 0.103. The NRMSE over time is shown in
Figure 16.

—— NRMSE
044 5

0.34

NRMSE

014

0.0

Jul Aug

Months,

Sep

Figure 16. LSTM-NRMSE
4.2 Discussion

Applying a rolling window enabled the model to focus on
specific temporal segments of the data. Using a window size
of 365 represents one forecaster for a year, 180, 30, which
means having 12 forecasters in one year, 7, and 2 as shown in
Table 1, gave a good view of how the implemented models
operate with solar irradiance data:

Table 1. Windows size vs. metric performance

Method NRMSE MAE R  Jlimein
Seconds
Window = 365 0.830 6159.701 -7.60 0.78
Window = 180 0.320 2262.58  -0.23 0.78
Window = 30 0.188 1319.007  0.55 0.89
Window =7 0.167 1146.667 0.645 1.022
Window =2 0.093 570.222  0.890 1.131
Window =2 with o nec 546627 0907  1.656
weather parameters
LightGBM 0.251 1809.760  0.160 1.274
LSTM 0.103 731.850  0.864 8.993
Table 1 indicates that larger window sizes reduce

computational time but result in lower accuracy. Conversely,
smaller window sizes necessitate more computational
operations, increasing processing time, but provide higher
model accuracy. The NRMSE values further reflect model
performance. For instance, a window size of 2, combined with
weather parameters, achieved lower error rates but required
significantly more time to execute. However, the LightGBM
model exhibited a higher NRMSE alongside greater
processing times, highlighting its inefficiency in this context.
For the optimal window size of 2, the impact of features is
explained in two cases:

XGBoost features: rolling window statistics, which have the
highest impact on the forecasting, are illustrated in Figure 17.

As shown in Figure 17, the rolling mean and rolling
standard deviation (which are taken from previous iterations)
have the greatest effect on the last forecast.

XGBoost and weather features: besides XGBoost features,
weather parameters are added to the model, as shown in Table

1, which gives more accurate results. The parameters that have
a higher impact on results are shown in Figure 18.

rolling _max

5!

rolling_std
922

rolling_mean 1009

400 600

S}

200 800 1000 1200

Figure 17. Features importance of rolling windows statistics
in XGBoost

rolling_min
338

pressure
746

o

100 200 300 400 500 600 700 800

Figure 18. Combined importance of weather parameters in
XGBoost

The figure demonstrates that, alongside weather parameters,
XGBoost features such as rolling standard deviation and
rolling minimum play critical roles in forecasting solar
irradiance. The 'feature force' used in Figures 17-18 refers to
the internal feature gain metric computed by the XGBoost
model, rather than SHAP values. While SHAP provides a
unified measure of feature impact, it was not used in this study.
Future work will incorporate SHAP-based interpretability and
structured ablation studies to better isolate the impact of
individual weather features.

Unlike XGBoost, these methods lack the capability to
segment datasets into smaller windows. Due to the inherent
non-linearity of solar irradiance data, the results will be poor
compared to the implemented XGBoost, as shown in Figure
19.

6000 4 +  Actual Solar Iiradiance

+  XGBoost Predictions
LightGBM Predictions
LSTM Predictions

Vo
piirt -!.:.'

5000 4

4000 4

3000 4

2000

1000 4
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T T T T T T T T T T T T
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Figure 19. Comparative forecasting performance of
XGBoost, LightGBM, and LSTM models
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Figure 19 clarifies how the XGBoost predicted values are
closer to the actual data than LightGBM and LSTM, which
need more training and more computational efforts to have
better results.

In summary, XGBoost achieved superior forecasting
accuracy with an NRMSE of 0.0855, MAE 0f273.4, and R? of
0.93, outperforming both LightGBM and LSTM across
multiple window sizes. The 2-day window has lowest error
rates, but its application may risk overfitting and is more
sensitive to noise. While the findings reinforce the potential of
small windows for short-term solar prediction, their use in
long-term or real-time systems demands careful consideration
of stability, scalability, and regional variability.

5. PRACTICAL
APPLICATIONS

IMPLICATIONS AND

The finding of this paper has important implications for
solar energy systems, especially in microgrid management and
optimization. By showing the impact of window size on the
performance of XGBoost models, the study provides a
valuable insight for energy planners and engineering
personnel. Whereas, selecting the optimal window size as
shown in Table 1 is vital for the accuracy of solar irradiance
forecasting along with computational efficiency in the real-
time micro-grid workstation. The larger window size reduces
computational load, but at the cost of prediction accuracy and
vice versa. Lastly, the goal is to improve the reliability and
efficiency of solar power generation, leading to a greater
integration of renewable energy sources into global energy
grids. By handling these practical considerations, this study
contributes to the development of a more robust and dynamic
solar energy infrastructure.

The improved performance observed with shorter windows,
particularly the 2-day configuration, aligns with the highly
non-stationary nature of solar irradiance patterns. However,
shorter windows may lead to overfitting, especially when
seasonality or long-term dependencies are ignored. From a
practical standpoint, smaller windows require more frequent
model retraining, increasing computational cost. Moreover,
their generalization capability across different regions or high-
frequency datasets may be limited, necessitating further
validation in real-time systems.

The scope of this study was limited to evaluating the effect
of rolling window sizes on XGBoost and comparing its
performance to baseline LightGBM and LSTM models
implemented with standard configurations. Applying rolling
window techniques to LightGBM and LSTM, as well as
conducting formal statistical significance tests such as paired
t-tests to confirm the observed improvements, were beyond the
scope of this work and are planned as part of future research.
Additionally, future work may incorporate SHAP analysis to
provide more precise and interpretable estimates of feature
contributions, enhancing the understanding of how input
variables influence model predictions. These extensions will
provide a more comprehensive evaluation and strengthen the
conclusions regarding the impact of windowing on different
forecasting models.

6. CONCLUSIONS

Using a smaller window size in the XGBoost method is an
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effective way to improve the forecast results, although it takes
a longer time; it can be implemented for nonlinear phenomena
and long-term applications. Adding more weather parameters
reduces the error range, even if the overall NRMSE is slightly
larger, making the error smaller. Employing newer gradient
boosting methods does not guarantee superior performance.
For instance, LightGBM showed comparatively lower
accuracy in long-term solar forecasting. With a relatively long
time. For future work, it is possible to use other machine
learning methods with XGBoost to build a hybrid model to
improve the XGBoost model and make the forecast method
closer to the real data. Building a long-term model for solar
irradiance faces many challenges, and over-fitting one of them
may give a faulty prediction, so future work can overcome it
using statistical and other machine learning methods. Future
work should also explore applying windowing to other
models, including statistical significance tests, and adopt
SHAP analysis to strengthen the interpretability and reliability
of the results.
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