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Accurate forecasting of global horizontal irradiance (GHI) is essential for optimizing 

solar power generation and ensuring reliable grid operation. Long-term predictions 

enhance grid planning and mitigate challenges arising from the inherent variability of 

solar radiation. This study addresses GHI forecasting for Mosul, Iraq, using the satellite-

based MERRA-2 dataset and the XGBoost algorithm with tuned hyperparameters. The 

contributions are twofold: first, a systematic evaluation of rolling window sizes 

demonstrates that shorter windows substantially improve accuracy, with the best results 

achieved at a two-day window augmented by meteorological features, yielding an 

NRMSE of 0.0855, MAE of 546.6, and R2 of 0.907 compared to 0.83 NRMSE at a one-

year window; second, a comparative benchmarking against LightGBM and LSTM 

establishes that XGBoost consistently outperforms these baselines, achieving lower 

error rates (LightGBM NRMSE = 0.251; LSTM NRMSE = 0.103) and greater stability 

across forecasting horizons. These findings highlight the decisive role of windowing 

strategies in boosting machine learning performance for solar irradiance forecasting and 

provide actionable insights for the design of more robust and efficient solar energy 

infrastructures. 
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1. INTRODUCTION

In recent decades, Iraq has become fully dependent on oil 

and its derivatives. Although it relies heavily on oil, Iraq’s 

industrial and transportation sectors face significant 

challenges, so the Iraqi government is moving toward better 

power resources to cover the country's electricity needs; one 

of the most promising resources is solar energy. Iraq is in a 

very sunny area that has good solar irradiance every year [1]. 

In general, Iraq enjoys an average of 3,316 hours/year of solar 

radiation, of which 501 watts/m2 of solar energy incident on 

the Earth daily. In winter, Global Solar Radiation may 

decrease to 1.68 kW hr/m2, which is still high at this time of 

year. Mosul serves as a representative location for analyzing 

solar irradiance due to its substantial seasonal fluctuations. 

From very little irradiance during winter to fully sunny days in 

summer [2, 3]. In Iraq, as in other third-world countries, solar 

power measurements, transmission, and other infrastructure 

are very poor and difficult to obtain; incident solar radiation 

consists of a wide range of electromagnetic waves. Spectral 

wavelengths between 300–4000 nm are used to generate solar 

energy. The solar rays that fall within this range and reach 

Earth are divided into two parts: the reflected rays and the 

Global Horizontal Irradiance (GHI) we receive. 

The relationship between extra-terrestrial radiation and 

global solar irradiance is represented by the term clarity index, 

indicated in Eq. (1), a high value of the clarity index indicates 

a sunny day and vice versa [4]. 

𝐾𝑡 =  
𝐻

𝐻𝑜
(1) 

where, Kt represents the clearness index, horizontal radiation 

H, and Ho is the extraterrestrial radiation on a horizontal 

surface. Due to the variability of solar irradiance and 

according to the resolution factor and its variation throughout 

the year, month, week, and even day, historical records are 

used to build different statistical, physical, and machine 

learning models to obtain optimal power generation and grid 

construction [5-7]. 

The main contributions of this study are twofold: 

(1). A systematic evaluation of rolling window sizes in the 

XGBoost framework for solar irradiance forecasting. By 

testing multiple window lengths, the study demonstrates how 

temporal context affects predictive accuracy, highlighting the 

trade-off between capturing long-term seasonal dynamics and 

short-term fluctuations. 

(2). A comparative benchmarking against two widely used 

baseline models, LightGBM and LSTM, implemented under 

standard configurations with basic hyperparameter tuning. 

This design isolates the unique impact of the rolling window 

Mathematical Modelling of Engineering Problems 
Vol. 12, No. 9, September, 2025, pp. 3177-3185 

Journal homepage: http://iieta.org/journals/mmep 

3177

https://orcid.org/0000-0001-6757-6483
https://orcid.org/0000-0002-5351-9768
https://orcid.org/0009-0003-9055-0195
https://crossmark.crossref.org/dialog/?doi=10.18280/mmep.120922&domain=pdf


 

strategy in XGBoost and shows that the proposed approach 

achieves superior accuracy relative to methods that do not 

employ such a mechanism. 

This paper is divided into six sections. In Section II, related 

works that involve different solar irradiance forecasting 

methods are discussed. In Section III, we introduce 

implemented methods in our work w. In Section IV, the 

implemented models and their results are explained. In Section 

V, the results are discussed further. Finally, in Section IV, the 

conclusions are discussed regarding future work. 

 

 

2. RELATED WORK 
 

2.1 Traditional methods 

 

Nowadays, long-term solar irradiance forecasting is critical 

for power generation and grid construction. Numerous 

researchers have explored various approaches to achieve 

optimal system designs that provide more effective and 

quicker forecasting models. These models are crucial for 

constructing dependable and optimized solar power 

transportation networks along with other solar energy 

infrastructures. Multi-linear predictors are used on daily 

recorded data for the prediction of long-term GHI [8, 9]. 

 

2.2 Deep learning approaches 

 

In recent discussions on artificial intelligence techniques for 

solar radiation estimation within renewable energy 

applications, several key methods have arisen that 

significantly enhance prediction accuracy and overall system 

efficiency [10]. One central approach is the use of Long Short-

Term Memory (LSTM) networks, which have been effectively 

employed not only to forecast daily power generation but also 

to achieve reliable long-term seasonal predictions [11]. An 

important advancement involves the development of a hybrid 

model that combines Complete Ensemble Empirical Mode 

Decomposition with Adaptive Noise, Convolutional Neural 

Networks, and Long Short-Term Memory (CEEMDAN-

CNN-LSTM). This innovative model is specifically designed 

for predicting hourly GHI and has been strictly evaluated using 

real-world datasets, showing promising results in terms of 

accuracy and applicability [12]. 

 

2.3 Hybrid deep learning models 

 

Recent advancements in forecasting GHI have been 

significantly impacted by deep learning techniques, 

particularly when incorporating multi-site real data. Research 

suggests that prioritizing records from nearby weather stations 

can enhance the accuracy of these predictions [13]. A 

comprehensive review of existing deep learning models 

dedicated to GHI forecasting indicates a particular focus on 

hybrid architecture, especially those that combine CNN with 

LSTM networks. These hybrid models have shown 

considerable promise, improving the precision of forecasts by 

leveraging the strengths of both deep learning approaches [14]. 

The development of a hybrid CNN-LSTM approach has 

demonstrated the potential of integrating various deep learning 

techniques to yield more reliable GHI predictions, showcasing 

the continual evolution of forecasting methodologies in this 

field [15]. 
 

2.4 Gradient boosting models 
 

To construct a strong forecasting system, various machine 

learning techniques are utilized, particularly Gradient 

Boosting Regression Trees (GBRT), XGBoost, random 

forests, and Gaussian Process Regression (GPR). These 

methods serve as different layers in a stacking ensemble, 

improving the overall predictive accuracy for both daily and 

monthly forecasts. Among these techniques, XGBoost has 

emerged as a particularly effective approach, renowned for its 

ability to deliver precise long-term predictions [16]. The 

XGBoost method is one of the new machine learning methods 

that produce more accurate results in long-term forecasting. 

The MERRA-2 database consists of 1490 days with solar 

irradiance taken daily. At the time of maximum daily 

irradiance, these 1490 records are divided into the training set 

and the test set [17]. 

 

2.5 Other advanced methods 

 

Using a more modern method, LightGBM outclasses other 

machine learning and empirical models to forecast solar 

photovoltaic energy production [18]. A recent study employed 

Multi-Layer Perceptron Gated Recurrent Unit (GRU) 

combined with Principal Component Analysis (PCA) and grid 

search optimization for multi-horizon solar irradiance 

forecasting using multivariate datasets, demonstrating 

improved accuracy across different time scales due to effective 

feature reduction and hyperparameter tuning [19]. 

While previous studies have investigated various 

forecasting techniques, most did not systematically examine 

the effect of rolling window sizes on model accuracy, 

particularly when using gradient boosting approaches. This 

study addresses this gap by evaluating the impact of different 

rolling window sizes on XGBoost performance using the 

MERRA-2 dataset for Mosul, Iraq. 

 

 

3. METHODOLOGY 
 

3.1 Performance analysis 

 

Due to fluctuating power reaching the earth, any forecasting 

method will suffer from some errors, and the predicted data 

will not be very accurate. To decide if the implemented 

method was good or not, Root Means Square Error (RMSE), 

Normalized Root Means Square Error (NRMSE), Mean 

Absolute Error (MAE), and Coefficient of Determination (R2) 

are used to measure the deviation of forecast measurements 

due to their importance in time-series regression tasks: 

 

𝑅𝑀𝑆𝐸 =  √
1

𝑛
∗ ∑(𝑃𝑝𝑟𝑒𝑑 − 𝑃𝑚𝑒𝑎𝑛)2 (2) 

 

where, 𝑃𝑝𝑟𝑒𝑑  are the forecast values at each time, 𝑃𝑚𝑒𝑎𝑛  are 

the measured values at each time, and in the number of sample 

data for the period, from Eq. (2), if RMSE is lower, it means 

that the predicted values are closer to the real measures.  

The NRMSE is the root mean square error normalized by 

the range or mean of the observed data, which allows for 

comparison across different scales. It is defined as in the Eq. 

(3) below: 
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𝑁𝑅𝑀𝑆𝐸 =  
√1

𝑛
∑(𝑃𝑝𝑟𝑒𝑑 − 𝑃𝑎𝑐𝑡𝑢𝑎𝑙)2

𝑃𝑚𝑒𝑎𝑛

(3) 

R2 on the other hand, measures how well the predicted 

values fit with actual data [8, 20], from zero to one. R2 can give 

its results from the following Eq. (4): 

𝑅2  =  1 −
∑ (𝑦𝑖−ŷ𝑖)2𝑛

𝑖 = 1

∑ (𝑦𝑖−ý)2𝑛
𝑖 = 1

(4) 

MAE on the other hand measures the average magnitude of 

the errors of the prediction; from Eq. (5) MAE can give its 

measurements: 

𝑀𝐴𝐸  =  
1

𝑁
∑ |𝑦𝑖 − ŷ𝑖|

𝑛
𝑖 = 1 (5) 

where, 𝑦𝑖  are the actual values, ŷ𝑖 are the predicted values, ŷ𝑖

is the mean of the actual values, and n is the number of data 

points. 

3.2 Model architecture and data description 

3.2.1 XGBoost 

The tree boosting method is one of the promising machine 

learning methods that is currently developing rapidly, due to 

its speed and accuracy relatively XGBoost method took an 

important role in various sciences due to its cache access 

routines, data compression, and shredding which are crucial 

segments for building any flexible end-to-end system for tree-

boosting, The model iteratively improves prediction accuracy 

by minimizing residuals from previous rounds. XGBoost and 

among the 29 challenge-winning solutions at Kaggle in 2015, 

17 of which utilized XGBoost. Among these solutions, eight 

exclusively used XGBoost to train the model, while others 

predominantly mixed XGBoost with neural nets in costumes. 

For comparison, the second most popular method was used in 

11 solutions [7, 21] simple prediction model shown in the Eq. 

(6) below:

ý =  ∑ 𝑓𝑘
𝑘
0 (𝑥𝑖) (6) 

where, ý represents the predicted value, the number of trees 

were denoted by 𝑘, 𝑓𝑘  represents individual tree prediction,

which is given in the following Eq. (7): 

𝑓𝑘(𝑥)   =   𝑤𝑞(𝑥) (7) 

where, q(x) structure function mapping for the leaf index in the 

tree, 𝑤𝑞(𝑥) is the denotation of leaf score, 𝑓𝑘(𝑥) is influenced

by tree depth d, regularization parameters, and learning rate. 

This hyper-parameter is affected by the data window size; 

increasing window size reduces the depth needed, and could 

also benefit from stronger regularization to prevent over-

fitting [21-23]: 

ý =  ∑ 𝑛. 𝑇(𝑊, 𝑑)𝑛
0 . regularization(𝛼, 𝜆) (8) 

where, α in Eq. (8) is a regularization term on weights 

(operates as Lasso regression) and 𝜆 is a regularization term 

on weights (operates as Ridge regression) that are used to 

reduce over-fitting. The rolling window is another important 

parameter to be modified when the model needs more accurate 

data. The rolling window captures the data pattern to have 

better performance. With a predefined window size, the rolling 

window is rolled after each forecast, so it keeps the data pattern 

in the same shape [23, 24]: 

ý𝑡+1  =  𝑓(𝑥𝑡), 𝑋𝑡+1  =  {𝑦𝑡−𝑛+1𝑦𝑡−𝑛+2 … … . ŷ𝑡} (9) 

Eq. (9) gives an idea about how the previous data can affect 

the upcoming forecast, where ŷ𝑡+1 is the predicted value for

the next step, and it becomes part of the input window for 

predicting ŷ𝑡+2 and so on.

In time series forecasting, the window size plays a key role 

in how we use historical data to predict future values. If the 

window size is large, we can see long-term trends and seasonal 

patterns, but it might dampen down the effect of more recent 

detailed changes, leading to predictions that aren't very 

responsive. On the other hand, a smaller window size zooms 

in on the latest tiny changes, making the model more attuned 

to short-term shifts and oscillations. This balance is really 

important, especially in areas like solar irradiance, where 

levels can change quickly due to weather. Smaller windows 

can often lead to better predictions because they capture those 

immediate patterns more effectively. 

Selection of window sizes 

The selected window sizes of 365, 180, 30, 7, and 2 days 

were chosen to reflect the inherent temporal patterns observed 

in solar irradiance data. The 365-day window represents a full 

year and is intended to capture long-term seasonal trends and 

annual cycles. The 180-day window corresponds to 

approximately half a year, capturing major seasonal 

differences, particularly between summer and winter. The 30-

day window reflects monthly variations, which are often 

relevant in energy management and operational planning. The 

7-day window corresponds to weekly fluctuations, commonly

influenced by short-term weather changes. The smallest

window, 2 days, was included to evaluate the model’s

sensitivity to very short-term variations while still providing a

minimal temporal context. These specific window sizes were

selected to systematically examine the trade-off between

capturing longer-term trends and adapting to short-term

fluctuations in solar irradiance forecasting.

3.2.2 LightGBM 

Another gradient boosting method implemented here is 

LightGBM. This new method was introduced in 2017. It is a 

histogram-based algorithm that groups continuous feature 

values into discrete bins, reducing split points and working in 

less time. Due to its leaf-wise algorithm, it is more efficient for 

a bigger dataset, by using this algorithm error will be reduced, 

and that leads to more accurate results. LightGBM, like 

XGBoost, has different hyperparameters that are used in 

digging to get more accurate results: 

𝑥 =  ∑ 𝑙(𝑦𝑖𝑖 , ý𝑖) + 𝛼(𝑇) (10) 

where, 𝑙(𝑦𝑖 , ý𝑖) in Eq. (10) is a loss function which represents

the difference between actual and predicted values, 𝛼(𝑇) is a 

regularization part that is useful to reduce over-fitting, it is 

obtained from the equation below: 

α(T) =  γT + λ/2∑ (wj
2) (11) 

where, γ controls the complexity of the model by controlling 

the number of leaves in the tree, and is called a regularization 
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parameter, and T  number of terminals in the tree, λ  here 

represents the regularization parameters that deal with large 

weights, 𝑤𝑗  also represents weight, but for the leaf node. 

These hyperparameters enable the construction of a well-

balanced prediction tree that enhances model performance [25, 

26]. 

 

3.2.3 LSTM 

LSTM is a type of Recurrent Neural Network (RNN) 

architecture that solves the problems of long-term prediction, 

memory cells that store data over a longer time to use it in 

future forecasting. LSTM is used mainly in sequential data 

predictions. It is divided into four parts to make a good 

workflow. These parts are the cell state, forget gate, input gate, 

and output gate. These parts work according to the following 

Eqs. (12)-(17): 

• Forget Gate: 

 

𝑓𝑡  =  𝜎𝑔(𝑊𝑓 × 𝑥𝑡 + 𝑈𝑓 × ℎ𝑡−1 + 𝑏𝑓)  (12) 

 

• Input Gate: 

 

𝑖𝑡  =  𝜎𝑔(𝑊𝑖 × 𝑥𝑡 + 𝑈𝑖 × ℎ𝑡−1 + 𝑏𝑖)  (13) 

 

Č𝑡  =  𝜎𝑔(𝑊𝑐 × 𝑥𝑡 + 𝑈𝑐 × ℎ𝑡−1 + 𝑏𝑐)  (14) 

 

• Cell State Update: 

 

𝐶𝑡  =  𝑓𝑡(𝑐𝑡−1 + 𝑖𝑡 ∙ Č𝑡)  (15) 

 

• Output Gate: 

 

𝑜𝑡  =  𝜎𝑔(𝑊𝑜 × 𝑥𝑡 + 𝑈𝑜 × ℎ𝑡−1 + 𝑏𝑜)  (16) 

 

ℎ𝑡  =  𝑜𝑡𝜎𝑡(𝐶𝑡)  (17) 

 

where, 𝜎𝑡  is the sigmoid activation function, 𝑊𝑜  and 𝑏𝑜 

represent the weights and biases of the gates, ℎ𝑡 is the hidden 

state at time 𝑡, 𝑥𝑡 is the input at time 𝑡. 

• 𝐶𝑡 is the cell state [8, 15]. 

Dataset figure of merit 

The utilized dataset encompasses different attributes, 

including date, humidity, speed of wind speed, snowfall, and 

rainfall. MERRA-2, which originates from the recent 

Retrospective analysis for research and applications, has been 

used in so many articles before, which provide us way to test 

our results [27-29]. The dataset, which spans 1490 days, 

records solar irradiance; these data are taken at two meters 

above the ground [8, 17]. The dataset started from the end of 

2016 to the end of 2020 in the city of Mosul, Iraq. This dataset 

is divided into training and testing with a ratio of 80 to 20.  

Hyperparameter tuning and model configurations 

The hyperparameters for the XGBoost and LightGBM 

models were optimized using the GridSearchCV function 

from the scikit-learn library. A grid of candidate values for 

each hyperparameter was specified, and the best combination 

was selected based on cross-validated performance on the 

training data. Specifically, 3-fold cross-validation was 

employed for XGBoost and 3-fold cross-validation for 

LightGBM, reflecting a balance between computational 

efficiency and reliability. The optimal XGBoost 

hyperparameters obtained were: colsample-bytree = 0.9, 

gamma = 0.1, lambda = 1.0, learning-rate = 0.1, max-depth = 

3, n-estimators = 100, objective = 'reg:squared-error', and 

subsample = 0.8. Similarly, for LightGBM, the 

hyperparameters tuned through GridSearchCV resulted in 

bagging-fraction = 0.8, bagging-freq = 5, boosting-type = 

'dart', feature-fraction = 0.8, learning-rate = 0.1, max-depth = 

3, min-child-samples = 20, and num-leaves = 31, ensuring fair 

and robust configurations for both models. 

On the other hand, the LSTM model was implemented as a 

baseline using a standard two-layer architecture, each with 50 

units and 25% dropout to mitigate overfitting. The model was 

trained for up to 50 epochs with a batch size of 32, using the 

Adam optimizer and mean squared error loss function. Early 

stopping was applied based on validation loss with a patience 

of 3 epochs. No hyperparameter optimization was performed 

for LSTM, as it was intended to serve as a benchmark with a 

reasonable and commonly used configuration rather than the 

focus of the optimization process. 

Train-test split strategy 

The train-test split was performed in a way that preserves 

the order of the time series data to avoid data leakage. 

Specifically, the dataset was divided into training and testing 

subsets using a fixed proportion split without shuffling, 

ensuring that all training data precedes the testing data in time. 

For all models, 80% of the earliest records were used for 

training and the remaining 20% for testing. This approach 

enables the models to be evaluated on unseen future data, 

consistent with the temporal nature of the forecasting task. 

 

 

4. RESULTS AND DISCUSSION 

 

4.1 Results 

 

The MERRA-2 was used with Python to produce annual 

forecasts. The implemented models rely on the XGBoost 

method. By using specific hyperparameters with varying 

window sizes to show the effectiveness of the window size. 

The hyper-parameters are examined to improve the better of 

the database by using the GridSearchCV function in Python 

code; the hyper-parameters used had the best performance 

over others. The best hyperparameters are colsample-bytree: 

0.9, gamma: 0.1, lambda: 1.0, learning-rate: 0.1, max-depth: 

3, n-estimators: 100, objective reg: squared-error, sub-sample: 

0.8. The hyperparameters are chosen by trying different values 

for every parameter. The data is split into two parts: two years 

for training data and one year for testing data. The outliers are 

set to the average, so they do not affect the results. 

 

4.1.1 One-year forecasting 

In the first part, each window size is 365 days, which 

represents the one-year forecast, as shown in Figure 1. 

 

 
 

Figure 1. Window of 365 
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Figure 2. Window 365-NRMSE 

Obviously, the results are very bad because of the non-

linearity of solar radiation, the prediction method has a large 

latency in the prediction pattern, and the NRMSE of the result 

will be very large (0.83013), as shown in Figure 2. 

4.1.2 Half-year forecasting 

From the bad results shown in the annual forecast, it is 

necessary to reduce the window size by half. With windows of 

180 days, the results are going to be better, as shown in Figure 

3. 

Figure 3. Window of 180 

Figure 4. Window of 180-NRMSE 

Figure 5. Window of 30 

Now the error has become smaller, but still too large 

(0.3200) with a pattern shown in Figure 4. 

4.1.3 Monthly forecasting 

Working with data as a 30-day window may give better 

performance, as shown in Figure 5, the forecast data curve is 

moving closer to the real data. 

And the overall NRMSE is 0.188 with the curve as in Figure 

6. 

Figure 6. Window of 30-NRMSE 

4.1.4 Weekly forecasting 

Working with solar power data needs more accurate steps. 

To do that, the window is defined to have 7 days for each, and 

the results curve is as in Figure 7. 

Figure 7. Window of 7 

The generated RMSE was 0.1672 with the curve shown in 

Figure 8. 

Figure 8. Window of 7-NRMSE 

4.1.5 Two days forecasting 

For one one-week window couldn’t give accurate results, a 

two-day model was implemented (the smallest possible 

window) to decide which window size is better. Window size 

2 is shown in Figure 9.  
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Figure 9. Window of 2 

Figure 10. Window of 2-NRMSE 

As we move closer to real data, it is normal to have better 

RMSE results, with an overall NRMSE of 0.0926; the NRMSE 

curve is shown in Figure 10, which still provides highly loss 

forecasting, so a multi-condition was taken next. 

In addition, other weather parameters are taken to forecast 

irradiance, Pressure, Wind speed, Wind direction, Rainfall, 

Snowfall, Snow depth, and Relative Humidity can give a good 

idea about the solar irradiance state. The results are shown in 

Figure 11. 

Figure 11. Window 2 with multiple conditions 

Figure 12. Window 2 with multiple condition-NRMSE 

With NRMSE 0.0855, which represents the best results 

from another implementation, with the NRMSE curve shown 

in Figure 12. 

4.1.6 LightGBM forecasting 

For comparison, another Gradient boosting method is used. 

This method is used with its basic hyper-parameters and 

without rolling window resizing; the hyper-parameters are set 

after using Python cross-validation code for best performance. 

The hyperparameters were bagging-fraction 0.8, bagging-freq 

5, boosting-type dart, feature-fraction 0.8, learning-rate 0.1, 

max-depth 3, min-child-samples 20, and num-leaves: 31. The 

boosting-type type set to dart to overcome the over-fitting. The 

results are visualized in Figure 13. 

Figure 13. LightGBM performance 

Although it is a new method, in solar irradiance for casting, 

it is clear that the LightGBM model has poor results compared 

to our method, with an overall NRMSE = 0.2509, with an 

annual curve shown in Figure 14. 

Figure 14. LightGBM-NRMSE 

Figure 15. LSTM performance 

4.1.7 LSTM 

This model represents the traditional solution for long-term 

3182



forecasting. The model used contains two layers are applied 

with a dropout layer of 25% for each layer to reduce overfitting 

with the ADAM optimizer and an early stopping function. The 

output is introduced in Figure 15. 

From Figure 15, it is clear that the model tries to have the 

average of the values, which can lead to inaccurate results, 

with an average of 0.103. The NRMSE over time is shown in 

Figure 16. 

Figure 16. LSTM-NRMSE 

4.2 Discussion 

Applying a rolling window enabled the model to focus on 

specific temporal segments of the data. Using a window size 

of 365 represents one forecaster for a year, 180, 30, which 

means having 12 forecasters in one year, 7, and 2 as shown in 

Table 1, gave a good view of how the implemented models 

operate with solar irradiance data: 

Table 1. Windows size vs. metric performance 

Method NRMSE MAE R2 
Time in 

Seconds 

Window = 365 0.830 6159.701 -7.60 0.78 

Window = 180 0.320 2262.58 -0.23 0.78 

Window = 30 0.188 1319.007 0.55 0.89 

Window = 7 0.167 1146.667 0.645 1.022 

Window = 2 0.093 570.222 0.890 1.131 

Window = 2 with 

weather parameters 
0.086 546.627 0.907 1.656 

LightGBM 0.251 1809.760 0.160 1.274 

LSTM 0.103 731.850 0.864 8.993 

Table 1 indicates that larger window sizes reduce 

computational time but result in lower accuracy. Conversely, 

smaller window sizes necessitate more computational 

operations, increasing processing time, but provide higher 

model accuracy. The NRMSE values further reflect model 

performance. For instance, a window size of 2, combined with 

weather parameters, achieved lower error rates but required 

significantly more time to execute. However, the LightGBM 

model exhibited a higher NRMSE alongside greater 

processing times, highlighting its inefficiency in this context. 

For the optimal window size of 2, the impact of features is 

explained in two cases: 

XGBoost features: rolling window statistics, which have the 

highest impact on the forecasting, are illustrated in Figure 17. 

As shown in Figure 17, the rolling mean and rolling 

standard deviation (which are taken from previous iterations) 

have the greatest effect on the last forecast. 

XGBoost and weather features: besides XGBoost features, 

weather parameters are added to the model, as shown in Table 

1, which gives more accurate results. The parameters that have 

a higher impact on results are shown in Figure 18. 

Figure 17. Features importance of rolling windows statistics 

in XGBoost 

Figure 18. Combined importance of weather parameters in 

XGBoost 

The figure demonstrates that, alongside weather parameters, 

XGBoost features such as rolling standard deviation and 

rolling minimum play critical roles in forecasting solar 

irradiance. The 'feature force' used in Figures 17-18 refers to 

the internal feature gain metric computed by the XGBoost 

model, rather than SHAP values. While SHAP provides a 

unified measure of feature impact, it was not used in this study. 

Future work will incorporate SHAP-based interpretability and 

structured ablation studies to better isolate the impact of 

individual weather features. 

Unlike XGBoost, these methods lack the capability to 

segment datasets into smaller windows. Due to the inherent 

non-linearity of solar irradiance data, the results will be poor 

compared to the implemented XGBoost, as shown in Figure 

19. 

Figure 19. Comparative forecasting performance of 

XGBoost, LightGBM, and LSTM models 
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Figure 19 clarifies how the XGBoost predicted values are 

closer to the actual data than LightGBM and LSTM, which 

need more training and more computational efforts to have 

better results. 

In summary, XGBoost achieved superior forecasting 

accuracy with an NRMSE of 0.0855, MAE of 273.4, and R² of 

0.93, outperforming both LightGBM and LSTM across 

multiple window sizes. The 2-day window has lowest error 

rates, but its application may risk overfitting and is more 

sensitive to noise. While the findings reinforce the potential of 

small windows for short-term solar prediction, their use in 

long-term or real-time systems demands careful consideration 

of stability, scalability, and regional variability.  

5. PRACTICAL IMPLICATIONS AND 

APPLICATIONS

The finding of this paper has important implications for 

solar energy systems, especially in microgrid management and 

optimization. By showing the impact of window size on the 

performance of XGBoost models, the study provides a 

valuable insight for energy planners and engineering 

personnel. Whereas, selecting the optimal window size as 

shown in Table 1 is vital for the accuracy of solar irradiance 

forecasting along with computational efficiency in the real-

time micro-grid workstation. The larger window size reduces 

computational load, but at the cost of prediction accuracy and 

vice versa. Lastly, the goal is to improve the reliability and 

efficiency of solar power generation, leading to a greater 

integration of renewable energy sources into global energy 

grids. By handling these practical considerations, this study 

contributes to the development of a more robust and dynamic 

solar energy infrastructure.  

The improved performance observed with shorter windows, 

particularly the 2-day configuration, aligns with the highly 

non-stationary nature of solar irradiance patterns. However, 

shorter windows may lead to overfitting, especially when 

seasonality or long-term dependencies are ignored. From a 

practical standpoint, smaller windows require more frequent 

model retraining, increasing computational cost. Moreover, 

their generalization capability across different regions or high-

frequency datasets may be limited, necessitating further 

validation in real-time systems. 

The scope of this study was limited to evaluating the effect 

of rolling window sizes on XGBoost and comparing its 

performance to baseline LightGBM and LSTM models 

implemented with standard configurations. Applying rolling 

window techniques to LightGBM and LSTM, as well as 

conducting formal statistical significance tests such as paired 

t-tests to confirm the observed improvements, were beyond the

scope of this work and are planned as part of future research.

Additionally, future work may incorporate SHAP analysis to

provide more precise and interpretable estimates of feature

contributions, enhancing the understanding of how input

variables influence model predictions. These extensions will

provide a more comprehensive evaluation and strengthen the

conclusions regarding the impact of windowing on different

forecasting models.

6. CONCLUSIONS

Using a smaller window size in the XGBoost method is an 

effective way to improve the forecast results, although it takes 

a longer time; it can be implemented for nonlinear phenomena 

and long-term applications. Adding more weather parameters 

reduces the error range, even if the overall NRMSE is slightly 

larger, making the error smaller. Employing newer gradient 

boosting methods does not guarantee superior performance. 

For instance, LightGBM showed comparatively lower 

accuracy in long-term solar forecasting. With a relatively long 

time. For future work, it is possible to use other machine 

learning methods with XGBoost to build a hybrid model to 

improve the XGBoost model and make the forecast method 

closer to the real data. Building a long-term model for solar 

irradiance faces many challenges, and over-fitting one of them 

may give a faulty prediction, so future work can overcome it 

using statistical and other machine learning methods. Future 

work should also explore applying windowing to other 

models, including statistical significance tests, and adopt 

SHAP analysis to strengthen the interpretability and reliability 

of the results. 
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