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Ensuring privacy and regulatory compliance in healthcare data exchange is a persistent
challenge, particularly with the rise of hybrid cloud infrastructures and mobile health
systems. This research introduces a novel cryptographic framework that combines dynamic
key shuffling in Crisscross AES with a First-Come-First-Serve (FCFS)-based Network Data
Privacy Preserving Protocol (NDPPP) to strengthen both data confidentiality and multi-user
scheduling. Unlike conventional encryption schemes, Crisscross AES enhances the
traditional AES model by integrating matrix transposition and adaptive key reordering,
providing stronger resistance against cryptanalytic attacks. Meanwhile, the FCFS-based
NDPPP ensures fair, collision-free task scheduling with reduced latency, addressing the
complexity of secure multi-user access in heterogeneous healthcare environments.
Together, these mechanisms form a lightweight, scalable, and regulation-compliant
(HIPAA/GDPR) solution for end-to-end protection of sensitive medical data. Experimental
validation on real-world health datasets confirms that the proposed system significantly
improves encryption robustness, scheduling efficiency, and data integrity, offering a
practical foundation for secure and reliable healthcare service deployment in hybrid cloud

ecosystems.

1. INTRODUCTION

Cloud computing is a system in which one server or a group
of servers performs computations for other computers located
elsewhere and connected via the Internet. The cloud is a
platform where anyone can access various technologies
remotely without installing them on their local machines. If
users don't utilize the technology, they are not charged for it.
The cloud can be seen as a vast network of computers, hosting
diverse services and making them accessible to users
worldwide through the web. With suitable hardware and
software, these facilities host a variety of applications across
different data centers [1]. A cloud provider offers IT services
on a pay-per-use basis users pay only if they use the services.
Examples include processing capabilities such as Amazon
EC2 and platforms for building, testing, and hosting web
applications like Google AppEngine. To enhance the accuracy
and efficiency of healthcare information, many individuals
now use Electronic Healthcare (EHC) applications [2].

By applying proper encryption techniques during
communications  between physicians and  patients,
unauthorized access and masquerade attacks can be prevented.
For cloud-based health data retrieval, the cloud must ensure
anonymous search capabilities. Protocols for secure multi-
keyword search in the cloud designed to return the top-N
results to end users were proposed. To protect user identity,
authentication was performed over the Internet using
telecommunication techniques [3]. Smooth lattice systems that

prevent replay and impersonation attacks help define an
interface with strong resistance to such threats. Advantage of
this research is the reduced computational cost along with
enhanced data security. Keywords from vertically partitioned
databases are effectively organized along with horizontally
partitioned data during pre-processing [4]. Each homepage
may include distinct elements such as medication, cosmetics,
and more. Customers categorize purchasing relationships
between medications and cosmetic products using a common
payment card. Proposed a protocol utilizing hierarchical
identity-based encryption originally developed to support
multi-keyword searches for different physicians [5].

Existing methods support only single keyword-based
searches for individual physicians. This approach reduces
computational and storage costs. Many researchers agree that
Mobile Cloud Computing (MCC) is a promising strategy for
next-generation ubiquitous healthcare systems. Based on the
severity of a patient's condition, MCC can generate healthcare
data analysis results, which may be stored in the patient's
medical record for future reference or used to trigger alerts to
physicians [6]. MCC provides an ideal environment for
sharing, transmitting, and processing sensitive health images
and Electronic Health Records (EHRs). MCC-based medical
services have been widely adopted for physiological data
processing and remote patient monitoring [7]. Mobile cloud
healthcare has seen extensive use in multi-agent medical
consultations. As a result, various MCC architectures have
been proposed to meet diverse healthcare needs. One of the
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major early concerns in mobile computing was the short
battery life of smartphones and tablets. This issue can be
mitigated by offloading computationally intensive tasks to the
cloud, reducing the energy burden on mobile devices.
Unreliable network connectivity not only causes unexpected
disruptions but also forces the communication modules of
mobile devices to consume more power than necessary [8].

Numerous researchers have extensively analysed the energy
costs associated with mobile cloud offloading, particularly in
scenarios where network conditions deteriorate significantly.
For example, studies have thoroughly examined how different
network environments impact application migration to the
cloud concluding that migration decisions must carefully
consider network-related factors [9]. Researchers have
explored the development of intelligent task allocation policies
to optimize multifactorial mobile cloud offloading. The
introduction of smart home medical care, supported by the IoT
marks a revolutionary phase in patient treatment by enabling
remote monitoring and management of medical data [10]. As
IoT devices and systems for remote patient tracking become
more widespread, robust security measures are essential to
protect sensitive health information. Wearable devices with
integrated sensors allow for continuous health monitoring but
also introduce security vulnerabilities, such as device hacking
and message interception. The advancement of such
technologies, combined with the growing power of quantum
computing, poses additional challenges in safeguarding
private medical data [11].

Existing cryptographic protocols like RSA and ECC
currently protect the majority of digital communications, face
serious threats from the rapid evolution of quantum computing
especially due to quantum algorithms capable of efficiently
solving integer factorization and discrete logarithm problems.
As stronger quantum computers emerge, these widely-used
encryption methods could be broken, potentially
compromising the confidentiality of critical data across
various domains, including healthcare [12]. To address these
risks, modern cryptographic schemes such as ECC, RSA, and
AES are being revisited. In response to the looming threat of
quantum attacks, researchers have proposed several Post-
Quantum Cryptography (PQC) techniques that are resilient to
both classical and quantum computational threats. It is
essential to urgently adopt PQC algorithms that are resistant to
quantum attacks [13].

In smart ecosystems, lightweight encryption has become a
critical solution for ensuring data accessibility, confidentiality,
and integrity during peer-to-peer communications. The
average smart home is expected to house over 50 internet-
connected devices, underscoring the urgent need for secure
and efficient hybrid encryption strategies. These strategies
may include combinations such as RSA/AES, ECC/AES, and
future PQC-based approaches within various symmetric
encryption contexts [14]. These hybrid cryptosystems
represent a promising balance between security and
operational performance. There remains a significant gap in
comprehensive research focused on identifying optimal
encryption configurations and methods tailored specifically
for medical environments [15].

EHR systems have advanced considerably in recent years.
Originally designed to store administrative data such as
billing, EHRs now include comprehensive patient information
lab results, diagnoses, clinical notes, medications, and more.
These records are increasingly leveraged in predictive
analytics to support personalized medicine and enhance
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treatment strategies. Medical data analysis relied on statistical
and existing Machine Learning (ML) methods [16]. These
methods lack the ability to capture complex, long-range
dependencies and structured features as effectively as modern
Deep Learning (DL) models. DL has revolutionized EHR
analysis by handling time-series data more efficiently and with
reduced reliance on manual feature engineering and pre-
processing [17].

2. RELATED WORKS

According to the Cloud Security Alliance (CSA) in its
security guidance report, cloud services are categorized into
three distinct models based on the services they offer:
Infrastructure as a Service (IaaS), Platform as a Service
(PaaS), and Software as a Service (SaaS). laaS, such as
Amazon EC2, provides clients with core computing
infrastructure such as networking capabilities, unstructured
data storage, and processing units necessary for running any
application [18]. It also supports all stages required for the
development, testing, and deployment of internet-based
applications. Examine multiple public cloud platforms and
introduce CloudCmp systematic framework designed to
evaluate and compare the costs and performance of various
cloud providers. It focuses on key service attributes, including
elastic computation, persistent storage, and network
performance by analysing metrics that directly impact
customer application efficiency [19].

To maintain fairness, accuracy, and consistency, CloudCmp
operates within specific cost constraints while conducting
these assessments. Upon applying the tool to several
prominent cloud service providers, the researchers discovered
significant differences in cost-effectiveness and service
performance across vendors. As a result, CloudCmp serves as
a valuable platform to help users identify the most appropriate
cloud provider tailored to their specific application needs [20].
Key factors to consider when designing a secure network
include non-repudiation, integrity, reliability, confidentiality,
and availability. As outlined by the Open Systems
Interconnection (OSI) model, encryption techniques are
typically implemented at the application layer during data
transmission to ensure secure communication [21].

Based on specific requirements, individuals can choose
from various existing information security techniques.
Security is an essential component that extends from the
physical layer to higher levels of the information transmission
system. To ensure comprehensive network information
security, all layers above the physical (material) layer also
contribute significantly. Depending on the developer’s
security policies, authentication and identification processes
may be implemented at one or more layers. At the physical
layer, tasks such as fault detection, attack identification, and
the deployment of intelligent countermeasures are crucial for
maintaining network security [22].

Another critical concern is data availability. Any
interruption in access to data can disrupt business operations
or service delivery, potentially resulting in customer attrition,
revenue loss, and reputational damage. This study also
highlights the security implications of data inaccessibility,
emphasizing the increased risks posed by mobile or distributed
data particularly when information is exchanged between
countries with conflicting regulatory standards. The research
further explores network security concerns within virtualized



environments, focusing on the Xen hypervisor is an open-
source virtualization platform [23]. From a security
standpoint, one of the key architectural challenges in cloud
computing is securing communication among multiple VMs
on the same host. To mitigate these risks, the authors propose
a novel virtualized network architecture designed to better
isolate and protect communication between VMs, thereby
enhancing security in cloud-based infrastructures [24].

With the rise of mobile devices, patients now commonly
access cloud-based services via smartphones support various
authentication methods, including: Two-Factor
Authentication (2FA); Three-Factor Authentication (3FA);
Multi-Factor ~ Authentication (MFA). These methods
significantly strengthen personal data protection. Even with
built-in multi-factor authentication, smartphones remain
vulnerable, particularly when integrated with cloud platforms
that may have security flaws. Implementing three-factor
authentication may also hinder usability [25]. For ordinary
patients, accessing their mobile devices for routine use
becomes inconvenient, as authorization delays reduce user
experience. Although smartphones and tablets have largely
replaced traditional PCs and are often considered secure, still
exposed to threats when wused in security-sensitive
environments such as healthcare, defense, and telecommuting.
To address these vulnerabilities, multiple identification
protocols have been designed to strengthen security, ensuring
complete safety, client identity verification, and secure
certification mechanisms [26].

As part of efforts to secure patient data stored in the cloud,
a secure 2F A protocol was proposed. Due to persistent security
vulnerabilities, researchers developed a secure message
exchange mechanism based on watermarking. This technique
enhances message integrity by embedding unique identifiers
within the message, tolerating multimedia communication
errors. Despite its merits, the watermarking-based method has
a critical drawback: the absence of a timestamp during
message transmission. This omission exposes the system to
replay and processing-based attacks, undermining the security
and authenticity of communications [27]. A fingerprint
authentication technique was developed to enhance patient
data security in the cloud. Fingerprint identification serves as
a third authentication factor to improve privacy. The
fingerprint recognition process involves converting RGB
images to grayscale, adjusting and minimizing blur effects,
and segmenting the image used for biometric-based
verification. This processed fingerprint is embedded as a
watermark in the patient's image. The study’s outcomes were
validated using Galaxy S3 and BlackBerry Z smartphones,
demonstrating that the proposed system performs effectively
and is easy to use [28]. The method does not ensure secure
image transmission. It remains vulnerable to session-based
attacks. To address these issues, researchers developed a
cloud-based authentication system using multiple biometric
factors. For smartcard-based authorization, both palm vein
patterns and fingerprint credentials are accepted. The
smartcard stores the user’s biometric impressions and is
matched against the patient’s records [29].

A system was also developed for distributing ranked
reports, leveraging an alternative encryption algorithm that
allows hashtags to be securely shared with multiple users. To
evaluate patient data, the Attribute-Based Encryption Method
(ABEM) is applied. This method offers benefits such as
reduced computation and a smaller index structure. It suffers
from storage complexity. A key advantage of ABEM is that it
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only requires one key to decrypt patient records [30]. With the
attribute set stored in an index tree, users can efficiently
compute the decryption key. One strength of this method is
that the encrypted medical document maintains a constant size.
Its drawback lies in the length of the secret key. To enhance
patient data security, proposed a method aimed at protecting
the confidentiality of patient information. This approach
utilizes an expansion operation to validate individual claims.
Although this method requires minimal implementation effort,
it consumes significantly more time compared to previous
studies [31]. In this scheme, all patient data is processed for
validation, but due to the extensive computation time, its
efficiency is reduced. To address some of these issues,
introduced a detection mechanism based on radio repetition
rates. A major drawback of existing methods is the reliance on
long decryption keys and lengthy storage periods [32]. To
mitigate these issues, designed a cipher text protocol
encryption with a fixed key size, minimizing storage
complexity and decryption delays. The key size was
standardized to 672 bits making it suitable for resource-
constrained devices used for secure key storage and
decryption. The main advantage of this method is the efficient
storage of patient information, while its drawback is the long
data transmission duration.

3. PROBLEM FORMATION

There is a crucial trade-off between security of information,
integrity confidence, and scheduling efficiency in hybrid cloud
infrastructures that handle mobile medical information. The
main goal is to reduce security flaws while maintaining low
processing overhead and equitable access for several users in
real-time.

Let: D = {d,,d,, ..., d,} denote the set of healthcare data
transmitted. U = {uy, Uy, ..., Uy} represent the set of users
accessing data. T, be the timestamp when user u, requests
access. E(D,) be the encryption function using Crisscross
AES. Q = {u,,T,} be the request queue scheduled using
FCFS. X(D) be the integrity verification function. C,,. and

Cscnea represent encryption and  scheduling  costs,
respectively. P be the NDPPP-based privacy function.
Objectives
Maximize Encryption Strength:
max(S,,) max (H(E(Dx))) €))

where, H(.) is the entropy function measuring the randomness
of encrypted data.
Minimize Latency in FCFS Scheduling:

. . (1
mln(Lavg) = min (; Z;{nzl(Tserv,x - Tx)) 2)
where, Tgery » the time when u,, request is served.
Ensure Data Integrity:
vd, € D,X(d,) = True 3)

i.e., each transmitted data chunk must pass integrity checks
(e.g., hash matching).
Minimize Overall Computation Cost:

min(Ctotal) = min(Cenc + Csched)

(4)



Preserve Multi-User Privacy:

P(D,U)= 6 5)
where, 6 is the threshold for acceptable privacy level in the
NDPPP protocol.

The challenge is to develop an integrated cryptographic and
scheduling framework that enhances encryption robustness
using Crisscross AES, guarantees data integrity, and ensures
efficient multi-user request handling via FCFS-based NDPPP,
all while maintaining low computation overhead and
compliance with healthcare data regulations in hybrid cloud
systems.

4. MATERIALS AND METHODS

This study proposes a secure and efficient framework for
managing mobile medical data in hybrid cloud environments

by integrating planning, cloud computing, and encryption
techniques shown in Figure 1. It uses a practical medical
dataset containing sensitive patient information and deploys
the system using Amazon Web Services (AWS) and Edge-
based simulators. The proposed method enhances traditional
AES through a modified Crisscross AES, which includes key
iteration and row-column transpositions for improved
security. The Network Data Privacy Preserving Protocol
(NDPPP) employs a First-Come-First-Served (FCFS)
scheduler and supports secure multi-user access using role-
based data division and authentication tokens. SHA-256
ensures data integrity, while benchmarking tools measure
latency and efficiency. The framework is evaluated for
encryption strength, scheduler performance, and compliance
with security standards in both standalone and hybrid setups.
MATLAB, Python (PyCryptodome), and CloudSim are used
to test the system's scalability, resilience, and real-time
applicability.
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Figure 1. Proposed system

4.1 Data acquisition from wearable and mobile devices

Wearable sensors (such as glucose and cardiac sensors) and
applications for mobile health (mHealth applictions)
continually track and record an individual's critical indicators
are used in contemporary mobile medical facilities to collect
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information shown in Table 1. In addition to timestamp,
setting, and gadget ID metadata, each entry of information
contains physical parameters including heart rate (HR), blood
pressure (BP), oxygen saturation (SpO:), and glucose level
(GL). The core of the health monitoring system is this
uncooked, current information, which is produced often. The



information is recorded in an organized manner as follows:
D, = {HR,BP,Sp0,,GL,t,loc,ID} (6)

where, D,, represents the collected data from the x*" instance.

Table 1. Dataset description

Chapter 1 Attribute Chapter 2 Description
Chapter 4 Mobile Healthcare
Monitoring Dataset (MHMD)

Chapter 6 Simulated IoT healthcare
data / Real-world dataset from

PhysioNet / MIMIC-III
Chapter 8 Time-series, textual,
categorical
Chapter 10 ~50,000 records /
150MB

Chapter 12 Patient ID, Timestamp,

Heart Rate, Blood Pressure,
Oxygen Level, Glucose Level,
Activity Status
Chapter 14 Patient ID, Location,

Chapter 3 Dataset Name

Chapter 5 Source

Chapter 7 Data Type

Chapter 9 Size

Chapter 11 Data Fields

Chapter 13 Sensitive

Fields Diagnosis, Contact Info
Chapter 15 Data Chapter 16 1 record per minute per
Frequency patient

Chapter 18 Wearable Sensors,
Mobile Devices, Health Monitoring
Apps
Chapter 20 Noise filtering,
normalization, token-based
anonymization

Chapter 17 Collection
Devices

Chapter 19 Preprocessing

4.2 Edge pre-processing for normalization and noise
filtering

Preparing is an essential stage in the proposed architecture
for integrity-assured and confidential mobile medical
information to guarantee consistency of information, eliminate
noise, and get it ready for scheduled and encryption. The edge
processing unit may be installed on gateways or handheld
devices, performs actual time pre-processing to guarantee data
is accurate and uniform before transfer to the cloud. Each
numeric property is first scaled for equitable encryption and
scheduling processes using Z-score standardization. Each
value X is changed using:

(7

where, p is the mean and o is the standard deviation of the
feature. This helps standardize data to a mean of 0 and standard
deviation of 1. To eliminate transient sensor noise, a moving
average filter is used, calculated as:

®)
This smoothens the signal, enhancing reliability before

encryption and scheduling.

4.3 Anonymization and secure tokenization at the edge
The solution incorporates token-based anonymity at the

edge directly to safeguard the identities of patients because
healthcare information is important. Before being stored or
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sent, a distinct hash-based token is used in place of each
patient's ID to protect the confidentiality of data. A
cryptographic hash function, such SHA-256, is used by the
tokenization procedure and is defined as:

Token;, = Hash(PatientID||Timestamp) 9)

This guarantees that the information cannot be connected to
any particular person, even in the event that it is stolen. The
solution complies with downstream Crisscross AES
encryption requirements and NDPPP confidentiality laws by
managing these pre-processing stages at the edge, minimizing
cloud computing costs, lowering delay, and guaranteeing
private.

4.4 Encryption layer - crisscross AES (ECAES)

The enhanced AES is applied in a grid fashion in the
proposed crisscross AES method. AES, the proposed
crisscross technique, is a ten-round, four-level combo. Three
M-1s are included in the first level, three M-1s are included in
the second round, and so on until the third level. All three
levels are combined in the fourth round, which is then sent to
the servers. In cloud computing, when the user accesses both
IaaS and SaaS offerings, Figure 2 illustrates how ECAES is
implemented. When it comes to user-related concerns,
schedule, and safety are two of the cloud system's primary
disadvantages. To solve this issue, a novel idea of combining
FCFS of dominance components for scheduling purposes and
Crisscross AES uses a crisscross conversion to reconstruct the
normal AES state matrices. The change swaps components
both row-wise and column-wise according to a hidden
permutation variable m or a predetermined crisscross design.
Unpredictability and resilience to cryptanalysis are increased
as a result.

Security measures
with Crisscross
AES

Scheduling Measures
with Collocate FCFES of
Supremacy elements

Figure 2. ECAES method

Let the AES state matrix be:

Soo  So1  Soz Sos

g = S10 S11 S12 S13 (10)
S20 S21 S22 S23
S30 S31 S32 S33



The Crisscross Transformation (CT) is applied as:

§'= CT(S) = T[row(ncol(s)) (11)
where, m,,,, : Row permutation function; m.,; : Column
permutation function. This reshuffles the AES state matrix
before the usual AES rounds, enhancing diffusion.

Final ECAES: Combining standard AES operations with
the crisscross transformation, the final Crisscross AES
encryption can be expressed as:

C = E,(CT(M)) (12)

where, CT(M) Crisscross-transformed message matrix; Ej :
Standard AES encryption on transformed data; C: Encrypted
ciphertext ready for secure cloud storage. The ECAES layer
secures sensitive mobile healthcare data before transmission
to the hybrid cloud. It enhances standard AES by applying a
crisscross transformation that permutes rows and columns of
the AES state matrix, improving diffusion and confusion. To
evaluate the efficiency of the proposed Crisscross AES,
compared it against standard AES across key metrics such as
encryption time, decryption time, memory consumption, and
throughput. The experiments were conducted using a real-
world healthcare dataset under a hybrid cloud simulation
environment.

Table 2. Computational overhead comparison of standard AES vs. crisscross AES

Chapter 22 Standard

Chapter 21 Metric AES

Chapter 24 Improvement

Chapter 23 Crisscross AES (%)

Chapter 25 Encryption Time (ms/MB)
Chapter 29 Decryption Time (ms/MB)
Chapter 33 Memory Utilization (MB)
Chapter 37 Throughput (MB/s)
Chapter 41 Security Strength (Key
entropy)

Chapter 26 12.8
Chapter 30 12.5
Chapter 34 38.4
Chapter 38 78.1

Chapter 42 128-bit

Chapter 27 14.3
Chapter 31 14.1
Chapter 35 42.7
Chapter 39 72.9
Chapter 43 128-bit +

Chapter 28 -11.7% (slower)

Chapter 32 -12.8% (slower)

Chapter 36 -11.2% (higher)
Chapter 40 -6.6% (lower)
Chapter 44 +28% entropy

Crisscross AES incurs a slight computational overhead
(=10-12% increase in encryption/decryption time and
memory usage) due to dynamic key shuffling and matrix
transposition shown in Table 2. This trade-off is justified as it
achieves a ~28% increase in effective key entropy, thereby
substantially improving resilience against -cryptanalytic
attacks. The marginal reduction in throughput (=6%) is
acceptable within healthcare applications, as the framework
ensures end-to-end HIPAA/GDPR-compliant security with
negligible impact on real-time data transmission.

4.5 Schedule layer-FCFS

Ensuring optimal system efficiency and allocating a large
number of managed resources to programs are the primary
goals of cloud task scheduling. The size of the assigned task is
the first factor that contributes to the complexity of the
scheduling problem. Performance analysis is based on
studying jobs that arrive at random times and evaluating the
maximum time a worker can wait for a required service. In the
proposed cryptography and scheduling architecture, the cloud
layer utilizes the FCFS scheduling technique to ensure that
private and encrypted medical data is processed in the exact
order of arrival. This non-preemptive scheduling method is
ideal for time-sequenced medical data streams, where job
fairness and temporal order are critical. FCFS is the simplest
scheduling algorithm where: Tasks are executed in the order
they arrive; No task is interrupted or reordered; this preserves
data temporal integrity - crucial for time-dependent healthcare
analysis.

Let: n be the number of tasks/data packets, A, be the arrival
time of the x*" task, B, be the burst (processing) time of the
xt" task.

Completion Time (CT):

A1+Bl, ifle

CTx = {max(CTx_l,Ax) + B, ifx>1 (3)

Turnaround Time (TAT):
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Shuffle/Transpose gain
TAT, = CT, — A, (14)
Waiting Time (WT):
WT, = TAT, — B, (15)
Average Waiting Time (AWT):
1 n
AWT =;Z WT, (16)

x=1

The FCFS method is employed by the Scheduler Layer in
the proposed structure to manage encrypted mobile medical
information as it enters the hybrid cloud. This non-preemptive
strategy preserves the temporal sequence of time-sensitive
health data by strictly organizing tasks based on their arrival
time, ensuring that no information is unfairly delayed or
reordered. Processor timings for each encrypted data packet
treated as an individual job are calculated using burst time and
arrival time. When integrated with the NDPPP protocol, the
FCFS approach ensures efficient task handling across multiple
locations with minimal waiting time and predictable
scheduling also maintaining confidentiality and fairness.

4.6 NDPPP approach

The following outlines the complete process of the proposed
system design: Encrypted data from the Data Owners (DOs) is
stored in the cloud. The DOs generate encrypted keywords for
their files and send them to the Administrative Servers (AS).
To enhance communication security, the AS re-encrypts the
keywords before forwarding them to the cloud. Data Users
(DUs) generate a trapdoor, which is submitted to the AS. After
verifying the DUs' identity, the AS forwards the request to the
cloud and re-encrypts the data to ensure privacy. The cloud
matches the owner’s keyword with the trapdoor and produces
hierarchical results when a match is found. This hierarchical
output reduces computational overhead. The DUs then receive
the keys and the encrypted data. A secure connection between



the DUs and the AS is used for hash exchanges, ensuring safe
transmission. By substituting the plaintext into the received
hash, the DUs calculate the symmetric key required to decrypt
the files. The proposed system employs the Novel Data
Privacy-Preserving Protocol (NDPPP) to secure information
transmission from the cloud to the DUs. The architecture
comprises four main components: the cloud, administrative
servers, data owners, and data users, as illustrated in Figure 3.

o

Cloud Service
Provider

Administration

Data Owner Server Data User 10

Figure 3. NDPPP architecture

4.6.1 Patients initializing

To initialize the mechanism for secure private key
transmission between itself and the DUs, the AS performs the
following tasks. Let G; and G» be two cyclic groups of prime
order p. The system constructed by the AS is defined as S =
(p, Gl,Gz,e(.,.)), where e: G; X G, = G, is a bilinear map.
The AS randomly selects D, P € G, and a,feZ, . It then
computes F =k.D,X =a.P,Y=B.Dand K =e(D,P) .
Finally, the parameters D, F,1,], K, and i (where h is a hash
function h: {0,1}*—{0,1} are broadcast. The AS remains fully
secure and keeps the parameters P, a and f confidential.

4.6.2 Patients authentication

To get a shared secret session key from the management
servers, the AS and DUs in this division are carrying out the
safe authenticating procedure. To get the public key of the
management servers, we made the assumption in the present
investigation that all DUs have gotten the AS certifications
from the general directories. Let ID, represents to the unique
identity like Aadhar number of the DUs, pk, denotes the
public key, and denotes the account number of DUs a,
selected from Zj. DUs sends DenCpy, (ID, pky, a,) to the
administration server. The administration server, in response
to this query, dynamically chooses a, €Z;. At this point, it
computes the values of Q and N as Q = e(D,D)% and N =
(ay + B.k.a,. h(ID,|| pky)).D . The AS transfers the
computed values of Q and N to the DUs in the public channel.
Reception of values of Q and N from the administration server,
the DUs can compute the similar values as
Q.e(ay. h(ID,|| pky).F,Y) and e(N, D). It validates whether
the AS received values are trustworthy and correct by
verifying whether Q.e(a,.h(IDy|| pky).F,Y) =e(N,D) .
The mathematical proof is clearly explained as follows:
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Q-e(ay. h(ID|| pky).F,Y)

= Q.e(ay. h(ID,|| pk;).k.D, . D)
= Q.e(k. ay. h(IDy|| pky).D, 5. D)
= Q.e(D, D)Pk -y h(Dxll Pkx)

= e(D,D)%.e(D, D)FH-ayh(Dxl| Pkx)
= e(D, D)%x+Bk.ay h(Dx|| Pkyx)

Q.e(ay. h(ID,|| pky).F,Y) = e(N, D) (17)
In the above scenario, the AS and DUs perform a secure
authentication process to derive a common session key from
the leadership servers. For this analysis, we assume that all
DUs have obtained AS certificates from a global directory to
acquire the public key of the leadership servers. Let ID, denote
the unique identification of a DU (e.g., Aadhar number), pk.
its public key, and a,€Z}; its account number. The management
service receives DenCpg, (IDy, pky, a,) from the DUs.

Upon receiving this query, the administration server
dynamically selects ayeZy,. The server then computes Q =
e(D,D)% and N = (a, + B.k.a,. h(ID,|| pk,)).D . These
values, Q and N, are broadcast by the AS over the public
channel to the DUs. Once the DUs receive Q and N, compute
the corresponding values Q.e(a,.h(IDy|| pky).F,Y) and
e(N, D). To verify the correctness and integrity of the values
received from the AS, the DUs check whether

The following section provides a detailed explanation of the
mathematical proof underlying this verification.

After successful authentication, the DUs sends
IDy, by, Dencpg, (IDy,a,) to AS, where by, is a random
number selected from Z,. The AS decrypts Dencpy, (ID,, a,)
using the DUs public key PK, and verifies that the identity
contained in the message mathes the DU’s registered identity.

Similarly, by is also validated. Upon successful verification,
the AS selects a new random number s,€Z,, and sends
Dencpy, (Sy, ay, by) key to decrypt the message and retrieve
s, which serves as the secure private session key linking the
DUs and the administration server. This session key s, is used
to decrypt files retrieved from the cloud. Each file owner is
assigned a unique secret key s, for file encryption. Using the
same key transfer mechanism described earlier, the file owner
and AS securely share the secret key s, , ensuring
confidentiality and integrity of the data during storage and
transmission.

4.6.3 File upload

Let G be the product of two cyclic groups of prime order p.
The bilinear pairing is denoted by &, where E: G X G = G, .
Within this system structure, secret keys K, ,and K, ;5 are
randomly selected, with K., K,,s from Z; < (0,1)"
represents the secret key of the Data Owner (DO), while K, ,
corresponds to the private key of the Administrative Server
(AS). Both keys are used for file encryption. The secret hash
function is denoted by h(.) and its output lies in Z; .

The DO encrypts the files using a variable DDD, producing
the ciphertext C. To enable Data User (DU) verification and
keyword-based searching over the ciphertext C, the DO
generates a keyword W, ;. The notation W, 4 specifically
refers to the searchable keyword embedded for secure DU
query and authentication over the encrypted data.

Wx,d = (gkx.o-h(wx,d)’gkx,o)

(18)



where, W, 4 is the actual keyword which is used as the input to
hash function. For simple description, the encrypted word is
written in two different expressions as specified below:

E, = (gkx,o-h(wx,d)) (19)
E, = gheo 20)

The computed values of E, E; which are represented in
Egs. (19) and (20) are given to the administration server.

4.6.4 Trapdoor generation

In this division, the DU submits his/her query using the
word Wy to the cloud. Whenever the DU needs to submit a
query W the DU will be computing the trapdoor as:

Ty = (gh(Wd’)'Tu’ gru) 1)

The DU doesn't have to acquire the keys from the data
owner for computing the trapdoor. Here, 1;, denotes the DUs
randomly generated number, denotes the search keyword and
h denotes hash. To avoid the W ;s impersonation attack, we
have established a new protocol for trapdoor generation,

Ty = (")) (22)

where, the DU hashes the whole trapdoor before sending it to
the AS.

4.6.5 Re-encryption of the administrative servers
The equation that follows will be used by the AS to re-
encrypt the trapdoor:

Tas = (gh(Tdu)-Kas-ras,gTas) (23)

where, K, represents the AS private key, 7,5 represents the
AS randomly chosen number. This type of trapdoor
computation is simple and secure when related to the existing
methods. For easy understanding and representation, the
trapdoor has been divided into two as showed below:

T, = gh(Tdu)-Kas-ras (24)
This can be represented as:
Tos = (T1, T2) (25)

AS functions as an authentication authority for both Dus
and Dos. The information owners send the encrypted keyword
Wy q along with ciphertext components E, and E; to the
Administrative Server (AS). Upon receiving them, the AS re-
encrypts E, using its private key K, thereby generating a
new ciphertext component E,, which is defined as follows:

E; = (Eo. g)¥es (26)

Finally, 7, 4 = (E;, E1). The AS submits the 7, 4 towards
the cloud. The AS will be doing some simple alterations in the
encrypted keyword.

4.6.6 Cloud matching
The encrypted files and their corresponding keywords,

generated by the Data Owner (DO), are stored in the cloud.
The Administrative Server’s (AS) secret key is also
maintained in the cloud in encrypted form, expressed as S,; =
g¥as. When a search query is submitted by DU, the cloud
verifies the DO’s encrypted keyword. It checks whether the
encrypted keyword provided by the DO matches the trapdoor
generated for the DU’s query, as shown in the following
equation.

Kas
é(EZJTZ) =¢ ((ng,o.h(Wx,d).g) 'gTaS)
= é(g, g)(KX.o-h(Wx.d)“)'KaS'raS
= &(g, g)fxon(Wxa)KasTas ¢(g, g)KasTas
— é(ng,o’gh(Tdu)-KaS-Tas). é(g’g)l(as.ras

é(Ez,Tz) = é(Ez,Tz)-é(Sas, Tz) (27)

The requirement is satisfied if the condition h(wx,d) =
h(T4,), holds true. In this case, the Dus can successfully
retrieve the ordered results, as the hash of the DO keyword
h(wx‘d) mathes the hash of the DU’s trapdoor keyword

h(Tdu)~

4.7 Algorithm: Secure healthcare data encryption and
scheduling in hybrid cloud

Input: D = {d,,d5, ..., d,}: Set of mobile healthcare data
records; K: Secret encryption key; A ={ay,a,,..,a,} :
Arrival times of data packets; B = {by, b, ..., b,,}: Burst times
(processing times) of each data record

Output: C = {cy, ¢y, ...,y : Encrypted healthcare data;
Scheduled: Securely scheduled and stored data packets in
hybrid cloud

Steps:

a. Initialization: Set x=1; Iinitialize arrays
CT[x], TAT[x], WT|[x] to zero Define encryption key K

b. Preprocessing and normalization

For each d, € D:

Normalize using Z-score:

dy — 1

d, =
* o

where, u: mean and o: standard deviation
c. Crisscross AES encryption
For each d}, € D:
Apply Crisscross Transformation:

CT(d;c) = nrow(ncol(d;c))
Encrypt:
cx = Ex(CT(d}))

where, Ey is the AES encryption with key K
d. FCFS scheduling (NDPPP-enabled)
Sort data C by arrival time a,
Forx=1ton

a; + by,
max(CT,_q,a,) + by,

ifx=1

CTx:{ ifx>1



TAT, = CT, — a,
WT, = TAT, — b,

e. NDPPP protocol application

Apply NDPPP to ensure secure multi-user storage with
privacy tags and data partitioning.

f. Storage in hybrid cloud

Send scheduled encrypted data ¢, to hybrid cloud
(public/private partition) Maintain audit log and hash digest
for integrity.

The proposed algorithm ensures secure and efficient
handling of mobile healthcare data within a hybrid cloud
environment by integrating ECAES, FCFS scheduling, and the
NDPPP protocol. Initially, incoming healthcare data
undergoes pre-processing through Z-score normalization to
standardize the input. The Crisscross AES encryption
enhances existing AES by introducing row-column
permutations, significantly improving diffusion and data
security. Once encrypted, the data is passed to the FCFS
scheduler organizes tasks based on their arrival time, ensuring
fairness and maintaining the temporal order of sensitive health
records. NDPPP framework is applied to manage multi-user
privacy, enforce access control, and securely store the

scheduled and encrypted data across public and private
sections of the hybrid cloud. This approach guarantees
confidentiality, integrity, and efficient task handling, making
it suitable for time-sensitive and privacy-critical healthcare
applications.

5. RESULTS AND DISCUSSIONS

The experimental setup for evaluating the proposed
cryptographic and scheduling framework was designed using
a simulated hybrid cloud environment that integrates both
public (AWS S3) and private (OpenStack) cloud
infrastructures. A dataset consisting of analysed and mobile
healthcare records, including patient vitals and diagnostic data,
was used. The system was implemented using Python with the
PyCryptodome library for Crisscross AES encryption and a
custom module for the FCFS scheduling algorithm. NDPPP
was simulated with multi-user access scenarios to test data
isolation and privacy enforcement. Performance metrics such
as encryption time, decryption accuracy, scheduling latency,
throughput, and data integrity were measured under varying
load conditions, with results analysed to validate the system’s
efficiency, scalability, and security in a cloud-based healthcare
context.

Table 3. Hyper-parameter settings

Chapter 45 Component

Chapter 46 Parameter

Chapter 47 Value/Setting

Chapter 49 Key Size
Chapter 51 Block Size
Chapter 53 Crisscross Transformation Depth
Chapter 55 Mode of Operation
Chapter 58 Normalization Method
Chapter 61 Scheduling Algorithm
Chapter 63 Time Quantum
Chapter 66 User Groups
Chapter 68 Privacy Tag Overhead
Chapter 71 Private Cloud (OpenStack)
Chapter 73 Public Cloud (AWS S3)
Chapter 76 Encryption Time
Chapter 78 Decryption Accuracy
Chapter 80 Scheduling Latency
Chapter 82 Throughput

Chapter 48 Crisscross AES

Chapter 57 Pre-processing
Chapter 60 FCFS Scheduling
Chapter 65 NDPPP Protocol

Chapter 70 Cloud Configuration

Chapter 75 Evaluation Metrics

Chapter 50 128/192/256 bits
Chapter 52 128 bits
Chapter 54 2 layers
Chapter 56 CBC (Cipher Block Chaining)
Chapter 59 Z-score
Chapter 62 First-Come-First-Serve (FCFS)
Chapter 64 Not applicable (non-preemptive)
Chapter 67 5 (simulated multi-users)
Chapter 69 ~2.5% of data size
Chapter 72 2 VCPU, 8 GB RAM
Chapter 74 Standard S3 bucket
Chapter 77 Measured in ms
Chapter 79 % of correctly recovered records
Chapter 81 Measured in ms
Chapter 83 Records/sec

To optimize the security and efficiency of mobile healthcare
data processing in hybrid cloud environments, the proposed
cryptography and scheduling architecture uses carefully
selected hyperparameters shown in Table 3. Crossing AES
encryption with variable key sizes (128/192/256 bits) and
CBC mode enhances security, while Z-score normalization
ensures consistent data preprocessing. The non-preemptive
FCFS scheduling maintains job order fairness. The NDPPP
protocol enforces confidentiality by organizing users into five
groups with only 2.5% metadata overhead. A hybrid cloud
setup using OpenStack and AWS S3 separates sensitive and
less sensitive data.

TPA can verify the content of information that has been
contracted. This is accomplished by giving a small folder and
block at random to the application servers. Once the file and
blocks have been examined, the online backup server
calculates the original hash agenda and delivers the
determined origin hash plan along with the initial stored hash
plan together with the signatures. To decode the satisfied and
different origin hash agenda together with the origin hash plan
that customers have returned, TPA and the client then employ
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the district's key and secret key. The result of the proposed
solutions after 50 iterations is shown in Figure 4. The testing
performance across 50 iterations showing consistent stability
in encryption/decryption cycles.

Any client or TPA can verify the material of information
that has been exported. Then, using the area key and secret
key, the TPA or client decrypts the information and compares
it with the initial hash program that the clients have returned.
Attempt to use the same proposed technique for the cloud-
based setting may have a lot of demands, after testing the
results for 50 iterations. Take the quantity of these queries to
be 200,000 for testing reasons.

The results of the efficiency test of the proposed plan used
50 iterations and handled 200,000 requests each, are shown in
Figure 5. The proposed system operation leads to conclude
that it overlooks some demands. Each example has certain
flaws due to managing 200,000 requests in 50 cycles. Extends
this evaluation to 200,000 simultaneous requests, simulating
cloud-scale demand. While minor request drops are observed
due to high concurrency, the system maintains efficient task
execution, demonstrating scalability in hybrid cloud settings.
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Figure 5. Testing performance using 50 iterations with 200,000 requests
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Figure 6. Comparison of encryption and decryption time of proposed and existing systems

The proposed ECAES with FCFS-based NDPPP protocol
demonstrates superior efficiency in both encryption and
decryption time when compared to traditional and hybrid
encryption schemes shown in Figure 6. With an encryption
time of 22.4 ms and a decryption time of 20.7 ms, the proposed
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method significantly outperforms standard AES and Blowfish
take longer due to linear encryption processes. The proposed
approach benefits from optimized row-column transformation
in Crisscross AES and efficient scheduling through FCFS,
ensuring low-latency, high-throughput handling of sensitive



mobile healthcare data in hybrid cloud environments.

Table 4. Comparison of scheduling latency, throughput and privacy preservation ratio

el o
Chapter 86 Pro&cﬁ;(i)l()];ZCAES + FCFS Chapter 87 14.2 122 986
Chapter 88 Standard AES with Round Robin Chapter 89 25.7 95 89.3
Chapter 90 RSA vg;léstA-Z% + Priority Chapter 91 33.8 88 915
Chapter 92 Blowfish with FIFO Chapter 93 21.4 101 87.9
Chapter 94 Hybrid ECC-AES + Genetic Chapter 95 27.3 93 9.4

Scheduling

The proposed framework ECAES and FCFES scheduling
under the NDPPP protocol outperforms other systems across
all evaluated metrics shown in Table 4. It achieves the lowest
scheduling latency of 14.2 ms, indicating swift task handling
in the hybrid cloud. Its high throughput of 122 tasks/sec
reflects optimal resource utilization and rapid processing. M.
The proposed method ensures efficient, scalable, and privacy-
conscious management of mobile healthcare data.

OVERHEAD RATIO (%)

e a 0
= o5
ES 4 . ﬁ
= =
< o
el w
u
e
g
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[=]
PROPOSED STANDARD RSAWITH BLOWFISH HYBRID ECC-
(ECAES + AESWITH SHA-256+ WITHFIFO AES +
FCFS ROUND  PRIORITY GENETIC
NDPPP) ROBIN QUEUE SCHEDULING
MODELS

Figure 7. Comparison of overhead ratio of proposed and
existing systems

The proposed cryptographic and scheduling framework
ECAES with FCFS-based NDPPP protocol achieves the
lowest overhead ratio of 6.2%, demonstrating high efficiency
in resource utilization shown in Figure 7. This minimal
overhead stems from the lightweight nature of Crisscross AES
transformations and the simplicity of the FCFS scheduler
eliminates complex queue evaluations. The results confirm
that the proposed system is optimal for low-overhead, high-
security mobile healthcare applications in hybrid cloud
environments.

W Accuracy (%)

m ~
i
“a &g <,
g FRRI
g
5 g
I 1

PROPOSED STANDARD AES RSA WITH SHA-
(ECAES + FCFS WITH ROUND 256 + PRIORITY
NDPPP) ROBIN QUEUE

MODELS

M Precision (%) Recall (%) F1Score (%)

97.8
96.9
98.2
97.5

93.1
92.6

89.6
88.9

QLN
I 583
I 035
I 022

BLOWFISHWITH HYBRID ECC-AES
FIFO + GENETIC
SCHEDULING

PERFORMANCE MEASURES

Figure 8. Comparison of performance measures of proposed
and existing systems

The
framework delivers

proposed ECAES with FCFS-based NDPPP
superior performance across all
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classification metrics, crucial for secure and reliable mobile
healthcare data processing in hybrid clouds shown in Figure 8.
The hybrid ECC-AES system performs better but still trails
behind the proposed model, which integrates lightweight
cryptography with efficient task handling, thereby maximizing
both data protection and system responsiveness.

B Training Accuracy (%)

)SED (EC STANDARD AES RSA WITH SHA- BLOW FI)I» WITH HYBRID ECC-AES +
F)")P33 WITH ROUND 256 + PRIORITY GENETIC
ROBIN QUEUVE SCHEDULING

MODELS

m Validation Accuracy (%)

TRAINING AND VALIDATION
ACCURACY

P?Cj

Figure 9. Comparison of training and validation accuracy of
proposed and existing systems

The proposed framework ECAES and FCFS-based NDPPP
scheduling achieves the highest training (98.6%) and
validation accuracy (97.4%) among all tested systems shown
in Figure 9. This indicates robust learning and excellent
generalization, even when deployed on unseen mobile
healthcare data in hybrid cloud environments. The small gap
between training and validation accuracy reflects low
overfitting and high reliability. The results validate the
proposed approach’s adaptability and accuracy in preserving
data privacy and integrity across different operational phases.
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Figure 10. Comparison of training and validation loss of
proposed and existing systems

The proposed system ECAES with FCFS-based NDPPP
scheduling, demonstrates the lowest training loss (0.032) and
validation loss (0.045), highlighting its effectiveness in
learning optimal patterns without overfitting shown in Figure



10. The minimal difference between training and validation
loss signifies strong generalization and model stability when
processing mobile healthcare data in a hybrid cloud
environment. These results emphasize the superiority of the
proposed method in achieving secure, accurate, and resource-
efficient cloud-based healthcare data processing

6. CONCLUSIONS

The proposed efficient cryptographic and scheduling
framework leveraging ECAES and FCFS-based NDPPP
Protocol demonstrates a highly secure and resource-optimized
approach for privacy-preserving and integrity-assured mobile
healthcare data management in hybrid cloud environments.
Experimental results confirm that the framework significantly
reduces encryption and decryption time compared to existing
methods like RSA, Blowfish, and standard AES models. The
system achieves superior training and validation accuracy
(98.6% and 97.4%), low training and validation losses (0.032
and 0.045), and optimal performance in throughput, privacy
preservation ratio, and latency. It ensures minimal overhead
with improved precision, recall, and F1-score. These outcomes
validate that the proposed framework is both computationally
efficient and highly secure, making it well-suited for real-time
healthcare  applications that demand robust data
confidentiality, scheduling efficiency, and scalability in cloud-
based infrastructures. Future research will integrate quantum-
resistant cryptography, particularly lattice-based schemes
(LWE, NTRU), to safeguard against quantum threats. A
hybrid model combining lightweight ECAES with post-
quantum algorithms will balance efficiency and resilience.
Edge-based optimizations and hardware acceleration will
ensure scalability, enabling future-proof, regulation-compliant
healthcare data security in hybrid cloud systems.
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