
Efficient Privacy-Preserving mHealth Framework Using Crisscross AES and FCFS-NDPPP 

in Hybrid Cloud 

Mariapragasam Arokia Muthu* , Balasubramaniyam Prakash

Department of Computing Technologies, SRM Institute of Science and Technology, Chennai 603203, India 

Corresponding Author Email: am1669@srmist.edu.in 

Copyright: ©2025 The authors. This article is published by IIETA and is licensed under the CC BY 4.0 license 

(http://creativecommons.org/licenses/by/4.0/).

https://doi.org/10.18280/isi.300811 ABSTRACT 

Received: 13 June 2025 

Revised: 13 August 2025 

Accepted: 24 August 2025 

Available online: 31 August 2025 

Ensuring privacy and regulatory compliance in healthcare data exchange is a persistent 

challenge, particularly with the rise of hybrid cloud infrastructures and mobile health 

systems. This research introduces a novel cryptographic framework that combines dynamic 

key shuffling in Crisscross AES with a First-Come-First-Serve (FCFS)-based Network Data 

Privacy Preserving Protocol (NDPPP) to strengthen both data confidentiality and multi-user 

scheduling. Unlike conventional encryption schemes, Crisscross AES enhances the 

traditional AES model by integrating matrix transposition and adaptive key reordering, 

providing stronger resistance against cryptanalytic attacks. Meanwhile, the FCFS-based 

NDPPP ensures fair, collision-free task scheduling with reduced latency, addressing the 

complexity of secure multi-user access in heterogeneous healthcare environments. 

Together, these mechanisms form a lightweight, scalable, and regulation-compliant 

(HIPAA/GDPR) solution for end-to-end protection of sensitive medical data. Experimental 

validation on real-world health datasets confirms that the proposed system significantly 

improves encryption robustness, scheduling efficiency, and data integrity, offering a 

practical foundation for secure and reliable healthcare service deployment in hybrid cloud 

ecosystems. 
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1. INTRODUCTION

Cloud computing is a system in which one server or a group 

of servers performs computations for other computers located 

elsewhere and connected via the Internet. The cloud is a 

platform where anyone can access various technologies 

remotely without installing them on their local machines. If 

users don't utilize the technology, they are not charged for it. 

The cloud can be seen as a vast network of computers, hosting 

diverse services and making them accessible to users 

worldwide through the web. With suitable hardware and 

software, these facilities host a variety of applications across 

different data centers [1]. A cloud provider offers IT services 

on a pay-per-use basis users pay only if they use the services. 

Examples include processing capabilities such as Amazon 

EC2 and platforms for building, testing, and hosting web 

applications like Google AppEngine. To enhance the accuracy 

and efficiency of healthcare information, many individuals 

now use Electronic Healthcare (EHC) applications [2]. 

By applying proper encryption techniques during 

communications between physicians and patients, 

unauthorized access and masquerade attacks can be prevented. 

For cloud-based health data retrieval, the cloud must ensure 

anonymous search capabilities. Protocols for secure multi-

keyword search in the cloud designed to return the top-N 

results to end users were proposed. To protect user identity, 

authentication was performed over the Internet using 

telecommunication techniques [3]. Smooth lattice systems that 

prevent replay and impersonation attacks help define an 

interface with strong resistance to such threats. Advantage of 

this research is the reduced computational cost along with 

enhanced data security. Keywords from vertically partitioned 

databases are effectively organized along with horizontally 

partitioned data during pre-processing [4]. Each homepage 

may include distinct elements such as medication, cosmetics, 

and more. Customers categorize purchasing relationships 

between medications and cosmetic products using a common 

payment card. Proposed a protocol utilizing hierarchical 

identity-based encryption originally developed to support 

multi-keyword searches for different physicians [5]. 

Existing methods support only single keyword-based 

searches for individual physicians. This approach reduces 

computational and storage costs. Many researchers agree that 

Mobile Cloud Computing (MCC) is a promising strategy for 

next-generation ubiquitous healthcare systems. Based on the 

severity of a patient's condition, MCC can generate healthcare 

data analysis results, which may be stored in the patient's 

medical record for future reference or used to trigger alerts to 

physicians [6]. MCC provides an ideal environment for 

sharing, transmitting, and processing sensitive health images 

and Electronic Health Records (EHRs). MCC-based medical 

services have been widely adopted for physiological data 

processing and remote patient monitoring [7]. Mobile cloud 

healthcare has seen extensive use in multi-agent medical 

consultations. As a result, various MCC architectures have 

been proposed to meet diverse healthcare needs. One of the 
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major early concerns in mobile computing was the short 

battery life of smartphones and tablets. This issue can be 

mitigated by offloading computationally intensive tasks to the 

cloud, reducing the energy burden on mobile devices. 

Unreliable network connectivity not only causes unexpected 

disruptions but also forces the communication modules of 

mobile devices to consume more power than necessary [8]. 

Numerous researchers have extensively analysed the energy 

costs associated with mobile cloud offloading, particularly in 

scenarios where network conditions deteriorate significantly. 

For example, studies have thoroughly examined how different 

network environments impact application migration to the 

cloud concluding that migration decisions must carefully 

consider network-related factors [9]. Researchers have 

explored the development of intelligent task allocation policies 

to optimize multifactorial mobile cloud offloading. The 

introduction of smart home medical care, supported by the IoT 

marks a revolutionary phase in patient treatment by enabling 

remote monitoring and management of medical data [10]. As 

IoT devices and systems for remote patient tracking become 

more widespread, robust security measures are essential to 

protect sensitive health information. Wearable devices with 

integrated sensors allow for continuous health monitoring but 

also introduce security vulnerabilities, such as device hacking 

and message interception. The advancement of such 

technologies, combined with the growing power of quantum 

computing, poses additional challenges in safeguarding 

private medical data [11]. 

Existing cryptographic protocols like RSA and ECC 

currently protect the majority of digital communications, face 

serious threats from the rapid evolution of quantum computing 

especially due to quantum algorithms capable of efficiently 

solving integer factorization and discrete logarithm problems. 

As stronger quantum computers emerge, these widely-used 

encryption methods could be broken, potentially 

compromising the confidentiality of critical data across 

various domains, including healthcare [12]. To address these 

risks, modern cryptographic schemes such as ECC, RSA, and 

AES are being revisited. In response to the looming threat of 

quantum attacks, researchers have proposed several Post-

Quantum Cryptography (PQC) techniques that are resilient to 

both classical and quantum computational threats. It is 

essential to urgently adopt PQC algorithms that are resistant to 

quantum attacks [13].  

In smart ecosystems, lightweight encryption has become a 

critical solution for ensuring data accessibility, confidentiality, 

and integrity during peer-to-peer communications. The 

average smart home is expected to house over 50 internet-

connected devices, underscoring the urgent need for secure 

and efficient hybrid encryption strategies. These strategies 

may include combinations such as RSA/AES, ECC/AES, and 

future PQC-based approaches within various symmetric 

encryption contexts [14]. These hybrid cryptosystems 

represent a promising balance between security and 

operational performance. There remains a significant gap in 

comprehensive research focused on identifying optimal 

encryption configurations and methods tailored specifically 

for medical environments [15]. 

EHR systems have advanced considerably in recent years. 

Originally designed to store administrative data such as 

billing, EHRs now include comprehensive patient information 

lab results, diagnoses, clinical notes, medications, and more. 

These records are increasingly leveraged in predictive 

analytics to support personalized medicine and enhance 

treatment strategies. Medical data analysis relied on statistical 

and existing Machine Learning (ML) methods [16]. These 

methods lack the ability to capture complex, long-range 

dependencies and structured features as effectively as modern 

Deep Learning (DL) models. DL has revolutionized EHR 

analysis by handling time-series data more efficiently and with 

reduced reliance on manual feature engineering and pre-

processing [17].  

 

 

2. RELATED WORKS 
 

According to the Cloud Security Alliance (CSA) in its 

security guidance report, cloud services are categorized into 

three distinct models based on the services they offer: 

Infrastructure as a Service (IaaS), Platform as a Service 

(PaaS), and Software as a Service (SaaS). IaaS, such as 

Amazon EC2, provides clients with core computing 

infrastructure such as networking capabilities, unstructured 

data storage, and processing units necessary for running any 

application [18]. It also supports all stages required for the 

development, testing, and deployment of internet-based 

applications. Examine multiple public cloud platforms and 

introduce CloudCmp systematic framework designed to 

evaluate and compare the costs and performance of various 

cloud providers. It focuses on key service attributes, including 

elastic computation, persistent storage, and network 

performance by analysing metrics that directly impact 

customer application efficiency [19]. 

To maintain fairness, accuracy, and consistency, CloudCmp 

operates within specific cost constraints while conducting 

these assessments. Upon applying the tool to several 

prominent cloud service providers, the researchers discovered 

significant differences in cost-effectiveness and service 

performance across vendors. As a result, CloudCmp serves as 

a valuable platform to help users identify the most appropriate 

cloud provider tailored to their specific application needs [20]. 

Key factors to consider when designing a secure network 

include non-repudiation, integrity, reliability, confidentiality, 

and availability. As outlined by the Open Systems 

Interconnection (OSI) model, encryption techniques are 

typically implemented at the application layer during data 

transmission to ensure secure communication [21]. 

Based on specific requirements, individuals can choose 

from various existing information security techniques. 

Security is an essential component that extends from the 

physical layer to higher levels of the information transmission 

system. To ensure comprehensive network information 

security, all layers above the physical (material) layer also 

contribute significantly. Depending on the developer’s 

security policies, authentication and identification processes 

may be implemented at one or more layers. At the physical 

layer, tasks such as fault detection, attack identification, and 

the deployment of intelligent countermeasures are crucial for 

maintaining network security [22].  

Another critical concern is data availability. Any 

interruption in access to data can disrupt business operations 

or service delivery, potentially resulting in customer attrition, 

revenue loss, and reputational damage. This study also 

highlights the security implications of data inaccessibility, 

emphasizing the increased risks posed by mobile or distributed 

data particularly when information is exchanged between 

countries with conflicting regulatory standards. The research 

further explores network security concerns within virtualized 
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environments, focusing on the Xen hypervisor is an open-

source virtualization platform [23]. From a security 

standpoint, one of the key architectural challenges in cloud 

computing is securing communication among multiple VMs 

on the same host. To mitigate these risks, the authors propose 

a novel virtualized network architecture designed to better 

isolate and protect communication between VMs, thereby 

enhancing security in cloud-based infrastructures [24].  

With the rise of mobile devices, patients now commonly 

access cloud-based services via smartphones support various 

authentication methods, including: Two-Factor 

Authentication (2FA); Three-Factor Authentication (3FA); 

Multi-Factor Authentication (MFA). These methods 

significantly strengthen personal data protection. Even with 

built-in multi-factor authentication, smartphones remain 

vulnerable, particularly when integrated with cloud platforms 

that may have security flaws. Implementing three-factor 

authentication may also hinder usability [25]. For ordinary 

patients, accessing their mobile devices for routine use 

becomes inconvenient, as authorization delays reduce user 

experience. Although smartphones and tablets have largely 

replaced traditional PCs and are often considered secure, still 

exposed to threats when used in security-sensitive 

environments such as healthcare, defense, and telecommuting. 

To address these vulnerabilities, multiple identification 

protocols have been designed to strengthen security, ensuring 

complete safety, client identity verification, and secure 

certification mechanisms [26].  

As part of efforts to secure patient data stored in the cloud, 

a secure 2FA protocol was proposed. Due to persistent security 

vulnerabilities, researchers developed a secure message 

exchange mechanism based on watermarking. This technique 

enhances message integrity by embedding unique identifiers 

within the message, tolerating multimedia communication 

errors. Despite its merits, the watermarking-based method has 

a critical drawback: the absence of a timestamp during 

message transmission. This omission exposes the system to 

replay and processing-based attacks, undermining the security 

and authenticity of communications [27]. A fingerprint 

authentication technique was developed to enhance patient 

data security in the cloud. Fingerprint identification serves as 

a third authentication factor to improve privacy. The 

fingerprint recognition process involves converting RGB 

images to grayscale, adjusting and minimizing blur effects, 

and segmenting the image used for biometric-based 

verification. This processed fingerprint is embedded as a 

watermark in the patient's image. The study’s outcomes were 

validated using Galaxy S3 and BlackBerry Z smartphones, 

demonstrating that the proposed system performs effectively 

and is easy to use [28]. The method does not ensure secure 

image transmission. It remains vulnerable to session-based 

attacks. To address these issues, researchers developed a 

cloud-based authentication system using multiple biometric 

factors. For smartcard-based authorization, both palm vein 

patterns and fingerprint credentials are accepted. The 

smartcard stores the user’s biometric impressions and is 

matched against the patient’s records [29]. 

A system was also developed for distributing ranked 

reports, leveraging an alternative encryption algorithm that 

allows hashtags to be securely shared with multiple users. To 

evaluate patient data, the Attribute-Based Encryption Method 

(ABEM) is applied. This method offers benefits such as 

reduced computation and a smaller index structure. It suffers 

from storage complexity. A key advantage of ABEM is that it 

only requires one key to decrypt patient records [30]. With the 

attribute set stored in an index tree, users can efficiently 

compute the decryption key. One strength of this method is 

that the encrypted medical document maintains a constant size. 

Its drawback lies in the length of the secret key. To enhance 

patient data security, proposed a method aimed at protecting 

the confidentiality of patient information. This approach 

utilizes an expansion operation to validate individual claims. 

Although this method requires minimal implementation effort, 

it consumes significantly more time compared to previous 

studies [31]. In this scheme, all patient data is processed for 

validation, but due to the extensive computation time, its 

efficiency is reduced. To address some of these issues, 

introduced a detection mechanism based on radio repetition 

rates. A major drawback of existing methods is the reliance on 

long decryption keys and lengthy storage periods [32]. To 

mitigate these issues, designed a cipher text protocol 

encryption with a fixed key size, minimizing storage 

complexity and decryption delays. The key size was 

standardized to 672 bits making it suitable for resource-

constrained devices used for secure key storage and 

decryption. The main advantage of this method is the efficient 

storage of patient information, while its drawback is the long 

data transmission duration. 

 

 

3. PROBLEM FORMATION 
 

There is a crucial trade-off between security of information, 

integrity confidence, and scheduling efficiency in hybrid cloud 

infrastructures that handle mobile medical information. The 

main goal is to reduce security flaws while maintaining low 

processing overhead and equitable access for several users in 

real-time. 

Let: 𝐷 = {𝑑1, 𝑑2, … , 𝑑𝑛} denote the set of healthcare data 

transmitted. 𝑈 = {𝑢1, 𝑢2, … , 𝑢𝑚}  represent the set of users 

accessing data. 𝑇𝑥  be the timestamp when user 𝑢𝑥  requests 

access. 𝐸(𝐷𝑥)  be the encryption function using Crisscross 

AES. 𝑄 = {𝑢𝑥, 𝑇𝑥}  be the request queue scheduled using 

FCFS. 𝑋(𝐷) be the integrity verification function. 𝐶𝑒𝑛𝑐  and 

𝐶𝑠𝑐ℎ𝑒𝑑  represent encryption and scheduling costs, 

respectively. 𝑃 be the NDPPP-based privacy function. 

Objectives 

Maximize Encryption Strength: 

 

max(𝑆𝑒𝑛𝑐) max (𝐻(𝐸(𝐷𝑥)))  (1) 

 

where, 𝐻(. ) is the entropy function measuring the randomness 

of encrypted data. 

Minimize Latency in FCFS Scheduling: 

 

min(𝐿𝑎𝑣𝑔) = min (
1

𝑚
∑ (𝑇𝑠𝑒𝑟𝑣,𝑥 − 𝑇𝑥)𝑚

𝑥=1 )  (2) 

 

where, 𝑇𝑠𝑒𝑟𝑣,𝑥 the time when 𝑢𝑥 request is served. 

Ensure Data Integrity: 

 

∀𝑑𝑥 ∈ 𝐷, 𝑋(𝑑𝑥) = 𝑇𝑟𝑢𝑒  (3) 

 

i.e., each transmitted data chunk must pass integrity checks 

(e.g., hash matching).  

Minimize Overall Computation Cost:  

 

min(𝐶𝑡𝑜𝑡𝑎𝑙) = min(𝐶𝑒𝑛𝑐 + 𝐶𝑠𝑐ℎ𝑒𝑑)  (4) 
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Preserve Multi-User Privacy: 
 

𝑃(𝐷, 𝑈) ≥ 𝛿  (5) 
 

where, 𝛿 is the threshold for acceptable privacy level in the 

NDPPP protocol. 

The challenge is to develop an integrated cryptographic and 

scheduling framework that enhances encryption robustness 

using Crisscross AES, guarantees data integrity, and ensures 

efficient multi-user request handling via FCFS-based NDPPP, 

all while maintaining low computation overhead and 

compliance with healthcare data regulations in hybrid cloud 

systems. 
 

 

4. MATERIALS AND METHODS 

 

This study proposes a secure and efficient framework for 

managing mobile medical data in hybrid cloud environments 

by integrating planning, cloud computing, and encryption 

techniques shown in Figure 1. It uses a practical medical 

dataset containing sensitive patient information and deploys 

the system using Amazon Web Services (AWS) and Edge-

based simulators. The proposed method enhances traditional 

AES through a modified Crisscross AES, which includes key 

iteration and row-column transpositions for improved 

security. The Network Data Privacy Preserving Protocol 

(NDPPP) employs a First-Come-First-Served (FCFS) 

scheduler and supports secure multi-user access using role-

based data division and authentication tokens. SHA-256 

ensures data integrity, while benchmarking tools measure 

latency and efficiency. The framework is evaluated for 

encryption strength, scheduler performance, and compliance 

with security standards in both standalone and hybrid setups. 

MATLAB, Python (PyCryptodome), and CloudSim are used 

to test the system's scalability, resilience, and real-time 

applicability. 

 

 
 

Figure 1. Proposed system 

 

4.1 Data acquisition from wearable and mobile devices 

 

Wearable sensors (such as glucose and cardiac sensors) and 

applications for mobile health (mHealth applictions) 

continually track and record an individual's critical indicators 

are used in contemporary mobile medical facilities to collect 

information shown in Table 1. In addition to timestamp, 

setting, and gadget ID metadata, each entry of information 

contains physical parameters including heart rate (HR), blood 

pressure (BP), oxygen saturation (SpO₂), and glucose level 

(GL). The core of the health monitoring system is this 

uncooked, current information, which is produced often. The 
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information is recorded in an organized manner as follows: 

 

𝐷𝑥 = {𝐻𝑅, 𝐵𝑃, 𝑆𝑝𝑂2, 𝐺𝐿, 𝑡, 𝑙𝑜𝑐, 𝐼𝐷} (6) 

 

where, 𝐷𝑥 represents the collected data from the 𝑥𝑡ℎ instance. 

 

Table 1. Dataset description 

 
Chapter 1 Attribute Chapter 2 Description 

Chapter 3 Dataset Name 
Chapter 4 Mobile Healthcare 

Monitoring Dataset (MHMD) 

Chapter 5 Source 

Chapter 6 Simulated IoT healthcare 

data / Real-world dataset from 

PhysioNet / MIMIC-III 

Chapter 7 Data Type 
Chapter 8 Time-series, textual, 

categorical 

Chapter 9 Size 
Chapter 10 ~50,000 records / 

150MB 

Chapter 11 Data Fields 

Chapter 12 Patient ID, Timestamp, 

Heart Rate, Blood Pressure, 

Oxygen Level, Glucose Level, 

Activity Status 

Chapter 13 Sensitive 

Fields 

Chapter 14 Patient ID, Location, 

Diagnosis, Contact Info 

Chapter 15 Data 

Frequency 

Chapter 16 1 record per minute per 

patient 

Chapter 17 Collection 

Devices 

Chapter 18 Wearable Sensors, 

Mobile Devices, Health Monitoring 

Apps 

Chapter 19 Preprocessing 

Chapter 20 Noise filtering, 

normalization, token-based 

anonymization 

 

4.2 Edge pre-processing for normalization and noise 

filtering 

 

Preparing is an essential stage in the proposed architecture 

for integrity-assured and confidential mobile medical 

information to guarantee consistency of information, eliminate 

noise, and get it ready for scheduled and encryption. The edge 

processing unit may be installed on gateways or handheld 

devices, performs actual time pre-processing to guarantee data 

is accurate and uniform before transfer to the cloud. Each 

numeric property is first scaled for equitable encryption and 

scheduling processes using Z-score standardization. Each 

value X is changed using: 

 

𝑍 =
𝐼 − 𝜇

𝜎
 (7) 

 

where, 𝜇 is the mean and 𝜎 is the standard deviation of the 

feature. This helps standardize data to a mean of 0 and standard 

deviation of 1. To eliminate transient sensor noise, a moving 

average filter is used, calculated as: 

 

𝐼𝑡
′ =

1

𝑛
∑ 𝐼𝑥

𝑡

𝑥=𝑡−𝑛+1

 (8) 

 

This smoothens the signal, enhancing reliability before 

encryption and scheduling. 

 

4.3 Anonymization and secure tokenization at the edge 

 

The solution incorporates token-based anonymity at the 

edge directly to safeguard the identities of patients because 

healthcare information is important. Before being stored or 

sent, a distinct hash-based token is used in place of each 

patient's ID to protect the confidentiality of data. A 

cryptographic hash function, such SHA-256, is used by the 

tokenization procedure and is defined as: 

 

𝑇𝑜𝑘𝑒𝑛𝐼𝐷 = 𝐻𝑎𝑠ℎ(𝑃𝑎𝑡𝑖𝑒𝑛𝑡𝐼𝐷||𝑇𝑖𝑚𝑒𝑠𝑡𝑎𝑚𝑝) (9) 

 

This guarantees that the information cannot be connected to 

any particular person, even in the event that it is stolen. The 

solution complies with downstream Crisscross AES 

encryption requirements and NDPPP confidentiality laws by 

managing these pre-processing stages at the edge, minimizing 

cloud computing costs, lowering delay, and guaranteeing 

private. 

 

4.4 Encryption layer - crisscross AES (ECAES) 

 

The enhanced AES is applied in a grid fashion in the 

proposed crisscross AES method. AES, the proposed 

crisscross technique, is a ten-round, four-level combo. Three 

M-1s are included in the first level, three M-1s are included in 

the second round, and so on until the third level. All three 

levels are combined in the fourth round, which is then sent to 

the servers. In cloud computing, when the user accesses both 

IaaS and SaaS offerings, Figure 2 illustrates how ECAES is 

implemented. When it comes to user-related concerns, 

schedule, and safety are two of the cloud system's primary 

disadvantages. To solve this issue, a novel idea of combining 

FCFS of dominance components for scheduling purposes and 

Crisscross AES uses a crisscross conversion to reconstruct the 

normal AES state matrices. The change swaps components 

both row-wise and column-wise according to a hidden 

permutation variable π or a predetermined crisscross design. 

Unpredictability and resilience to cryptanalysis are increased 

as a result. 

 

 
 

Figure 2. ECAES method 

 

Let the AES state matrix be: 

 

𝑆 = [

𝑠00 𝑠01 𝑠02 𝑠03

𝑠10 𝑠11 𝑠12 𝑠13

𝑠20 𝑠21 𝑠22 𝑠23

𝑠30 𝑠31 𝑠32 𝑠33

] (10) 

User  

SaaS 

IaaS 

Scheduling Measures 

with Collocate FCFS of 

Supremacy elements 

Security measures 

with Crisscross 

AES 
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The Crisscross Transformation (CT) is applied as: 

 

𝑆′ = 𝐶𝑇(𝑆) = 𝜋𝑟𝑜𝑤(𝜋𝑐𝑜𝑙(𝑆)) (11) 

 

where, 𝜋𝑟𝑜𝑤 : Row permutation function; 𝜋𝑐𝑜𝑙 : Column 

permutation function. This reshuffles the AES state matrix 

before the usual AES rounds, enhancing diffusion. 

Final ECAES: Combining standard AES operations with 

the crisscross transformation, the final Crisscross AES 

encryption can be expressed as: 

 

𝐶 = 𝐸𝑘(𝐶𝑇(𝑀)) (12) 

where, CT(M) Crisscross-transformed message matrix; 𝐸𝑘 : 

Standard AES encryption on transformed data; 𝐶: Encrypted 

ciphertext ready for secure cloud storage. The ECAES layer 

secures sensitive mobile healthcare data before transmission 

to the hybrid cloud. It enhances standard AES by applying a 

crisscross transformation that permutes rows and columns of 

the AES state matrix, improving diffusion and confusion. To 

evaluate the efficiency of the proposed Crisscross AES, 

compared it against standard AES across key metrics such as 

encryption time, decryption time, memory consumption, and 

throughput. The experiments were conducted using a real-

world healthcare dataset under a hybrid cloud simulation 

environment. 

 

Table 2. Computational overhead comparison of standard AES vs. crisscross AES 

 

Chapter 21 Metric 
Chapter 22 Standard 

AES 
Chapter 23 Crisscross AES 

Chapter 24 Improvement 

(%) 

Chapter 25 Encryption Time (ms/MB) Chapter 26 12.8 Chapter 27 14.3 Chapter 28 -11.7% (slower) 

Chapter 29 Decryption Time (ms/MB) Chapter 30 12.5 Chapter 31 14.1 Chapter 32 -12.8% (slower) 

Chapter 33 Memory Utilization (MB) Chapter 34 38.4 Chapter 35 42.7 Chapter 36 -11.2% (higher) 

Chapter 37 Throughput (MB/s) Chapter 38 78.1 Chapter 39 72.9 Chapter 40 -6.6% (lower) 

Chapter 41 Security Strength (Key 

entropy) 
Chapter 42 128-bit 

Chapter 43 128-bit + 

Shuffle/Transpose 

Chapter 44 +28% entropy 

gain 

Crisscross AES incurs a slight computational overhead 

(≈10–12% increase in encryption/decryption time and 

memory usage) due to dynamic key shuffling and matrix 

transposition shown in Table 2. This trade-off is justified as it 

achieves a ~28% increase in effective key entropy, thereby 

substantially improving resilience against cryptanalytic 

attacks. The marginal reduction in throughput (≈6%) is 

acceptable within healthcare applications, as the framework 

ensures end-to-end HIPAA/GDPR-compliant security with 

negligible impact on real-time data transmission. 

 

4.5 Schedule layer-FCFS 

 

Ensuring optimal system efficiency and allocating a large 

number of managed resources to programs are the primary 

goals of cloud task scheduling. The size of the assigned task is 

the first factor that contributes to the complexity of the 

scheduling problem. Performance analysis is based on 

studying jobs that arrive at random times and evaluating the 

maximum time a worker can wait for a required service. In the 

proposed cryptography and scheduling architecture, the cloud 

layer utilizes the FCFS scheduling technique to ensure that 

private and encrypted medical data is processed in the exact 

order of arrival. This non-preemptive scheduling method is 

ideal for time-sequenced medical data streams, where job 

fairness and temporal order are critical. FCFS is the simplest 

scheduling algorithm where: Tasks are executed in the order 

they arrive; No task is interrupted or reordered; this preserves 

data temporal integrity - crucial for time-dependent healthcare 

analysis.  

Let: 𝑛 be the number of tasks/data packets, 𝐴𝑥 be the arrival 

time of the 𝑥𝑡ℎ task, 𝐵𝑥 be the burst (processing) time of the 

𝑥𝑡ℎ task. 

Completion Time (CT): 

 

𝐶𝑇𝑥 = {
𝐴1 + 𝐵1, 𝑖𝑓 𝑥 = 1

max(𝐶𝑇𝑥−1, 𝐴𝑥) + 𝐵𝑥, 𝑖𝑓 𝑥 > 1
 (13) 

 

Turnaround Time (TAT): 

 

𝑇𝐴𝑇𝑥 = 𝐶𝑇𝑥 − 𝐴𝑥 (14) 

 

Waiting Time (WT):  

 

𝑊𝑇𝑥 = 𝑇𝐴𝑇𝑥 − 𝐵𝑥 (15) 

 

Average Waiting Time (AWT): 

 

𝐴𝑊𝑇 =
1

𝑛
∑ 𝑊𝑇𝑥

𝑛

𝑥=1

 (16) 

 

The FCFS method is employed by the Scheduler Layer in 

the proposed structure to manage encrypted mobile medical 

information as it enters the hybrid cloud. This non-preemptive 

strategy preserves the temporal sequence of time-sensitive 

health data by strictly organizing tasks based on their arrival 

time, ensuring that no information is unfairly delayed or 

reordered. Processor timings for each encrypted data packet 

treated as an individual job are calculated using burst time and 

arrival time. When integrated with the NDPPP protocol, the 

FCFS approach ensures efficient task handling across multiple 

locations with minimal waiting time and predictable 

scheduling also maintaining confidentiality and fairness. 

 

4.6 NDPPP approach 

 

The following outlines the complete process of the proposed 

system design: Encrypted data from the Data Owners (DOs) is 

stored in the cloud. The DOs generate encrypted keywords for 

their files and send them to the Administrative Servers (AS). 

To enhance communication security, the AS re-encrypts the 

keywords before forwarding them to the cloud. Data Users 

(DUs) generate a trapdoor, which is submitted to the AS. After 

verifying the DUs' identity, the AS forwards the request to the 

cloud and re-encrypts the data to ensure privacy. The cloud 

matches the owner’s keyword with the trapdoor and produces 

hierarchical results when a match is found. This hierarchical 

output reduces computational overhead. The DUs then receive 

the keys and the encrypted data. A secure connection between 
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the DUs and the AS is used for hash exchanges, ensuring safe 

transmission. By substituting the plaintext into the received 

hash, the DUs calculate the symmetric key required to decrypt 

the files. The proposed system employs the Novel Data 

Privacy-Preserving Protocol (NDPPP) to secure information 

transmission from the cloud to the DUs. The architecture 

comprises four main components: the cloud, administrative 

servers, data owners, and data users, as illustrated in Figure 3. 

 

 
 

Figure 3. NDPPP architecture 

 

4.6.1 Patients initializing  

To initialize the mechanism for secure private key 

transmission between itself and the DUs, the AS performs the 

following tasks. Let G1 and G2 be two cyclic groups of prime 

order p. The system constructed by the AS is defined as 𝑆 =

( 𝑝, 𝐺1, 𝐺2, 𝑒(. , . )), where 𝑒: 𝐺1 × 𝐺2 → 𝐺2 is a bilinear map. 

The AS randomly selects D, P 𝜖  𝐺1  and 𝛼, 𝛽𝜖𝑍𝑝
∗ . It then 

computes 𝐹 = 𝑘. 𝐷, 𝑋 = 𝛼. 𝑃, 𝑌 = 𝛽. 𝐷 𝑎𝑛𝑑 𝐾 = 𝑒(𝐷, 𝑃) . 

Finally, the parameters 𝐷, 𝐹, 𝐼, 𝐽, 𝐾, and h (where h is a hash 

function h:{0,1}∗→{0,1} are broadcast. The AS remains fully 

secure and keeps the parameters P, α and β confidential. 

 

4.6.2 Patients authentication 

To get a shared secret session key from the management 

servers, the AS and DUs in this division are carrying out the 

safe authenticating procedure. To get the public key of the 

management servers, we made the assumption in the present 

investigation that all DUs have gotten the AS certifications 

from the general directories. Let 𝐼𝐷𝑥 represents to the unique 

identity like Aadhar number of the DUs, 𝑝𝑘𝑥  denotes the 

public key, and denotes the account number of DUs 𝑎𝑥 

selected from 𝑍𝑝
∗ .  DUs sends 𝐷𝑒𝑛𝐶𝑃𝐾𝑎𝑠

(𝐼𝐷𝑥, 𝑝𝑘𝑥, 𝑎𝑥)  to the 

administration server. The administration server, in response 

to this query, dynamically chooses 𝛼𝑦𝜖𝑍𝑝
∗ . At this point, it 

computes the values of Q and N as 𝑄 = 𝑒(𝐷, 𝐷)𝑎𝑥 and 𝑁 =
(𝛼𝑥 + 𝛽. 𝑘. 𝛼𝑥. ℎ(𝐼𝐷𝑥|| 𝑝𝑘𝑥)). 𝐷 . The AS transfers the 

computed values of Q and N to the DUs in the public channel. 

Reception of values of Q and N from the administration server, 

the DUs can compute the similar values as 

𝑄. 𝑒(𝛼𝑦. ℎ(𝐼𝐷𝑥|| 𝑝𝑘𝑥). 𝐹, 𝑌) and 𝑒(𝑁, 𝐷). It validates whether 

the AS received values are trustworthy and correct by 

verifying whether 𝑄. 𝑒(𝛼𝑦. ℎ(𝐼𝐷𝑥|| 𝑝𝑘𝑥). 𝐹, 𝑌) = 𝑒(𝑁, 𝐷) . 

The mathematical proof is clearly explained as follows: 

𝑄. 𝑒(𝛼𝑦. ℎ(𝐼𝐷𝑥|| 𝑝𝑘𝑥). 𝐹, 𝑌)

= 𝑄. 𝑒(𝛼𝑦. ℎ(𝐼𝐷𝑥|| 𝑝𝑘𝑥). 𝑘. 𝐷, 𝛽. 𝐷)

= 𝑄. 𝑒(𝑘. 𝛼𝑦. ℎ(𝐼𝐷𝑥|| 𝑝𝑘𝑥). 𝐷, 𝛽. 𝐷)

= 𝑄. 𝑒(𝐷, 𝐷)𝛽.𝑘.𝛼𝑦.ℎ(𝐼𝐷𝑥|| 𝑝𝑘𝑥)

= 𝑒(𝐷, 𝐷)𝛼𝑦 . 𝑒(𝐷, 𝐷)𝛽.𝑘.𝛼𝑦.ℎ(𝐼𝐷𝑥|| 𝑝𝑘𝑥)

= 𝑒(𝐷, 𝐷)𝛼𝑥+𝛽.𝑘.𝛼𝑦.ℎ(𝐼𝐷𝑥|| 𝑝𝑘𝑥) 

 

𝑄. 𝑒(𝛼𝑦. ℎ(𝐼𝐷𝑥|| 𝑝𝑘𝑥). 𝐹, 𝑌) = 𝑒(𝑁, 𝐷) (17) 

 

In the above scenario, the AS and DUs perform a secure 

authentication process to derive a common session key from 

the leadership servers. For this analysis, we assume that all 

DUs have obtained AS certificates from a global directory to 

acquire the public key of the leadership servers. Let IDx denote 

the unique identification of a DU (e.g., Aadhar number), pkx 

its public key, and ax𝜖𝑍𝑝
∗  its account number. The management 

service receives 𝐷𝑒𝑛𝐶𝑃𝐾𝑎𝑠
(𝐼𝐷𝑥, 𝑝𝑘𝑥, 𝑎𝑥) from the DUs. 

Upon receiving this query, the administration server 

dynamically selects ay𝜖𝑍𝑝
∗ . The server then computes 𝑄 =

𝑒(𝐷, 𝐷)𝑎𝑥 and 𝑁 = (𝛼𝑥 + 𝛽. 𝑘. 𝛼𝑥. ℎ(𝐼𝐷𝑥|| 𝑝𝑘𝑥)). 𝐷 . These 

values, Q and N, are broadcast by the AS over the public 

channel to the DUs. Once the DUs receive Q and N, compute 

the corresponding values 𝑄. 𝑒(𝛼𝑦. ℎ(𝐼𝐷𝑥|| 𝑝𝑘𝑥). 𝐹, 𝑌)  and 

𝑒(𝑁, 𝐷). To verify the correctness and integrity of the values 

received from the AS, the DUs check whether  

The following section provides a detailed explanation of the 

mathematical proof underlying this verification. 

After successful authentication, the DUs sends 

𝐼𝐷𝑥, 𝑏𝑥, 𝐷𝑒𝑛𝑐𝑃𝐾𝑎
(𝐼𝐷𝑥, 𝑎𝑥)  to AS, where 𝑏𝑦  is a random 

number selected from 𝑍𝑝
∗ . The AS decrypts 𝐷𝑒𝑛𝑐𝑃𝐾𝑥

(𝐼𝐷𝑥, 𝑎𝑥) 

using the DUs public key 𝑃𝐾𝑥  and verifies that the identity 

contained in the message mathes the DU’s registered identity.  

Similarly, bx is also validated. Upon successful verification, 

the AS selects a new random number 𝑠𝑦𝜖𝑍𝑝
∗ , and sends 

𝐷𝑒𝑛𝑐𝑃𝐾𝑥
(𝑠𝑥, 𝑎𝑥, 𝑏𝑥) key to decrypt the message and retrieve 

𝑠𝑥  which serves as the secure private session key linking the 

DUs and the administration server. This session key 𝑠𝑥 is used 

to decrypt files retrieved from the cloud. Each file owner is 

assigned a unique secret key 𝑠𝑥 for file encryption. Using the 

same key transfer mechanism described earlier, the file owner 

and AS securely share the secret key 𝑠𝑥 , ensuring 

confidentiality and integrity of the data during storage and 

transmission. 

 

4.6.3 File upload  

Let G be the product of two cyclic groups of prime order p. 

The bilinear pairing is denoted by ê, where Ê: 𝐺 × 𝐺 = 𝐺1 . 

Within this system structure, secret keys 𝐾𝑥,𝑜 and 𝐾𝑥,𝑎𝑠  are 

randomly selected, with 𝐾𝑥,𝑜, 𝐾𝑥,𝑎𝑠  from 𝑍𝑝
+ ← (0,1)∗ 

represents the secret key of the Data Owner (DO), while 𝐾𝑥,𝑜 

corresponds to the private key of the Administrative Server 

(AS). Both keys are used for file encryption. The secret hash 

function is denoted by h(.) and its output lies in 𝑍𝑝
+. 

The DO encrypts the files using a variable DDD, producing 

the ciphertext C. To enable Data User (DU) verification and 

keyword-based searching over the ciphertext C, the DO 

generates a keyword 𝑤̃𝑥,𝑑 . The notation 𝑤̃𝑥,𝑑  specifically 

refers to the searchable keyword embedded for secure DU 

query and authentication over the encrypted data. 

 

𝑤̃𝑥,𝑑 = (𝑔𝑘𝑥,𝑜.ℎ(𝑤𝑥,𝑑), 𝑔𝑘𝑥,𝑜) (18) 
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where, 𝑤̃𝑥,𝑑 is the actual keyword which is used as the input to 

hash function. For simple description, the encrypted word is 

written in two different expressions as specified below: 

 

𝐸0 = (𝑔𝑘𝑥,𝑜.ℎ(𝑤𝑥,𝑑)) (19) 

 

𝐸1 = 𝑔𝑘𝑥,𝑜 (20) 

 

The computed values of 𝐸0, 𝐸1  which are represented in 

Eqs. (19) and (20) are given to the administration server. 

 

4.6.4 Trapdoor generation  

In this division, the DU submits his/her query using the 

word 𝑊𝑑′  to the cloud. Whenever the DU needs to submit a 

query 𝑊𝑑′ the DU will be computing the trapdoor as: 

 

𝑇𝑤𝑑′ = (𝑔ℎ(𝑊
𝑑′).𝑟𝑢 , 𝑔𝑟𝑢)  (21) 

 

The DU doesn't have to acquire the keys from the data 

owner for computing the trapdoor. Here, 𝑟𝑢 denotes the DUs 

randomly generated number, denotes the search keyword and 

h denotes hash. To avoid the 𝑊𝑑′  impersonation attack, we 

have established a new protocol for trapdoor generation,  

 

𝑇𝑑𝑢 = (𝑔ℎ(𝑊
𝑑′))  (22) 

 

where, the DU hashes the whole trapdoor before sending it to 

the AS.  

 

4.6.5 Re-encryption of the administrative servers  

The equation that follows will be used by the AS to re-

encrypt the trapdoor: 

 

𝑇𝑎𝑠 = (𝑔ℎ(𝑇𝑑𝑢).𝐾𝑎𝑠.𝑟𝑎𝑠 , 𝑔𝑟𝑎𝑠)  (23) 

 

where, 𝐾𝑎𝑠 represents the AS private key, 𝑟𝑎𝑠  represents the 

AS randomly chosen number. This type of trapdoor 

computation is simple and secure when related to the existing 

methods. For easy understanding and representation, the 

trapdoor has been divided into two as showed below: 
 

𝑇1 = 𝑔ℎ(𝑇𝑑𝑢).𝐾𝑎𝑠.𝑟𝑎𝑠  (24) 
 

This can be represented as: 
 

𝑇𝑎𝑠 = (𝑇1, 𝑇2) (25) 
 

AS functions as an authentication authority for both Dus 

and Dos. The information owners send the encrypted keyword 

𝑤̃𝑥,𝑑  along with ciphertext components 𝐸0 and 𝐸1  to the 

Administrative Server (AS). Upon receiving them, the AS re-

encrypts 𝐸0  using its private key 𝐾𝑎𝑠 , thereby generating a 

new ciphertext component 𝐸2, which is defined as follows: 

 

𝐸2 = (𝐸0. 𝑔)𝐾𝑎𝑠 (26) 
 

Finally, 𝑟̃𝑥,𝑑 = (𝐸2, 𝐸1). The AS submits the 𝑟̃𝑥,𝑑  towards 

the cloud. The AS will be doing some simple alterations in the 

encrypted keyword. 
 

 

4.6.6 Cloud matching  

The encrypted files and their corresponding keywords, 

generated by the Data Owner (DO), are stored in the cloud. 

The Administrative Server’s (AS) secret key is also 

maintained in the cloud in encrypted form, expressed as 𝑆𝑎𝑠 =
𝑔𝐾𝑎𝑠 . When a search query is submitted by DU, the cloud 

verifies the DO’s encrypted keyword. It checks whether the 

encrypted keyword provided by the DO matches the trapdoor 

generated for the DU’s query, as shown in the following 

equation. 
 

𝑒̂(𝐸2, 𝑇2) = 𝑒̂ ((𝑔𝐾𝑥,𝑜.ℎ(𝑤𝑥,𝑑). 𝑔)
𝐾𝑎𝑠

, 𝑔𝑟𝑎𝑠)

= 𝑒̂(𝑔, 𝑔)(𝐾𝑥,𝑜.ℎ(𝑤𝑥,𝑑)+1).𝐾𝑎𝑠.𝑟𝑎𝑠

= 𝑒̂(𝑔, 𝑔)𝐾𝑥,𝑜.ℎ(𝑤𝑥,𝑑).𝐾𝑎𝑠.𝑟𝑎𝑠 . 𝑒̂(𝑔, 𝑔)𝐾𝑎𝑠.𝑟𝑎𝑠

= 𝑒̂(𝑔𝐾𝑥,𝑜 , 𝑔ℎ(𝑇𝑑𝑢).𝐾𝑎𝑠.𝑟𝑎𝑠). 𝑒̂(𝑔, 𝑔)𝐾𝑎𝑠.𝑟𝑎𝑠 

 

 

𝑒̂(𝐸2, 𝑇2) = 𝑒̂(𝐸2, 𝑇2). 𝑒̂(𝑆𝑎𝑠, 𝑇2) (27) 

 

The requirement is satisfied if the condition ℎ(𝑤𝑥,𝑑) =

ℎ(𝑇𝑑𝑢) , holds true. In this case, the Dus can successfully 

retrieve the ordered results, as the hash of the DO keyword 

ℎ(𝑤𝑥,𝑑)  mathes the hash of the DU’s trapdoor keyword 

ℎ(𝑇𝑑𝑢). 

 

4.7 Algorithm: Secure healthcare data encryption and 

scheduling in hybrid cloud 

 

Input: 𝐷 = {𝑑1, 𝑑2, … , 𝑑𝑛}: Set of mobile healthcare data 

records; K: Secret encryption key; 𝐴 = {𝑎1, 𝑎2, … , 𝑎𝑛} : 

Arrival times of data packets; 𝐵 = {𝑏1, 𝑏2, … , 𝑏𝑛}: Burst times 

(processing times) of each data record 

Output: 𝐶 = {𝑐1, 𝑐2, … , 𝑐𝑛} : Encrypted healthcare data; 

𝑆𝑐ℎ𝑒𝑑𝑢𝑙𝑒𝑑𝐶: Securely scheduled and stored data packets in 

hybrid cloud 

Steps: 

a. Initialization: Set 𝑥 = 1;  initialize arrays 

𝐶𝑇[𝑥], 𝑇𝐴𝑇[𝑥], 𝑊𝑇[𝑥] to zero Define encryption key K 

b. Preprocessing and normalization 

For each 𝑑𝑥 ∈ 𝐷:  

Normalize using Z-score: 

 

𝑑𝑥
′ =

𝑑𝑥 − 𝜇

𝜎
 

 

where, 𝜇: mean and 𝜎: standard deviation 

c. Crisscross AES encryption  

For each 𝑑𝑥
′ ∈ 𝐷:  

Apply Crisscross Transformation:  

 

𝐶𝑇(𝑑𝑥
′ ) = 𝜋𝑟𝑜𝑤(𝜋𝑐𝑜𝑙(𝑑𝑥

′ )) 

 

Encrypt: 

 

𝑐𝑥 = 𝐸𝐾(𝐶𝑇(𝑑𝑥
′ )) 

 

where, 𝐸𝐾 is the AES encryption with key K 

d. FCFS scheduling (NDPPP-enabled)  

Sort data C by arrival time 𝑎𝑥  
For x = 1 to n 

 

𝐶𝑇𝑥 = {
𝑎1 + 𝑏1, 𝑖𝑓 𝑥 = 1

𝑚𝑎𝑥(𝐶𝑇𝑥−1, 𝑎𝑥) + 𝑏𝑥, 𝑖𝑓 𝑥 > 1
 

 

2060



 

𝑇𝐴𝑇𝑥 = 𝐶𝑇𝑥 − 𝑎𝑥 

 

𝑊𝑇𝑥 = 𝑇𝐴𝑇𝑥 − 𝑏𝑥 

 

e. NDPPP protocol application 

Apply NDPPP to ensure secure multi-user storage with 

privacy tags and data partitioning. 

f. Storage in hybrid cloud  

Send scheduled encrypted data 𝑐𝑥  to hybrid cloud 

(public/private partition) Maintain audit log and hash digest 

for integrity. 

The proposed algorithm ensures secure and efficient 

handling of mobile healthcare data within a hybrid cloud 

environment by integrating ECAES, FCFS scheduling, and the 

NDPPP protocol. Initially, incoming healthcare data 

undergoes pre-processing through Z-score normalization to 

standardize the input. The Crisscross AES encryption 

enhances existing AES by introducing row-column 

permutations, significantly improving diffusion and data 

security. Once encrypted, the data is passed to the FCFS 

scheduler organizes tasks based on their arrival time, ensuring 

fairness and maintaining the temporal order of sensitive health 

records. NDPPP framework is applied to manage multi-user 

privacy, enforce access control, and securely store the 

scheduled and encrypted data across public and private 

sections of the hybrid cloud. This approach guarantees 

confidentiality, integrity, and efficient task handling, making 

it suitable for time-sensitive and privacy-critical healthcare 

applications. 
 

 

5. RESULTS AND DISCUSSIONS  
 

The experimental setup for evaluating the proposed 

cryptographic and scheduling framework was designed using 

a simulated hybrid cloud environment that integrates both 

public (AWS S3) and private (OpenStack) cloud 

infrastructures. A dataset consisting of analysed and mobile 

healthcare records, including patient vitals and diagnostic data, 

was used. The system was implemented using Python with the 

PyCryptodome library for Crisscross AES encryption and a 

custom module for the FCFS scheduling algorithm. NDPPP 

was simulated with multi-user access scenarios to test data 

isolation and privacy enforcement. Performance metrics such 

as encryption time, decryption accuracy, scheduling latency, 

throughput, and data integrity were measured under varying 

load conditions, with results analysed to validate the system’s 

efficiency, scalability, and security in a cloud-based healthcare 

context. 

 

Table 3. Hyper-parameter settings 

 
Chapter 45 Component Chapter 46 Parameter Chapter 47 Value/Setting 

Chapter 48 Crisscross AES 

Chapter 49 Key Size Chapter 50 128/192/256 bits 

Chapter 51 Block Size Chapter 52 128 bits 

Chapter 53 Crisscross Transformation Depth Chapter 54 2 layers 

Chapter 55 Mode of Operation Chapter 56 CBC (Cipher Block Chaining) 

Chapter 57 Pre-processing Chapter 58 Normalization Method Chapter 59 Z-score 

Chapter 60 FCFS Scheduling 
Chapter 61 Scheduling Algorithm Chapter 62 First-Come-First-Serve (FCFS) 

Chapter 63 Time Quantum Chapter 64 Not applicable (non-preemptive) 

Chapter 65 NDPPP Protocol 
Chapter 66 User Groups Chapter 67 5 (simulated multi-users) 

Chapter 68 Privacy Tag Overhead Chapter 69 ~2.5% of data size 

Chapter 70 Cloud Configuration 
Chapter 71 Private Cloud (OpenStack) Chapter 72 2 VCPU, 8 GB RAM 

Chapter 73 Public Cloud (AWS S3) Chapter 74 Standard S3 bucket 

Chapter 75 Evaluation Metrics 

Chapter 76 Encryption Time Chapter 77 Measured in ms 

Chapter 78 Decryption Accuracy Chapter 79 % of correctly recovered records 

Chapter 80 Scheduling Latency Chapter 81 Measured in ms 

Chapter 82 Throughput Chapter 83 Records/sec  

To optimize the security and efficiency of mobile healthcare 

data processing in hybrid cloud environments, the proposed 

cryptography and scheduling architecture uses carefully 

selected hyperparameters shown in Table 3. Crossing AES 

encryption with variable key sizes (128/192/256 bits) and 

CBC mode enhances security, while Z-score normalization 

ensures consistent data preprocessing. The non-preemptive 

FCFS scheduling maintains job order fairness. The NDPPP 

protocol enforces confidentiality by organizing users into five 

groups with only 2.5% metadata overhead. A hybrid cloud 

setup using OpenStack and AWS S3 separates sensitive and 

less sensitive data. 

TPA can verify the content of information that has been 

contracted. This is accomplished by giving a small folder and 

block at random to the application servers. Once the file and 

blocks have been examined, the online backup server 

calculates the original hash agenda and delivers the 

determined origin hash plan along with the initial stored hash 

plan together with the signatures. To decode the satisfied and 

different origin hash agenda together with the origin hash plan 

that customers have returned, TPA and the client then employ 

the district's key and secret key. The result of the proposed 

solutions after 50 iterations is shown in Figure 4. The testing 

performance across 50 iterations showing consistent stability 

in encryption/decryption cycles. 

Any client or TPA can verify the material of information 

that has been exported. Then, using the area key and secret 

key, the TPA or client decrypts the information and compares 

it with the initial hash program that the clients have returned. 

Attempt to use the same proposed technique for the cloud-

based setting may have a lot of demands, after testing the 

results for 50 iterations. Take the quantity of these queries to 

be 200,000 for testing reasons. 

The results of the efficiency test of the proposed plan used 

50 iterations and handled 200,000 requests each, are shown in 

Figure 5. The proposed system operation leads to conclude 

that it overlooks some demands. Each example has certain 

flaws due to managing 200,000 requests in 50 cycles. Extends 

this evaluation to 200,000 simultaneous requests, simulating 

cloud-scale demand. While minor request drops are observed 

due to high concurrency, the system maintains efficient task 

execution, demonstrating scalability in hybrid cloud settings. 
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Figure 4. Testing performance using 50 iterations 

 

 
 

Figure 5. Testing performance using 50 iterations with 200,000 requests 

 

 
 

Figure 6. Comparison of encryption and decryption time of proposed and existing systems 

 

The proposed ECAES with FCFS-based NDPPP protocol 

demonstrates superior efficiency in both encryption and 

decryption time when compared to traditional and hybrid 

encryption schemes shown in Figure 6. With an encryption 

time of 22.4 ms and a decryption time of 20.7 ms, the proposed 

method significantly outperforms standard AES and Blowfish 

take longer due to linear encryption processes. The proposed 

approach benefits from optimized row-column transformation 

in Crisscross AES and efficient scheduling through FCFS, 

ensuring low-latency, high-throughput handling of sensitive 
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mobile healthcare data in hybrid cloud environments.  

 

Table 4. Comparison of scheduling latency, throughput and privacy preservation ratio 

 

Chapter 84 System 
Chapter 85 Scheduling 

Latency (ms) 

Throughput 

(Tasks/sec) 

Privacy Preservation 

Ratio (%) 

Chapter 86 Proposed (ECAES + FCFS 

NDPPP) 
Chapter 87 14.2 122 98.6 

Chapter 88 Standard AES with Round Robin Chapter 89 25.7 95 89.3 

Chapter 90 RSA with SHA-256 + Priority 

Queue 
Chapter 91 33.8 88 91.5 

Chapter 92 Blowfish with FIFO Chapter 93 21.4 101 87.9 

Chapter 94 Hybrid ECC-AES + Genetic 

Scheduling 
Chapter 95 27.3 93 92.4 

The proposed framework ECAES and FCFS scheduling 

under the NDPPP protocol outperforms other systems across 

all evaluated metrics shown in Table 4. It achieves the lowest 

scheduling latency of 14.2 ms, indicating swift task handling 

in the hybrid cloud. Its high throughput of 122 tasks/sec 

reflects optimal resource utilization and rapid processing. M. 

The proposed method ensures efficient, scalable, and privacy-

conscious management of mobile healthcare data. 

 

 
 

Figure 7. Comparison of overhead ratio of proposed and 

existing systems 

 

The proposed cryptographic and scheduling framework 

ECAES with FCFS-based NDPPP protocol achieves the 

lowest overhead ratio of 6.2%, demonstrating high efficiency 

in resource utilization shown in Figure 7. This minimal 

overhead stems from the lightweight nature of Crisscross AES 

transformations and the simplicity of the FCFS scheduler 

eliminates complex queue evaluations. The results confirm 

that the proposed system is optimal for low-overhead, high-

security mobile healthcare applications in hybrid cloud 

environments. 

 

 
 

Figure 8. Comparison of performance measures of proposed 

and existing systems 

 

The proposed ECAES with FCFS-based NDPPP 

framework delivers superior performance across all 

classification metrics, crucial for secure and reliable mobile 

healthcare data processing in hybrid clouds shown in Figure 8. 

The hybrid ECC-AES system performs better but still trails 

behind the proposed model, which integrates lightweight 

cryptography with efficient task handling, thereby maximizing 

both data protection and system responsiveness. 

 

 
 

Figure 9. Comparison of training and validation accuracy of 

proposed and existing systems 

 

The proposed framework ECAES and FCFS-based NDPPP 

scheduling achieves the highest training (98.6%) and 

validation accuracy (97.4%) among all tested systems shown 

in Figure 9. This indicates robust learning and excellent 

generalization, even when deployed on unseen mobile 

healthcare data in hybrid cloud environments. The small gap 

between training and validation accuracy reflects low 

overfitting and high reliability. The results validate the 

proposed approach’s adaptability and accuracy in preserving 

data privacy and integrity across different operational phases. 

 

 
 

Figure 10. Comparison of training and validation loss of 

proposed and existing systems 

 

The proposed system ECAES with FCFS-based NDPPP 

scheduling, demonstrates the lowest training loss (0.032) and 

validation loss (0.045), highlighting its effectiveness in 

learning optimal patterns without overfitting shown in Figure 

2063



 

10. The minimal difference between training and validation 

loss signifies strong generalization and model stability when 

processing mobile healthcare data in a hybrid cloud 

environment. These results emphasize the superiority of the 

proposed method in achieving secure, accurate, and resource-

efficient cloud-based healthcare data processing 

 

 

6. CONCLUSIONS 

 

The proposed efficient cryptographic and scheduling 

framework leveraging ECAES and FCFS-based NDPPP 

Protocol demonstrates a highly secure and resource-optimized 

approach for privacy-preserving and integrity-assured mobile 

healthcare data management in hybrid cloud environments. 

Experimental results confirm that the framework significantly 

reduces encryption and decryption time compared to existing 

methods like RSA, Blowfish, and standard AES models. The 

system achieves superior training and validation accuracy 

(98.6% and 97.4%), low training and validation losses (0.032 

and 0.045), and optimal performance in throughput, privacy 

preservation ratio, and latency. It ensures minimal overhead 

with improved precision, recall, and F1-score. These outcomes 

validate that the proposed framework is both computationally 

efficient and highly secure, making it well-suited for real-time 

healthcare applications that demand robust data 

confidentiality, scheduling efficiency, and scalability in cloud-

based infrastructures. Future research will integrate quantum-

resistant cryptography, particularly lattice-based schemes 

(LWE, NTRU), to safeguard against quantum threats. A 

hybrid model combining lightweight ECAES with post-

quantum algorithms will balance efficiency and resilience. 

Edge-based optimizations and hardware acceleration will 

ensure scalability, enabling future-proof, regulation-compliant 

healthcare data security in hybrid cloud systems. 
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