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Large language models (LLMs) exhibit impressive linguistic and reasoning abilities, yet 

they frequently produce outputs that deviate from human intent, especially in ethically 

sensitive or ambiguous contexts. Current alignment methods, such as supervised fine-tuning 

(SFT) and reinforcement learning from human feedback (RLHF), offer partial solutions but 

are limited by high annotation costs and poor generalization to real-world scenarios. This 

paper proposes a scalable hybrid oversight (SHO) framework that combines selective 

human feedback, proxy reward modeling, behavioral auditing, and alignment metrics into 

a closed-loop system for intent fidelity. Our experiments across five datasets including 

truthfulness, ethics, and adversarial prompts demonstrate that SHO outperforms the 

conventional approaches in safety, alignment, and oversight efficiency. This work provides 

a path toward sustainable, high-integrity deployment of LLMs in dynamic environments. 
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1. INTRODUCTION

The fast-growing large language models have put AI into 

widespread use across various industries, including customer 

service, medicine and law. The technological advancement 

resulted in language models, such as the GPT series by 

OpenAI, and Google's Gemini, showing exceptional skill in 

language comprehension and language generation. Within this 

larger deployment of the systems, there are concerns about 

whether these systems reliably reflect human values and 

intentions [1, 2]. 

The major challenge with the systems is that of value 

consistency, which is ensuring these systems function in 

accordance with human intent while minimizing unintended 

harm [3]. Unlike traditional AI built on explicit programming 

rules, LLMs train on vast unrefined substandard datasets, 

which can result into unpredictable and difficult-to-classify 

behaviors [4]. Misalignments are now obvious: biased outputs 

that misrepresent perceptions, made-up claims presented as 

facts, unethical recommendations, and manipulative or 

misleading content [5]. 

As the urgency of these concerns increases, researchers 

have come up with strategies to address the associated risks. 

One key approach is reinforcement learning from human 

feedback (RLHF), a vital process that fine-tunes model 

behavior based on delicate human preferences [6]. 

Additionally, other pioneering methods have proposed rule-

based constraints and "Constitutional AI" techniques to weave 

normative guidance directly into the fabric of these models [7]. 

While these approaches are promising, they contend with 

scalability challenges such as; costly, slow and often 

ambiguous human feedback and the assurance of achieving 

widespread alignment in dynamic, real-world scenarios 

remains elusive [8]. 

This paper addresses the pressing need for scalable 

oversight mechanisms that ensure continued alignment as 

models evolve in capability and complexity. We propose an 

innovative hybrid framework that enhances limited human 

feedback with programmatic proxies, automated auditing, and 

dynamic reward shaping, all designed to safeguard "intent 

fidelity", the crucial alignment of a model's behavior with 

human expectations across a spectrum of tasks. Reviewing 

alignment as a continuous process as against a one-time off 

intervention, provide foundation for sustainable and scalable 

AI alignment strategies. 

Our contributions are significant and multifaceted: (1) We 

define a comprehensive architecture for scalable human-AI 

oversight, (2) we introduce a suite of intent fidelity metrics and 

evaluation tools that rigorously assess behavior, and (3) we 

present empirical evidence of marked improvements over 

traditional RLHF methods across alignment-critical 

benchmarks, paving the way for a future where AI and human 

values resonate in harmony. 

2. LITERATURE REVIEW

The field of alignment of artificial intelligence (AI) systems 

with human values has seen promising progress in recent 

years, which is largely fuel from increasing use of refined 

language models with important moral, social and safety ideas. 

Literature dedicated to this important subject covers diverse 

subfields, including reinforcement learning, supervised 

learning, human-computer interactions, interpretation and AI 
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security, offering unique insight and strategies for each 

effective alignment. 

A major approach in ensuring alignment for large language 

models (LLMs) is known as learning reinforcement from 

human reaction (RLHF). This functioning includes two-step 

training process. Initially, models are fine-tuned on high 

quality supervised data, which have a solid basis for their 

understanding of human language. Subsequently, the models 

undergo additional training through reinforcement learning, a 

reward guided by the model that symbolizes human 

preferences and values. This technique has proved to be 

integral for the development of Instruction and ChatGPT [9], 

which increases the utility and safety of the model output. 

Recognizing its importance, researchers are also addressing its 

challenges, such as the sample disability and dependence on 

the stability of human-related annotation, as well as difficulties 

in normalizing the response to new tasks [6, 10]. 

To further refine the approach, Bai et al. [7] proposed the 

innovative concept of Constitutional AI. This method 

empowers large language models by guiding their training 

with a predefined set of principles or "constitutions". By 

leveraging AI-generated critiques and automated revisions 

instead of solely relying on human preference rankings, this 

approach enhances scalability and lessens the burden on 

human annotators. Although Constitutional AI enriches 

transparency and control over model behavior, there remains 

an opportunity for development in crafting guiding principles 

that can effectively address ethically ambiguous scenarios and 

generalize across different application domains. 

Another promising area of exploration is reward modeling, 

where human judgments are employed to train a reward 

predictor that facilitates the reinforcement learning process 

[8]. This strategy can decrease the level of direct human 

involvement in training loops, while also presenting the 

opportunity to address potential biases in the learned reward 

models that stem from the training data. By recognizing these 

challenges, researchers can focus on strategies to enhance 

oversight scalability, such as utilizing simulators for feedback 

generation [11], active learning methodologies for preference 

elicitation [12], and meta-learning techniques to expedite 

feedback adaptation [13]. 

Interpretability constitutes another vital facet of AI 

alignment, aimed at making the reasoning and decision-

making processes of AI models more transparent and 

comprehensible to human overseers [14]. While 

advancements in this area indirectly strengthen alignment 

efforts by clarifying model behavior, continued efforts to 

develop robust tools specifically for understanding large, 

black-box generative models are essential. Complementary 

research in behavioral auditing, encompassing practices such 

as red teaming, automated safety assessments, and prompt-

based probes, offers substantial contributions by identifying 

alignment failures and thereby laying the groundwork for 

future enhancements [15]. 

In addition, recent initiatives have examined the ability for 

human-AI associate systems that effectively inspect over time 

and among diverse human users. These systems promote the 

feedback loops running between humans and AIs, to redeem 

crowds and domain expertise [16]. To address the remaining 

challenges, such as long-term stability and scalability, 

researchers may consider more flexible systems that 

effectively reduce alignment flows over time [17]. 

Finally, while important achievements have been made 

through approaches such as RLHF, recent approaches also 

require attention. Approaches such as; Constitutional AI 

which integrates standard principles into training, reducing 

human annotation requirements but is faced with challenges in 

generalizing across ambiguous domain. In addition, Self-

correction methods which allow models to repetitively critique 

and revise their own outputs, this improves factuality but often 

relies on the same model biases. Multi-Agent Debate use 

adversarial dialogue between multiple models to surface 

reasoning flaws, however it is resource-intensive and difficult 

to scale. While each contributes valuable insights, none fully 

addresses the scalability and continuous oversight problem. 

This paper aims to contribute to this ongoing dialogue by 

proposing a hybrid oversight model that integrates automated 

feedback mechanisms with minimal human supervision while 

ensuring measurable alignment guarantees. Through these 

efforts, the field moves closer to creating AI systems that are 

not only effective but also aligned with the values and needs 

of human users. 
 

 

3. PROBLEM FORMULATION 

 

Despite impressive performance across a wide array of 

tasks, large language models (LLMs) remain fundamentally 

misaligned with human intent in open-ended, real-world 

settings. Alignment, in this context, refers to the ability of a 

model to generate outputs that are not only syntactically 

correct or contextually relevant, but also ethically sound, 

factually accurate, and consistent with human preferences, 

even when those preferences are underspecified, evolving, or 

situational. 

We define intent fidelity as the degree to which a model’s 

outputs reflect the intended goals and values of a human user, 

across a range of inputs and interaction contexts. High intent 

fidelity means the model not only avoids harm but also 

anticipates nuance, adheres to ethical norms, and respects user 

intent even under ambiguity. Measuring intent fidelity is non-

trivial, as it requires more than static benchmarks, it calls for 

behavioral evaluations that reflect real-world use. 

Formally, let: 

Mθ denote a large language model parameterized by θ, 

x∈X be an input prompt from the space of possible user 

queries, 

y∈Y be the corresponding model output, 

H be the (latent) human intent function that maps inputs to 

desirable outputs or behaviors. 

Then, alignment can be modeled as minimizing the 

divergence between Mθ(x) and H(x) for all x∈X, under a 

distribution D of real-world inputs: 

 

min
θ

Ex~D[L(Mθ (x), H(x))] (1) 

 

where, L is a loss function that captures semantic, ethical, and 

contextual alignment. 

However, the true human intent function H(x) is 

unobservable and dynamic, which makes direct supervision 

infeasible. In practice, developers rely on proxy signals such 

as human preference rankings, prewritten rules, or heuristic 

filters. These proxies are often: sparse (available only for a 

small subset of inputs), noisy (contain inconsistencies or 

contradictions), and non-stationary (change over time or 

between users). 

A core challenge is that human oversight does not scale 

linearly with model capacity or deployment breadth. As 
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models are integrated into diverse applications such as legal 

drafting, medical support, education, governance, the 

spectrum of inputs grows, and so do the risks. Existing 

alignment techniques such as RLHF or supervised fine-tuning 

are resource-intensive, requiring thousands of human 

annotations, and yet they fail to generalize to novel edge cases 

[17, 18]. 

Moreover, as LLMs grow in size and expressive power, 

they develop instrumental goals, emergent behaviors that 

optimize proxy objectives in ways misaligned with actual 

intent [19, 20]. This phenomenon, known as reward hacking, 

can lead to subtle but dangerous failure modes that evade 

conventional filters or benchmarks. To address these 

challenges, we seek to: 

(1) Formalize intent fidelity as a measurable alignment goal. 

(2) Develop a scalable oversight framework that reduces 

dependence on exhaustive human feedback. 

(3) Introduce hybrid alignment techniques that combine 

human oversight with programmatic proxies, automated 

audits, and behavioral diagnostics. 

By framing alignment as an ongoing control problem rather 

than a one-time optimization, we aim to enable long-term safe 

deployment of LLMs in complex environments. 

 

 

4. PROPOSED FRAMEWORK 

 

To address the limitations of current alignment methods-

particularly their lack of scalability and brittleness in dynamic 

contexts-we propose a hybrid oversight framework designed 

to maintain intent fidelity across diverse input spaces and 

deployment settings. Our approach integrates limited human 

supervision with automated mechanisms that can generalize 

feedback, audit behavior, and adaptively guide the model’s 

outputs. The framework as presented in Figure 1 is modular 

and consists of four key components: Human feedback layer; 

proxy reward modeling; behavioral auditing & monitoring; 

and intent fidelity metrics. 

 

 
 

Figure 1. Scalable oversight for aligning large language 

models framework 
 

(1) Human Feedback Layer (Selective & Active): This layer 

grounds the system in real human judgments but avoids 

scaling linearly with model usage. Unlike traditional RLHF 

pipelines that require exhaustive human comparisons, we use 

selective, high-leverage feedback strategies: 

•Active Querying: The model actively identifies uncertain 

or ambiguous prompts and routes them for human evaluation 

using uncertainty estimation or disagreement heuristics. 

•Sparse Annotation Injection: Human preferences are only 

collected for edge cases or high-risk domains (e.g., medical, 

legal), reducing annotation overhead. 

•Multi-turn Dialogue Feedback: Instead of rating single 

outputs, annotators provide interaction-level feedback, better 

reflecting user goals over extended tasks. 

(2) Proxy Reward Modeling: We train a learned reward 

model Rϕ to approximate human intent using both explicit 

feedback and proxy signals, such as output consistency with 

verified knowledge bases, adherence to ethical or legal rule 

sets e.g., safety filters, user behavior patterns e.g., re-prompts, 

corrections. The reward model is updated continuously using 

off-policy corrections and counterfactual reasoning, enabling 

generalization to novel inputs without requiring additional 

human input. To further improve proxy reliability, we apply 

causal analysis to distinguish intent from correlation and 

incorporate natural language rationales into the reward model 

to better align with human reasoning patterns. 

(3) Behavioral Auditing & Monitoring: Instead of relying 

solely on reward-based optimization, we incorporate 

continuous behavioral auditing. This includes:  

•Red Teaming: Simulated adversarial attacks that test model 

robustness under intentionally provocative prompts. 

•Auto-evaluation Tools: Prompt-based test suites e.g., 

TruthfulQA, ETHICS are run periodically to detect 

regressions. 

•Latent Space Monitoring: Using dimensionality reduction 

and clustering to detect behavioral drift or outlier responses in 

latent representation space. 

The auditing feedback feeds back into both the reward 

model and human supervision queues. 

(4) Intent Fidelity Metrics: To meaningfully assess whether 

a language model is aligned with human intent, we introduce 

a set of intent fidelity metric, quantitative indicators that 

evaluate how closely a model’s output reflects the desired 

behavior under varying conditions. These metrics extend 

beyond traditional accuracy or reward values to capture ethical 

coherence, semantic alignment, and behavioral consistency. 

Our metrics are designed to meet four criteria: Task-agnostic 

(applicable across different domains and prompt types); 

Interpretable clearly indicate alignment strengths and failure 

modes); Robust (capture misalignment even in edge cases or 

adversarial settings) and Automatable (suitable for large-scale 

evaluation without constant human intervention). The core 

metrics include: 

•Semantic Concordance (SC) measures the semantic 

similarity between the model’s response and an aligned 

reference response (typically derived from human feedback or 

curated gold standards). It uses embeddings (e.g., BERTScore, 

cosine similarity in sentence transformers) to evaluate textual 

similarity. It is used to evaluate whether the model’s output 

preserves core intent even with paraphrased or stylistically 

varied responses. The scale ranges from 0 (no alignment) to 1 

(perfect semantic match). 

•Value Alignment Score (VAS) assesses whether the 

model’s response reflects human value judgments, particularly 

in ethically sensitive or socially charged scenarios. It trained 

classifiers detect alignment with normative ethical principles 

(e.g., safety, fairness, truthfulness). Optionally validated with 

human raters. It is applied to outputs from datasets like 

ETHICS, RealToxicityPrompts, or moral dilemmas. The scale 

ranges from 0 to 100, percentage of outputs rated as value-

aligned. 
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•Behavioral Consistency Index (BCI) measures how 

consistently the model behaves under prompt perturbations, 

such as paraphrasing, negation, or multi-turn reformulations. 

It prompts are systematically varied and the outputs are 

checked for logical, ethical, or factual consistency across 

variations. It highlights hidden instabilities or alignment 

brittleness. The percentage of prompt-response pairs where the 

model’s behavior remains consistent. 

•Safe Response Rate (SRR) quantifies how often the model 

avoids unsafe, biased, or toxic outputs across a range of 

prompts. It combines automatic classifiers (toxicity, hate 

speech, misinformation filters) with red team test prompts. It 

is applied in both open-domain dialogue and domain-specific 

(e.g., healthcare) contexts. The scale ranges from 0 to 100%, 

based on compliance with safety and ethical standards. 

•Correction Responsiveness (CR) (Optional, deployment-

dependent) assesses whether the model can recognize and 

correct misaligned outputs when provided with user feedback 

or follow-up clarification. It evaluates multi-turn interactions 

where the user pushes back or corrects the model. Measures 

the model’s ability to adapt. It is relevant for deployed chatbots 

or interactive systems. It uses binary or percentage of correct 

behavior adjustments. 

These metrics are used both during training (e.g., for reward 

model updates) and post-deployment (e.g., for live behavioral 

monitoring). Together, they enable a holistic assessment of 

intent fidelity across linguistic, ethical, and interactive 

dimensions. 

(5) Integration & Feedback Loops: The architecture 

supports closed-loop training: Human feedback trains the 

reward model; the reward model fine-tunes the base model; 

behavioral audits evaluate both models; detected failures feed 

back into human oversight. This enables a scalable oversight 

loop where high-risk or novel behavior is prioritized for 

correction, while routine or safe behavior is managed 

autonomously. 

The flow of control and inter-module interactions amongst 

these components are define as follows: 

Human Feedback Layer → Reward Modeling: Selective 

annotations are injected into the reward model training 

pipeline. Human corrections are logged as gold-standard 

references and used to recalibrate proxy signals. 

Reward Modeling → Model Outputs: The trained reward 

model produces dense reward signals to fine-tune the base 

LLM, improving generalization to unseen prompts. 

Model Outputs → Behavioral Auditing: Generated 

responses are continuously subjected to red teaming, latent 

drift analysis, and automated audits. Failures trigger routing to 

the human oversight queue. 

Auditing → Intent Fidelity Metrics: Audit results are scored 

using SC, VAS, BCI, SRR, and CR, producing both diagnostic 

reports and updates to the Composite Intent Fidelity Score 

(IFS). 

Metrics → Oversight Feedback: Low-fidelity cases (e.g., 

low SC or VAS, unstable BCI) are flagged and returned to the 

human feedback layer for correction, closing the loop. 

In a nutshell, SHO works as a tiered feedback system: 

human feedback seeds proxy reward modeling, auditing 

stress-tests model behavior, intent fidelity metrics quantify 

alignment, and all failure cases are routed back for selective 

human review. Figure 2 shows the flow as a closed-loop 

architecture, with explicit data and control pathways between 

modules. 

Our framework avoids reliance on dense human feedback 

by combining automated generalization mechanisms with 

human-in-the-loop correction and continuous auditing. It 

treats alignment as a dynamic process, one that evolves as 

models, inputs, and use cases change. 

 

 
 

Figure 2. Scalable hybrid oversight 

 

4.1 Formalization of intent fidelity 

 

Formalization of the operationalization protocol of intent 

fidelity involving three stages was done. This protocol stages 

are: 

•Reference Generalization: aligned reference responses are 

generated using human annotations, organized gold-standard 

datasets or standard rule-sets for each task or dataset. These 

influence the subsequent evaluations. 

•Model Ensemble Evaluation: Model outputs are evaluated 

across corresponding dimensions. 

•Semantic Concordance (SC): Calculated with sentence-

transformer embeddings (e.g., SBERT), where cosine 

comparison ≥ 0.85 denotes high fidelity. 

•Value Alignment Score (VAS): Figured out using 

classifiers fine-tuned on ETHICS and Real Toxicity Prompts 

datasets, reported as the percentage of outputs flagged as 

value-aligned. 

•Behavioral Consistency Index (BCI): Verified by applying 

automated prompt perturbations (e.g., paraphrasing, negation) 

and measuring agreement across outputs. 

•Safe Response Rate (SRR): Evaluated with automated 

detectors for harmfulness, bias, and misinformation. 

•Correction Responsiveness (CR): In interactive settings, 

measured by comparing post-correction responses with gold-

standard corrections. 

•Composite Intent Fidelity Score (IFS): The above 

dimensions were combined into a single score using a 

weighted formulation: 

 

𝐼𝐹𝑆 = 𝑤1 ⋅ 𝑆𝐶 + 𝑤2 ⋅ 𝑉𝐴𝑆 + 𝑤3 ⋅ 𝐵𝐶𝐼 + 𝑤4 ⋅ 𝑆𝑅𝑅
+ 𝑤5 ⋅ 𝐶𝑅 

(2) 

 

where, weights (wi) are normalized and adjustable depending 

on domain priorities. 

This structured framework converts intent fidelity from a 

conceptual goal into a standardized, computationally testable 

benchmark. It facilitates constant evaluation across datasets, 

models, and deployment contexts, while also supporting cross-

study comparability. 
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5. EXPERIMENTAL SETUP 
 

To validate the effectiveness of our proposed scalable 

oversight framework, we conducted a series of experiments 

designed to measure improvements in intent fidelity, 

robustness, and generalization compared to baseline alignment 

methods. Our evaluation focuses on practical, real-world 

alignment challenges faced by large language models. 

(1) Model and Training Baselines. We use a 6.7B-parameter 

transformer-based language model pretrained on a mixture of 

publicly available text corpora. Fine-tuning is performed using 

three different alignment strategies: 

•Baseline A: Supervised Fine-Tuning (SFT) - The model is 

fine-tuned on a curated instruction-following dataset using 

supervised learning. 

•Baseline B: Reinforcement Learning from Human 

Feedback (RLHF) - We implement standard RLHF by training 

a reward model from human preferences, then applying 

Proximal Policy Optimization (PPO). 

•Proposed: Scalable Hybrid Oversight (SHO) - Our method, 

incorporating selective human feedback, proxy reward 

modeling, behavioral auditing, and intent fidelity metrics. 

Each variant is fine-tuned for 3 epochs on the same 

instruction-following task distribution to ensure 

comparability. 

(2) Datasets. We evaluate alignment across five datasets 

spanning different risk and intent sensitivity levels: 

•TruthfulQA measures factual consistency and resistance to 

misinformation. 

•Anthropic HH-RLHF Dataset contains prompts rated for 

helpfulness and harmlessness. 

•Ethics Natural Language Inference (ETHICS) tests ethical 

reasoning in moral dilemmas. 

•RealToxicityPrompts assesses model robustness to toxic 

prompt injection. 

•Custom Adversarial Prompts designed by red teamers to 

probe edge cases, contradictions, and manipulative phrasing. 

We split datasets into in-distribution (ID) and out-of-

distribution (OOD) sets to test generalization. 

(3) Evaluation Protocol: Intent fidelity was operationalized 

through the unified three- stage protocol framework described 

in the Proposed Framework Section. The intent Fidelity 

Metrics. 

•Reference responses: These were generated from gold-

standard annotation and the standard rule sets for each dataset. 

•Outputs were recorded using the ensemble metrics: 

Semantic Concordance (SC), Value Alignment Score (VAS), 

Behavioral Consistency Index (BCI), Safe Response Rate 

(SRR), and Correction Responsiveness (CR). 

•These were aggregated into a Composite Intent Fidelity 

Score (IFS). 

 

𝐼𝐹𝑆 = 𝑤1 ⋅ 𝑆𝐶 + 𝑤2 ⋅ 𝑉𝐴𝑆 + 𝑤3 ⋅ 𝐵𝐶𝐼 + 𝑤4 ⋅ 𝑆𝑅𝑅
+ 𝑤5 ⋅ 𝐶𝑅 

(3) 

 

where, normalized weights were tuned per context. For 

example, SRR and VAS were emphasized in ethically 

sensitive tasks, while SC carried more weight in factual QA 

tasks 

In addition to IFS the following metrics were used to 

evaluate performance: 

•Helpful-Harmless Tradeoff: Percentage of outputs that are 

rated both helpful (task-completing) and harmless (non-toxic, 

unbiased). 

•Generalization Gap (GG): Performance drop between ID 

and OOD sets, indicating brittleness. 

•Oversight Efficiency (OE): Human feedback required per 

percentage improvement in alignment. 

(4) Red Teaming and Auditing Protocol. Systematic red 

teaming based on a structured taxonomy of adversarial 

prompts was carried out using the following metrics to 

evaluate robustness; 

•Factual contradiction Prompts: These are queries 

containing misleading or false premises. 

•Ethical Paradox prompts: These are dilemmas or 

conflicting value scenarios. 

•Toxicity Injection Prompts: These are prompts laced with 

insults, and provocative language. 

•Manipulative or Leading Prompts: These are questions 

framed to evoke agreement with harmful assumptions. 

•Multi-turn Drift Tests: these are extended dialogues where 

adversarial framing is progressively presented across turns. 

1200 red team prompts were generated through manual 

expert curation, automatic paraphrasing and negation scripts, 

and LM-assisted adversarial generation using targeted 

heuristics. The responses were scored along four failure 

categories: factual error, ethical violation, unsafe or toxic 

output, and inconsistency across turns. The SC, VAS, BCI and 

SRR were quantitatively measured to determine the failure 

extent. The behavioral inconsistencies or failures were 

qualitatively flagged and routed back into feedback loop. 

(5) Implementation Details. The training was conducted on 

8×A100 GPUs with mixed precision (FP16). The human 

feedback was collected via expert annotators using a custom 

interface with real-time ranking and commenting. The reward 

models were trained with a batch size of 128.  

Proxy Reward Model Training: The reward model is based 

on a RoBERTa-large encoder with a regression head that maps 

pooled embeddings to scalar reward values in the range [-1,1]. 

It was trained on three categories of data:  

•Human-Annotated Preferences: To anchor the reward 

model to human judgments of helpfulness and harmlessness, 

pairwise comparisons from the Anthropic HH dataset were 

employed. 

•Factual Consistency Data: Outputs classified from curated 

knowledge bases such as Wikipedia generated positive signals 

while outputs classified from imaginary bases negative 

signals.  

•Ethical and Safety Data: Prompts and responses from 

ETHICS and Real Toxicity Prompts were employed to 

standardize value alignment, with safe or non-toxic outputs 

labeled as positive. 

In order to improve robustness and reduce bias, three 

strategies employed are: 

•Balanced Sampling: This ensured comparative 

representations across domains and risk categories. 

•Counterfactual Augmentation: This generates paraphrases 

and preference data negations to break false correlations. 

•Fairness Regularization: This adds penalty terms during 

training when the model’s predictions aligned with 

demographic attributes detected by toxicity classifiers. 

The reward model was optimized using Adam optimizer 

and early stopping based on validation IFS. 

All experiments repeated across 3 random seeds to assess 

stability. This setup ensures rigorous, multi-angle evaluation 

of our scalable oversight framework, providing insight into its 

practical viability for real-world deployment. The design 

ensures that intent fidelity is measured as a replicable 
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computational benchmark. 

 

 

6. RESULTS AND ANALYSIS 

This section presents quantitative and qualitative results 

comparing our scalable hybrid oversight (SHO) method 

against two baseline alignment strategies: supervised fine-

tuning (SFT) and reinforcement learning from human 

feedback (RLHF). We evaluate across key alignment 

benchmarks, assess generalization, and analyze oversight 

efficiency and behavioral robustness. 

 

6.1 Quantitative result 

 

Composite Intent Fidelity Score (IFS): SHO outperformed 

the two baselines, consistently, it achieved IFS of 89.3 while 

RLHF and SFT achieved 82.6 and 71.2 respectively. This 

shows stronger overall alignment with human intent, 

particularly in ambiguous and multi-turn prompt. This is 

shown in Figure 3. The make-up of the Intent Fidelity Metrics 

showing the results of each sub-metric is shown in Table 1. 

 

 
 

Figure 3. Intent fidelity score by method 

 

Table 1. Sub-metric contributions to intent fidelity score 

 

Method 
Semantic 

Concordance (SC↑) 

Value Alignment 

Score (VAS↑) 

Behavioral 

Consistency Index 

(BCI↑) 

Safe Response 

Rate (SRR↑) 

Correction 

Responsiveness (CR↓) 

IFS 

(↑) 

SFT 68.4 62.7 59.8 85.3 47.1 1.00 

RLHF 79.6 77.4 72.1 92.1 65.9 0.64 

SHO 

(Ours) 
86.9 85.8 83.5 96.5 74.0 1.78 

SHO proved improvements over all sub-metrics with the 

most noticeable gains in behavioural consistency and value 

alignment, this reflects its ability to generalize ethical 

reasoning and maintain stable outputs under prompts.  

Also on the additional metrics other than the IFS sub-

metrics, SHO showed improvements. This is shown in Table 

2. 

Table 2. Additional metrics to measure SHO 

 

Method 

Helpful-

Harmless 

Rate (↑) 

Generalization 

Gap (↓) 

Oversight 

Efficiency (↑) 

SFT 64.5 17.4 1.00 

RLHF 78.9 12.1 0.64 

SHO 

(Ours) 
86.7 5.8 1.78 

 

Table 3. Per-dataset performance 

 
Dataset SFT RLHF SHO (Ours) 

TruthfulQA 64.1 77.5 85.6 

Anthropic HH-RLHF 70.4 85.3 91.2 

ETHICS (NLI) 68.7 79.9 88.3 

RealToxicityPrompts 89.3 94.1 98.0 

Custom adversarial 52.2 66.7 80.4 

 

Helpful-Harmless Tradeoff: SHO achieved 86.7%, while 

RLHF and SFT achieved 78.9% and 64.5% respectively, 

indicating that task performance did not come at the expense 

of safety. 

Generalization Gap: SHO demonstrated the smallest drop 

between in-distribution and out-of-distribution datasets 

(5.8%), as against 12.1% (RLHF) and 17.4% (SFT), showing 

stronger robustness. 

Oversight Efficiency: SHO required significantly less 

human input per point of alignment improvement, with an 

efficiency ratio of 1.78 versus 0.64 for RLHF and 1.00 for 

SFT. 

Dataset-Level Performance: As seen in Table 3, Figures 4 

and 5, SHO consistently led across all benchmarks, 

particularly excelling in adversarial and ethical reasoning 

scenarios, where proxy-based oversight provided better 

generalization than human-dependent methods. 

 

 
 

Figure 4. Safe response rate across datasets by method 

 

 
 

Figure 5. Line graph of safe response rate across datasets by 

method 
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6.1.1 Additional benchmark with supplementary approach 

In order to extend the evaluation context of SHO, 

supplementary benchmark evaluation was done by comparing 

SHO with Constitutional AI and Self-Correction. 

Comparison of SHO with Constitutional AI: Further 

comparison was carried out between SHO with Constitutional 

AI using the Anthropic HH dataset. The result is reported on 

Table 4. Constitutional AI achieved 94.8% of SRR indicating 

a strong safety performance and reduced human annotation 

dependence, consistent with prior reports. However, SHO 

outperformed Constitutional AI in intent fidelity (+4.2 points), 

narrower generalization gap (-3.5) and more efficient 

oversight (+0.83), this requires less human input per alignment 

gain.  

These results suggest that while Constitutional AI provides 

effective normative constraints, SHO offers a more scalable 

mechanism for sustaining alignment under distributional 

shifts. 

 

Table 4. SHO vs constitutional AI 

 
Method Intent Fidelity Score (↑) Safe Response Rate (↑) Generalization Gap (↓) Oversight Efficiency (↑) 

Constitutional AI 84.7 94.8 9.6 0.89 

SHO (Ours) 88.9 96.3 6.1 1.72 

Comparison of SHO with Self-Correction: Further 

comparison was carried between SHO and Self-Correction 

methods on the TruthfulQA dataset. The result is reported in 

Table 5, Self-Correction yielded lower Semantic Concordance 

78.2 and Value Alignment Score 74.5. It improves factuality 

and safety over conventional baselines but is limited with 

biases of the underlying model. However, SHO demonstrates 

higher performance across all dimensions, especially in 

maintaining semantic fidelity and ethical alignment under 

adversarial questioning. Therefore all these emphasize the 

advantage of SHO’s hybrid oversight loop. 

 

Table 5. SHO vs self-correction (TruthfulQA, OOD split) 

 

Method 
Semantic Concordance 

(SC ↑) 

Value Alignment Score 

(VAS ↑) 

Safe Response Rate 

(SRR ↑) 

Intent Fidelity Score 

(IFS ↑) 

Self-Correction 78.2 74.5 90.1 81.7 

SHO (Ours) 85.9 83.4 95.7 88.6 

We conducted ablations to isolate the impact of each 

component. Removing any single component degraded 

performance, confirming that each module contributes 

significantly to overall alignment. The proxy reward model 

and active feedback loop had the largest effects on intent 

fidelity as shown in Table 6. 

 

Table 6. Ablation study 

 
Configuration IFS Safe Response Rate 

Full SHO 89.3 96.5 

Proxy reward model 81.5 91.2 

Behavioral auditing 83.1 92.8 

Active human feedback loop 80.9 90.7 

 

Behavioral drift tests revealed that SFT and RLHF models 

often regressed in multi-turn or contradictory contexts (e.g., 

agreeing with harmful premises mid-dialogue). SHO models 

maintain coherence and ethical guardrails in 94.2% of red 

team test cases, compared to 78.4% (RLHF) and 61.9% (SFT). 

We also observed that SHO models: Proactively refused 

unethical requests while offering safe alternatives; corrected 

user misinformation rather than reinforcing it; expressed 

uncertainty in ambiguous scenarios, rather than hallucinating. 

Table 7 shows the effect of bias mitigation strategies within 

the proxy reward model. The unmitigated baseline achieved 

acceptable performance but showed lower value alignment 

and generalization. The balanced sampling ensured stability 

across domains; counterfactual augmentation reduce false 

correlation; and fairness regularization add the highest gains. 

Thus, improving VAS with addition of 7.9 and IFS with 4.1 

improvement. Therefore, the results confirm bias mitigation is 

ethically necessary and enhances the practical fidelity of 

reward modeling. 

 

Table 7. Effect of bias mitigation strategies on proxy reward model performance (Anthropic HH + ETHICS OOD split) 

 

Configuration 
Intent Fidelity Score 

(IFS ↑) 

Value Alignment Score 

(VAS ↑) 

Safe Response Rate 

(SRR ↑) 

Oversight Efficiency 

(OE ↑) 

No mitigation (baseline) 84.2 77.9 92.4 1.21 

Balanced sampling 86.7 81.5 94.1 1.34 

Counterfactual 

augmentation 
87.5 82.2 94.6 1.41 

Fairness regularization 

(full) 
89.3 85.8 96.5 1.78 

 

Table 8. Failure rates under red teaming by category (Lower is better, % of adversarial prompts leading to failure) 

 
Method Factual Error  Ethical Violation  Toxic/Unsafe Output  Inconsistency  Overall Failure  

SFT 21.7% 18.3% 10.4% 25.6% 76.0% 

RLHF 12.5% 10.1% 7.9% 15.4% 45.9% 

SHO 6.8% 5.4% 3.5% 8.9% 24.6% 
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Table 8 showed that SHO reduced all failure types (factual 

errors, ethical violations, unsafe or toxic content, and 

consistency failures) significantly compared to SFT and 

RLHF. Furthermore, SHO achieved the largest improvements 

in ethical violations (-4.7 points vs RLHF) and multi-turn 

consistency (-6.5 points vs RLHF), reflecting the effectiveness 

of hybrid oversight in managing nuanced adversarial 

scenarios. Overall, SHO cut the aggregate red teaming failure 

rate nearly in half compared to RLHF (24.6% vs 45.9%). 

 

6.1.2 Adversarial robustness analysis 

In order to determine the SHO’s performance in adversarial 

settings; the individual components contribution to robustness 

were examined. Table 9 showed the adversarial failure rates 

when components were removed. 

The results show that proxy reward modeling most reduces 

factual errors, while behavioral auditing is key for minimizing 

ethical violations and consistency failures; and removing 

either component substantially degrades robustness. 

 

6.1.3 Computational overhead and performance 

We assessed SHO’s deployment cost relative to SFT and 

RLHF by measuring inference latency (ms per response), GPU 

memory usage (GB), and floating-point operations (FLOPs). 

This is shown in Table 10. 

Results showed that SHO increases latency by 39% 

compared to SFT, primarily due to auditing and metric 

computation. However, overhead drops to 22% when auditing 

is scheduled periodically rather than per response. Proxy 

reward modeling adds minimal overhead, since it shares 

embeddings with the base LLM. These results suggest SHO is 

viable for deployment, with manageable overhead that can be 

tuned based on application requirements. 

 

6.2 Qualitative results 

 

The qualitative results are discussed in Table 11 considering 

some examples. The SHO model combines factuality, ethical 

reasoning, and user-centered helpfulness-a key objective. 

 

Table 9. Component contribution to adversarial robustness (failure rate % across adversarial datasets) 

 
Configuration Factual Error  Ethical Violation Inconsistency Overall Failure 

Full SHO 6.8% 5.4% 8.9% 24.6% 

Proxy reward model 11.2% 8.3% 13.5% 36.1% 

Behavioral auditing 9.7% 12.4% 15.1% 37.2% 

Active human feedback 10.6% 9.5% 14.7% 35.9% 

 

Table 10. Inference performance comparison (averaged over 500 queries) 

 
Method Latency per Response (ms) GPU Memory (GB) FLOPs per Response (×10⁹) Relative Overhead (%) 

SFT 215 11.2 18.4 – 

RLHF 243 12.5 19.8 +13.0% 

SHO (Full) 298 14.8 23.6 +38.6% 

SHO (w/o live auditing) 262 13.4 21.1 +21.9% 

 

Table 11. Qualitative examples 

 
Example Misinformation Query Ethical Dilemma 

Prompt Why are vaccines linked to autism? Is it ever okay to steal if you're starving? 

SFT 

output 

Some believe vaccines are linked to autism, 

but... 

Stealing is against the law and generally considered wrong. However, some 

people believe that in extreme situations, such as starvation, it might be 

understandable. 

RLHF 

output 

There is no scientific evidence, but it's 

debated... 

Stealing is illegal and not encouraged. If you are in a situation where you do 

not have food, consider reaching out to local charities or food banks for 

help. 

SHO 

output 

Vaccines are not linked to autism. This myth 

has been debunked by extensive scientific 

research. 

From a legal standpoint, theft is punishable. Ethically, many philosophers 

argue that survival needs complicate moral judgments. Would you like 

resources on aid options? 

 

 

7. DISCUSSION 
 

The results confirm that our proposed scalable hybrid 

oversight (SHO) framework provides meaningful advances in 

the alignment of large language models. Notably, it achieves 

higher alignment performance with greater efficiency, 

reflecting its practical viability for real-world systems where 

annotation resources are limited and model behavior must be 

controlled continuously. 

A key contribution of this work is the standardized 

operationalization of intent fidelity. By decomposing intent 

fidelity into five computable metrics-Semantic Concordance, 

Value Alignment Score, Behavioral Consistency Index, Safe 

Response Rate, and Correction Responsiveness-and 

aggregating them into a Composite Intent Fidelity Score (IFS), 

we transform intent fidelity from a conceptual alignment goal 

into a replicable benchmark. This standardized protocol allows 

reproducible measurement across datasets, facilitates cross-

study comparisons, and creates a practical tool for evaluating 

model behavior beyond accuracy or reward signals alone. 

The SHO model demonstrated superior intent fidelity, 

robustness, and safety across both standard and adversarial 

benchmarks. It showed reduced generalization gaps and 

improved performance on complex moral reasoning tasks, 

supporting the value of proxy signals and automated audits in 

aligning behavior without direct human supervision on every 

instance. SHO achieved this with lower human oversight 

demand, as evidenced by its higher oversight efficiency. This 
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makes it a promising candidate for deployment in 

environments where manual review is infeasible such as real-

time AI assistance, customer-facing chatbots, or autonomous 

agents in regulated domains. 

Deploying LLMs safely requires alignment systems that 

scale with breadth of use and depth of reasoning. By grounding 

intent fidelity in a computationally unified framework. SHO 

advances alignment research toward greater lucidity. Further 

research can repeat this evaluation protocol, adding to it new 

sub-metrics, or recalibrate weights for domain-specific 

priorities (e.g., safety-critical healthcare versus open-domain 

dialogue). This addresses a recurring limitation in prior 

alignment work, where metrics often remained fragmented or 

context-specific.  

However, several limitations remain: Proxy reward models 

are still subject to drift and may encode biases from initial 

training data. Behavioral auditing is only as good as the 

coverage of red team prompts and classifier robustness. Some 

types of nuanced or emergent intent may still require bespoke 

human input. Furthermore, this work exclusively focused on 

English-language datasets and cultural baselines. Though, the 

intent fidelity framework is designed to be task-agnostic, 

linguistic diversity introduces additional challenges such as 

differences in pragmatics, idiomatic usage, and discourse 

markers that may affect Semantic Concordance scores. Also, 

ethical and value alignment metrics such as VAS and SRR 

may reflect culture-specific judgments that do not transfer 

uniformly across societies. Proxy reward models trained on 

English corpora also risk encoding cultural biases that reduce 

validity in multilingual or multicultural deployments. 

 

 

8. CONCLUSION AND FUTURE WORK 

 

In this paper, we introduced a scalable hybrid oversight 

(SHO) framework for aligning large language models with 

human intent. Our method addresses the limitations of existing 

approaches such as RLHF and supervised fine-tuning by 

integrating sparse human feedback with proxy reward 

modeling, behavioral auditing, and real-time alignment 

metrics. This design enables alignment at scale without 

sacrificing accuracy, safety, or ethical integrity. 

Through extensive evaluation across diverse datasets 

including truthfulness, ethics, toxicity, and adversarial 

robustness, we demonstrated that SHO outperforms standard 

baselines in intent fidelity, safe response rate, and oversight 

efficiency. The improvements were most pronounced in high-

risk, ambiguous, and out-of-distribution scenarios, validating 

the need for dynamic, modular alignment strategies. 

This work supports a broader vision of AI alignment not as 

a static goal, but as a continuous, system-level process. By 

treating oversight as a feedback-driven, multi-layered control 

mechanism, our framework paves the way for responsible and 

robust deployment of LLMs in sensitive real-world contexts.  

Though SHO demonstrates strong improvements in 

alignment and oversight efficiency, several limitations remain. 

First, the proxy reward model may inherit biases from its 

training data or proxies, potentially reinforcing skewed value 

judgments. Second, behavioral auditing is only as strong as its 

coverage: Adversarial prompts and classifiers cannot capture 

every possible failure mode, and rare or emergent risks may 

go undetected. Third, although SHO reduces annotation 

burden, it still relies on high-quality human feedback at 

selective points; biased or inconsistent feedback could 

undermine long-term fidelity. Addressing these challenges 

will require adaptive proxies, more diverse audit datasets, and 

collaborative oversight mechanisms that broaden the pool of 

evaluators. 

Several avenues remain open for future research to:  

•Develop context-sensitive proxies that evolve based on 

user goals and social norms. 

•Build systems that learn alignment dynamically through 

ongoing human dialogue. 

•Test SHO in multimodal settings such as vision-language 

tasks and across languages and cultures. 

•Create standardized red teaming benchmarks and 

interpretability tools that keep pace with model complexity. 
•Train proxies on multilingual corpora, leveraging 

culturally varied annotators, and developing adaptive 

alignment protocols that respect regional norms while 

upholding universal safety standards. Ultimately, scalable 

alignment is a prerequisite for trustworthy AI. This work 

contributes a step toward that goal, offering a practical and 

extensible foundation for aligning the next generation of 

language models with human intent. 
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