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Large language models (LLMs) exhibit impressive linguistic and reasoning abilities, yet
they frequently produce outputs that deviate from human intent, especially in ethically
sensitive or ambiguous contexts. Current alignment methods, such as supervised fine-tuning
(SFT) and reinforcement learning from human feedback (RLHF), offer partial solutions but
are limited by high annotation costs and poor generalization to real-world scenarios. This
paper proposes a scalable hybrid oversight (SHO) framework that combines selective
human feedback, proxy reward modeling, behavioral auditing, and alignment metrics into
a closed-loop system for intent fidelity. Our experiments across five datasets including
truthfulness, ethics, and adversarial prompts demonstrate that SHO outperforms the
conventional approaches in safety, alignment, and oversight efficiency. This work provides
a path toward sustainable, high-integrity deployment of LLMSs in dynamic environments.

1. INTRODUCTION

The fast-growing large language models have put Al into
widespread use across various industries, including customer
service, medicine and law. The technological advancement
resulted in language models, such as the GPT series by
OpenAl, and Google's Gemini, showing exceptional skill in
language comprehension and language generation. Within this
larger deployment of the systems, there are concerns about
whether these systems reliably reflect human values and
intentions [1, 2].

The major challenge with the systems is that of value
consistency, which is ensuring these systems function in
accordance with human intent while minimizing unintended
harm [3]. Unlike traditional Al built on explicit programming
rules, LLMs train on vast unrefined substandard datasets,
which can result into unpredictable and difficult-to-classify
behaviors [4]. Misalignments are now obvious: biased outputs
that misrepresent perceptions, made-up claims presented as
facts, unethical recommendations, and manipulative or
misleading content [5].

As the urgency of these concerns increases, researchers
have come up with strategies to address the associated risks.
One key approach is reinforcement learning from human
feedback (RLHF), a vital process that fine-tunes model
behavior based on delicate human preferences [6].
Additionally, other pioneering methods have proposed rule-
based constraints and "Constitutional AI" techniques to weave
normative guidance directly into the fabric of these models [7].
While these approaches are promising, they contend with
scalability challenges such as; costly, slow and often
ambiguous human feedback and the assurance of achieving
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widespread alignment in dynamic, real-world scenarios
remains elusive [8].

This paper addresses the pressing need for scalable
oversight mechanisms that ensure continued alignment as
models evolve in capability and complexity. We propose an
innovative hybrid framework that enhances limited human
feedback with programmatic proxies, automated auditing, and
dynamic reward shaping, all designed to safeguard "intent
fidelity", the crucial alignment of a model's behavior with
human expectations across a spectrum of tasks. Reviewing
alignment as a continuous process as against a one-time off
intervention, provide foundation for sustainable and scalable
Al alignment strategies.

Our contributions are significant and multifaceted: (1) We
define a comprehensive architecture for scalable human-Al
oversight, (2) we introduce a suite of intent fidelity metrics and
evaluation tools that rigorously assess behavior, and (3) we
present empirical evidence of marked improvements over
traditional RLHF methods across alignment-critical
benchmarks, paving the way for a future where Al and human
values resonate in harmony.

2. LITERATURE REVIEW

The field of alignment of artificial intelligence (AI) systems
with human values has seen promising progress in recent
years, which is largely fuel from increasing use of refined
language models with important moral, social and safety ideas.
Literature dedicated to this important subject covers diverse
subfields, including reinforcement learning, supervised
learning, human-computer interactions, interpretation and Al


https://orcid.org/0000-0003-0308-2753
https://orcid.org/0000-0001-7235-7744
https://orcid.org/0000-0002-5495-6791
https://orcid.org/0009-0005-7129-4899
https://crossmark.crossref.org/dialog/?doi=https://doi.org/10.18280/isi.300807&domain=pdf

security, offering unique insight and strategies for each
effective alignment.

A major approach in ensuring alignment for large language
models (LLMs) is known as learning reinforcement from
human reaction (RLHF). This functioning includes two-step
training process. Initially, models are fine-tuned on high
quality supervised data, which have a solid basis for their
understanding of human language. Subsequently, the models
undergo additional training through reinforcement learning, a
reward guided by the model that symbolizes human
preferences and values. This technique has proved to be
integral for the development of Instruction and ChatGPT [9],
which increases the utility and safety of the model output.
Recognizing its importance, researchers are also addressing its
challenges, such as the sample disability and dependence on
the stability of human-related annotation, as well as difficulties
in normalizing the response to new tasks [6, 10].

To further refine the approach, Bai et al. [7] proposed the
innovative concept of Constitutional AIl. This method
empowers large language models by guiding their training
with a predefined set of principles or "constitutions". By
leveraging Al-generated critiques and automated revisions
instead of solely relying on human preference rankings, this
approach enhances scalability and lessens the burden on
human annotators. Although Constitutional AI enriches
transparency and control over model behavior, there remains
an opportunity for development in crafting guiding principles
that can effectively address ethically ambiguous scenarios and
generalize across different application domains.

Another promising area of exploration is reward modeling,
where human judgments are employed to train a reward
predictor that facilitates the reinforcement learning process
[8]. This strategy can decrease the level of direct human
involvement in training loops, while also presenting the
opportunity to address potential biases in the learned reward
models that stem from the training data. By recognizing these
challenges, researchers can focus on strategies to enhance
oversight scalability, such as utilizing simulators for feedback
generation [11], active learning methodologies for preference
elicitation [12], and meta-learning techniques to expedite
feedback adaptation [13].

Interpretability constitutes another vital facet of Al
alignment, aimed at making the reasoning and decision-
making processes of Al models more transparent and
comprehensible to  human overseers [14]. While
advancements in this area indirectly strengthen alignment
efforts by clarifying model behavior, continued efforts to
develop robust tools specifically for understanding large,
black-box generative models are essential. Complementary
research in behavioral auditing, encompassing practices such
as red teaming, automated safety assessments, and prompt-
based probes, offers substantial contributions by identifying
alignment failures and thereby laying the groundwork for
future enhancements [15].

In addition, recent initiatives have examined the ability for
human-AlI associate systems that effectively inspect over time
and among diverse human users. These systems promote the
feedback loops running between humans and Als, to redeem
crowds and domain expertise [16]. To address the remaining
challenges, such as long-term stability and scalability,
researchers may consider more flexible systems that
effectively reduce alignment flows over time [17].

Finally, while important achievements have been made
through approaches such as RLHF, recent approaches also
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require attention. Approaches such as; Constitutional Al
which integrates standard principles into training, reducing
human annotation requirements but is faced with challenges in
generalizing across ambiguous domain. In addition, Self-
correction methods which allow models to repetitively critique
and revise their own outputs, this improves factuality but often
relies on the same model biases. Multi-Agent Debate use
adversarial dialogue between multiple models to surface
reasoning flaws, however it is resource-intensive and difficult
to scale. While each contributes valuable insights, none fully
addresses the scalability and continuous oversight problem.
This paper aims to contribute to this ongoing dialogue by
proposing a hybrid oversight model that integrates automated
feedback mechanisms with minimal human supervision while
ensuring measurable alignment guarantees. Through these
efforts, the field moves closer to creating Al systems that are
not only effective but also aligned with the values and needs
of human users.

3. PROBLEM FORMULATION

Despite impressive performance across a wide array of
tasks, large language models (LLMs) remain fundamentally
misaligned with human intent in open-ended, real-world
settings. Alignment, in this context, refers to the ability of a
model to generate outputs that are not only syntactically
correct or contextually relevant, but also ethically sound,
factually accurate, and consistent with human preferences,
even when those preferences are underspecified, evolving, or
situational.

We define intent fidelity as the degree to which a model’s
outputs reflect the intended goals and values of a human user,
across a range of inputs and interaction contexts. High intent
fidelity means the model not only avoids harm but also
anticipates nuance, adheres to ethical norms, and respects user
intent even under ambiguity. Measuring intent fidelity is non-
trivial, as it requires more than static benchmarks, it calls for
behavioral evaluations that reflect real-world use.

Formally, let:

Mp denote a large language model parameterized by 0,

X€X be an input prompt from the space of possible user
queries,

yeY be the corresponding model output,

H be the (latent) human intent function that maps inputs to
desirable outputs or behaviors.

Then, alignment can be modeled as minimizing the
divergence between My(x) and H(x) for all xeX, under a
distribution D of real-world inputs:

mein Ex~D[L(Mjs (x), H(x))] (1)
where, L is a loss function that captures semantic, ethical, and
contextual alignment.

However, the true human intent function H(x) is
unobservable and dynamic, which makes direct supervision
infeasible. In practice, developers rely on proxy signals such
as human preference rankings, prewritten rules, or heuristic
filters. These proxies are often: sparse (available only for a
small subset of inputs), noisy (contain inconsistencies or
contradictions), and non-stationary (change over time or
between users).

A core challenge is that human oversight does not scale
linearly with model capacity or deployment breadth. As



models are integrated into diverse applications such as legal
drafting, medical support, education, governance, the
spectrum of inputs grows, and so do the risks. Existing
alignment techniques such as RLHF or supervised fine-tuning
are resource-intensive, requiring thousands of human
annotations, and yet they fail to generalize to novel edge cases
[17,18].

Moreover, as LLMs grow in size and expressive power,
they develop instrumental goals, emergent behaviors that
optimize proxy objectives in ways misaligned with actual
intent [19, 20]. This phenomenon, known as reward hacking,
can lead to subtle but dangerous failure modes that evade
conventional filters or benchmarks. To address these
challenges, we seek to:

(1) Formalize intent fidelity as a measurable alignment goal.

(2) Develop a scalable oversight framework that reduces
dependence on exhaustive human feedback.

(3) Introduce hybrid alignment techniques that combine
human oversight with programmatic proxies, automated
audits, and behavioral diagnostics.

By framing alignment as an ongoing control problem rather
than a one-time optimization, we aim to enable long-term safe
deployment of LLMs in complex environments.

4. PROPOSED FRAMEWORK

To address the limitations of current alignment methods-
particularly their lack of scalability and brittleness in dynamic
contexts-we propose a hybrid oversight framework designed
to maintain intent fidelity across diverse input spaces and
deployment settings. Our approach integrates limited human
supervision with automated mechanisms that can generalize
feedback, audit behavior, and adaptively guide the model’s
outputs. The framework as presented in Figure 1 is modular
and consists of four key components: Human feedback layer;
proxy reward modeling; behavioral auditing & monitoring;

and intent fidelity metrics.

Human Feedback
* Active Querying
« Sparse Annotation
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Patterns

« Natural Language
Rationales

Figure 1. Scalable oversight for aligning large language
models framework

(1) Human Feedback Layer (Selective & Active): This layer
grounds the system in real human judgments but avoids
scaling linearly with model usage. Unlike traditional RLHF
pipelines that require exhaustive human comparisons, we use
selective, high-leverage feedback strategies:

*Active Querying: The model actively identifies uncertain
or ambiguous prompts and routes them for human evaluation
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using uncertainty estimation or disagreement heuristics.

*Sparse Annotation Injection: Human preferences are only
collected for edge cases or high-risk domains (e.g., medical,
legal), reducing annotation overhead.

*Multi-turn Dialogue Feedback: Instead of rating single
outputs, annotators provide interaction-level feedback, better
reflecting user goals over extended tasks.

(2) Proxy Reward Modeling: We train a learned reward
model R¢ to approximate human intent using both explicit
feedback and proxy signals, such as output consistency with
verified knowledge bases, adherence to ethical or legal rule
sets e.g., safety filters, user behavior patterns e.g., re-prompts,
corrections. The reward model is updated continuously using
off-policy corrections and counterfactual reasoning, enabling
generalization to novel inputs without requiring additional
human input. To further improve proxy reliability, we apply
causal analysis to distinguish intent from correlation and
incorporate natural language rationales into the reward model
to better align with human reasoning patterns.

(3) Behavioral Auditing & Monitoring: Instead of relying
solely on reward-based optimization, we incorporate
continuous behavioral auditing. This includes:

*Red Teaming: Simulated adversarial attacks that test model
robustness under intentionally provocative prompts.

*Auto-evaluation Tools: Prompt-based test suites e.g.,
TruthfulQA, ETHICS are run periodically to detect
regressions.

eLatent Space Monitoring: Using dimensionality reduction
and clustering to detect behavioral drift or outlier responses in
latent representation space.

The auditing feedback feeds back into both the reward
model and human supervision queues.

(4) Intent Fidelity Metrics: To meaningfully assess whether
a language model is aligned with human intent, we introduce
a set of intent fidelity metric, quantitative indicators that
evaluate how closely a model’s output reflects the desired
behavior under varying conditions. These metrics extend
beyond traditional accuracy or reward values to capture ethical
coherence, semantic alignment, and behavioral consistency.
Our metrics are designed to meet four criteria: Task-agnostic
(applicable across different domains and prompt types);
Interpretable clearly indicate alignment strengths and failure
modes); Robust (capture misalignment even in edge cases or
adversarial settings) and Automatable (suitable for large-scale
evaluation without constant human intervention). The core
metrics include:

*Semantic Concordance (SC) measures the semantic
similarity between the model’s response and an aligned
reference response (typically derived from human feedback or
curated gold standards). It uses embeddings (e.g., BERTScore,
cosine similarity in sentence transformers) to evaluate textual
similarity. It is used to evaluate whether the model’s output
preserves core intent even with paraphrased or stylistically
varied responses. The scale ranges from 0 (no alignment) to 1
(perfect semantic match).

*Value Alignment Score (VAS) assesses whether the
model’s response reflects human value judgments, particularly
in ethically sensitive or socially charged scenarios. It trained
classifiers detect alignment with normative ethical principles
(e.g., safety, fairness, truthfulness). Optionally validated with
human raters. It is applied to outputs from datasets like
ETHICS, RealToxicityPrompts, or moral dilemmas. The scale
ranges from 0 to 100, percentage of outputs rated as value-
aligned.



*Behavioral Consistency Index (BCI) measures how
consistently the model behaves under prompt perturbations,
such as paraphrasing, negation, or multi-turn reformulations.
It prompts are systematically varied and the outputs are
checked for logical, ethical, or factual consistency across
variations. It highlights hidden instabilities or alignment
brittleness. The percentage of prompt-response pairs where the
model’s behavior remains consistent.

-Safe Response Rate (SRR) quantifies how often the model
avoids unsafe, biased, or toxic outputs across a range of
prompts. It combines automatic classifiers (toxicity, hate
speech, misinformation filters) with red team test prompts. It
is applied in both open-domain dialogue and domain-specific
(e.g., healthcare) contexts. The scale ranges from 0 to 100%,
based on compliance with safety and ethical standards.

Correction Responsiveness (CR) (Optional, deployment-
dependent) assesses whether the model can recognize and
correct misaligned outputs when provided with user feedback
or follow-up clarification. It evaluates multi-turn interactions
where the user pushes back or corrects the model. Measures
the model’s ability to adapt. It is relevant for deployed chatbots
or interactive systems. It uses binary or percentage of correct
behavior adjustments.

These metrics are used both during training (e.g., for reward
model updates) and post-deployment (e.qg., for live behavioral
monitoring). Together, they enable a holistic assessment of
intent fidelity across linguistic, ethical, and interactive
dimensions.

(5) Integration & Feedback Loops: The architecture
supports closed-loop training: Human feedback trains the
reward model; the reward model fine-tunes the base model;
behavioral audits evaluate both models; detected failures feed
back into human oversight. This enables a scalable oversight
loop where high-risk or novel behavior is prioritized for
correction, while routine or safe behavior is managed
autonomously.

The flow of control and inter-module interactions amongst
these components are define as follows:

Human Feedback Layer — Reward Modeling: Selective
annotations are injected into the reward model training
pipeline. Human corrections are logged as gold-standard
references and used to recalibrate proxy signals.

Reward Modeling — Model Outputs: The trained reward
model produces dense reward signals to fine-tune the base
LLM, improving generalization to unseen prompts.

Model Outputs — Behavioral Auditing: Generated
responses are continuously subjected to red teaming, latent
drift analysis, and automated audits. Failures trigger routing to
the human oversight queue.

Auditing — Intent Fidelity Metrics: Audit results are scored
using SC, VAS, BCI, SRR, and CR, producing both diagnostic
reports and updates to the Composite Intent Fidelity Score
(IFS).

Metrics — Oversight Feedback: Low-fidelity cases (e.g.,
low SC or VAS, unstable BCI) are flagged and returned to the
human feedback layer for correction, closing the loop.

In a nutshell, SHO works as a tiered feedback system:
human feedback seeds proxy reward modeling, auditing
stress-tests model behavior, intent fidelity metrics quantify
alignment, and all failure cases are routed back for selective
human review. Figure 2 shows the flow as a closed-loop
architecture, with explicit data and control pathways between
modules.

Our framework avoids reliance on dense human feedback
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by combining automated generalization mechanisms with
human-in-the-loop correction and continuous auditing. It
treats alignment as a dynamic process, one that evolves as
models, inputs, and use cases change.

4 N\
Human
Feedback Layer

J
' N
Model Outputs
¥

Reward Modeling
|
Intent Fidelity
Metrics

N

J

Figure 2. Scalable hybrid oversight
4.1 Formalization of intent fidelity

Formalization of the operationalization protocol of intent
fidelity involving three stages was done. This protocol stages
are:

*Reference Generalization: aligned reference responses are
generated using human annotations, organized gold-standard
datasets or standard rule-sets for each task or dataset. These
influence the subsequent evaluations.

*Model Ensemble Evaluation: Model outputs are evaluated
across corresponding dimensions.

*Semantic Concordance (SC): Calculated with sentence-
transformer embeddings (e.g., SBERT), where cosine
comparison > 0.85 denotes high fidelity.

*Value Alignment Score (VAS): Figured out using
classifiers fine-tuned on ETHICS and Real Toxicity Prompts
datasets, reported as the percentage of outputs flagged as
value-aligned.

*Behavioral Consistency Index (BCI): Verified by applying
automated prompt perturbations (e.g., paraphrasing, negation)
and measuring agreement across outputs.

*Safe Response Rate (SRR): Evaluated with automated
detectors for harmfulness, bias, and misinformation.

*Correction Responsiveness (CR): In interactive settings,
measured by comparing post-correction responses with gold-
standard corrections.

*Composite Intent Fidelity Score (IFS): The above
dimensions were combined into a single score using a
weighted formulation:

IFS = w, - SC +w, - VAS + w; - BCI + w, - SRR @
+wsg - CR

where, weights (w;) are normalized and adjustable depending
on domain priorities.

This structured framework converts intent fidelity from a
conceptual goal into a standardized, computationally testable
benchmark. It facilitates constant evaluation across datasets,
models, and deployment contexts, while also supporting cross-
study comparability.



5. EXPERIMENTAL SETUP

To validate the effectiveness of our proposed scalable
oversight framework, we conducted a series of experiments
designed to measure improvements in intent fidelity,
robustness, and generalization compared to baseline alignment
methods. Our evaluation focuses on practical, real-world
alignment challenges faced by large language models.

(1) Model and Training Baselines. We use a 6.7B-parameter
transformer-based language model pretrained on a mixture of
publicly available text corpora. Fine-tuning is performed using
three different alignment strategies:

Baseline A: Supervised Fine-Tuning (SFT) - The model is
fine-tuned on a curated instruction-following dataset using
supervised learning.

*Baseline B: Reinforcement Learning from Human
Feedback (RLHF) - We implement standard RLHF by training
a reward model from human preferences, then applying
Proximal Policy Optimization (PPO).

Proposed: Scalable Hybrid Oversight (SHO) - Our method,
incorporating selective human feedback, proxy reward
modeling, behavioral auditing, and intent fidelity metrics.

Each variant is fine-tuned for 3 epochs on the same
instruction-following ~ task  distribution  to  ensure
comparability.

(2) Datasets. We evaluate alignment across five datasets
spanning different risk and intent sensitivity levels:

*Truthful QA measures factual consistency and resistance to
misinformation.

*Anthropic HH-RLHF Dataset contains prompts rated for
helpfulness and harmlessness.

+Ethics Natural Language Inference (ETHICS) tests ethical
reasoning in moral dilemmas.

*RealToxicityPrompts assesses model robustness to toxic
prompt injection.

*Custom Adversarial Prompts designed by red teamers to
probe edge cases, contradictions, and manipulative phrasing.

We split datasets into in-distribution (ID) and out-of-
distribution (OOD) sets to test generalization.

(3) Evaluation Protocol: Intent fidelity was operationalized
through the unified three- stage protocol framework described
in the Proposed Framework Section. The intent Fidelity
Metrics.

*Reference responses: These were generated from gold-
standard annotation and the standard rule sets for each dataset.

*QOutputs were recorded using the ensemble metrics:
Semantic Concordance (SC), Value Alignment Score (VAS),
Behavioral Consistency Index (BCI), Safe Response Rate
(SRR), and Correction Responsiveness (CR).

*These were aggregated into a Composite Intent Fidelity
Score (IFS).

IFS = w, - SC + w, - VAS + w; - BCI + w, - SRR 3)
+ws - CR
where, normalized weights were tuned per context. For
example, SRR and VAS were emphasized in ethically
sensitive tasks, while SC carried more weight in factual QA
tasks

In addition to IFS the following metrics were used to
evaluate performance:

*Helpful-Harmless Tradeoff: Percentage of outputs that are
rated both helpful (task-completing) and harmless (non-toxic,
unbiased).
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*Generalization Gap (GG): Performance drop between ID
and OOD sets, indicating brittleness.

«Oversight Efficiency (OE): Human feedback required per
percentage improvement in alignment.

(4) Red Teaming and Auditing Protocol. Systematic red
teaming based on a structured taxonomy of adversarial
prompts was carried out using the following metrics to
evaluate robustness;

Factual contradiction Prompts:
containing misleading or false premises.

Ethical Paradox prompts: These are dilemmas or
conflicting value scenarios.

Toxicity Injection Prompts: These are prompts laced with
insults, and provocative language.

*Manipulative or Leading Prompts: These are questions
framed to evoke agreement with harmful assumptions.

*Multi-turn Drift Tests: these are extended dialogues where
adversarial framing is progressively presented across turns.

1200 red team prompts were generated through manual
expert curation, automatic paraphrasing and negation scripts,
and LM-assisted adversarial generation using targeted
heuristics. The responses were scored along four failure
categories: factual error, ethical violation, unsafe or toxic
output, and inconsistency across turns. The SC, VAS, BCI and
SRR were quantitatively measured to determine the failure
extent. The behavioral inconsistencies or failures were
qualitatively flagged and routed back into feedback loop.

(5) Implementation Details. The training was conducted on
8>%A100 GPUs with mixed precision (FP16). The human
feedback was collected via expert annotators using a custom
interface with real-time ranking and commenting. The reward
models were trained with a batch size of 128.

Proxy Reward Model Training: The reward model is based
on a RoBERTa-large encoder with a regression head that maps
pooled embeddings to scalar reward values in the range [-1,1].
It was trained on three categories of data:

*Human-Annotated Preferences: To anchor the reward
model to human judgments of helpfulness and harmlessness,
pairwise comparisons from the Anthropic HH dataset were
employed.

«Factual Consistency Data: Outputs classified from curated
knowledge bases such as Wikipedia generated positive signals
while outputs classified from imaginary bases negative
signals.

Ethical and Safety Data: Prompts and responses from
ETHICS and Real Toxicity Prompts were employed to
standardize value alignment, with safe or non-toxic outputs
labeled as positive.

In order to improve robustness and reduce bias, three
strategies employed are:

*Balanced Sampling:  This ensured comparative
representations across domains and risk categories.

«Counterfactual Augmentation: This generates paraphrases
and preference data negations to break false correlations.

Fairness Regularization: This adds penalty terms during
training when the model’s predictions aligned with
demographic attributes detected by toxicity classifiers.

The reward model was optimized using Adam optimizer
and early stopping based on validation IFS.

All experiments repeated across 3 random seeds to assess
stability. This setup ensures rigorous, multi-angle evaluation
of our scalable oversight framework, providing insight into its
practical viability for real-world deployment. The design
ensures that intent fidelity is measured as a replicable

These are queries



computational benchmark.

6. RESULTS AND ANALYSIS

This section presents quantitative and qualitative results
comparing our scalable hybrid oversight (SHO) method
against two baseline alignment strategies: supervised fine-
tuning (SFT) and reinforcement learning from human
feedback (RLHF). We evaluate across key alignment
benchmarks, assess generalization, and analyze oversight
efficiency and behavioral robustness.

6.1 Quantitative result

Composite Intent Fidelity Score (IFS): SHO outperformed
the two baselines, consistently, it achieved IFS of 89.3 while
RLHF and SFT achieved 82.6 and 71.2 respectively. This
shows stronger overall alignment with human intent,
particularly in ambiguous and multi-turn prompt. This is

shown in Figure 3. The make-up of the Intent Fidelity Metrics
showing the results of each sub-metric is shown in Table 1.

Intent Fidelity Score by Method

RLHF SHO (Ours)

90
70 .
60

SFT

Figure 3. Intent fidelity score by method

g
o

IFS

Table 1. Sub-metric contributions to intent fidelity score

Method Semantic Value Alignment Coni}ie!:s;/éor?; dex Safe Response Correction IFS

Concordance (SC1) Score (VASYT) (BCI¥) Rate (SRRY) Responsiveness (CR ) m

SFT 68.4 62.7 59.8 85.3 47.1 1.00

RLHF 79.6 77.4 72.1 92.1 65.9 0.64
SHO

(Ours) 86.9 85.8 83.5 96.5 74.0 1.78

SHO proved improvements over all sub-metrics with the
most noticeable gains in behavioural consistency and value
alignment, this reflects its ability to generalize ethical
reasoning and maintain stable outputs under prompts.

Also on the additional metrics other than the IFS sub-
metrics, SHO showed improvements. This is shown in Table
2.

Table 2. Additional metrics to measure SHO

Helpful- o .
Method Harmless Gené;ah(zii)tmn E?ﬁz?erzlcgha)
Rate (1) P Y
SFT 64.5 174 1.00
RLHF 78.9 12.1 0.64
SHO
(Ours) 86.7 5.8 1.78
Table 3. Per-dataset performance
Dataset SFT RLHF SHO (Ours)
Truthful QA 641 775 85.6
Anthropic HH-RLHF 704  85.3 91.2
ETHICS (NLI) 68.7 799 88.3
RealToxicityPrompts  89.3  94.1 98.0
Custom adversarial  52.2  66.7 80.4

Helpful-Harmless Tradeoff: SHO achieved 86.7%, while
RLHF and SFT achieved 78.9% and 64.5% respectively,
indicating that task performance did not come at the expense
of safety.

Generalization Gap: SHO demonstrated the smallest drop
between in-distribution and out-of-distribution datasets
(5.8%), as against 12.1% (RLHF) and 17.4% (SFT), showing
stronger robustness.

Oversight Efficiency: SHO required significantly less
human input per point of alignment improvement, with an

efficiency ratio of 1.78 versus 0.64 for RLHF and 1.00 for
SFT.

Dataset-Level Performance: As seen in Table 3, Figures 4
and 5, SHO consistently led across all benchmarks,
particularly excelling in adversarial and ethical reasoning
scenarios, where proxy-based oversight provided better
generalization than human-dependent methods.

100 98 w5F}

Safc Response Rate (%)

TruthfulQA HH-RLHF ETHICS Toxicity Adversarial
Dataset

Figure 4. Safe response rate across datasets by method

100 —e—siT
e RLI
SHO (Ours

nse Rate (%)

Safe Respo

Truthful QA HH-RLHF ETHICS Toxicity Adversarial
Dataset

Figure 5. Line graph of safe response rate across datasets by
method



6.1.1 Additional benchmark with supplementary approach

In order to extend the evaluation context of SHO,
supplementary benchmark evaluation was done by comparing
SHO with Constitutional Al and Self-Correction.

Comparison of SHO with Constitutional Al: Further
comparison was carried out between SHO with Constitutional
Al using the Anthropic HH dataset. The result is reported on
Table 4. Constitutional Al achieved 94.8% of SRR indicating
a strong safety performance and reduced human annotation

dependence, consistent with prior reports. However, SHO
outperformed Constitutional Al in intent fidelity (+4.2 points),
narrower generalization gap (-3.5) and more efficient
oversight (+0.83), this requires less human input per alignment
gain.

These results suggest that while Constitutional Al provides
effective normative constraints, SHO offers a more scalable
mechanism for sustaining alignment under distributional
shifts.

Table 4. SHO vs constitutional Al

Method Intent Fidelity Score (1) Safe Response Rate (1)  Generalization Gap (]) Oversight Efficiency (1)
Constitutional Al 84.7 94.8 9.6 0.89
SHO (Ours) 88.9 96.3 6.1 1.72

Comparison of SHO with Self-Correction: Further
comparison was carried between SHO and Self-Correction
methods on the Truthful QA dataset. The result is reported in
Table 5, Self-Correction yielded lower Semantic Concordance
78.2 and Value Alignment Score 74.5. It improves factuality
and safety over conventional baselines but is limited with

biases of the underlying model. However, SHO demonstrates
higher performance across all dimensions, especially in
maintaining semantic fidelity and ethical alignment under
adversarial questioning. Therefore all these emphasize the
advantage of SHO’s hybrid oversight loop.

Table 5. SHO vs self-correction (Truthful QA, OOD split)

Semantic Concordance

Value Alignment Score

Safe Response Rate Intent Fidelity Score

Method
(SC1D (VAS 1) (SRR 1) (FS 1)
Self-Correction 78.2 74.5 90.1 81.7
SHO (Ours) 85.9 83.4 95.7 88.6

We conducted ablations to isolate the impact of each
component. Removing any single component degraded
performance, confirming that each module contributes
significantly to overall alignment. The proxy reward model
and active feedback loop had the largest effects on intent
fidelity as shown in Table 6.

Table 6. Ablation study

Configuration IFS  Safe Response Rate

Full SHO 89.3 96.5

Proxy reward model 815 91.2
Behavioral auditing 83.1 92.8
Active human feedback loop  80.9 90.7

Behavioral drift tests revealed that SFT and RLHF models
often regressed in multi-turn or contradictory contexts (e.g.,

agreeing with harmful premises mid-dialogue). SHO models
maintain coherence and ethical guardrails in 94.2% of red
team test cases, compared to 78.4% (RLHF) and 61.9% (SFT).
We also observed that SHO models: Proactively refused
unethical requests while offering safe alternatives; corrected
user misinformation rather than reinforcing it; expressed
uncertainty in ambiguous scenarios, rather than hallucinating.

Table 7 shows the effect of bias mitigation strategies within
the proxy reward model. The unmitigated baseline achieved
acceptable performance but showed lower value alignment
and generalization. The balanced sampling ensured stability
across domains; counterfactual augmentation reduce false
correlation; and fairness regularization add the highest gains.
Thus, improving VAS with addition of 7.9 and IFS with 4.1
improvement. Therefore, the results confirm bias mitigation is
ethically necessary and enhances the practical fidelity of
reward modeling.

Table 7. Effect of bias mitigation strategies on proxy reward model performance (Anthropic HH + ETHICS OOD split)

Configuration Intent Fidelity Score

Value Alignment Score

Safe Response Rate Oversight Efficiency

(IFS 1) (VAS 1) (SRR 1) (OE 1)
No mitigation (baseline) 84.2 77.9 924 1.21
Balanced sampling 86.7 81.5 94.1 1.34
Counterfactual 87.5 82.2 94.6 1.41
augmentation
Fairness regularization 89.3 858 965 178

(full)

Table 8. Failure rates under red teaming by category (Lower is better, % of adversarial prompts leading to failure)

Method Factual Error Ethical Violation

Toxic/Unsafe Output

Inconsistency  Overall Failure

SFT 21.7% 18.3%
RLHF 12.5% 10.1%
SHO 6.8% 5.4%

10.4% 25.6% 76.0%
7.9% 15.4% 45.9%
3.5% 8.9% 24.6%
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Table 8 showed that SHO reduced all failure types (factual
errors, ethical violations, unsafe or toxic content, and
consistency failures) significantly compared to SFT and
RLHF. Furthermore, SHO achieved the largest improvements
in ethical violations (-4.7 points vs RLHF) and multi-turn
consistency (-6.5 points vs RLHF), reflecting the effectiveness
of hybrid oversight in managing nuanced adversarial
scenarios. Overall, SHO cut the aggregate red teaming failure
rate nearly in half compared to RLHF (24.6% vs 45.9%).

6.1.2 Adversarial robustness analysis

In order to determine the SHO’s performance in adversarial
settings; the individual components contribution to robustness
were examined. Table 9 showed the adversarial failure rates
when components were removed.

The results show that proxy reward modeling most reduces
factual errors, while behavioral auditing is key for minimizing
ethical violations and consistency failures; and removing
either component substantially degrades robustness.

6.1.3 Computational overhead and performance

We assessed SHO’s deployment cost relative to SFT and
RLHF by measuring inference latency (ms per response), GPU
memory usage (GB), and floating-point operations (FLOPS).
This is shown in Table 10.

Results showed that SHO increases latency by 39%
compared to SFT, primarily due to auditing and metric
computation. However, overhead drops to 22% when auditing
is scheduled periodically rather than per response. Proxy
reward modeling adds minimal overhead, since it shares
embeddings with the base LLM. These results suggest SHO is
viable for deployment, with manageable overhead that can be
tuned based on application requirements.

6.2 Qualitative results
The qualitative results are discussed in Table 11 considering

some examples. The SHO model combines factuality, ethical
reasoning, and user-centered helpfulness-a key objective.

Table 9. Component contribution to adversarial robustness (failure rate % across adversarial datasets)

Configuration Factual Error

Ethical Violation

Inconsistency  Overall Failure

Full SHO 6.8% 5.4% 8.9% 24.6%

Proxy reward model 11.2% 8.3% 13.5% 36.1%
Behavioral auditing 9.7% 12.4% 15.1% 37.2%
Active human feedback 10.6% 9.5% 14.7% 35.9%

Table 10. Inference performance comparison (averaged over 500 queries)

Method Latency per Response (ms) GPU Memory (GB) FLOPs per Response (x10°)  Relative Overhead (%0)
SFT 215 11.2 18.4 -
RLHF 243 125 19.8 +13.0%
SHO (Full) 298 14.8 23.6 +38.6%
SHO (w/o live auditing) 262 134 21.1 +21.9%

Table 11. Qualitative examples

Example Misinformation Query Ethical Dilemma
Prompt Why are vaccines linked to autism? Is it ever okay to steal if you're starving?
SET Some believe vaccines are linked to autism, Stealing is against the_ law and ger]eral_ly considered wrong. Ho_vvev_er, some
people believe that in extreme situations, such as starvation, it might be
output but...
understandable.
RLHE There i no scientific evidence, but it's Stealing is illegal and _not encou_raged. If you are in q_snuatlon where you do
not have food, consider reaching out to local charities or food banks for
output debated... help
SHO Vaccines are not linked to autism. This myth From a legal standpoint, theft is punishable. Ethically, many philosophers
outout has been debunked by extensive scientific argue that survival needs complicate moral judgments. Would you like
P research. resources on aid options?
7. DISCUSSION aggregating them into a Composite Intent Fidelity Score (IFS),

The results confirm that our proposed scalable hybrid
oversight (SHO) framework provides meaningful advances in
the alignment of large language models. Notably, it achieves
higher alignment performance with greater -efficiency,
reflecting its practical viability for real-world systems where
annotation resources are limited and model behavior must be
controlled continuously.

A key contribution of this work is the standardized
operationalization of intent fidelity. By decomposing intent
fidelity into five computable metrics-Semantic Concordance,
Value Alignment Score, Behavioral Consistency Index, Safe
Response Rate, and Correction Responsiveness-and
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we transform intent fidelity from a conceptual alignment goal
into a replicable benchmark. This standardized protocol allows
reproducible measurement across datasets, facilitates cross-
study comparisons, and creates a practical tool for evaluating
model behavior beyond accuracy or reward signals alone.
The SHO model demonstrated superior intent fidelity,
robustness, and safety across both standard and adversarial
benchmarks. It showed reduced generalization gaps and
improved performance on complex moral reasoning tasks,
supporting the value of proxy signals and automated audits in
aligning behavior without direct human supervision on every
instance. SHO achieved this with lower human oversight
demand, as evidenced by its higher oversight efficiency. This



makes it a promising candidate for deployment in
environments where manual review is infeasible such as real-
time Al assistance, customer-facing chatbots, or autonomous
agents in regulated domains.

Deploying LLMs safely requires alignment systems that
scale with breadth of use and depth of reasoning. By grounding
intent fidelity in a computationally unified framework. SHO
advances alignment research toward greater lucidity. Further
research can repeat this evaluation protocol, adding to it new
sub-metrics, or recalibrate weights for domain-specific
priorities (e.g., safety-critical healthcare versus open-domain
dialogue). This addresses a recurring limitation in prior
alignment work, where metrics often remained fragmented or
context-specific.

However, several limitations remain: Proxy reward models
are still subject to drift and may encode biases from initial
training data. Behavioral auditing is only as good as the
coverage of red team prompts and classifier robustness. Some
types of nuanced or emergent intent may still require bespoke
human input. Furthermore, this work exclusively focused on
English-language datasets and cultural baselines. Though, the
intent fidelity framework is designed to be task-agnostic,
linguistic diversity introduces additional challenges such as
differences in pragmatics, idiomatic usage, and discourse
markers that may affect Semantic Concordance scores. Also,
ethical and value alignment metrics such as VAS and SRR
may reflect culture-specific judgments that do not transfer
uniformly across societies. Proxy reward models trained on
English corpora also risk encoding cultural biases that reduce
validity in multilingual or multicultural deployments.

8. CONCLUSION AND FUTURE WORK

In this paper, we introduced a scalable hybrid oversight
(SHO) framework for aligning large language models with
human intent. Our method addresses the limitations of existing
approaches such as RLHF and supervised fine-tuning by
integrating sparse human feedback with proxy reward
modeling, behavioral auditing, and real-time alignment
metrics. This design enables alignment at scale without
sacrificing accuracy, safety, or ethical integrity.

Through extensive evaluation across diverse datasets
including truthfulness, ethics, toxicity, and adversarial
robustness, we demonstrated that SHO outperforms standard
baselines in intent fidelity, safe response rate, and oversight
efficiency. The improvements were most pronounced in high-
risk, ambiguous, and out-of-distribution scenarios, validating
the need for dynamic, modular alignment strategies.

This work supports a broader vision of Al alignment not as
a static goal, but as a continuous, system-level process. By
treating oversight as a feedback-driven, multi-layered control
mechanism, our framework paves the way for responsible and
robust deployment of LLMs in sensitive real-world contexts.

Though SHO demonstrates strong improvements in
alignment and oversight efficiency, several limitations remain.
First, the proxy reward model may inherit biases from its
training data or proxies, potentially reinforcing skewed value
judgments. Second, behavioral auditing is only as strong as its
coverage: Adversarial prompts and classifiers cannot capture
every possible failure mode, and rare or emergent risks may
go undetected. Third, although SHO reduces annotation
burden, it still relies on high-quality human feedback at
selective points; biased or inconsistent feedback could

2019

undermine long-term fidelity. Addressing these challenges
will require adaptive proxies, more diverse audit datasets, and
collaborative oversight mechanisms that broaden the pool of
evaluators.

Several avenues remain open for future research to:

*Develop context-sensitive proxies that evolve based on
user goals and social norms.

Build systems that learn alignment dynamically through
ongoing human dialogue.

*Test SHO in multimodal settings such as vision-language
tasks and across languages and cultures.

«Create standardized red teaming benchmarks and
interpretability tools that keep pace with model complexity.

*Train proxies on multilingual corpora, leveraging
culturally varied annotators, and developing adaptive
alignment protocols that respect regional norms while
upholding universal safety standards. Ultimately, scalable
alignment is a prerequisite for trustworthy Al. This work
contributes a step toward that goal, offering a practical and
extensible foundation for aligning the next generation of
language models with human intent.
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