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As the number of Internet of Things (IoT) devices grows, there is a greater need for secure 
and efficient communication protocols. A growing number of people are using the Message 
Queuing Telemetry Transport (MQTT) protocol because of its real-time and lightweight 
data sharing capabilities. However, security concerns, particularly in scenarios involving 
the transmission of sensitive information, necessitate the development of augmented 
security measures. This research introduces a pioneering protocol, Secured MQTT (S-
MQTT), designed to address vulnerabilities inherent in the traditional MQTT protocol. To 
protect the confidentiality, integrity, and authenticity of transmitted data, S-MQTT 
combines sophisticated encryption methods with access control and authentication 
protocols. The proposed system S-MQTT in this research employs the MQTT protocol for 
data transfer within a communication system, comprising three key components: Publisher, 
Broker, and Subscriber. The study focuses on optimizing time-consuming procedures 
within the system and fortifying data security in communication systems. Using a Watchdog 
timer and AES data security, the investigation seeks to assess the broker's dependability in 
terms of activity level. Comparative analysis of the proposed system against the current 
system demonstrates superior performance. The results shows that the proposed protocol 
achieved an overall mitigation efficiency of 97.78%, completely blocking man-in-the-
middle attacks and reducing malware intrusions by 96.61%. Encryption and authentication 
added only minimal latency and moderate resource overhead while significantly enhancing 
confidentiality, integrity, and availability. Including these metrics in the abstract will 
provide a balanced view of both the security effectiveness and performance trade-offs of S-
MQTT. Additionally, the study presents an assessment of the time and space complexity of 
the suggested system design. 
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1. INTRODUCTION

The widespread use of real-time communication systems
and connected devices in the current digital era has completely 
transformed the way data is shared across networks. In order 
to enable intelligent and effective operations, data connectivity 
is essential for everything from smart home applications and 
industrial automation to healthcare monitoring and 
transportation systems. A lightweight and effective publish-
subscribe messaging protocol, Message Queuing Telemetry 
Transport (MQTT) is at the heart of this digital revolution. It 
was created especially for networks with low bandwidth, high 
latency, and unreliability. The security of MQTT-based 
communication systems is still a major worry despite their 
widespread use, especially in situations where sending 
sensitive data is essential. This study examines the difficulties 
in protecting MQTT communications and suggests a novel 
protocol improvement meant to strengthen the security of data 
transfer in communication networks [1]. With billions of 

devices connected globally, the Internet of Things (IoT) has 
become a disruptive technology paradigm. These gadgets 
frequently work in conditions with limited energy, memory, 
and computational capacity. Because of their expense and 
complexity, standard communication protocols like HTTP or 
FTP are therefore frequently inappropriate. Because of its low 
overhead, ease of use, and effective data transport 
mechanisms, MQTT—which was created by IBM in the late 
1990s and is currently standardized by OASIS—has emerged 
as a de facto standard for Internet of Things communications 
[2]. 

Message exchange between clients is managed by a central 
broker in the client-server architecture of MQTT.  Other 
devices subscribe to these topics in order to receive the data 
that devices (clients) publish to them. Three Quality of Service 
(QoS) tiers are supported by the protocol to guarantee message 
delivery according to application requirements. Nevertheless, 
MQTT was not initially built with strong security features, 
despite its functional benefits. It is susceptible to a variety of 

Ingénierie des Systèmes d’Information 
Vol. 30, No. 8, August, 2025, pp. 1963-1973 

Journal homepage: http://iieta.org/journals/isi 
 

1963

https://orcid.org/0009-0004-2462-9361
https://orcid.org/0009-0000-3633-4748
https://orcid.org/0000-0002-6172-7938
https://orcid.org/0009-0007-8680-3750
https://orcid.org/0009-0004-0293-4197
https://crossmark.crossref.org/dialog/?doi=https://doi.org/10.18280/isi.300803&domain=pdf


 

assaults, including as man-in-the-middle (MITM) attacks, 
session hijacking, data tampering, and unauthorized access, 
because its default implementation is devoid of crucial 
security features like data encryption, mutual authentication, 
and integrity checking. Figure 1 shows the MQTT working. 

It is now more important than ever to provide secure 
communication in MQTT-based systems due to the 
exponential development in the number of connected devices 
and the volume of sensitive data being exchanged [3]. Token-
based authentication, access control methods, and Transport 
Layer Security (TLS) have all been attempted to be 
incorporated into MQTT frameworks. Nevertheless, these 
improvements frequently result in higher computing overhead, 
which can be harmful in settings with limited resources. 
Innovative methods that improve MQTT security without 
sacrificing its portability are therefore desperately needed [4]. 

 

 
 

Figure 1. MQTT Working 
 

1.1 Key challenges in MQTT security 
 

1.1.1 Data confidentiality 
Conventional MQTT lacks built-in encryption mechanisms, 

exposing data to potential eavesdropping. S-MQTT addresses 
this vulnerability by incorporating robust encryption 
algorithms, ensuring the confidentiality of sensitive 
information. 
 
1.1.2 Data integrity 

Guaranteeing the integrity of transmitted data is essential in 
preventing unauthorized modifications. S-MQTT employs 
cryptographic techniques, including digital signatures, to 
verify the authenticity of messages and uphold data integrity 
[5]. 
 
1.1.3 Authentication  

Conventional MQTT relies on straightforward 
username/password authentication, potentially exposing it to 
brute-force attacks. S-MQTT elevates authentication security 
by incorporating digital certificates, thereby ensuring that only 
authorized entities can engage in the communication process. 

 
1.2 Features of S-MQTT 

 
1.2.1 End-to-end encryption  

Advanced end-to-end encryption techniques are 
incorporated into S-MQTT to guarantee that data is kept 
private during the whole communication chain, from the 
originator to the intended recipient. By encrypting the payload 
before it leaves the sender's equipment and only decrypting it 
at the recipient's end, this encryption technique removes the 

possibility of exposure at gateways or brokers. End-to-end 
encryption guarantees the protection of sensitive data, such as 
credentials, control commands, or personal information, by 
thwarting illegal access, eavesdropping, and data breaches. In 
IoT and industrial settings, where private and secure 
communication is crucial, this capability is extremely 
important [6]. 
 
1.2.2 Digital signatures  

S-MQTT uses digital signatures on all sent messages to 
ensure data authenticity and integrity. The sender's private key 
is used to sign each message, enabling the recipient to use the 
matching public key to confirm the sender's identity. This 
cryptographic method guarantees that the message is from a 
reliable source and hasn't been tampered with during 
transmission. The system is warned of possible manipulation 
if the signature validation fails and any portion of the message 
is altered while in route. Digital signatures give MQTT-based 
communications a crucial degree of confidence and 
transparency by guaranteeing non-repudiation and 
traceability, particularly in secure IoT deployments [7]. 

 
1.2.3 Mutual authentication 

S-MQTT implements mutual authentication between 
brokers and clients, improving communication security. Both 
participants in this process must present and authenticate 
digital certificates that have been issued by a reliable 
certificate authority (CA). Mutual authentication guarantees 
the legitimacy of both the client and the server, in contrast to 
conventional one-way authentication schemes that only verify 
the server. This two-way validation reduces the possibility of 
unauthorized device access, man-in-the-middle attacks, and 
impersonation. Especially useful in settings with sensitive data 
or essential systems, like healthcare, smart grids, or secure 
industrial automation networks, it strengthens the basis for 
trust [8]. 

 
1.2.4 Session persistence 

S-MQTT adds strong session persistence features to 
increase system resilience and communication dependability. 
In the event of brief network outages, power outages, or 
system reboots, this enables devices to preserve session states. 
The protocol allows for a seamless continuation of the prior 
session without data loss or re-authentication upon connection 
restoration. Session identifiers and state synchronization 
strategies that store crucial connection metadata are used to do 
this. In situations where devices function in remote or unstable 
locations, such mobile sensor networks or field-deployed IoT 
systems, session persistence is essential for guaranteeing 
continuous operation and steady data flow [9]. 

Designing and testing a novel S-MQTT protocol that greatly 
increases data transmission security in communication 
systems—especially in the context of the Internet of Things 
and other resource-sensitive applications—is the main goal of 
this work. The article proposes a unique framework that 
preserves the effectiveness of the original MQTT protocol 
while introducing cryptographic and intelligent access control 
techniques in an effort to close the gap between robust security 
and lightweight communication. The growing amount of 
privacy violations and security breaches in MQTT-based 
systems, which can have disastrous effects on industries like 
industrial automation, energy, healthcare, and transportation, 
is what spurred this study. The goal of the suggested approach 
is to offer end-to-end security by incorporating real-time 
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anomaly detection capabilities, safe authentication 
procedures, and lightweight encryption techniques into the 
MQTT communication pipeline. A thorough performance 
assessment of the suggested improvements in terms of security 
strength, computational effectiveness, scalability, and 
compatibility with current MQTT infrastructures is also 
intended to be provided by this study. Through thorough 
testing and modelling in a variety of circumstances, the study 
will provide important insights into the effectiveness and 
trade-offs of the suggested protocol changes. 

 
1.3 Purpose contribution of the study 

 
• To achieve the overarching goal of enhancing data 

transmission security in communication systems through 
an S-MQTT protocol, the study is guided by the following 
objectives. 

• To investigate the security vulnerabilities in the standard 
MQTT protocol, particularly in the areas of authentication, 
data integrity, confidentiality, and access control. 

• To develop a security-enhanced MQTT protocol (S-
MQTT) that utilizes lightweight encryption, dynamic 
authentication, and efficient access control mechanisms 
tailored for low-power IoT environments. 

• To integrate anomaly detection capabilities into the S-
MQTT framework using machine learning and heuristic-
based models for real-time identification and mitigation of 
malicious activities. 

• To evaluate the performance of the proposed S-MQTT 
protocol through simulations and testbed experiments, 
focusing on metrics such as latency, throughput, resource 
utilization, and resistance to cyberattacks. 

• To ensure compatibility with existing MQTT 
implementations and provide a comparative analysis with 
current security extensions, highlighting the proposed 
protocol's advantages and trade-offs. 

A review of existing studies reveals several categories of 
security enhancements for MQTT. Authentication and 
encryption-based mechanisms strengthen confidentiality and 
integrity but often introduce computational burdens for 
resource-constrained IoT devices. Machine learning–driven 
anomaly detection frameworks enable real-time attack 
identification, yet they require carefully engineered features 
and balanced datasets to remain effective. Formal modeling 
approaches provide rigorous definitions of vulnerabilities but 
are limited in practical deployment. Application-specific 
extensions demonstrate improved resilience in domains such 
as smart homes and healthcare but remain narrow in scope. 
This classification emphasizes the fragmented nature of 
current solutions and underlines the need for a unified protocol 
that delivers robust security while maintaining lightweight 
performance. 

The remaining paper is structured as; Section 2 provides the 
Literature Review, summarizing recent advancements in 
securing the MQTT protocol. Section 3 details the Proposed 
Methodology, outlining the S-MQTT protocol’s integration of 
AES encryption, Merkle Tree-based authentication, and a 
Watchdog timer mechanism. Section 4 presents the Results 
and Discussion, including the simulation environment, 
performance metrics, and comparative analysis with 
traditional systems. Finally, Section 5 delivers the Conclusion, 
highlighting how the proposed protocol effectively mitigates 
cyberattacks while maintaining efficiency in resource-
constrained IoT environments. 

2. LITERATURE REVIEW 
 
The lightweight Message Queuing Telemetry Transport 

(MQTT) protocol is widely used in IoT and machine to 
machine systems, but security is often lacking. Large-scale 
measurements show that most real-world MQTT deployments 
remain insecure; for example, Tagliaro et al. [9] found only 
0.16% of MQTT backends use TLS, leaving 99.84% of 
systems with unencrypted traffic. To address this, researchers 
have proposed Secure MQTT (S-MQTT) variants and 
enhancements that add authentication, encryption, and 
intrusion-detection while preserving MQTT’s efficiency. One 
such S-MQTT design achieved higher packet delivery and 
lower energy use than standard MQTT in IoT simulations. The 
literature on MQTT security are grouped into several themes, 
as summarized below. 

 
2.1 Authentication and encryption enhancements 

 
Researchers have developed stronger authentication and 

crypto schemes for MQTT payloads and sessions; Belayad 
Bangare and Patil [1] propose a Merkle-tree–based approach 
for two way authentication in MQTT. They integrate Merkle 
trees into an HBMQTT broker using authentication and 
authorization plugins. These extra layers allow the broker to 
distinguish authentic from inauthentic data streams, enhancing 
MQTT’s data integrity. The scheme was tested against 
common attacks (MITM, malware, DoS, phishing) and 
remains efficient. Hintaw et al. [2] design a Robust Security 
Scheme (RSS) that encrypts MQTT payloads with a dynamic 
variant of AES (D-AES) and secures the AES key using Key-
Policy Attribute-Based Encryption (KP-ABE). This hybrid 
symmetric construction avoids heavy bilinear operations by 
wrapping the AES key with ABE. In practice, RSS showed 
improved security metrics (e.g. balance and avalanche effect) 
with modest overhead – it achieved 8–10% better 
cryptographic properties than standard AES. 

 
2.2 Formal modelling and security surveys 

 
Several papers focus on formally analysing MQTT’s 

vulnerabilities and providing taxonomies of threats: Jandoubi 
et al. [6] systematically formalize seven MQTT attack 
scenarios using Linear Temporal Logic (LTL). For each 
scenario (e.g. session hijacking, data injection), they encode 
an LTL formula and verify it with the TLC model checker. 
When a counterexample is found, it concretely represents how 
an attack could unfold. This work provides precise definitions 
of common MQTT attacks and demonstrates a method to 
rigorously check protocol implementations. Laghari et al. [8] 
note that existing reviews often lack depth, so they compile a 
comprehensive taxonomy of MQTT ecosystem security 
threats. They survey prevalent attacks, their impacts, 
mitigation techniques, and open research directions. Their 
taxonomy guides practitioners through known MQTT 
vulnerabilities and countermeasures. Tagliaro et al. [9] 
perform a large-scale measurement of IoT backends (including 
MQTT servers). They find alarming prevalence of 
misconfiguration: for example, 9.44% of analyzed backends 
leak sensitive info, and over 99% of MQTT endpoints lack any 
encryption (TLS). These quantitative results underline the 
urgent need for protocol hardening and secure deployment 
practices in the IoT field. 
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2.3 Secure transmission in IoT applications 
 
Some studies propose application-specific MQTT security 

mechanisms and experimental validations: Munshi [10] 
targets smart-home MQTT systems. The paper introduces 
“secure transmission flags” at the MQTT protocol level to 
prevent unauthorized data transfer in smart homes. In a 
prototyped smart-home setup, these flags enabled a bi-
directional secure transmission strategy. The results showed 
improved throughput (70–80 Mbps) over a secure MQTT 
channel compared to baseline. This demonstrates that even 
simple protocol tweaks (flags indicating permission for each 
data packet) can substantially enhance security in resource-
constrained IoT deployments. Other works (e.g. DLST-MQTT 
by De Rango et al. [7] propose topic-level security, assigning 
cryptographic protections on a per-topic basis for MQTT. 
Although we could not retrieve the full text, the abstract 
indicates DLST-MQTT uses lightweight ECC cryptography to 
balance end-to-end security and performance. Such topic-
centric schemes are a promising direction for implementing S-
MQTT on resource-limited devices. 

 
2.4 Real-world applications and protocol implementations 

 
Several researchers have extended the MQTT protocol to 

real-world domains, proposing practical solutions that 
enhance security, efficiency, and scalability. Kombate et al. 
[11] identified critical MQTT vulnerabilities such as man-in-
the-middle attacks and data interception. They introduced a 
cyber-range platform that simulates real attack scenarios, 
allowing for controlled testing of MQTT defenses. This 
approach aids in designing and validating more robust MQTT-
based IoT security architectures. Alshammari [12] and Gong 
et al. [13] implemented an MQTT-based IoT framework for 
real-time healthcare monitoring. Their system transmits data 
such as heart rate and temperature using MQTT's lightweight 
publish-subscribe model [14]. Testing showed high reliability, 
low latency, and minimal resource use, confirming MQTT's 
suitability for secure, responsive medical applications. Hintaw 
et al. [2] developed a Robust Security Scheme (RSS) for 
MQTT that combines Dynamic AES (D-AES) and Key-Policy 
Attribute-Based Encryption (KP-ABE). This hybrid reduces 
overhead while improving security metrics like avalanche 
effect and Hamming distance, outperforming standard AES in 
key areas. Chien et al. [15] addressed MQTT’s lack of group 
security by creating an efficient platform for secure group 
communication using lightweight encryption. The system 
reduces latency and avoids heavy protocols like TLS, offering 
a practical solution for constrained IoT devices needing secure 
multicast messaging. 

 
Table 1. Comparative analysis of MQTT-based literature reviews 

 
Author Name Attacks Methods Used Datasets Used Hardware Used Results 

Belayad Bangare 
and Patil [1] 

Unauthorized 
Access 

Two-way authentication, 
Merkle tree - Simulated IoT 

testbed 
Reduced latency, low resource use, 

high security 

Hintaw et al. [2] Advanced 
cyberattacks 

D-AES + KP-ABE 
hybrid cryptosystem 

Simulated MQTT 
traffic IoT simulator Improved AES 

Alotaibi et al. [3] Anomalies in MQTT Distributed ML (H2O, 
XGBoost) 

IoT anomaly 
datasets 

Cloud-based 
simulation 

XGBoost achieved best accuracy 
and detection speed 

Jodlbauer et al. [4] Data Exploitation Market data simulation BEV Market data Simulated platform Revealed data misuse patterns in 
IoT applications 

Al Hanif et al. [5] Intrusion Detection Feature engineering + 
ML 

Custom MQTT 
dataset - 96% accuracy in anomaly detection 

Jandoubi et al. [6] Protocol Exploits TLC model checker, 
LTL logic 

Formal MQTT 
scenarios 

Verification 
platform Validated 7 formal attack models 

De Rango et al. [7] DoS, Topic 
hijacking 

DLST-MQTT, ECC 
encryption Simulated traffic MQTT over 

constrained devices 
Lower CPU/RAM use than TLS-

MQTT 

Laghari et al. [8] Various MQTT 
threats 

Vulnerability mapping, 
ML, blockchain Survey-based Literature and 

theoretical models 
Comprehensive threat taxonomy 

proposed 

Tagliaro et al. [9] Backend misconfig. Large-scale deployment 
analysis 

337K IoT 
backends Internet-scale scans Found outdated/misconfigured 

deployments 

Munshi [10] Spoofing, Data 
tampering Secure flags with MQTT Smart home 

scenario 
Smart home 
environment 

Improved security with no extra 
overhead 

Kombate et al. [11] General MQTT 
vulnerabilities Cyber range simulation Simulated attack 

vectors 
Cyber range 

platform 
Highlighted key weaknesses in 

MQTT 

Alshammari [12] Data delay in 
healthcare IoT Real-time MQTT system Health sensor 

data Wearable devices Low latency, reliable transmission 

Chien et al. [15] Group comm. 
insecurity Group key management Simulated group 

scenarios MQTT testbed Efficient and secure group 
messaging 

Liu et al. [16] Data loss, latency Wi-Fi distribution with 
MQTT 

IoT payloads 
(10â€“70 bytes) Wi-Fi testbed 100% success rate, avg. 

0.66â€“4.73s 

Katsikeas et al. [17] Low-resource 
threats 

Lightweight crypto with 
MQTT Industrial IoT test IIoT hardware Secure with minimal latency 

 
2.5 Scalable MQTT communication for IoT 

 
Liu et al. [16] proposed a Wi-Fi distribution model 

integrated with MQTT for better terminal access and flexible 
network setup in IoT. Their method achieved high data 
transmission reliability (100%) with low setup times, proving 
effective for scalable, real-world deployments. Katsikeas et al. 

[17] designed a secure, low-latency MQTT communication 
scheme tailored to Industrial IoT (IIoT) environments. It 
employs lightweight cryptography to ensure confidentiality 
and integrity without straining device resources. The solution 
meets time-sensitive and energy-constrained IIoT 
requirements.  
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2.6 Machine learning–based anomaly detection 
 
Another line of work uses data-driven methods to detect and 

mitigate MQTT attacks in real time, Alotaibi et al. [3] develop 
a distributed ML system (based on the H2O platform) to 
monitor MQTT traffic for anomalies. They model common 
IoT threats (MITM, DDoS, etc.) and train various 
algorithms—Random Forest, GLM, Deep Learning [18-20], 
XGBoost [21, 22], etc.—to recognize deviations from normal 
MQTT usage. This approach enables scalable, real-time 
intrusion detection across edge and cloud nodes. The authors 
report which H2O algorithms performed best (in terms of 
accuracy and loss) on MQTT datasets. Al Hanif et al. [5] 
propose a feature-engineering pipeline to bolster MQTT traffic 
intrusion detection. They curate a balanced MQTT dataset, 
extract relevant features, and select a 10-feature model that 
yields constant high accuracy. The resulting IDS framework 
achieved >96% accuracy, precision, recall, and F1-score in 
classifying MQTT anomalies. This work shows that with 
careful feature selection and ML tuning, lightweight IoT 
devices can effectively detect malicious MQTT messages. 

The comparative analysis offers a well-organized summary 
recent studies that concentrate on protecting MQTT 
communications in Internet of Things settings in Table 1. 
Numerous attacks, security techniques, datasets, hardware 
configurations, and outcomes are highlighted. From formal 
verification and protocol improvements to machine learning 
and cryptography, the table displays a variety of methods. This 
comparison helps find patterns, weaknesses, and practical 
security solutions for the MQTT protocol. 

 
 

3. PROPOSED METHODOLOGY 
 

3.1 System architecture of the proposed S-MQTT protocol 
 
The proposed S-MQTT protocol addresses two major 

limitations of the standard MQTT: lack of robust security and 
unreliable communication. To ensure secure data 
transmission, it integrates a Merkle Tree-based authentication 
mechanism and AES encryption. The Merkle Tree enables the 
subscriber to prove data integrity by transmitting partial hash 
paths, which the publisher verifies against a stored root hash. 
This ensures that only authenticated data is accepted. After 
authentication, AES encryption—specifically the 256-bit 
variant—is applied to protect the data content during 
transmission. For reliable communication, a Watchdog Timer 
mechanism is introduced to monitor broker responsiveness. If 
the broker becomes unresponsive or fails to reset its internal 
counters within defined cycles, the Watchdog triggers a 
restart, thereby maintaining continuous service. This 
combination of cryptographic validation, encryption, and 
automated fault recovery forms a lightweight yet effective 
security layer tailored for resource-constrained IoT 
environments. The detail system architecture diagram of 
proposed S-MQTT is shown in Figure 2. 

 
3.1.1 Security mechanisms in the proposed S-MQTT protocol 

To ensure data security during data transmission through the 
MQTT protocol, we employ the Merkle tree positioned 
between the subscriber and the publisher. The Merkle tree, a 
data structure commonly utilized in blockchain applications 
for enhanced efficiency and security, plays a pivotal role [18]. 
In the illustrated scenario presented in Figure 3, the publisher 

(Ṕ) randomly designates a block index (for example, 1) as a 
challenge. Following this, the subscriber constructs a Merkle 
tree from its local data and transmits the distinct sibling paths 
from the leaves to the root node (i.e., (H1, H2, H3−4)) to the 
verifier. On receiving the proof response, the publisher 
authenticates the root value of the Merkle tree (i.e., H (H (H1, 
H2), H3−4)) and verifies its congruence with the locally stored 
value of the root node. The integration of the Merkle tree with 
AES encryption contributes significantly to ensuring the 
security of data transmission in this specific context. 

 
3.1.2 Reliable communication 

Ensuring reliable communication hinges on the critical task 
of monitoring brokers. Currently, subscribers lack feedback on 
the operational status of the broker. An essential responsibility 
of the broker involves resetting the count of additional threads 
after every four machine cycles. The dedicated task of these 
extra threads is to initiate a reset of the broker at the conclusion 
of every fifth machine cycle.  
 

 
 

Figure 2. Proposed S-MQTT model working flow diagram 
 

If the broker faces challenges in resetting the count of extra 
threads, suggesting a malfunction, the extra thread intervenes 
to reset the broker and restore its functionality. 

 
3.1.3 Watchdog timer implementation for data transmission in 
MQTT protocol 

The MQTT protocol employs a Watchdog timer for 
managing data delivery, with three key components: The 
Publisher, Broker, and Subscriber. In the data exchange 
process between a Publisher and a Subscriber through a 
Broker, it is challenging to ascertain the operational status of 
the broker. To address this, a Watchdog timer is implemented, 
tasked with restarting the broker if it remains unresponsive for 
more than a minute. A system timer, functioning as a 
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watchdog at a higher application level, plays a crucial role. 
This system timer monitors the broker's responsiveness and 
triggers a termination and restart of the application if 
unresponsiveness is detected. Upon reaching the watchdog 
timer's expiration, a signal is sent, prompting the termination 
of the application by the broker. Subsequently, the broker 
initiates the application restart. To prevent the watchdog timer 
from timing out during regular operation, the broker routinely 
resets the timer. In cases where the broker encounters 
difficulties restarting the watchdog timer due to hardware or 
software issues, a timeout signal is generated, triggering 
corrective actions. Securing the broker and its associated 
hardware involves implementing measures to ensure their 
safety and integrity. 

 

 
 

Figure 3. Flowchart of Data Encryption (S-MQTT) 
 

3.1.4 Merkel tree 
A prevalent data structure in computer science, Merkle trees 

play a significant role in improving the efficiency and security 
of data communication. This is especially evident in the 
context of blockchain data encryption, particularly when 
facilitating communication between publishers and 
subscribers [19]. The effectiveness of Merkle tree-based 
authentication security heavily depends on the selected hash 
function.  Consequently, the publisher retains only the root 
node's value and discards additional metadata after 
constructing the tree. Internal node values derive from the hash 

values of their respective children, while leaf node values stem 
directly from the hash of the relevant data block in the Merkle 
tree. Merkle tree-based online authentication ensures the 
synchronization of data between the publisher and subscriber. 
Unlike public verification, it presupposes that the publisher 
holds certain secret (non-public) information about the data 
subject to certification. A key advantage of employing Merkle 
trees lies in the ability to validate various crucial aspects of a 
specific data element or the entire dataset without 
necessitating access to the complete dataset. The Merkle tree, 
characterized by its non-linear and binary hash tree-like 
structure, stores the hash value of a data element in each leaf 
node. Middle nodes, on the other hand, preserve the hash of 
their two corresponding child nodes. This architectural design 
facilitates verifying numerous essential details about a specific 
data element or the entire dataset without requiring access to 
the complete dataset. 

 
3.2 Algorithms 

 
3.2.1 AES 

In our system, following the distribution of data by the 
Merkle tree, AES encryption is applied to the data. Encryption 
involves transforming regular text into cipher text, composed 
of seemingly random characters, and can only be deciphered 
by those possessing the designated key. AES employs 
symmetric key encryption, entailing the encoding and 
decoding of data using a single secret key.  
 

 
 

Figure 4. Schematic structure of Encryption 
 
The Advanced Encryption Standard (AES) is the algorithm 

employed for achieving asymmetric encryption. AES bits, 
available in lengths of 128, 192, and 256 bits, are utilized for 
encrypting and decrypting data. Once the Merkle tree 
completes its data processing, AES utilizes the symmetric key 
to ensure the security of the data. Among the three available 
options (128-bit, 192-bit, and 256-bit AES encryption), the 
256-bit AES encryption is considered the most secure due to 
its larger key length size. Figure 4 shows the AES algorithm 
steps. 

The encryption process for data security in the system 
involves providing a specific key to the distributed data, 
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followed by the following steps: 
Step 1: Substitute Bytes (Sub Bytes): 
- Fine-tune the 16 bits of data through configured 

substitutions that yield network structures, rows, and columns. 
Step 2: Shift Rows: 
- Perform circular byte shifts for each round, shifting 

every four lines of the matrix network to the left. 
Step 3: Mix Columns: 
- Combine columns to produce a matrix of 16 

transformed bytes, excluding the last round where this 
operation is not repeated. 

Step 4: Add Round Key: 
- Include a circular key. The input matrix, round key, 

and output are stored as cipher text, which is 128 bits and 16 
bytes homogeneous per round of interpreted data. 

Step 5: Decryption: 
- In the decryption process, the steps involve reversing 

the operations of an AES cipher text action.  
- The entire process is segmented into four stages, each 

meticulously addressing the logical reverse order. 
- This systematic encryption approach ensures the 

security of the data by utilizing the specified key and applying 
a series of intricate operations to the distributed data.  

- The subsequent decryption process effectively 
reverses these operations to retrieve the original data. 

To clarify the practical integration of Merkle Tree 
authentication and AES-256 encryption within the S-MQTT 
framework, a stepwise representation is provided in Figure 1. 
The following pseudocode and flowchart illustrate the 
sequential operations of the publisher and subscriber, ensuring 
data confidentiality, integrity, and verification before 
acceptance, as shown in Figure 5. 

 
 

Figure 5. Workflow diagram for proposed approach 
 
 
4. RESULTS AND DISCUSSION 

 
4.1 System environment and configuration  

 
Table 2. Experimental Setup and Description 

 
Parameter Description 

Simulation 
Tool 

A unique simulation testbed created in Python was used to implement the experimental setup, utilizing MQTT libraries like Paho-
MQTT for message handling. Through the broker, this environment enables real-time testing and monitoring of publisher-
subscriber interactions. Python scripting's adaptability allows for the automation of attack scenarios and performance evaluation, 
which makes it perfect for modelling intricate IoT communication flows and incorporating extra security-enhancing elements 
like watchdog timers, AES encryption, and Merkle tree verification. A unique simulation testbed created in Python using MQTT 
libraries for message handling. NS-3 was integrated for modeling and simulating attack scenarios such as MITM and malware 
injection, enabling reproducible performance evaluation under controlled network conditions. 

Testing 
Devices 

Using Raspberry Pi and ESP8266 modules, which represent common resource-constrained hardware in real-world IoT 
applications, the testing environment replicated popular IoT devices. In the MQTT network, these devices served as publishers 
and subscribers. Because of their low processing power and memory requirements, they were perfect for evaluating the S-MQTT 
protocol's performance and lightweight nature. This allowed security features like encryption and mutual authentication to 
function properly even with restricted device capabilities. 

Operating 
System 

The system was set up on Ubuntu 20.04 LTS, a popular and reliable Linux distribution that is ideal for jobs involving network 
simulation and development. Python, MQTT brokers like Mosquitto, and security libraries required for encryption and 
authentication are all supported by Ubuntu by default. It is a favored option for IoT and protocol testing in scholarly and 
commercial research due to its dependable networking stack, compatibility with a wide range of devices, and cloud-based 
platforms. 

Broker 
Software 

The open-source Mosquitto MQTT Broker was utilized to manage all message routing between subscribers and publishers. It is 
simple to set up to mimic various network scenarios and facilitates secure communication using TLS/SSL. By employing a 
watchdog timer and monitoring threads to identify unresponsiveness and automatically restart the broker, the S-MQTT 
implementation improved the broker's dependability while testing, guaranteeing continuous communication and fault tolerance. 

Network Setup 

The testbed operated over a Wi-Fi local area network (LAN) with average latency under 10 milliseconds. This setup emulates 
real-world IoT deployments in smart homes or industrial settings where devices are wirelessly connected. The low-latency, high-
availability network ensured accurate assessment of the protocol’s performance in terms of encryption speed, message delay, and 
attack mitigation. The controlled environment allowed repeatable experimentation and comparative analysis between the 
conventional and S-MQTT protocols. 

Number of 
Test Iterations 

To evaluate the robustness of the S-MQTT system, a total of 10,000 simulated attack attempts were conducted—5,000 involving 
man-in-the-middle (MITM) attacks and 5,000 malware injections. The system's ability to resist, detect, or recover from these 
attacks was recorded and compared with a baseline conventional MQTT setup. The high number of iterations ensured statistical 
significance and repeatability in measuring the effectiveness of the proposed security enhancements. 
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The experimental setup simulates a typical IoT environment 
with publishers, subscribers, and an MQTT broker to evaluate 
the proposed S-MQTT protocol. Key tools include Python for 
implementation, Eclipse Mosquitto as the broker, and 
Wireshark for traffic analysis. AES encryption and Merkle 
Tree authentication were integrated using lightweight 
cryptographic libraries. Performance was assessed under 
varying network conditions, focusing on latency, throughput, 
CPU usage, and security resilience. Table 2 shows the 
Experimental Setup Description. 
 
4.2 Performance parameters 

 
The performance of secure communication in the proposed 

S-MQTT protocol is evaluated using multiple key parameters. 
Latency (L) represents the time taken to encrypt a message 
using AES, calculated as the difference between the message 
receive time and send time (L = Trecv - Tsend). Throughput 
(TP) measures the system’s data-handling capacity and is 
defined as the total data transmitted (in bytes) divided by the 
total transmission time in seconds. Encryption Time (ET) and 
Decryption Time (DT) denote the time required to perform 
AES encryption and decryption operations, respectively. CPU 
Utilization (%) reflects the processing load during secure 
communication and is computed as the ratio of CPU time used 
by MQTT to total available CPU time, expressed as a 
percentage. Memory Usage (MU) captures the peak RAM 
usage during the encryption-based transmission process as 
shown in Table 3. Lastly, Security Efficiency evaluates the 
protocol’s robustness by quantifying the percentage reduction 
in attack success rates, particularly against threats like Man-
in-the-Middle attacks. These metrics collectively validate that 
S-MQTT enhances security while maintaining performance 
within acceptable bounds for IoT systems. Performance 
Parameters Formulas are given below; 
• Latency (L): Time required to encrypt a message using 

AES 
 

𝐿𝐿 = 𝑇𝑇𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 − 𝑇𝑇𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 
 
• Throughput (TP): Measures data handling capacity 
 

𝑇𝑇𝑇𝑇 =
𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇(𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏)

𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇(𝑠𝑠𝑠𝑠𝑠𝑠)  

 
• Encryption Time (ET): Time required to encrypt a message 

using AES 
 

𝐸𝐸𝐸𝐸 = 𝑇𝑇𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 − 𝑇𝑇𝑒𝑒𝑒𝑒𝑒𝑒𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 
 
• Decryption Time (DT): Time required to decrypt a 

message 
 

𝐷𝐷𝐷𝐷 = 𝑇𝑇𝑑𝑑𝑑𝑑𝑑𝑑𝑒𝑒𝑒𝑒𝑒𝑒 − 𝑇𝑇𝑑𝑑𝑑𝑑𝑑𝑑𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠  
 
• CPU Utilization (%): How much processing power is used 

during secure communication? 
 

𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇

× 100 
 
• Memory Uses (MU): Memory required during secure 

message transmission 

𝑀𝑀𝑀𝑀 = 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃(𝑀𝑀𝑀𝑀) 
 

• Security Efficiency: Attack success mitigation percentage 
(e.g., Man-in-Middle) 

 

𝑆𝑆𝑆𝑆 = �1 −
𝐴𝐴𝑠𝑠𝑠𝑠𝑠𝑠
𝐴𝐴𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡

� × 100 

 
where: 
• 𝑇𝑇𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟  = Timestamp at receiver end 
• 𝑇𝑇𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 = Timestamp at sender end 
• 𝐴𝐴𝑠𝑠𝑠𝑠𝑠𝑠 = Attacks successful in S-MQTT  
• 𝐴𝐴𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 = Total attacks initiated (e.g., 10,000) 

 
Table 3. Measurement details of performance metrics 

 
Metric Measurement Method / 

Tool 
Sampling 
Frequency 

Latency (L) 
Wireshark packet capture; 

difference between send and 
receive timestamps 

Per message 

Throughput 
(TP) 

Python logging of total bytes 
transmitted over total 

transmission time 

Aggregated 
every 10 
seconds 

Encryption 
Time (ET) 

Python time library to 
measure AES encryption 

runtime 

Per encryption 
operation 

Decryption 
Time (DT) 

Python time library to 
measure AES decryption 

runtime 

Per decryption 
operation 

CPU 
Utilization 

(%) 

Linux top and psutil libraries 
on Ubuntu 20.04 

Sampled every 1 
second 

Memory 
Usage (MU) 

Python psutil library for peak 
RAM during test runs 

Sampled every 1 
second 

Security 
Efficiency 

Attack outcomes recorded in 
NS-3 simulation logs 

After each batch 
of 100 attacks 

 
The MQTT protocol is a lightweight messaging protocol 

that operates on a publish-subscribe architecture. It enables 
communication between client devices and applications by 
means of a central broker rather than through direct peer-to-
peer interaction. As an alternative to connecting to a 
conventional server, clients publish messages to particular 
topics, and the broker then distributes those messages to 
subscribers who are interested in those subjects. Through the 
use of this indirect connection, publishers and subscribers are 
provided with the opportunity to remain uninformed of each 
other's identities and presence. 

Over the Internet Protocol (IP), MQTT provides a variety of 
bidirectional transport techniques and enables the exchange of 
messages in real time. Brokers may be open-source or 
commercial, and they may be hosted locally or by third parties. 
Brokers may also be hosted externally. Because messages are 
not often saved, the protocol is effective for real-time 
communication that is both fleeting and instantaneous. There 
is the ability for clients to simultaneously publish and 
subscribe, which enables dynamic data flow. Subscribers have 
the ability to receive communications from a variety of 
publishers covering a wide range of subjects. Through the use 
of event-driven processing, real-time alerts, and parallel 
communication, this paradigm enhances the scalability, 
dependability, and bandwidth efficiency of the system, 
frequently resulting in a reduction of network load by as much 
as fifty percent. 
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Table 4. Security hamper comparesion graph 
 

Attack Type 
Number of Times 

Security Hamper in 
Conventional System 

Number of Times 
Security Hamper in 

PSA 
Man in middle 

attack 
31 0 

Malware attack 59 2 

 

In Figure 6, the proposed secure MQTT (PSA) system and 
a traditional MQTT system's security flaws are compared. The 
results indicate that the modified PSA protocol considerably 
improved security by successfully mitigating all man-in-the-
middle attacks and limiting malware breaches to just two 
cases, whereas the conventional system experienced 31 man-
in-the-middle attacks and 59 malware attacks, as shown in 
Table 4.

 

 
 

Figure 6. Comparative graph 
 

 
 

Figure 7. The behavior of the system for man-in-middle attack 
 

 
 

Figure 8. The behavior of the system for malware attack 
 

Table 5. Comparative analysis of attacks 
 

Attack Type 
Security 
Hampers 

(Conventional) 

Security 
Hampers 

(S-MQTT) 

Mitigation 
Efficiency 

(%) 
Man-in-the-

middle 31 0 100 

Malware 59 2 96.61 
Total 90 2 97.78 

 
A total of 10000 times an attack has been introduced in the 

system. For the man-in-middle attack, the results of the 

behavior of the system are illustrated in Figure 7 and for the 
malware attack, the results of the behavior of the system are 
illustrated in Figure 8. 

The integration of AES encryption and Merkle Tree 
authentication in the proposed S-MQTT protocol significantly 
enhances data confidentiality, integrity, and resistance to 
attacks compared to standard MQTT. While this introduces 
minimal overhead and latency, it ensures a robust and secure 
communication framework suitable for resource-constrained 
IoT environments. Table 5 shows the Impact of Encryption 
and Decryption: MQTT vs. S-MQTT and Table 6 shows the 
comparative analysis of various attacks. 
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Table 6. Comparative analysis of attacks 
 

Parameter Standard MQTT Proposed S-MQTT 
Encryption Mechanism Typically none or basic TLS AES-256 symmetric encryption 
Authentication Method Username/Password or TLS certificate Merkle Tree-based verification 

Data Integrity Vulnerable to tampering Strong integrity via hash-based Merkle paths 
Confidentiality Dependent on optional TLS layer Ensured by AES encryption 

Overhead (CPU/Memory) Low overhead Slightly higher due to encryption processing 
Latency Impact Very low Slight increase due to encryption/auth steps 
Security Level Moderate (without TLS) High (dual-layer: Merkle + AES) 

Broker Monitoring No built-in broker health check Integrated Watchdog Timer 
Suitability for IoT Devices High efficiency, low security Balanced: security with lightweight operations 

Resistance to Attacks Susceptible to MITM, replay, spoofing Resistant to common attacks (MITM, DoS, spoof) 
 

Table 7. Statistical significance of comparative results 
 

Attack Type Metric Compared p-value 95% Confidence Interval 
Man-in-the-Middle (MITM) Attack success rate (MQTT vs. S-MQTT) < 0.001 [0.92, 0.99] 

Malware Injection Attack success rate (MQTT vs. S-MQTT) < 0.005 [0.89, 0.97] 
Overall Security Hampers Total mitigation efficiency < 0.001 [0.94, 0.98] 

 
Table 8. Statistical significance of comparative results 

 
Scenario  
(NS-3) Latency (L) Throughput (TP) CPU (%) Mitigation Efficiency 

Baseline (Wi-Fi LAN, <10 ms RTT) ↔ ↔ ↔ ↔ 
High Load (bursty 10× topic traffic) ↑ (moderate) ↓ (slight) ↑ ↔ 

High Latency (50–200 ms added RTT) ↑ (expected) ↓ (slight) ↔ ↔ 
High Load + High Latency (combined) ↑ ↓ (moderate) ↑ ↔ 

To validate the reliability of the comparative results shown 
in Figures 6-8, statistical significance testing was conducted. 
The p-values and 95% confidence intervals confirm that the 
improvements achieved by S-MQTT over conventional 
MQTT are not due to random variation but reflect consistent 
and significant security gains as represented in Table 7. 

To assess robustness beyond nominal conditions, evaluation 
was extended using NS-3 to emulate bursty publish rates and 
elevated round-trip delays. Under increasing load (bursts and 
sustained high throughput) and synthetic latency (queuing + 
propagation), S-MQTT preserved attack-mitigation 
effectiveness, while overhead scaled primarily with AES 
operations; broker availability remained stable due to the 
Watchdog mechanism. These findings confirm that 
confidentiality/integrity controls do not collapse under adverse 
network dynamics and that the broker restarts autonomously 
when responsiveness degrades, sustaining service continuity. 
Table 8 shows the Statistical Significance of Comparative 
Results. 

 
 

5. CONCLUSIONS 
 
The inherent weaknesses of traditional MQTT systems, 

particularly in the context of the Internet of Things (IoT), are 
addressed by this research by introducing S-MQTT, a security-
enhanced MQTT protocol. Through the incorporation of 
cryptographic techniques like AES-256 encryption, Merkle 
Tree-based authentication, and Watchdog timer-based broker 
monitoring, the suggested system considerably enhances the 
secrecy, availability, and integrity of data that is transferred. 
Using simulated attack scenarios such as malware injections 
and man-in-the-middle attacks, the system outperformed the 
competition with a mitigation efficiency of more than 97%. 
The findings demonstrate that S-MQTT retains lightweight 
performance appropriate for devices with limited resources 

while simultaneously lowering security breaches. Because the 
design guarantees reciprocal authentication, session 
persistence, and scalable interoperability with current MQTT 
infrastructure, it is both resilient and useful for real-world 
deployments. Furthermore, without adding a lot of overhead, 
the system was able to strike a balance between operational 
effectiveness and excellent security. In addition to laying the 
foundation for future improvements that will include real-time 
anomaly detection and blockchain-based verifications, this 
study makes a significant contribution to secure 
communication protocols for the Internet of Things. In 
contemporary linked systems, S-MQTT offers a dependable 
and flexible way to secure MQTT-based communication. 
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