
S-MQTT: A Secure MQTT Protocol with Merkle Tree Authentication and AES Encryption
for IoT Communication Systems

Nilima Tatyasaheb Dhokane1* , Santosh Jagtap1 , Binod Kumar2 , Amit Anand3 , Rajesh Kumar Pandey4

1 Department of Computer Science, Savitribai Phule, Pune University, Pune 411044, India
2 MCA Department, JSPM's Rajarshi shahu college of Engineering, Pune 411033, India
3 Independent Researcher, Austin TX, USA
4 Independent Researcher, WA, USA

Corresponding Author Email: nilima.d28april@gmail.com

Copyright: ©2025 The authors. This article is published by IIETA and is licensed under the CC BY 4.0 license
(http://creativecommons.org/licenses/by/4.0/).

https://doi.org/10.18280/isi.300803 ABSTRACT

Received: 14 July 2025
Revised: 16 August 2025
Accepted: 22 August 2025
Available online: 31 August 2025

As the number of Internet of Things (IoT) devices grows, there is a greater need for secure
and efficient communication protocols. A growing number of people are using the Message
Queuing Telemetry Transport (MQTT) protocol because of its real-time and lightweight
data sharing capabilities. However, security concerns, particularly in scenarios involving
the transmission of sensitive information, necessitate the development of augmented
security measures. This research introduces a pioneering protocol, Secured MQTT (S-
MQTT), designed to address vulnerabilities inherent in the traditional MQTT protocol. To
protect the confidentiality, integrity, and authenticity of transmitted data, S-MQTT
combines sophisticated encryption methods with access control and authentication
protocols. The proposed system S-MQTT in this research employs the MQTT protocol for
data transfer within a communication system, comprising three key components: Publisher,
Broker, and Subscriber. The study focuses on optimizing time-consuming procedures
within the system and fortifying data security in communication systems. Using a Watchdog
timer and AES data security, the investigation seeks to assess the broker's dependability in
terms of activity level. Comparative analysis of the proposed system against the current
system demonstrates superior performance. The results shows that the proposed protocol
achieved an overall mitigation efficiency of 97.78%, completely blocking man-in-the-
middle attacks and reducing malware intrusions by 96.61%. Encryption and authentication
added only minimal latency and moderate resource overhead while significantly enhancing
confidentiality, integrity, and availability. Including these metrics in the abstract will
provide a balanced view of both the security effectiveness and performance trade-offs of S-
MQTT. Additionally, the study presents an assessment of the time and space complexity of
the suggested system design.

Keywords:
encryption, IoT, MQTT security, MQTT,
security, lightweight encryption

1. INTRODUCTION

The widespread use of real-time communication systems
and connected devices in the current digital era has completely
transformed the way data is shared across networks. In order
to enable intelligent and effective operations, data connectivity
is essential for everything from smart home applications and
industrial automation to healthcare monitoring and
transportation systems. A lightweight and effective publish-
subscribe messaging protocol, Message Queuing Telemetry
Transport (MQTT) is at the heart of this digital revolution. It
was created especially for networks with low bandwidth, high
latency, and unreliability. The security of MQTT-based
communication systems is still a major worry despite their
widespread use, especially in situations where sending
sensitive data is essential. This study examines the difficulties
in protecting MQTT communications and suggests a novel
protocol improvement meant to strengthen the security of data
transfer in communication networks [1]. With billions of

devices connected globally, the Internet of Things (IoT) has
become a disruptive technology paradigm. These gadgets
frequently work in conditions with limited energy, memory,
and computational capacity. Because of their expense and
complexity, standard communication protocols like HTTP or
FTP are therefore frequently inappropriate. Because of its low
overhead, ease of use, and effective data transport
mechanisms, MQTT—which was created by IBM in the late
1990s and is currently standardized by OASIS—has emerged
as a de facto standard for Internet of Things communications
[2].

Message exchange between clients is managed by a central
broker in the client-server architecture of MQTT. Other
devices subscribe to these topics in order to receive the data
that devices (clients) publish to them. Three Quality of Service
(QoS) tiers are supported by the protocol to guarantee message
delivery according to application requirements. Nevertheless,
MQTT was not initially built with strong security features,
despite its functional benefits. It is susceptible to a variety of

Ingénierie des Systèmes d’Information
Vol. 30, No. 8, August, 2025, pp. 1963-1973

Journal homepage: http://iieta.org/journals/isi

1963

https://orcid.org/0009-0004-2462-9361
https://orcid.org/0009-0000-3633-4748
https://orcid.org/0000-0002-6172-7938
https://orcid.org/0009-0007-8680-3750
https://orcid.org/0009-0004-0293-4197
https://crossmark.crossref.org/dialog/?doi=https://doi.org/10.18280/isi.300803&domain=pdf

assaults, including as man-in-the-middle (MITM) attacks,
session hijacking, data tampering, and unauthorized access,
because its default implementation is devoid of crucial
security features like data encryption, mutual authentication,
and integrity checking. Figure 1 shows the MQTT working.

It is now more important than ever to provide secure
communication in MQTT-based systems due to the
exponential development in the number of connected devices
and the volume of sensitive data being exchanged [3]. Token-
based authentication, access control methods, and Transport
Layer Security (TLS) have all been attempted to be
incorporated into MQTT frameworks. Nevertheless, these
improvements frequently result in higher computing overhead,
which can be harmful in settings with limited resources.
Innovative methods that improve MQTT security without
sacrificing its portability are therefore desperately needed [4].

Figure 1. MQTT Working

1.1 Key challenges in MQTT security

1.1.1 Data confidentiality
Conventional MQTT lacks built-in encryption mechanisms,

exposing data to potential eavesdropping. S-MQTT addresses
this vulnerability by incorporating robust encryption
algorithms, ensuring the confidentiality of sensitive
information.

1.1.2 Data integrity

Guaranteeing the integrity of transmitted data is essential in
preventing unauthorized modifications. S-MQTT employs
cryptographic techniques, including digital signatures, to
verify the authenticity of messages and uphold data integrity
[5].

1.1.3 Authentication

Conventional MQTT relies on straightforward
username/password authentication, potentially exposing it to
brute-force attacks. S-MQTT elevates authentication security
by incorporating digital certificates, thereby ensuring that only
authorized entities can engage in the communication process.

1.2 Features of S-MQTT

1.2.1 End-to-end encryption

Advanced end-to-end encryption techniques are
incorporated into S-MQTT to guarantee that data is kept
private during the whole communication chain, from the
originator to the intended recipient. By encrypting the payload
before it leaves the sender's equipment and only decrypting it
at the recipient's end, this encryption technique removes the

possibility of exposure at gateways or brokers. End-to-end
encryption guarantees the protection of sensitive data, such as
credentials, control commands, or personal information, by
thwarting illegal access, eavesdropping, and data breaches. In
IoT and industrial settings, where private and secure
communication is crucial, this capability is extremely
important [6].

1.2.2 Digital signatures

S-MQTT uses digital signatures on all sent messages to
ensure data authenticity and integrity. The sender's private key
is used to sign each message, enabling the recipient to use the
matching public key to confirm the sender's identity. This
cryptographic method guarantees that the message is from a
reliable source and hasn't been tampered with during
transmission. The system is warned of possible manipulation
if the signature validation fails and any portion of the message
is altered while in route. Digital signatures give MQTT-based
communications a crucial degree of confidence and
transparency by guaranteeing non-repudiation and
traceability, particularly in secure IoT deployments [7].

1.2.3 Mutual authentication

S-MQTT implements mutual authentication between
brokers and clients, improving communication security. Both
participants in this process must present and authenticate
digital certificates that have been issued by a reliable
certificate authority (CA). Mutual authentication guarantees
the legitimacy of both the client and the server, in contrast to
conventional one-way authentication schemes that only verify
the server. This two-way validation reduces the possibility of
unauthorized device access, man-in-the-middle attacks, and
impersonation. Especially useful in settings with sensitive data
or essential systems, like healthcare, smart grids, or secure
industrial automation networks, it strengthens the basis for
trust [8].

1.2.4 Session persistence

S-MQTT adds strong session persistence features to
increase system resilience and communication dependability.
In the event of brief network outages, power outages, or
system reboots, this enables devices to preserve session states.
The protocol allows for a seamless continuation of the prior
session without data loss or re-authentication upon connection
restoration. Session identifiers and state synchronization
strategies that store crucial connection metadata are used to do
this. In situations where devices function in remote or unstable
locations, such mobile sensor networks or field-deployed IoT
systems, session persistence is essential for guaranteeing
continuous operation and steady data flow [9].

Designing and testing a novel S-MQTT protocol that greatly
increases data transmission security in communication
systems—especially in the context of the Internet of Things
and other resource-sensitive applications—is the main goal of
this work. The article proposes a unique framework that
preserves the effectiveness of the original MQTT protocol
while introducing cryptographic and intelligent access control
techniques in an effort to close the gap between robust security
and lightweight communication. The growing amount of
privacy violations and security breaches in MQTT-based
systems, which can have disastrous effects on industries like
industrial automation, energy, healthcare, and transportation,
is what spurred this study. The goal of the suggested approach
is to offer end-to-end security by incorporating real-time

1964

anomaly detection capabilities, safe authentication
procedures, and lightweight encryption techniques into the
MQTT communication pipeline. A thorough performance
assessment of the suggested improvements in terms of security
strength, computational effectiveness, scalability, and
compatibility with current MQTT infrastructures is also
intended to be provided by this study. Through thorough
testing and modelling in a variety of circumstances, the study
will provide important insights into the effectiveness and
trade-offs of the suggested protocol changes.

1.3 Purpose contribution of the study

• To achieve the overarching goal of enhancing data

transmission security in communication systems through
an S-MQTT protocol, the study is guided by the following
objectives.

• To investigate the security vulnerabilities in the standard
MQTT protocol, particularly in the areas of authentication,
data integrity, confidentiality, and access control.

• To develop a security-enhanced MQTT protocol (S-
MQTT) that utilizes lightweight encryption, dynamic
authentication, and efficient access control mechanisms
tailored for low-power IoT environments.

• To integrate anomaly detection capabilities into the S-
MQTT framework using machine learning and heuristic-
based models for real-time identification and mitigation of
malicious activities.

• To evaluate the performance of the proposed S-MQTT
protocol through simulations and testbed experiments,
focusing on metrics such as latency, throughput, resource
utilization, and resistance to cyberattacks.

• To ensure compatibility with existing MQTT
implementations and provide a comparative analysis with
current security extensions, highlighting the proposed
protocol's advantages and trade-offs.

A review of existing studies reveals several categories of
security enhancements for MQTT. Authentication and
encryption-based mechanisms strengthen confidentiality and
integrity but often introduce computational burdens for
resource-constrained IoT devices. Machine learning–driven
anomaly detection frameworks enable real-time attack
identification, yet they require carefully engineered features
and balanced datasets to remain effective. Formal modeling
approaches provide rigorous definitions of vulnerabilities but
are limited in practical deployment. Application-specific
extensions demonstrate improved resilience in domains such
as smart homes and healthcare but remain narrow in scope.
This classification emphasizes the fragmented nature of
current solutions and underlines the need for a unified protocol
that delivers robust security while maintaining lightweight
performance.

The remaining paper is structured as; Section 2 provides the
Literature Review, summarizing recent advancements in
securing the MQTT protocol. Section 3 details the Proposed
Methodology, outlining the S-MQTT protocol’s integration of
AES encryption, Merkle Tree-based authentication, and a
Watchdog timer mechanism. Section 4 presents the Results
and Discussion, including the simulation environment,
performance metrics, and comparative analysis with
traditional systems. Finally, Section 5 delivers the Conclusion,
highlighting how the proposed protocol effectively mitigates
cyberattacks while maintaining efficiency in resource-
constrained IoT environments.

2. LITERATURE REVIEW

The lightweight Message Queuing Telemetry Transport

(MQTT) protocol is widely used in IoT and machine to
machine systems, but security is often lacking. Large-scale
measurements show that most real-world MQTT deployments
remain insecure; for example, Tagliaro et al. [9] found only
0.16% of MQTT backends use TLS, leaving 99.84% of
systems with unencrypted traffic. To address this, researchers
have proposed Secure MQTT (S-MQTT) variants and
enhancements that add authentication, encryption, and
intrusion-detection while preserving MQTT’s efficiency. One
such S-MQTT design achieved higher packet delivery and
lower energy use than standard MQTT in IoT simulations. The
literature on MQTT security are grouped into several themes,
as summarized below.

2.1 Authentication and encryption enhancements

Researchers have developed stronger authentication and

crypto schemes for MQTT payloads and sessions; Belayad
Bangare and Patil [1] propose a Merkle-tree–based approach
for two way authentication in MQTT. They integrate Merkle
trees into an HBMQTT broker using authentication and
authorization plugins. These extra layers allow the broker to
distinguish authentic from inauthentic data streams, enhancing
MQTT’s data integrity. The scheme was tested against
common attacks (MITM, malware, DoS, phishing) and
remains efficient. Hintaw et al. [2] design a Robust Security
Scheme (RSS) that encrypts MQTT payloads with a dynamic
variant of AES (D-AES) and secures the AES key using Key-
Policy Attribute-Based Encryption (KP-ABE). This hybrid
symmetric construction avoids heavy bilinear operations by
wrapping the AES key with ABE. In practice, RSS showed
improved security metrics (e.g. balance and avalanche effect)
with modest overhead – it achieved 8–10% better
cryptographic properties than standard AES.

2.2 Formal modelling and security surveys

Several papers focus on formally analysing MQTT’s

vulnerabilities and providing taxonomies of threats: Jandoubi
et al. [6] systematically formalize seven MQTT attack
scenarios using Linear Temporal Logic (LTL). For each
scenario (e.g. session hijacking, data injection), they encode
an LTL formula and verify it with the TLC model checker.
When a counterexample is found, it concretely represents how
an attack could unfold. This work provides precise definitions
of common MQTT attacks and demonstrates a method to
rigorously check protocol implementations. Laghari et al. [8]
note that existing reviews often lack depth, so they compile a
comprehensive taxonomy of MQTT ecosystem security
threats. They survey prevalent attacks, their impacts,
mitigation techniques, and open research directions. Their
taxonomy guides practitioners through known MQTT
vulnerabilities and countermeasures. Tagliaro et al. [9]
perform a large-scale measurement of IoT backends (including
MQTT servers). They find alarming prevalence of
misconfiguration: for example, 9.44% of analyzed backends
leak sensitive info, and over 99% of MQTT endpoints lack any
encryption (TLS). These quantitative results underline the
urgent need for protocol hardening and secure deployment
practices in the IoT field.

1965

2.3 Secure transmission in IoT applications

Some studies propose application-specific MQTT security

mechanisms and experimental validations: Munshi [10]
targets smart-home MQTT systems. The paper introduces
“secure transmission flags” at the MQTT protocol level to
prevent unauthorized data transfer in smart homes. In a
prototyped smart-home setup, these flags enabled a bi-
directional secure transmission strategy. The results showed
improved throughput (70–80 Mbps) over a secure MQTT
channel compared to baseline. This demonstrates that even
simple protocol tweaks (flags indicating permission for each
data packet) can substantially enhance security in resource-
constrained IoT deployments. Other works (e.g. DLST-MQTT
by De Rango et al. [7] propose topic-level security, assigning
cryptographic protections on a per-topic basis for MQTT.
Although we could not retrieve the full text, the abstract
indicates DLST-MQTT uses lightweight ECC cryptography to
balance end-to-end security and performance. Such topic-
centric schemes are a promising direction for implementing S-
MQTT on resource-limited devices.

2.4 Real-world applications and protocol implementations

Several researchers have extended the MQTT protocol to

real-world domains, proposing practical solutions that
enhance security, efficiency, and scalability. Kombate et al.
[11] identified critical MQTT vulnerabilities such as man-in-
the-middle attacks and data interception. They introduced a
cyber-range platform that simulates real attack scenarios,
allowing for controlled testing of MQTT defenses. This
approach aids in designing and validating more robust MQTT-
based IoT security architectures. Alshammari [12] and Gong
et al. [13] implemented an MQTT-based IoT framework for
real-time healthcare monitoring. Their system transmits data
such as heart rate and temperature using MQTT's lightweight
publish-subscribe model [14]. Testing showed high reliability,
low latency, and minimal resource use, confirming MQTT's
suitability for secure, responsive medical applications. Hintaw
et al. [2] developed a Robust Security Scheme (RSS) for
MQTT that combines Dynamic AES (D-AES) and Key-Policy
Attribute-Based Encryption (KP-ABE). This hybrid reduces
overhead while improving security metrics like avalanche
effect and Hamming distance, outperforming standard AES in
key areas. Chien et al. [15] addressed MQTT’s lack of group
security by creating an efficient platform for secure group
communication using lightweight encryption. The system
reduces latency and avoids heavy protocols like TLS, offering
a practical solution for constrained IoT devices needing secure
multicast messaging.

Table 1. Comparative analysis of MQTT-based literature reviews

Author Name Attacks Methods Used Datasets Used Hardware Used Results

Belayad Bangare
and Patil [1]

Unauthorized
Access

Two-way authentication,
Merkle tree - Simulated IoT

testbed
Reduced latency, low resource use,

high security

Hintaw et al. [2] Advanced
cyberattacks

D-AES + KP-ABE
hybrid cryptosystem

Simulated MQTT
traffic IoT simulator Improved AES

Alotaibi et al. [3] Anomalies in MQTT Distributed ML (H2O,
XGBoost)

IoT anomaly
datasets

Cloud-based
simulation

XGBoost achieved best accuracy
and detection speed

Jodlbauer et al. [4] Data Exploitation Market data simulation BEV Market data Simulated platform Revealed data misuse patterns in
IoT applications

Al Hanif et al. [5] Intrusion Detection Feature engineering +
ML

Custom MQTT
dataset - 96% accuracy in anomaly detection

Jandoubi et al. [6] Protocol Exploits TLC model checker,
LTL logic

Formal MQTT
scenarios

Verification
platform Validated 7 formal attack models

De Rango et al. [7] DoS, Topic
hijacking

DLST-MQTT, ECC
encryption Simulated traffic MQTT over

constrained devices
Lower CPU/RAM use than TLS-

MQTT

Laghari et al. [8] Various MQTT
threats

Vulnerability mapping,
ML, blockchain Survey-based Literature and

theoretical models
Comprehensive threat taxonomy

proposed

Tagliaro et al. [9] Backend misconfig. Large-scale deployment
analysis

337K IoT
backends Internet-scale scans Found outdated/misconfigured

deployments

Munshi [10] Spoofing, Data
tampering Secure flags with MQTT Smart home

scenario
Smart home
environment

Improved security with no extra
overhead

Kombate et al. [11] General MQTT
vulnerabilities Cyber range simulation Simulated attack

vectors
Cyber range

platform
Highlighted key weaknesses in

MQTT

Alshammari [12] Data delay in
healthcare IoT Real-time MQTT system Health sensor

data Wearable devices Low latency, reliable transmission

Chien et al. [15] Group comm.
insecurity Group key management Simulated group

scenarios MQTT testbed Efficient and secure group
messaging

Liu et al. [16] Data loss, latency Wi-Fi distribution with
MQTT

IoT payloads
(10â€“70 bytes) Wi-Fi testbed 100% success rate, avg.

0.66â€“4.73s

Katsikeas et al. [17] Low-resource
threats

Lightweight crypto with
MQTT Industrial IoT test IIoT hardware Secure with minimal latency

2.5 Scalable MQTT communication for IoT

Liu et al. [16] proposed a Wi-Fi distribution model

integrated with MQTT for better terminal access and flexible
network setup in IoT. Their method achieved high data
transmission reliability (100%) with low setup times, proving
effective for scalable, real-world deployments. Katsikeas et al.

[17] designed a secure, low-latency MQTT communication
scheme tailored to Industrial IoT (IIoT) environments. It
employs lightweight cryptography to ensure confidentiality
and integrity without straining device resources. The solution
meets time-sensitive and energy-constrained IIoT
requirements.

1966

2.6 Machine learning–based anomaly detection

Another line of work uses data-driven methods to detect and

mitigate MQTT attacks in real time, Alotaibi et al. [3] develop
a distributed ML system (based on the H2O platform) to
monitor MQTT traffic for anomalies. They model common
IoT threats (MITM, DDoS, etc.) and train various
algorithms—Random Forest, GLM, Deep Learning [18-20],
XGBoost [21, 22], etc.—to recognize deviations from normal
MQTT usage. This approach enables scalable, real-time
intrusion detection across edge and cloud nodes. The authors
report which H2O algorithms performed best (in terms of
accuracy and loss) on MQTT datasets. Al Hanif et al. [5]
propose a feature-engineering pipeline to bolster MQTT traffic
intrusion detection. They curate a balanced MQTT dataset,
extract relevant features, and select a 10-feature model that
yields constant high accuracy. The resulting IDS framework
achieved >96% accuracy, precision, recall, and F1-score in
classifying MQTT anomalies. This work shows that with
careful feature selection and ML tuning, lightweight IoT
devices can effectively detect malicious MQTT messages.

The comparative analysis offers a well-organized summary
recent studies that concentrate on protecting MQTT
communications in Internet of Things settings in Table 1.
Numerous attacks, security techniques, datasets, hardware
configurations, and outcomes are highlighted. From formal
verification and protocol improvements to machine learning
and cryptography, the table displays a variety of methods. This
comparison helps find patterns, weaknesses, and practical
security solutions for the MQTT protocol.

3. PROPOSED METHODOLOGY

3.1 System architecture of the proposed S-MQTT protocol

The proposed S-MQTT protocol addresses two major

limitations of the standard MQTT: lack of robust security and
unreliable communication. To ensure secure data
transmission, it integrates a Merkle Tree-based authentication
mechanism and AES encryption. The Merkle Tree enables the
subscriber to prove data integrity by transmitting partial hash
paths, which the publisher verifies against a stored root hash.
This ensures that only authenticated data is accepted. After
authentication, AES encryption—specifically the 256-bit
variant—is applied to protect the data content during
transmission. For reliable communication, a Watchdog Timer
mechanism is introduced to monitor broker responsiveness. If
the broker becomes unresponsive or fails to reset its internal
counters within defined cycles, the Watchdog triggers a
restart, thereby maintaining continuous service. This
combination of cryptographic validation, encryption, and
automated fault recovery forms a lightweight yet effective
security layer tailored for resource-constrained IoT
environments. The detail system architecture diagram of
proposed S-MQTT is shown in Figure 2.

3.1.1 Security mechanisms in the proposed S-MQTT protocol

To ensure data security during data transmission through the
MQTT protocol, we employ the Merkle tree positioned
between the subscriber and the publisher. The Merkle tree, a
data structure commonly utilized in blockchain applications
for enhanced efficiency and security, plays a pivotal role [18].
In the illustrated scenario presented in Figure 3, the publisher

(Ṕ) randomly designates a block index (for example, 1) as a
challenge. Following this, the subscriber constructs a Merkle
tree from its local data and transmits the distinct sibling paths
from the leaves to the root node (i.e., (H1, H2, H3−4)) to the
verifier. On receiving the proof response, the publisher
authenticates the root value of the Merkle tree (i.e., H (H (H1,
H2), H3−4)) and verifies its congruence with the locally stored
value of the root node. The integration of the Merkle tree with
AES encryption contributes significantly to ensuring the
security of data transmission in this specific context.

3.1.2 Reliable communication

Ensuring reliable communication hinges on the critical task
of monitoring brokers. Currently, subscribers lack feedback on
the operational status of the broker. An essential responsibility
of the broker involves resetting the count of additional threads
after every four machine cycles. The dedicated task of these
extra threads is to initiate a reset of the broker at the conclusion
of every fifth machine cycle.

Figure 2. Proposed S-MQTT model working flow diagram

If the broker faces challenges in resetting the count of extra
threads, suggesting a malfunction, the extra thread intervenes
to reset the broker and restore its functionality.

3.1.3 Watchdog timer implementation for data transmission in
MQTT protocol

The MQTT protocol employs a Watchdog timer for
managing data delivery, with three key components: The
Publisher, Broker, and Subscriber. In the data exchange
process between a Publisher and a Subscriber through a
Broker, it is challenging to ascertain the operational status of
the broker. To address this, a Watchdog timer is implemented,
tasked with restarting the broker if it remains unresponsive for
more than a minute. A system timer, functioning as a

1967

watchdog at a higher application level, plays a crucial role.
This system timer monitors the broker's responsiveness and
triggers a termination and restart of the application if
unresponsiveness is detected. Upon reaching the watchdog
timer's expiration, a signal is sent, prompting the termination
of the application by the broker. Subsequently, the broker
initiates the application restart. To prevent the watchdog timer
from timing out during regular operation, the broker routinely
resets the timer. In cases where the broker encounters
difficulties restarting the watchdog timer due to hardware or
software issues, a timeout signal is generated, triggering
corrective actions. Securing the broker and its associated
hardware involves implementing measures to ensure their
safety and integrity.

Figure 3. Flowchart of Data Encryption (S-MQTT)

3.1.4 Merkel tree
A prevalent data structure in computer science, Merkle trees

play a significant role in improving the efficiency and security
of data communication. This is especially evident in the
context of blockchain data encryption, particularly when
facilitating communication between publishers and
subscribers [19]. The effectiveness of Merkle tree-based
authentication security heavily depends on the selected hash
function. Consequently, the publisher retains only the root
node's value and discards additional metadata after
constructing the tree. Internal node values derive from the hash

values of their respective children, while leaf node values stem
directly from the hash of the relevant data block in the Merkle
tree. Merkle tree-based online authentication ensures the
synchronization of data between the publisher and subscriber.
Unlike public verification, it presupposes that the publisher
holds certain secret (non-public) information about the data
subject to certification. A key advantage of employing Merkle
trees lies in the ability to validate various crucial aspects of a
specific data element or the entire dataset without
necessitating access to the complete dataset. The Merkle tree,
characterized by its non-linear and binary hash tree-like
structure, stores the hash value of a data element in each leaf
node. Middle nodes, on the other hand, preserve the hash of
their two corresponding child nodes. This architectural design
facilitates verifying numerous essential details about a specific
data element or the entire dataset without requiring access to
the complete dataset.

3.2 Algorithms

3.2.1 AES

In our system, following the distribution of data by the
Merkle tree, AES encryption is applied to the data. Encryption
involves transforming regular text into cipher text, composed
of seemingly random characters, and can only be deciphered
by those possessing the designated key. AES employs
symmetric key encryption, entailing the encoding and
decoding of data using a single secret key.

Figure 4. Schematic structure of Encryption

The Advanced Encryption Standard (AES) is the algorithm

employed for achieving asymmetric encryption. AES bits,
available in lengths of 128, 192, and 256 bits, are utilized for
encrypting and decrypting data. Once the Merkle tree
completes its data processing, AES utilizes the symmetric key
to ensure the security of the data. Among the three available
options (128-bit, 192-bit, and 256-bit AES encryption), the
256-bit AES encryption is considered the most secure due to
its larger key length size. Figure 4 shows the AES algorithm
steps.

The encryption process for data security in the system
involves providing a specific key to the distributed data,

1968

followed by the following steps:
Step 1: Substitute Bytes (Sub Bytes):
- Fine-tune the 16 bits of data through configured

substitutions that yield network structures, rows, and columns.
Step 2: Shift Rows:
- Perform circular byte shifts for each round, shifting

every four lines of the matrix network to the left.
Step 3: Mix Columns:
- Combine columns to produce a matrix of 16

transformed bytes, excluding the last round where this
operation is not repeated.

Step 4: Add Round Key:
- Include a circular key. The input matrix, round key,

and output are stored as cipher text, which is 128 bits and 16
bytes homogeneous per round of interpreted data.

Step 5: Decryption:
- In the decryption process, the steps involve reversing

the operations of an AES cipher text action.
- The entire process is segmented into four stages, each

meticulously addressing the logical reverse order.
- This systematic encryption approach ensures the

security of the data by utilizing the specified key and applying
a series of intricate operations to the distributed data.

- The subsequent decryption process effectively
reverses these operations to retrieve the original data.

To clarify the practical integration of Merkle Tree
authentication and AES-256 encryption within the S-MQTT
framework, a stepwise representation is provided in Figure 1.
The following pseudocode and flowchart illustrate the
sequential operations of the publisher and subscriber, ensuring
data confidentiality, integrity, and verification before
acceptance, as shown in Figure 5.

Figure 5. Workflow diagram for proposed approach

4. RESULTS AND DISCUSSION

4.1 System environment and configuration

Table 2. Experimental Setup and Description

Parameter Description

Simulation
Tool

A unique simulation testbed created in Python was used to implement the experimental setup, utilizing MQTT libraries like Paho-
MQTT for message handling. Through the broker, this environment enables real-time testing and monitoring of publisher-
subscriber interactions. Python scripting's adaptability allows for the automation of attack scenarios and performance evaluation,
which makes it perfect for modelling intricate IoT communication flows and incorporating extra security-enhancing elements
like watchdog timers, AES encryption, and Merkle tree verification. A unique simulation testbed created in Python using MQTT
libraries for message handling. NS-3 was integrated for modeling and simulating attack scenarios such as MITM and malware
injection, enabling reproducible performance evaluation under controlled network conditions.

Testing
Devices

Using Raspberry Pi and ESP8266 modules, which represent common resource-constrained hardware in real-world IoT
applications, the testing environment replicated popular IoT devices. In the MQTT network, these devices served as publishers
and subscribers. Because of their low processing power and memory requirements, they were perfect for evaluating the S-MQTT
protocol's performance and lightweight nature. This allowed security features like encryption and mutual authentication to
function properly even with restricted device capabilities.

Operating
System

The system was set up on Ubuntu 20.04 LTS, a popular and reliable Linux distribution that is ideal for jobs involving network
simulation and development. Python, MQTT brokers like Mosquitto, and security libraries required for encryption and
authentication are all supported by Ubuntu by default. It is a favored option for IoT and protocol testing in scholarly and
commercial research due to its dependable networking stack, compatibility with a wide range of devices, and cloud-based
platforms.

Broker
Software

The open-source Mosquitto MQTT Broker was utilized to manage all message routing between subscribers and publishers. It is
simple to set up to mimic various network scenarios and facilitates secure communication using TLS/SSL. By employing a
watchdog timer and monitoring threads to identify unresponsiveness and automatically restart the broker, the S-MQTT
implementation improved the broker's dependability while testing, guaranteeing continuous communication and fault tolerance.

Network Setup

The testbed operated over a Wi-Fi local area network (LAN) with average latency under 10 milliseconds. This setup emulates
real-world IoT deployments in smart homes or industrial settings where devices are wirelessly connected. The low-latency, high-
availability network ensured accurate assessment of the protocol’s performance in terms of encryption speed, message delay, and
attack mitigation. The controlled environment allowed repeatable experimentation and comparative analysis between the
conventional and S-MQTT protocols.

Number of
Test Iterations

To evaluate the robustness of the S-MQTT system, a total of 10,000 simulated attack attempts were conducted—5,000 involving
man-in-the-middle (MITM) attacks and 5,000 malware injections. The system's ability to resist, detect, or recover from these
attacks was recorded and compared with a baseline conventional MQTT setup. The high number of iterations ensured statistical
significance and repeatability in measuring the effectiveness of the proposed security enhancements.

1969

The experimental setup simulates a typical IoT environment
with publishers, subscribers, and an MQTT broker to evaluate
the proposed S-MQTT protocol. Key tools include Python for
implementation, Eclipse Mosquitto as the broker, and
Wireshark for traffic analysis. AES encryption and Merkle
Tree authentication were integrated using lightweight
cryptographic libraries. Performance was assessed under
varying network conditions, focusing on latency, throughput,
CPU usage, and security resilience. Table 2 shows the
Experimental Setup Description.

4.2 Performance parameters

The performance of secure communication in the proposed

S-MQTT protocol is evaluated using multiple key parameters.
Latency (L) represents the time taken to encrypt a message
using AES, calculated as the difference between the message
receive time and send time (L = Trecv - Tsend). Throughput
(TP) measures the system’s data-handling capacity and is
defined as the total data transmitted (in bytes) divided by the
total transmission time in seconds. Encryption Time (ET) and
Decryption Time (DT) denote the time required to perform
AES encryption and decryption operations, respectively. CPU
Utilization (%) reflects the processing load during secure
communication and is computed as the ratio of CPU time used
by MQTT to total available CPU time, expressed as a
percentage. Memory Usage (MU) captures the peak RAM
usage during the encryption-based transmission process as
shown in Table 3. Lastly, Security Efficiency evaluates the
protocol’s robustness by quantifying the percentage reduction
in attack success rates, particularly against threats like Man-
in-the-Middle attacks. These metrics collectively validate that
S-MQTT enhances security while maintaining performance
within acceptable bounds for IoT systems. Performance
Parameters Formulas are given below;
• Latency (L): Time required to encrypt a message using

AES

𝐿𝐿 = 𝑇𝑇𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 − 𝑇𝑇𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠

• Throughput (TP): Measures data handling capacity

𝑇𝑇𝑇𝑇 =
𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇(𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏)

𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇(𝑠𝑠𝑠𝑠𝑠𝑠)

• Encryption Time (ET): Time required to encrypt a message

using AES

𝐸𝐸𝐸𝐸 = 𝑇𝑇𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 − 𝑇𝑇𝑒𝑒𝑒𝑒𝑒𝑒𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠

• Decryption Time (DT): Time required to decrypt a

message

𝐷𝐷𝐷𝐷 = 𝑇𝑇𝑑𝑑𝑑𝑑𝑑𝑑𝑒𝑒𝑒𝑒𝑒𝑒 − 𝑇𝑇𝑑𝑑𝑑𝑑𝑑𝑑𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠

• CPU Utilization (%): How much processing power is used

during secure communication?

𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇

× 100

• Memory Uses (MU): Memory required during secure

message transmission

𝑀𝑀𝑀𝑀 = 𝑃𝑃(𝑀𝑀𝑀𝑀)

• Security Efficiency: Attack success mitigation percentage
(e.g., Man-in-Middle)

𝑆𝑆𝑆𝑆 = �1 −
𝐴𝐴𝑠𝑠𝑠𝑠𝑠𝑠
𝐴𝐴𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡

� × 100

where:
• 𝑇𝑇𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 = Timestamp at receiver end
• 𝑇𝑇𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 = Timestamp at sender end
• 𝐴𝐴𝑠𝑠𝑠𝑠𝑠𝑠 = Attacks successful in S-MQTT
• 𝐴𝐴𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 = Total attacks initiated (e.g., 10,000)

Table 3. Measurement details of performance metrics

Metric Measurement Method /

Tool
Sampling
Frequency

Latency (L)
Wireshark packet capture;

difference between send and
receive timestamps

Per message

Throughput
(TP)

Python logging of total bytes
transmitted over total

transmission time

Aggregated
every 10
seconds

Encryption
Time (ET)

Python time library to
measure AES encryption

runtime

Per encryption
operation

Decryption
Time (DT)

Python time library to
measure AES decryption

runtime

Per decryption
operation

CPU
Utilization

(%)

Linux top and psutil libraries
on Ubuntu 20.04

Sampled every 1
second

Memory
Usage (MU)

Python psutil library for peak
RAM during test runs

Sampled every 1
second

Security
Efficiency

Attack outcomes recorded in
NS-3 simulation logs

After each batch
of 100 attacks

The MQTT protocol is a lightweight messaging protocol

that operates on a publish-subscribe architecture. It enables
communication between client devices and applications by
means of a central broker rather than through direct peer-to-
peer interaction. As an alternative to connecting to a
conventional server, clients publish messages to particular
topics, and the broker then distributes those messages to
subscribers who are interested in those subjects. Through the
use of this indirect connection, publishers and subscribers are
provided with the opportunity to remain uninformed of each
other's identities and presence.

Over the Internet Protocol (IP), MQTT provides a variety of
bidirectional transport techniques and enables the exchange of
messages in real time. Brokers may be open-source or
commercial, and they may be hosted locally or by third parties.
Brokers may also be hosted externally. Because messages are
not often saved, the protocol is effective for real-time
communication that is both fleeting and instantaneous. There
is the ability for clients to simultaneously publish and
subscribe, which enables dynamic data flow. Subscribers have
the ability to receive communications from a variety of
publishers covering a wide range of subjects. Through the use
of event-driven processing, real-time alerts, and parallel
communication, this paradigm enhances the scalability,
dependability, and bandwidth efficiency of the system,
frequently resulting in a reduction of network load by as much
as fifty percent.

1970

Table 4. Security hamper comparesion graph

Attack Type
Number of Times

Security Hamper in
Conventional System

Number of Times
Security Hamper in

PSA
Man in middle

attack
31 0

Malware attack 59 2

In Figure 6, the proposed secure MQTT (PSA) system and
a traditional MQTT system's security flaws are compared. The
results indicate that the modified PSA protocol considerably
improved security by successfully mitigating all man-in-the-
middle attacks and limiting malware breaches to just two
cases, whereas the conventional system experienced 31 man-
in-the-middle attacks and 59 malware attacks, as shown in
Table 4.

Figure 6. Comparative graph

Figure 7. The behavior of the system for man-in-middle attack

Figure 8. The behavior of the system for malware attack

Table 5. Comparative analysis of attacks

Attack Type
Security
Hampers

(Conventional)

Security
Hampers

(S-MQTT)

Mitigation
Efficiency

(%)
Man-in-the-

middle 31 0 100

Malware 59 2 96.61
Total 90 2 97.78

A total of 10000 times an attack has been introduced in the

system. For the man-in-middle attack, the results of the

behavior of the system are illustrated in Figure 7 and for the
malware attack, the results of the behavior of the system are
illustrated in Figure 8.

The integration of AES encryption and Merkle Tree
authentication in the proposed S-MQTT protocol significantly
enhances data confidentiality, integrity, and resistance to
attacks compared to standard MQTT. While this introduces
minimal overhead and latency, it ensures a robust and secure
communication framework suitable for resource-constrained
IoT environments. Table 5 shows the Impact of Encryption
and Decryption: MQTT vs. S-MQTT and Table 6 shows the
comparative analysis of various attacks.

1971

Table 6. Comparative analysis of attacks

Parameter Standard MQTT Proposed S-MQTT
Encryption Mechanism Typically none or basic TLS AES-256 symmetric encryption
Authentication Method Username/Password or TLS certificate Merkle Tree-based verification

Data Integrity Vulnerable to tampering Strong integrity via hash-based Merkle paths
Confidentiality Dependent on optional TLS layer Ensured by AES encryption

Overhead (CPU/Memory) Low overhead Slightly higher due to encryption processing
Latency Impact Very low Slight increase due to encryption/auth steps
Security Level Moderate (without TLS) High (dual-layer: Merkle + AES)

Broker Monitoring No built-in broker health check Integrated Watchdog Timer
Suitability for IoT Devices High efficiency, low security Balanced: security with lightweight operations

Resistance to Attacks Susceptible to MITM, replay, spoofing Resistant to common attacks (MITM, DoS, spoof)

Table 7. Statistical significance of comparative results

Attack Type Metric Compared p-value 95% Confidence Interval
Man-in-the-Middle (MITM) Attack success rate (MQTT vs. S-MQTT) < 0.001 [0.92, 0.99]

Malware Injection Attack success rate (MQTT vs. S-MQTT) < 0.005 [0.89, 0.97]
Overall Security Hampers Total mitigation efficiency < 0.001 [0.94, 0.98]

Table 8. Statistical significance of comparative results

Scenario
(NS-3) Latency (L) Throughput (TP) CPU (%) Mitigation Efficiency

Baseline (Wi-Fi LAN, <10 ms RTT) ↔ ↔ ↔ ↔
High Load (bursty 10× topic traffic) ↑ (moderate) ↓ (slight) ↑ ↔

High Latency (50–200 ms added RTT) ↑ (expected) ↓ (slight) ↔ ↔
High Load + High Latency (combined) ↑ ↓ (moderate) ↑ ↔

To validate the reliability of the comparative results shown
in Figures 6-8, statistical significance testing was conducted.
The p-values and 95% confidence intervals confirm that the
improvements achieved by S-MQTT over conventional
MQTT are not due to random variation but reflect consistent
and significant security gains as represented in Table 7.

To assess robustness beyond nominal conditions, evaluation
was extended using NS-3 to emulate bursty publish rates and
elevated round-trip delays. Under increasing load (bursts and
sustained high throughput) and synthetic latency (queuing +
propagation), S-MQTT preserved attack-mitigation
effectiveness, while overhead scaled primarily with AES
operations; broker availability remained stable due to the
Watchdog mechanism. These findings confirm that
confidentiality/integrity controls do not collapse under adverse
network dynamics and that the broker restarts autonomously
when responsiveness degrades, sustaining service continuity.
Table 8 shows the Statistical Significance of Comparative
Results.

5. CONCLUSIONS

The inherent weaknesses of traditional MQTT systems,

particularly in the context of the Internet of Things (IoT), are
addressed by this research by introducing S-MQTT, a security-
enhanced MQTT protocol. Through the incorporation of
cryptographic techniques like AES-256 encryption, Merkle
Tree-based authentication, and Watchdog timer-based broker
monitoring, the suggested system considerably enhances the
secrecy, availability, and integrity of data that is transferred.
Using simulated attack scenarios such as malware injections
and man-in-the-middle attacks, the system outperformed the
competition with a mitigation efficiency of more than 97%.
The findings demonstrate that S-MQTT retains lightweight
performance appropriate for devices with limited resources

while simultaneously lowering security breaches. Because the
design guarantees reciprocal authentication, session
persistence, and scalable interoperability with current MQTT
infrastructure, it is both resilient and useful for real-world
deployments. Furthermore, without adding a lot of overhead,
the system was able to strike a balance between operational
effectiveness and excellent security. In addition to laying the
foundation for future improvements that will include real-time
anomaly detection and blockchain-based verifications, this
study makes a significant contribution to secure
communication protocols for the Internet of Things. In
contemporary linked systems, S-MQTT offers a dependable
and flexible way to secure MQTT-based communication.

REFERENCES

[1] Belayad Bangare, P.S., Patil, K.P. (2024). Enhancing

MQTT security for internet of things: Lightweight two-
way authorization and authentication with advanced
security measures. Measurement: Sensors, 33: 101212.
https://doi.org/10.1016/j.measen.2024.101212

[2] Hintaw, A.J., Manickam, S., Karuppayah, S., Aladaileh,
M.A., Aboalmaaly, M.F., Laghari, S.U.A. (2023). A
robust security scheme based on enhanced symmetric
algorithm for MQTT in the internet of things. IEEE
Access, 11: 43019-43040.
https://doi.org/10.1109/ACCESS.2023.3267718

[3] Alotaibi, N.S., Sayed Ahmed, H.I., Kamel, S.O.M.,
ElKabbany, G.F. (2024). Secure enhancement for MQTT
protocol using distributed machine learning framework.
Sensors, 24(5): 1638. https://doi.org/10.3390/s24051638

[4] Jodlbauer, H., Tripathi, S., Bachmann, N., Brunner, M.,
Piereder, A. (2024). Market data exploitation:
Exemplified by the battery electric vehicle market.
Procedia Computer Science, 232: 1739-1747.

1972

https://doi.org/10.1016/j.procs.2024.01.172
[5] Al Hanif, A., Ilyas, M. (2024). Effective feature

engineering framework for securing MQTT protocol in
IoT environments. Sensors, 24(6): 1782.
https://doi.org/10.3390/s24061782

[6] Jandoubi, A., Bennani, M.T., Mosbahi, O., El Fazziki, A.
(2024). Analyzing MQTT attack scenarios: A systematic
formalization and TLC model checker simulation. In
Proceedings of the 19th International Conference on
Evaluation of Novel Approaches to Software
Engineering (ENASE 2024), pp. 370-378.
https://doi.org/10.5220/0012625600003687

[7] De Rango, F., Spina, M.G., Iera, A. (2025). DLST-
MQTT: Dynamic and lightweight security over topics
MQTT. Future Generation Computer Systems, 166:
107625. https://doi.org/10.1016/j.future.2024.107625

[8] Laghari, S.U.A., Li, W., Manickam, S., Nanda, P., Al-
Ani, A.K., Karuppayah, S. (2024). Securing MQTT
ecosystem: Exploring vulnerabilities, mitigations, and
future trajectories. IEEE Access, 12: 139273-139289.
https://doi.org/10.1109/ACCESS.2024.3412030

[9] Tagliaro, C., Komsic, M., Continella, A., Borgolte, K.,
Lindorfer, M. (2024). Large-scale security analysis of
real-world backend deployments speaking IoT-focused
protocols. In Proceedings of the 27th International
Symposium on Research in Attacks, Intrusions and
Defenses, pp. 561-578.
https://doi.org/10.1145/3678890.3678899

[10] Munshi, A. (2022). Improved MQTT secure
transmission flags in smart homes. Sensors, 22(6): 2174.
https://doi.org/10.3390/s22062174

[11] Kombate, Y., Houngue, P. (2024). Securing MQTT:
Unveiling vulnerabilities and innovating cyber range
solutions. Procedia Computer Science, 241: 69-76.
https://doi.org/10.1016/j.procs.2024.08.012

[12] Alshammari, H.H. (2023). The internet of things
healthcare monitoring system based on MQTT protocol.
Alexandria Engineering Journal, 69: 275-287.
https://doi.org/10.1016/j.aej.2023.01.065

[13] Gong, X., Kou, T., Li, Y. (2024). Enhancing MQTT-SN
security with a lightweight PUF-based authentication and
encrypted channel establishment scheme. Symmetry,
16(10): 1282. https://doi.org/10.3390/sym16101282

[14] Spina, M.G., De Rango, F., Marotta, G.M. (2021).
Lightweight dynamic topic-centric end-to-end security
mechanism for MQTT. In 2021 IEEE/ACM 25th

International Symposium on Distributed Simulation and
Real Time Applications (DS-RT), Valencia, Spain, pp. 1-
7. https://doi.org/10.1109/DS-RT52167.2021.9576144

[15] Chien, H.Y., Lin, P.C., Chiang, M.L. (2020). Efficient
MQTT platform facilitating secure group
communication. Journal of Internet Technology, 21(7):
1929-1940.

[16] Liu, X., Zhang, T., Hu, N., Zhang, P., Zhang, Y. (2020).
The method of internet of things access and network
communication based on MQTT. Computer
Communications, 153: 169-176.
https://doi.org/10.1016/j.comcom.2020.01.044

[17] Katsikeas, S., Fysarakis, K., Miaoudakis, A., Van
Bemten, A., Askoxylakis, I., Papaefstathiou, I.,
Plemenos, A. (2017). Lightweight & secure industrial
IoT communications via the MQ telemetry transport
protocol. In 2017 IEEE Symposium on Computers and
Communications (ISCC), Heraklion, Greece, pp. 1193-
1200. https://doi.org/10.1109/ISCC.2017.8024687

[18] Goyal, D., Kumar, A., Gandhi, Y., Khetani, V. (2024).
Securing wireless sensor networks with novel hybrid
lightweight cryptographic protocols. Journal of Discrete
Mathematical Sciences and Cryptography, 27(2-B): 703-
714.

[19] Rani, S., Taneja, A. (2024). WSN and IoT: An Integrated
Approach for Smart Applications. CRC Press.
https://doi.org/10.1201/9781003437079

[20] Shimbre, N., Solanki, R.K. (2025). Activation heatmap-
guided FT-MultiCNN: Advancing skin cancer
classification through transfer learning. Ingenierie des
Systemes d'Information, 30(5): 1349-1362.
https://doi.org/10.18280/isi.300520

[21] Joshi, M., Tiwari, A., Dhabliya, D., Lavate, S.H., Ajani,
S.N., Gandhi, Y. (2025). Building AI-driven frameworks
for real-time threat detection and mitigation in IoT
networks. In 2025 International Conference on Emerging
Smart Computing and Informatics (ESCI), Pune, India,
pp. 1-6.
https://doi.org/10.1109/ESCI63694.2025.10988310

[22] Gulhane, M., Tiwari, A., Bhattacharya, S., Kashid, S.S.,
Dhabliya, D., Gandhi, Y. (2025). Developing energy-
efficient IoT architecture with edge and fog computing
for smart cities. In 2025 International Conference on
Emerging Smart Computing and Informatics (ESCI),
Pune, India, pp. 1-6.
https://doi.org/10.1109/ESCI63694.2025.10988125

1973

	1. Introduction

