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Accurate estimation of live chicken weight is essential for improving poultry production
efficiency; however, manual weighing is time-consuming and often unreliable. This study
develops a predictive model using digital image processing and machine learning. A dataset
of 100 chickens was collected under natural pen conditions. Preprocessing included
grayscale conversion, binarization, edge detection, and Region of Interest (ROI) extraction,
followed by geometric feature derivation. These features were used as input for a Random
Forest regression model. The model achieved strong performance with a mean absolute
percentage error (MAPE) of 0.0041, root mean square error (RMSE) of 0.083, mean
absolute error (MAE) of 0.069, and coefficient of determination (R of 0.919. Compared
with ANN, SVM, and Decision Tree, Random Forest provided the lowest prediction error
and fastest computation. The dataset size of 100 chickens is considered adequate for an
initial model, as evaluation results showed consistently high accuracy. However, larger
datasets are needed to enhance generalization. Images were acquired under natural pen
conditions with variations in lighting and background. The model maintained good
predictive performance, though the impact of acquisition conditions on generalization
warrants further study. These findings highlight the potential of computer vision and
ensemble learning for non-invasive, real-time livestock monitoring and support the

development of scalable, cost-effective precision poultry farming solutions.

1. INTRODUCTION

The poultry industry plays a critical role in meeting the
growing global demand for affordable and accessible animal
protein, particularly in developing countries. As poultry
consumption continues to rise, optimizing production
processes has become increasingly essential for ensuring both
sustainability and operational efficiency [1]. Effective broiler
farm management involves multiple domains, including
production planning, financial oversight, human resource
coordination, and market distribution strategies [2]. Within the
production domain, the accurate estimation of live chicken
body weight serves as a key performance indicator, as it
directly influences feed conversion efficiency, harvesting
schedules, and overall profitability [3]. However, traditional
methods relying on manual weighing are often inefficient,
labor-intensive, and can induce physical stress in animals,
which may negatively affect meat quality and welfare
outcomes [4]. As a result, there is a growing need for
automated, accurate, and scalable solutions. Recent advances
in digital image processing and machine learning provide a
promising technological frontier for transforming livestock
monitoring and predictive modeling in poultry farming [5].

Digital image analysis enables the extraction of quantitative
visual features from static or dynamic images of livestock,
which can then be used to identify phenotypic indicators
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closely associated with body weight and growth performance
[6]. These features typically include body dimensions,
contours, surface area, and color distribution patterns, which
serve as proxies for biometric parameters. Concurrently,
machine learning techniques offer robust algorithms capable
of learning from labeled datasets, enabling the generation of
predictive models based on complex, non-linear patterns in the
data.

The integration of image-based feature extraction with
supervised machine learning models—such as Random Forest
or neural networks—has shown significant promise in
automating livestock weight estimation. This fusion of
technologies facilitates precise, non-invasive, and real-time
monitoring of animal growth, enhancing decision-making in
feed management, harvesting schedules, and resource
allocation. Moreover, it supports the broader agenda of smart
farming by applying digital innovations to improve
productivity, reduce labor dependency, and minimize
operational costs [7].

For instance, in the context of chicken egg quality
classification, the combination of Gray-Level Co-occurrence
Matrix (GLCM) with Convolutional Neural Networks (CNN)
has yielded remarkable success in extracting textural features
from egg images, leading to high classification accuracy [8].
A similar approach, utilizing image-based feature extraction
for geometric parameters in live chickens, could be adapted
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for non-invasive live weight estimation. By integrating feature
extraction techniques with machine learning models, such as
Random Forest or neural networks, this method holds the
potential to enhance the accuracy of weight prediction while
maintaining computational efficiency and scalability.

The convergence of these technologies has already shown
positive outcomes in industrial poultry systems. For example,
the study developed a method for estimating live chicken
weight using 3D point cloud data from a depth camera and
PointNet++, achieving an R? of 0.8817 and MAE of 0.095 [9].
Similarly, other studies have focused on non-contact carcass
volume estimation through 3D reconstruction and point cloud
stitching, with high accuracy (R* = 0.985), although they
require complex hardware setups unsuitable for live
monitoring [10]. Another study utilized CT imaging and a
modified YOLOVS segmentation model combined with a
Random Forest regressor to estimate chicken leg weight,
obtaining R? = 0.889 and MAE = 0.072, but again limited by
infrastructural demands [11]. More relevant to live monitoring
applications, video-based approaches using 2D image features
and regression models have reported promising results, such
as MAE of 0.07, but were constrained by limited feature
diversity and environmental variability [12]. Similarly, the
study employed depth imaging and Active Shape Modeling to
estimate broiler carcass part weights, reporting an R? of
0.9129, yet again dependent on post-mortem imaging and
processing infrastructure [13].

The advancement of image acquisition technologies—
including high-resolution digital cameras and three-
dimensional imaging systems—has significantly improved the
precision and robustness of image-based livestock monitoring
systems [ 14]. State-of-the-art image preprocessing techniques
are employed to mitigate visual noise, standardize
illumination, and perform precise segmentation of individual
chickens from complex backgrounds, thereby enhancing the
reliability of extracted features and improving predictive
accuracy [15]. Moreover, the growing availability of large-
scale annotated image datasets, collected under varying
environmental conditions, has enabled the development of
more generalizable and adaptable machine learning models.

These technical improvements are particularly relevant in
the context of antibiotic-free poultry production systems,
where stress-reducing, non-invasive monitoring tools are
essential for maintaining animal health and minimizing
mortality risks [16]. In response to mounting pressures to
reduce production costs while ensuring product quality and
safety, the poultry industry is increasingly compelled to adopt
streamlined, data-driven, and cost-efficient management
practices [17].

A wide range of machine learning algorithms has been
applied to predict live chicken weight, ranging from traditional
regression models to advanced deep learning architectures.
Classical approaches, such as linear regression and support
vector regression (SVR), remain popular due to their ease of
implementation and interpretability, often serving as
benchmarks for comparative evaluation [17]. However, these
models are generally limited in their ability to capture the
complex, non-linear growth patterns exhibited by broilers
under variable rearing conditions [18].

A notable study [7] introduced a novel method for
estimating live chicken weight using three-dimensional point
cloud data captured by an overhead depth camera, addressing
accuracy challenges posed by animal movement during
traditional weighing procedures. This approach utilized the
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PointNet++ deep learning architecture, trained and evaluated
on 2,000 point cloud samples from two chicken breeds—
Huainan and Huxu. The model achieved a mean absolute error
(MAE) 0f 0.095, a mean absolute percentage error (MAPE) of
6.66%, and an R? of 0.8817. The study incorporated advanced
preprocessing techniques, including pass-through filtering and
curvature-based downsampling, and found that RGB color
features contributed more significantly to prediction accuracy
than surface normal vectors.

While this method demonstrated high performance, it
requires complex hardware setups and substantial
computational resources, which may limit its practical
scalability in conventional poultry farming environments. In
contrast, this study proposes a more accessible image-based
approach using standard 2D cameras and the Random Forest
algorithm, aiming to achieve comparable accuracy with
reduced system complexity and cost.

Another line of research has focused on developing non-
contact methods for estimating chicken carcass volume using
depth imaging and three-dimensional reconstruction
techniques [19]. In this approach, an imaging system captures
depth images of carcasses moving along the production line,
and a real-time 3D model is constructed via point cloud
stitching. The reconstructed model is then used to compute
carcass volume, which is validated against ground truth
measurements obtained through the water displacement
method. The system achieved high predictive accuracy, with
an R? value of 0.985 and a MAPE of 4.22% [19].

A similar study proposes a non-invasive system for
predicting live chicken leg weight using computed
tomography (CT) imaging and a deep learning approach. This
system integrates a modified YOLOvVS5 segmentation
algorithm with a multiscale attention mechanism and an atrous
spatial pyramid pooling (ASPP) architecture, then employs a
Random Forest regression model to estimate the leg weight of
chickens based on morphological parameters obtained from
segmentation. The developed model (YOLO-MCLW) is
capable of simultaneously detecting the tibia bone and
segmenting the chicken leg area, achieving an MAE of 0.072,
MAPE of 4.82%, and R? of 0.889. This model also
outperforms other detection and segmentation models and
processes 37 images per second, making it suitable for
efficient and accurate industrial poultry breeding applications
without harming the animals [18].

Recent developments in deep learning have shown
significant improvements in image segmentation accuracy
proposed a modified U-Net architecture, namely U-Netl1,
which employs 11 convolutional layers to enhance
segmentation performance across various biomedical datasets.
Their results demonstrated a 2-5% improvement in Dice
Similarity Coefficient compared to the classical U-Net model.
Although applied in the biomedical domain, this approach
highlights the effectiveness of deep convolutional
architectures for extracting precise object boundaries, which is
also essential in non-invasive chicken body segmentation for
weight estimation [20]. Classical edge detection algorithms
such as Canny, Sobel, and Prewitt are still widely used in
image preprocessing to extract object boundaries effectively.
The study [21] demonstrated that the Canny method achieved
the best performance across various image types when the
threshold value was between 0.30 and 0.45. In this study, a
similar edge-based preprocessing approach was applied to
extract geometric features from chicken images before
regression modeling [21].



Introduced an online weight estimation system for broiler
chickens and their anatomical parts using computer vision
techniques based on depth imaging and the Active Shape
Model (ASM) framework. The system was designed to
segment and quantify carcass components—including the
breast, thighs, wings, head, and neck—by extracting geometric
features such as area, perimeter, and major-to-minor axis
ratios from 2D projections of depth images. Using a dataset of
155 chicken carcass samples, the regression model achieved a
coefficient of determination (R?) of 0.9129. The system was
capable of processing each sample within a time range of
0.924 to 1.656 seconds, indicating its potential for real-time
industrial application [19].

In live poultry production, achieving both efficiency and
accuracy in weight estimation remains a persistent challenge.
Although the literature review is comprehensive, it lacks a
clear statement on the novelty and distinct advantages of the
proposed method compared to existing approaches,
particularly 3D methods. Unlike 3D-based methods that often
require complex hardware setups and substantial
computational resources, the proposed method—using 2D
image processing with Random Forest regression—offers a
cost-effective, simpler, and scalable solution. This approach
not only simplifies the process but also ensures more practical
and accessible real-time weight estimation, making it highly
suitable for conventional poultry farming environments.

Conventional manual weighing methods are time-
consuming, labor-intensive, and prone to measurement
inconsistencies. The integration of digital image-based
technologies offers a promising alternative for automating the
monitoring process and enhancing real-time decision-making
in farm management. Despite recent advancements in machine
learning and imaging systems, few studies have addressed the
development of low-cost, scalable solutions capable of
accurately predicting live chicken weight under practical farm
conditions.

In response to this gap, the present study proposes a novel
approach that combines Region of Interest (ROI) detection,
geometric feature extraction, and the Random Forest (RF)
algorithm to estimate the body weight of live chickens using
two-dimensional image data. The main contributions of this
study include: 1) a cost-effective and non-invasive solution for
live weight estimation using 2D imaging and machine
learning, 2) a simplified and scalable method compared to 3D-
based approaches, and 3) a tool that provides real-time weight
monitoring with practical application potential in conventional
poultry farming.

2. MATERIAL AND METHOD

This study was conducted in several stages, as outlined
below. The first step involved the collection of chicken
images. In the second step, image preprocessing was
performed, where digital image processing techniques were
applied to enhance and prepare the chicken images for further
analysis. The third step involved feature extraction, where
geometric feature extraction methods were employed to
capture key characteristics from the chicken images. The
fourth and final step was weight prediction, in which training
and testing data were processed using machine learning
algorithms. A detailed overview of the research stages is
presented in Figure 1.

Image segmentation is the initial step in digital image
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processing [20]. The collected chicken image is processed
through a segmentation stage that includes converting the
image into grayscale, followed by its transformation into a
binary image and edge contour detection [21]. The contour
detection step outlines the shape of the chicken, which is then
stored in a separate file. The first task in segmentation is to
convert the colored image to grayscale [22]. Grayscale images
have pixel values that range from black (representing the
lowest pixel value) to white (representing the highest pixel
value), with the grayscale value corresponding to the image's
brightness level [23]. The next step is converting the grayscale
image into a binary image using the thresholding method [24,
25], which divides the image pixels into two categories:
foreground and background, based on the grayscale level [26].
Thresholding is a crucial technique in image segmentation,
where pixel values in the grayscale image are represented by
L, and the total number of pixels is represented by Coskun et
al. [27].

Collecting
chicken image » Grayscale Image » Binary Image
data
Geomatric
Feature < ROI Detection |« Edge Detection
extraction

l

Testing
E'I:i:s nLc;?:l Data splitting Prediction using
g UsIng "] training & testing ANN, SVM, RF,
machine learning DT

v

Accuracy using
RMSE, MAE, R2

Figure 1. Research workflow

After obtaining the binary image, Region of Interest (ROI)
detection is performed [28], this step is used to define specific
areas within the digital image, ensuring that image processing
is applied exclusively to the region identified as the chicken.
ROI detection also helps to minimize noise, thereby improving
the accuracy of the analysis [29]. In this study, a square ROI
is used to define the chicken object, and the image is cropped
according to the detected ROI boundaries [30].

Geometric feature extraction of the chicken image is then
carried out to capture key information, such as color, texture,
and shape [31]. Geometric features describe the shape of the
poultry, with morphological, physiological, and behavioral
characteristics typically used for species identification [32].
This study specifically focuses on extracting shape features,
utilizing geometric morphometric features such as length and
height [33]. Based on these geometric parameters, the area of
the chicken is calculated [34].

The estimation of chicken weight is built using the Random
Forest (RF) prediction algorithm. The RF approach has been
increasingly adopted across various applications and
industries due to its robustness and accuracy [35]. This
algorithm is employed to model predictions involving multiple
independent variables [36]. RF is a statistical algorithm
designed to predict the outcome of a variable y, where Y
represents the prediction result based on input variables X
[37].



This algorithm is chosen because it is a suitable predictive
algorithm [38], particularly for predicting live chicken weight
in this study. RF is a supervised learning algorithm that can be
used to solve classification and regression problems. The
characteristic of this method is that each tree grows on a
different bootstrap sample taken randomly from the training
data. During each node split while constructing the decision
tree, a subset of m variables is randomly selected from the
original dataset, and the best ones are used for that node. For
RF, which consists of N trees, the calculation is performed
using the following formula [37]. Where I is the indicator
function, and hn represents the n-th tree of the Random Forest
(RF).

I(y) = argmax, [Zn: Ihn(y)cj (1)

The accuracy of the model is evaluated using validation
metrics such as Root Mean Square Error (RMSE), Mean
Absolute Error (MAE), and the coefficient of determination
(R?). The optimal model is determined by selecting the
prediction with the lowest RMSE and MAE values, while the
highest R? value indicates the best model fit [39, 40]. The
formulas for RMSE, MAE, and R? are described in Eqs. (2)-
(5). Where Yy, is the actual value, Yy, a is the predicted value,
Y4 is the average predicted value, and n is the number of
available data points [41].

MAPE:liZ”l:ﬂ %100 @)

RMSE = | Iz::(vda Y, ) 3)

MAE = ﬁi Yan —Yip| (4)
B va)0 )]

R =~ (5)

3. RESULT AND DISCUSSION

In this study, data was collected using images of chickens
captured from an overhead perspective. A total of 100
chickens were photographed from the top view in a 3x3 meter
chicken coop. This data collection approach may limit the
model's ability to generalize to different angles or postures of
the chickens. The camera used for data collection had a
resolution of 48 megapixels, and four overhead lamps
provided uniform lighting throughout the coop. The captured
video was converted into digital image frames, and a single
camera was used to capture all the images, ensuring
consistency in data collection. The images were stored in JPG
format, and the data consisted of 100 images of chickens
viewed from above. Due to the small sample size, data
augmentation techniques were not applied in this study, which
could have helped expand the dataset and improve model
generalization. Future work should consider collecting data
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from multiple angles or postures to improve the model's ability
to generalize across different real-world conditions, and
incorporate data augmentation methods such as rotation,
flipping, and scaling to increase dataset diversity and further
enhance the model's robustness.

A detailed description of the data collection setup is
provided in Figure 2(a), and the processed chicken digital
image data is shown in Figure 2(b).

Lighting & Camera

s

¥

a) Chicken image data acquisition scenario

. (b) Chicken image data
Figure 2. Chicken image data acquisition

The study commenced with the image preprocessing stage,
which included several steps: converting the images to
grayscale, binarizing the images, detecting edge contours, and
performing Region of Interest (ROI) detection. Figure 3(a)
illustrates the grayscale image, while Figure 3(b) presents the
binary image, generated using a threshold value of 0.01. The
binarization process was carried out using the Otsu algorithm.
Edge detection was performed using the Canny edge detection
algorithm, which effectively identifies the boundaries of the
chicken image. The result of this process is shown in Figure
3(c), where the contours of the chicken are highlighted.

a) Grayscale ima;ge

Rog
L

E

200 400 600
(b) Binary image



(c) Contour detection

0 200 400 600

(d) ROI detection

800

Figure 3. Image preprocessing stage

Figure 4. Geometric features of a chicken's image

The ROI detection process was then applied to isolate the
chicken shape from the background. This technique helps to
focus image processing on the area containing the chicken,
reducing irrelevant data and enhancing processing accuracy.
The detected region corresponding to the shape of the chicken
is illustrated in Figure 3(d), showing the area selected for
further analysis.

From the preprocessed image, the next step involves the
feature extraction process for the chicken data. Figure 4
provides a detailed illustration of the geometric features
extracted from the chicken image. In Figure 4, the red line
represents the outer rectangular contour of the chicken, which
is used to define its length (CL) and height (CH). These two
dimensions are critical for calculating the Aspect Ratio (Ar),
which is the ratio of the length to the height of the chicken.

Additionally, the area (A) and perimeter (P) of the chicken
are calculated based on the pixel values detected in the image.
These geometric properties are then used to calculate the
complexity (M), defined as the ratio of the area to the
perimeter of the chicken. The complexity metric helps in
understanding the shape and structure of the chicken,
providing insights into its form.

The variables 'a' and 'b' represent the major and minor axes
of the chicken, respectively. The major axis ('a') is measured
from the center point of the chicken to the edge of its length,
while the minor axis ('b') is measured from the center point to
the edge of the height. These axes are used to calculate the
eccentricity, defined as the ratio of the minor axis to the major
axis of the chicken's body.

In total, 6 geometric morphometric features are considered
for analysis. These features offer a comprehensive
understanding of the chicken's shape and structure. A detailed
explanation of the geometric morphometric features, along
with their formulas, is provided in Table 1 [33, 34].

Table 1. List of geometric morphometric features of chicken images

Feature Feature Description Symbol and Formula
Chicken Length Length of the chicken's frame CL
Height Height of the chicken's frame CH
Area Number of pixels in the chicken's area A
Perimeter Number of pixels around the chicken's edge P
Aspect Ratio Length / height Ar=TL/H
Complexity Area / perimeter M=A/P
0 "

The detailed image processing procedure for geometric
morphometric features is illustrated in Figure 5.
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Figure 5. Geometric features from chicken image processing

The measurement of the chicken's length (CL) is calculated
using the distance between two pixels, applying the formula
provided by Chen et al. [42]. This process is performed on a
total of 100 chickens to obtain the geometric values for CL,
CH, A, P, AR, and M.

For the calculation of area (A) and perimeter (P), these
values are derived from the detected pixels in the binary
image. Specifically, the area corresponds to the number of
pixels representing the chicken's body, and the perimeter is
calculated by tracing the edge of the chicken in the binary
image. The aspect ratio (AR) and complexity (M) are
calculated using the formulas provided in Table 1 [43] based
on the geometric properties of the chicken's shape.

Lo = (% =18 )" +(lyi =vals, ) (6)

The study used 100 chicken data samples, divided into six
experimental trials, combining the ROI method, Geometric
Features (GF), and the Random Forest method (ROI-GF-RF).
The research evaluated different test sizes using cross-
validation. The test sizes varied at 80%, 70%, 60%, 50%, 40%,
and 30% of the total dataset. The Random Forest (RF)
hyperparameters were set as follows: n_estimators = 50,
max_depth = 5, and random_state = 42. The results revealed
that the best values for MAPE, RMSE, MAE, and R? were
achieved in the sixth experiment, where 30% of the data was
used for testing. At a test size of 30%, the largest training size
used is 70%, resulting in a model with the lowest MAPE,
RMSE, MAE, and highest R? results. The resulting values
were 0.0041 for MAPE, 0.134 for RMSE, 0.062 for MAE, and
0.919 for R2.

From the 6 experiments, it was observed that the values of
MAPE, RMSE, and MAE decreased as the size of the training
data increased and the testing data size decreased. This
indicates that a larger training dataset helps reduce the error
rate. Conversely, the R? value increased, demonstrating that as
the amount of training data increases and the testing data
decreases, the coefficient of determination becomes larger,
suggesting improved model accuracy. The detailed statistical
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results from these experiments are presented in Table 2 and
Figure 6.

Comparison of Results with Different Amounts
of Testing Data

0.8
0.6
04

0.2

2 3 4

e MAPE s RMISE o MAE R2

Figure 6. Comparison with different amounts of testing data

In this study, three machine learning-based comparison
methods were employed to predict chicken weight: Artificial
Neural Networks (ANN), Support Vector Machine (SVM),
and Decision Tree (DT). Each method was tested using the
same set of parameters and preprocessed data to ensure
consistency across the experiments.

The experimental results demonstrated that the proposed
algorithm, which combines ROI detection, shape feature
extraction, and the Random Forest (RF) method, yielded the
lowest error values for MAPE, RMSE, and MAE compared to
other methods. Additionally, the computation process was the
fastest, with an average processing time of 1.67 seconds.

Table 2. Experimental statistics using the development of the
ROI-GF-RF method

Numberof = .. i7e MAPE RMSE MAE R2
Experiment
1 08 00049 0.17 007 0901
2 0.7 0.0046  0.142  0.069 0.924
3 0.6 0.004  0.145 0.065 0.923
4 0.5 0.0039  0.141  0.059 0.901
5 0.4 0.0037 0.124  0.058 0.932
6 0.3 0.0036 0.082 0.056 0.938
Average 0.0041  0.134  0.062 0919

Table 3. Experiments with the comparison algorithms

Prediction Algorithm ANN SVM DT RF
Feature Selection CL,CH, A,P, Ar,M
Number of Selected
6
Feature
0.007 0.008 0.006 0.004
MAPE ) 1 B 1
RMSE 0.175 0.148 0.139 0.134
MAE 0.139  0.115 0.107  0.062
R2 0.902 0.86 0.891  0.919
Time Process (s) 12.82 2.04 2.25 1.67

The comparison between the Random Forest model and the
other methods revealed significant differences in performance.
Compared to ANN, the values of MAPE, RMSE, and MAE
decreased by 0.031, 0.041, and 0.077, respectively, while the
R? value increased by 0.017. When comparing RF to SVM,
reductions in MAPE, RMSE, and MAE of 0.004, 0.014, and
0.053 were observed, respectively, accompanied by an
increase in R? of 0.059. Furthermore, when RF was compared



to DT, there were reductions in MAPE, RMSE, and MAE by
0.0021, 0.005, and 0.045, respectively, with an increase in R?
0f 0.028.

RF combines many decision trees and processes them
quickly, reducing the risk of overfitting. This allows the model
to remain stable against variations in chicken data. In the real
world, this method can be integrated into an automatic
monitoring system, helping to make optimal feed and harvest
decisions.

In terms of computation time, RF outperformed the other
methods, being 11.15 seconds faster than ANN, 0.37 seconds
faster than SVM, and 0.58 seconds faster than DT. Detailed

1
0.9
0.8

statistical results of the experiments with the comparison
algorithms are shown in Table 3, and the error value graph is
presented in Figure 7.

The results of this study, when compared with previous
research, show the MAPE, RMSE, MAE, and R? values from
several related studies using different methods. Below is the
comparison analysis, where this study employs the ROI-GF-
RF method. Overall, this study demonstrates that the proposed
method outperforms other methods in terms of accuracy and
efficiency in predicting live chicken weight. The detailed
comparison of the results is presented in Table 4.

TIME PROCESS (S)

14

0.7 12
0.6
05 10
04 8
03
6
02
0.1 4
, Il e
ANN svm DT RF % % %
mMAPE wRMSE mMAE uR2 e
ANN S0 DT RF
(a) (b)
Figure 7. Accuracy values using comparison algorithms and processing time
Table 4. Experimental statistics using the development of the ROI-GF-RF method
Researcher Method MAPE RMSE MAE R2
(7] PoinNet++ 6.66% 0.095 0.8817
[44] Depth Imaging and 3-D Reconstruction 4.22% 0.985
[18] YOLOvV5-MCLW 4.82% 0.072  0.889
[45] 2D Video Feature Analysis and Machine Learning  5.8% 0.07
[19] RBF-SVR 0.9129
This research ROI-Geometric Feature (GF)-RF 4.11% 0.083  0.069 0.919
4. CONCLUSIONS monitoring and management systems on farms, and open

This research is limited by a small dataset and the use of
only one viewpoint for data collection. This study successfully
developed a predictive model for live chicken weight using a
digital image processing approach, integrating Region of
Interest (ROI) detection, shape feature extraction, and the
Random Forest (RF) algorithm. The ROI process effectively
isolates the chicken's area in the digital image, reducing noise
interference and enhancing the accuracy of the analysis. Shape
feature extraction, which includes measuring geometric
parameters such as length, height, perimeter, area, aspect ratio,
and complexity, provided critical information for accurate
weight prediction.

The Random Forest method applied in this study has proven
to generate accurate live chicken weight estimates, with low
error values. The study achieved excellent predictions, with an
average MAPE 0f 0.0041, RMSE of 0.083, MAE of 0.069, and
R? of 0.919. These results demonstrate that the proposed
method can predict live chicken weight with high accuracy.

This algorithm shows its advantage in handling complex
input data, predicting chicken weight based on the extracted
geometric features from the images. The findings of this study
contribute significantly to improving the efficiency of chicken
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avenues for further applications in agriculture and livestock
farming using digital image technology. Future research will
expand on this work by exploring deep learning algorithms to
further improve prediction accuracy, with more dynamic data
retrieval scenarios.
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NOMENCLATURE

CNN Convolutional Neural Network

GLCM Gray-Level Co-occurrence Matrix

R= Coefficient of Determination

MAE Mean Absolute Error

MAPE Mean Absolute Percentage Error

RMSE Root Mean Squared Error:

PointNet++ A deep learning architecture used to process

3D point

YOLOV5 You Only Look Once version 5

RF Random Forest

ASM Active Shape Model

CT Imaging  Computed Tomography Imaging

Depth A technique used in image processing to

Imaging capture three-dimensional data of objects

2D Imaging  Two-dimensional image processing used to

extract geometric features like minor axis
length and chicken age for live weight
estimation

I(y) A function representing the decision or

output label for the input y
argmax The argument of the maximum function,

used to find the value of a variable that
maximizes a given function



hng)

A
Fi

||
100

The class or category label that is being
predicted in the classification model

A hypothesis or model prediction for the nth
instance, applied to the input y

The index of summation, typically
representing the number of data points or
features in the model

The actual value for the it data point

The forecasted or predicted value for the i
data point

Absolute value

A factor used to convert the error to a
percentage

The number of data points or instances in the
dataset

The actual value for the iy data point

The predicted value for the i data point

The mean of the actual values (Y ¢a)

A metric for measuring the distance or

2198

Xi, Xn

yi, yn

SH

Sv
ROI
GF
RF
ANN
SVM
DT

deviation in a 2D space

The x-coordinates for the i data point and
nth reference point

The y-coordinates for the iy data point and
nth reference point

A scale factor for the horizontal axis

A scale factor for the vertical axis

Region of Interest

Geometric Features

Random Forest

Artificial Neural Networks

Support Vector Machine

Decision Tree

Greek symbols

z

Summation symbol





