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Accurate estimation of live chicken weight is essential for improving poultry production 

efficiency; however, manual weighing is time-consuming and often unreliable. This study 

develops a predictive model using digital image processing and machine learning. A dataset 

of 100 chickens was collected under natural pen conditions. Preprocessing included 

grayscale conversion, binarization, edge detection, and Region of Interest (ROI) extraction, 

followed by geometric feature derivation. These features were used as input for a Random 

Forest regression model. The model achieved strong performance with a mean absolute 

percentage error (MAPE) of 0.0041, root mean square error (RMSE) of 0.083, mean 

absolute error (MAE) of 0.069, and coefficient of determination (R²) of 0.919. Compared 

with ANN, SVM, and Decision Tree, Random Forest provided the lowest prediction error 

and fastest computation. The dataset size of 100 chickens is considered adequate for an 

initial model, as evaluation results showed consistently high accuracy. However, larger 

datasets are needed to enhance generalization. Images were acquired under natural pen 

conditions with variations in lighting and background. The model maintained good 

predictive performance, though the impact of acquisition conditions on generalization 

warrants further study. These findings highlight the potential of computer vision and 

ensemble learning for non-invasive, real-time livestock monitoring and support the 

development of scalable, cost-effective precision poultry farming solutions. 
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1. INTRODUCTION

The poultry industry plays a critical role in meeting the 

growing global demand for affordable and accessible animal 

protein, particularly in developing countries. As poultry 

consumption continues to rise, optimizing production 

processes has become increasingly essential for ensuring both 

sustainability and operational efficiency [1]. Effective broiler 

farm management involves multiple domains, including 

production planning, financial oversight, human resource 

coordination, and market distribution strategies [2]. Within the 

production domain, the accurate estimation of live chicken 

body weight serves as a key performance indicator, as it 

directly influences feed conversion efficiency, harvesting 

schedules, and overall profitability [3]. However, traditional 

methods relying on manual weighing are often inefficient, 

labor-intensive, and can induce physical stress in animals, 

which may negatively affect meat quality and welfare 

outcomes [4]. As a result, there is a growing need for 

automated, accurate, and scalable solutions. Recent advances 

in digital image processing and machine learning provide a 

promising technological frontier for transforming livestock 

monitoring and predictive modeling in poultry farming [5]. 

Digital image analysis enables the extraction of quantitative 

visual features from static or dynamic images of livestock, 

which can then be used to identify phenotypic indicators 

closely associated with body weight and growth performance 

[6]. These features typically include body dimensions, 

contours, surface area, and color distribution patterns, which 

serve as proxies for biometric parameters. Concurrently, 

machine learning techniques offer robust algorithms capable 

of learning from labeled datasets, enabling the generation of 

predictive models based on complex, non-linear patterns in the 

data. 

The integration of image-based feature extraction with 

supervised machine learning models—such as Random Forest 

or neural networks—has shown significant promise in 

automating livestock weight estimation. This fusion of 

technologies facilitates precise, non-invasive, and real-time 

monitoring of animal growth, enhancing decision-making in 

feed management, harvesting schedules, and resource 

allocation. Moreover, it supports the broader agenda of smart 

farming by applying digital innovations to improve 

productivity, reduce labor dependency, and minimize 

operational costs [7]. 

For instance, in the context of chicken egg quality 

classification, the combination of Gray-Level Co-occurrence 

Matrix (GLCM) with Convolutional Neural Networks (CNN) 

has yielded remarkable success in extracting textural features 

from egg images, leading to high classification accuracy [8]. 

A similar approach, utilizing image-based feature extraction 

for geometric parameters in live chickens, could be adapted 
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for non-invasive live weight estimation. By integrating feature 

extraction techniques with machine learning models, such as 

Random Forest or neural networks, this method holds the 

potential to enhance the accuracy of weight prediction while 

maintaining computational efficiency and scalability. 

The convergence of these technologies has already shown 

positive outcomes in industrial poultry systems. For example, 

the study developed a method for estimating live chicken 

weight using 3D point cloud data from a depth camera and 

PointNet++, achieving an R² of 0.8817 and MAE of 0.095 [9]. 

Similarly, other studies have focused on non-contact carcass 

volume estimation through 3D reconstruction and point cloud 

stitching, with high accuracy (R² = 0.985), although they 

require complex hardware setups unsuitable for live 

monitoring [10]. Another study utilized CT imaging and a 

modified YOLOv5 segmentation model combined with a 

Random Forest regressor to estimate chicken leg weight, 

obtaining R² = 0.889 and MAE = 0.072, but again limited by 

infrastructural demands [11]. More relevant to live monitoring 

applications, video-based approaches using 2D image features 

and regression models have reported promising results, such 

as MAE of 0.07, but were constrained by limited feature 

diversity and environmental variability [12]. Similarly, the 

study employed depth imaging and Active Shape Modeling to 

estimate broiler carcass part weights, reporting an R² of 

0.9129, yet again dependent on post-mortem imaging and 

processing infrastructure [13]. 

The advancement of image acquisition technologies—

including high-resolution digital cameras and three-

dimensional imaging systems—has significantly improved the 

precision and robustness of image-based livestock monitoring 

systems [14]. State-of-the-art image preprocessing techniques 

are employed to mitigate visual noise, standardize 

illumination, and perform precise segmentation of individual 

chickens from complex backgrounds, thereby enhancing the 

reliability of extracted features and improving predictive 

accuracy [15]. Moreover, the growing availability of large-

scale annotated image datasets, collected under varying 

environmental conditions, has enabled the development of 

more generalizable and adaptable machine learning models. 

These technical improvements are particularly relevant in 

the context of antibiotic-free poultry production systems, 

where stress-reducing, non-invasive monitoring tools are 

essential for maintaining animal health and minimizing 

mortality risks [16]. In response to mounting pressures to 

reduce production costs while ensuring product quality and 

safety, the poultry industry is increasingly compelled to adopt 

streamlined, data-driven, and cost-efficient management 

practices [17]. 

A wide range of machine learning algorithms has been 

applied to predict live chicken weight, ranging from traditional 

regression models to advanced deep learning architectures. 

Classical approaches, such as linear regression and support 

vector regression (SVR), remain popular due to their ease of 

implementation and interpretability, often serving as 

benchmarks for comparative evaluation [17]. However, these 

models are generally limited in their ability to capture the 

complex, non-linear growth patterns exhibited by broilers 

under variable rearing conditions [18]. 

A notable study [7] introduced a novel method for 

estimating live chicken weight using three-dimensional point 

cloud data captured by an overhead depth camera, addressing 

accuracy challenges posed by animal movement during 

traditional weighing procedures. This approach utilized the 

PointNet++ deep learning architecture, trained and evaluated 

on 2,000 point cloud samples from two chicken breeds—

Huainan and Huxu. The model achieved a mean absolute error 

(MAE) of 0.095, a mean absolute percentage error (MAPE) of 

6.66%, and an R² of 0.8817. The study incorporated advanced 

preprocessing techniques, including pass-through filtering and 

curvature-based downsampling, and found that RGB color 

features contributed more significantly to prediction accuracy 

than surface normal vectors. 

While this method demonstrated high performance, it 

requires complex hardware setups and substantial 

computational resources, which may limit its practical 

scalability in conventional poultry farming environments. In 

contrast, this study proposes a more accessible image-based 

approach using standard 2D cameras and the Random Forest 

algorithm, aiming to achieve comparable accuracy with 

reduced system complexity and cost. 

Another line of research has focused on developing non-

contact methods for estimating chicken carcass volume using 

depth imaging and three-dimensional reconstruction 

techniques [19]. In this approach, an imaging system captures 

depth images of carcasses moving along the production line, 

and a real-time 3D model is constructed via point cloud 

stitching. The reconstructed model is then used to compute 

carcass volume, which is validated against ground truth 

measurements obtained through the water displacement 

method. The system achieved high predictive accuracy, with 

an R² value of 0.985 and a MAPE of 4.22% [19]. 

A similar study proposes a non-invasive system for 

predicting live chicken leg weight using computed 

tomography (CT) imaging and a deep learning approach. This 

system integrates a modified YOLOv5 segmentation 

algorithm with a multiscale attention mechanism and an atrous 

spatial pyramid pooling (ASPP) architecture, then employs a 

Random Forest regression model to estimate the leg weight of 

chickens based on morphological parameters obtained from 

segmentation. The developed model (YOLO-MCLW) is 

capable of simultaneously detecting the tibia bone and 

segmenting the chicken leg area, achieving an MAE of 0.072, 

MAPE of 4.82%, and R² of 0.889. This model also 

outperforms other detection and segmentation models and 

processes 37 images per second, making it suitable for 

efficient and accurate industrial poultry breeding applications 

without harming the animals [18]. 

Recent developments in deep learning have shown 

significant improvements in image segmentation accuracy 

proposed a modified U-Net architecture, namely U-Net11, 

which employs 11 convolutional layers to enhance 

segmentation performance across various biomedical datasets. 

Their results demonstrated a 2–5% improvement in Dice 

Similarity Coefficient compared to the classical U-Net model. 

Although applied in the biomedical domain, this approach 

highlights the effectiveness of deep convolutional 

architectures for extracting precise object boundaries, which is 

also essential in non-invasive chicken body segmentation for 

weight estimation [20]. Classical edge detection algorithms 

such as Canny, Sobel, and Prewitt are still widely used in 

image preprocessing to extract object boundaries effectively. 

The study [21] demonstrated that the Canny method achieved 

the best performance across various image types when the 

threshold value was between 0.30 and 0.45. In this study, a 

similar edge-based preprocessing approach was applied to 

extract geometric features from chicken images before 

regression modeling [21]. 
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Introduced an online weight estimation system for broiler 

chickens and their anatomical parts using computer vision 

techniques based on depth imaging and the Active Shape 

Model (ASM) framework. The system was designed to 

segment and quantify carcass components—including the 

breast, thighs, wings, head, and neck—by extracting geometric 

features such as area, perimeter, and major-to-minor axis 

ratios from 2D projections of depth images. Using a dataset of 

155 chicken carcass samples, the regression model achieved a 

coefficient of determination (R²) of 0.9129. The system was 

capable of processing each sample within a time range of 

0.924 to 1.656 seconds, indicating its potential for real-time 

industrial application [19]. 

In live poultry production, achieving both efficiency and 

accuracy in weight estimation remains a persistent challenge. 

Although the literature review is comprehensive, it lacks a 

clear statement on the novelty and distinct advantages of the 

proposed method compared to existing approaches, 

particularly 3D methods. Unlike 3D-based methods that often 

require complex hardware setups and substantial 

computational resources, the proposed method—using 2D 

image processing with Random Forest regression—offers a 

cost-effective, simpler, and scalable solution. This approach 

not only simplifies the process but also ensures more practical 

and accessible real-time weight estimation, making it highly 

suitable for conventional poultry farming environments. 

Conventional manual weighing methods are time-

consuming, labor-intensive, and prone to measurement 

inconsistencies. The integration of digital image-based 

technologies offers a promising alternative for automating the 

monitoring process and enhancing real-time decision-making 

in farm management. Despite recent advancements in machine 

learning and imaging systems, few studies have addressed the 

development of low-cost, scalable solutions capable of 

accurately predicting live chicken weight under practical farm 

conditions. 

In response to this gap, the present study proposes a novel 

approach that combines Region of Interest (ROI) detection, 

geometric feature extraction, and the Random Forest (RF) 

algorithm to estimate the body weight of live chickens using 

two-dimensional image data. The main contributions of this 

study include: 1) a cost-effective and non-invasive solution for 

live weight estimation using 2D imaging and machine 

learning, 2) a simplified and scalable method compared to 3D-

based approaches, and 3) a tool that provides real-time weight 

monitoring with practical application potential in conventional 

poultry farming. 

2. MATERIAL AND METHOD

This study was conducted in several stages, as outlined 

below. The first step involved the collection of chicken 

images. In the second step, image preprocessing was 

performed, where digital image processing techniques were 

applied to enhance and prepare the chicken images for further 

analysis. The third step involved feature extraction, where 

geometric feature extraction methods were employed to 

capture key characteristics from the chicken images. The 

fourth and final step was weight prediction, in which training 

and testing data were processed using machine learning 

algorithms. A detailed overview of the research stages is 

presented in Figure 1. 

Image segmentation is the initial step in digital image 

processing [20]. The collected chicken image is processed 

through a segmentation stage that includes converting the 

image into grayscale, followed by its transformation into a 

binary image and edge contour detection [21]. The contour 

detection step outlines the shape of the chicken, which is then 

stored in a separate file. The first task in segmentation is to 

convert the colored image to grayscale [22]. Grayscale images 

have pixel values that range from black (representing the 

lowest pixel value) to white (representing the highest pixel 

value), with the grayscale value corresponding to the image's 

brightness level [23]. The next step is converting the grayscale 

image into a binary image using the thresholding method [24, 

25], which divides the image pixels into two categories: 

foreground and background, based on the grayscale level [26]. 

Thresholding is a crucial technique in image segmentation, 

where pixel values in the grayscale image are represented by 

L, and the total number of pixels is represented by Coskun et 

al. [27]. 

Figure 1. Research workflow 

After obtaining the binary image, Region of Interest (ROI) 

detection is performed [28], this step is used to define specific 

areas within the digital image, ensuring that image processing 

is applied exclusively to the region identified as the chicken. 

ROI detection also helps to minimize noise, thereby improving 

the accuracy of the analysis [29]. In this study, a square ROI 

is used to define the chicken object, and the image is cropped 

according to the detected ROI boundaries [30].  

Geometric feature extraction of the chicken image is then 

carried out to capture key information, such as color, texture, 

and shape [31]. Geometric features describe the shape of the 

poultry, with morphological, physiological, and behavioral 

characteristics typically used for species identification [32]. 

This study specifically focuses on extracting shape features, 

utilizing geometric morphometric features such as length and 

height [33]. Based on these geometric parameters, the area of 

the chicken is calculated [34].  

The estimation of chicken weight is built using the Random 

Forest (RF) prediction algorithm. The RF approach has been 

increasingly adopted across various applications and 

industries due to its robustness and accuracy [35]. This 

algorithm is employed to model predictions involving multiple 

independent variables [36]. RF is a statistical algorithm 

designed to predict the outcome of a variable y, where Y 

represents the prediction result based on input variables X 

[37].  

Collecting 
chicken image 

data
Grayscale Image Binary Image

Testing
Prediction using 
ANN, SVM, RF, 

DT

Data splitting 
training & testing

Create model 
training using 

machine learning

Geomatric 
Feature 

extraction
Edge DetectionROI Detection

Accuracy using 
RMSE, MAE, R2
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This algorithm is chosen because it is a suitable predictive 

algorithm [38], particularly for predicting live chicken weight 

in this study. RF is a supervised learning algorithm that can be 

used to solve classification and regression problems. The 

characteristic of this method is that each tree grows on a 

different bootstrap sample taken randomly from the training 

data. During each node split while constructing the decision 

tree, a subset of m variables is randomly selected from the 

original dataset, and the best ones are used for that node. For 

RF, which consists of N trees, the calculation is performed 

using the following formula [37]. Where I is the indicator 

function, and hn represents the n-th tree of the Random Forest 

(RF). 

( )

1

( )
n

n

c h y c

n

l y argmax I =

=

 
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 
 (1) 

The accuracy of the model is evaluated using validation 

metrics such as Root Mean Square Error (RMSE), Mean 

Absolute Error (MAE), and the coefficient of determination 

(R²). The optimal model is determined by selecting the 

prediction with the lowest RMSE and MAE values, while the 

highest R² value indicates the best model fit [39, 40]. The 

formulas for RMSE, MAE, and R² are described in Eqs. (2)-

(5). Where 𝑌𝑑𝑎 is the actual value, 𝑌𝑑𝑝 a is the predicted value,

𝑌𝑑𝑤  is the average predicted value, and n is the number of

available data points [41]. 
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3. RESULT AND DISCUSSION

In this study, data was collected using images of chickens 

captured from an overhead perspective. A total of 100 

chickens were photographed from the top view in a 3x3 meter 

chicken coop. This data collection approach may limit the 

model's ability to generalize to different angles or postures of 

the chickens. The camera used for data collection had a 

resolution of 48 megapixels, and four overhead lamps 

provided uniform lighting throughout the coop. The captured 

video was converted into digital image frames, and a single 

camera was used to capture all the images, ensuring 

consistency in data collection. The images were stored in JPG 

format, and the data consisted of 100 images of chickens 

viewed from above. Due to the small sample size, data 

augmentation techniques were not applied in this study, which 

could have helped expand the dataset and improve model 

generalization. Future work should consider collecting data 

from multiple angles or postures to improve the model's ability 

to generalize across different real-world conditions, and 

incorporate data augmentation methods such as rotation, 

flipping, and scaling to increase dataset diversity and further 

enhance the model's robustness. 

A detailed description of the data collection setup is 

provided in Figure 2(a), and the processed chicken digital 

image data is shown in Figure 2(b). 

(a) Chicken image data acquisition scenario

(b) Chicken image data

Figure 2. Chicken image data acquisition 

The study commenced with the image preprocessing stage, 

which included several steps: converting the images to 

grayscale, binarizing the images, detecting edge contours, and 

performing Region of Interest (ROI) detection. Figure 3(a) 

illustrates the grayscale image, while Figure 3(b) presents the 

binary image, generated using a threshold value of 0.01. The 

binarization process was carried out using the Otsu algorithm. 

Edge detection was performed using the Canny edge detection 

algorithm, which effectively identifies the boundaries of the 

chicken image. The result of this process is shown in Figure 

3(c), where the contours of the chicken are highlighted. 

(a) Grayscale image

(b) Binary image
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(c) Contour detection

(d) ROI detection

Figure 3. Image preprocessing stage 

Figure 4. Geometric features of a chicken's image 

The ROI detection process was then applied to isolate the 

chicken shape from the background. This technique helps to 

focus image processing on the area containing the chicken, 

reducing irrelevant data and enhancing processing accuracy. 

The detected region corresponding to the shape of the chicken 

is illustrated in Figure 3(d), showing the area selected for 

further analysis. 

From the preprocessed image, the next step involves the 

feature extraction process for the chicken data. Figure 4 

provides a detailed illustration of the geometric features 

extracted from the chicken image. In Figure 4, the red line 

represents the outer rectangular contour of the chicken, which 

is used to define its length (CL) and height (CH). These two 

dimensions are critical for calculating the Aspect Ratio (Ar), 

which is the ratio of the length to the height of the chicken. 

Additionally, the area (A) and perimeter (P) of the chicken 

are calculated based on the pixel values detected in the image. 

These geometric properties are then used to calculate the 

complexity (M), defined as the ratio of the area to the 

perimeter of the chicken. The complexity metric helps in 

understanding the shape and structure of the chicken, 

providing insights into its form. 

The variables 'a' and 'b' represent the major and minor axes 

of the chicken, respectively. The major axis ('a') is measured 

from the center point of the chicken to the edge of its length, 

while the minor axis ('b') is measured from the center point to 

the edge of the height. These axes are used to calculate the 

eccentricity, defined as the ratio of the minor axis to the major 

axis of the chicken's body. 

In total, 6 geometric morphometric features are considered 

for analysis. These features offer a comprehensive 

understanding of the chicken's shape and structure. A detailed 

explanation of the geometric morphometric features, along 

with their formulas, is provided in Table 1 [33, 34]. 

Table 1. List of geometric morphometric features of chicken images 

Feature Feature Description Symbol and Formula 

Chicken Length Length of the chicken's frame CL 

Height Height of the chicken's frame CH 

Area Number of pixels in the chicken's area A 

Perimeter Number of pixels around the chicken's edge P 

Aspect Ratio Length / height Ar = TL/H 

Complexity Area / perimeter M = A/P 

The detailed image processing procedure for geometric 

morphometric features is illustrated in Figure 5. 

(a) 

(b) 

(c) 

(d) 
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(e) 

(f) 

Figure 5. Geometric features from chicken image processing 

The measurement of the chicken's length (CL) is calculated 

using the distance between two pixels, applying the formula 

provided by Chen et al. [42]. This process is performed on a 

total of 100 chickens to obtain the geometric values for CL, 

CH, A, P, AR, and M. 

For the calculation of area (A) and perimeter (P), these 

values are derived from the detected pixels in the binary 

image. Specifically, the area corresponds to the number of 

pixels representing the chicken's body, and the perimeter is 

calculated by tracing the edge of the chicken in the binary 

image. The aspect ratio (AR) and complexity (M) are 

calculated using the formulas provided in Table 1 [43] based 

on the geometric properties of the chicken's shape. 

( ) ( )
1

2 2 2

D i n H i n vL x x S y y S = − + −
 

(6) 

The study used 100 chicken data samples, divided into six 

experimental trials, combining the ROI method, Geometric 

Features (GF), and the Random Forest method (ROI-GF-RF). 

The research evaluated different test sizes using cross-

validation. The test sizes varied at 80%, 70%, 60%, 50%, 40%, 

and 30% of the total dataset. The Random Forest (RF) 

hyperparameters were set as follows: n_estimators = 50, 

max_depth = 5, and random_state = 42. The results revealed 

that the best values for MAPE, RMSE, MAE, and R² were 

achieved in the sixth experiment, where 30% of the data was 

used for testing. At a test size of 30%, the largest training size 

used is 70%, resulting in a model with the lowest MAPE, 

RMSE, MAE, and highest R2 results. The resulting values 

were 0.0041 for MAPE, 0.134 for RMSE, 0.062 for MAE, and 

0.919 for R². 

From the 6 experiments, it was observed that the values of 

MAPE, RMSE, and MAE decreased as the size of the training 

data increased and the testing data size decreased. This 

indicates that a larger training dataset helps reduce the error 

rate. Conversely, the R² value increased, demonstrating that as 

the amount of training data increases and the testing data 

decreases, the coefficient of determination becomes larger, 

suggesting improved model accuracy. The detailed statistical 

results from these experiments are presented in Table 2 and 

Figure 6. 

Figure 6. Comparison with different amounts of testing data 

In this study, three machine learning-based comparison 

methods were employed to predict chicken weight: Artificial 

Neural Networks (ANN), Support Vector Machine (SVM), 

and Decision Tree (DT). Each method was tested using the 

same set of parameters and preprocessed data to ensure 

consistency across the experiments. 

The experimental results demonstrated that the proposed 

algorithm, which combines ROI detection, shape feature 

extraction, and the Random Forest (RF) method, yielded the 

lowest error values for MAPE, RMSE, and MAE compared to 

other methods. Additionally, the computation process was the 

fastest, with an average processing time of 1.67 seconds. 

Table 2. Experimental statistics using the development of the 

ROI-GF-RF method 

Number of 

Experiment 
Test Size MAPE RMSE MAE R2 

1 0.8 0.0049 0.17 0.07 0.901 

2 0.7 0.0046 0.142 0.069 0.924 

3 0.6 0.004 0.145 0.065 0.923 

4 0.5 0.0039 0.141 0.059 0.901 

5 0.4 0.0037 0.124 0.058 0.932 

6 0.3 0.0036 0.082 0.056 0.938 

Average 0.0041 0.134 0.062 0.919 

Table 3. Experiments with the comparison algorithms 

Prediction Algorithm ANN SVM DT RF 

Feature Selection CL, CH, A, P, Ar, M 

Number of Selected 

Feature 
6 

MAPE 
0.007

2 

0.008

1 

0.006

2 

0.004

1 

RMSE 0.175 0.148 0.139 0.134 

MAE 0.139 0.115 0.107 0.062 

R2 0.902 0.86 0.891 0.919 

Time Process (s) 12.82 2.04 2.25 1.67 

The comparison between the Random Forest model and the 

other methods revealed significant differences in performance. 

Compared to ANN, the values of MAPE, RMSE, and MAE 

decreased by 0.031, 0.041, and 0.077, respectively, while the 

R² value increased by 0.017. When comparing RF to SVM, 

reductions in MAPE, RMSE, and MAE of 0.004, 0.014, and 

0.053 were observed, respectively, accompanied by an 

increase in R² of 0.059. Furthermore, when RF was compared 
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to DT, there were reductions in MAPE, RMSE, and MAE by 

0.0021, 0.005, and 0.045, respectively, with an increase in R² 

of 0.028. 

RF combines many decision trees and processes them 

quickly, reducing the risk of overfitting. This allows the model 

to remain stable against variations in chicken data. In the real 

world, this method can be integrated into an automatic 

monitoring system, helping to make optimal feed and harvest 

decisions. 

In terms of computation time, RF outperformed the other 

methods, being 11.15 seconds faster than ANN, 0.37 seconds 

faster than SVM, and 0.58 seconds faster than DT. Detailed 

statistical results of the experiments with the comparison 

algorithms are shown in Table 3, and the error value graph is 

presented in Figure 7. 

The results of this study, when compared with previous 

research, show the MAPE, RMSE, MAE, and R² values from 

several related studies using different methods. Below is the 

comparison analysis, where this study employs the ROI-GF-

RF method. Overall, this study demonstrates that the proposed 

method outperforms other methods in terms of accuracy and 

efficiency in predicting live chicken weight. The detailed 

comparison of the results is presented in Table 4. 

(a) (b) 

Figure 7. Accuracy values using comparison algorithms and processing time 

Table 4. Experimental statistics using the development of the ROI-GF-RF method 

Researcher Method MAPE RMSE MAE R2 

[7] PoinNet++ 6.66% 0.095 0.8817 

[44] Depth Imaging and 3-D Reconstruction 4.22% 0.985 

[18] YOLOv5-MCLW 4.82% 0.072 0.889 

[45] 2D Video Feature Analysis and Machine Learning 5.8% 0.07 

[19] RBF-SVR 0.9129 

This research ROI-Geometric Feature (GF)-RF 4.11% 0.083 0.069 0.919 

4. CONCLUSIONS

This research is limited by a small dataset and the use of 

only one viewpoint for data collection. This study successfully 

developed a predictive model for live chicken weight using a 

digital image processing approach, integrating Region of 

Interest (ROI) detection, shape feature extraction, and the 

Random Forest (RF) algorithm. The ROI process effectively 

isolates the chicken's area in the digital image, reducing noise 

interference and enhancing the accuracy of the analysis. Shape 

feature extraction, which includes measuring geometric 

parameters such as length, height, perimeter, area, aspect ratio, 

and complexity, provided critical information for accurate 

weight prediction. 

The Random Forest method applied in this study has proven 

to generate accurate live chicken weight estimates, with low 

error values. The study achieved excellent predictions, with an 

average MAPE of 0.0041, RMSE of 0.083, MAE of 0.069, and 

R² of 0.919. These results demonstrate that the proposed 

method can predict live chicken weight with high accuracy. 

This algorithm shows its advantage in handling complex 

input data, predicting chicken weight based on the extracted 

geometric features from the images. The findings of this study 

contribute significantly to improving the efficiency of chicken 

monitoring and management systems on farms, and open 

avenues for further applications in agriculture and livestock 

farming using digital image technology. Future research will 

expand on this work by exploring deep learning algorithms to 

further improve prediction accuracy, with more dynamic data 

retrieval scenarios. 
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NOMENCLATURE 

 

CNN Convolutional Neural Network 

GLCM Gray-Level Co-occurrence Matrix 

R² Coefficient of Determination 

MAE Mean Absolute Error 

MAPE Mean Absolute Percentage Error 

RMSE  Root Mean Squared Error: 

PointNet++ A deep learning architecture used to process 

3D point 

YOLOv5 You Only Look Once version 5 

RF Random Forest 

ASM Active Shape Model 

CT Imaging Computed Tomography Imaging 

Depth 

Imaging 

A technique used in image processing to 

capture three-dimensional data of objects 

2D Imaging Two-dimensional image processing used to 

extract geometric features like minor axis 

length and chicken age for live weight 

estimation 

l(y) A function representing the decision or 

output label for the input y 

argmax The argument of the maximum function, 

used to find the value of a variable that 

maximizes a given function 
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c The class or category label that is being 

predicted in the classification model 

hn(y) A hypothesis or model prediction for the nth 

instance, applied to the input y 

n The index of summation, typically 

representing the number of data points or 

features in the model 

Ai The actual value for the ith data point 

Fi The forecasted or predicted value for the ith 

data point 

| | Absolute value 

100 A factor used to convert the error to a 

percentage 

N The number of data points or instances in the 

dataset 

Yda The actual value for the ith data point 

Ydp The predicted value for the ith data point 

Ydw The mean of the actual values (Yda) 

LD A metric for measuring the distance or 

deviation in a 2D space 

xi, xn The x-coordinates for the ith data point and 

nth reference point 

yi, yn The y-coordinates for the ith data point and 

nth reference point 

SH A scale factor for the horizontal axis 

Sv A scale factor for the vertical axis 

ROI Region of Interest 

GF Geometric Features 

RF Random Forest 

ANN Artificial Neural Networks 

SVM Support Vector Machine 

DT Decision Tree 

Greek symbols 

∑ Summation symbol 
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