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Writing effective security detection rules for SIEM systems is a complex and time-

consuming task that traditionally requires deep domain expertise. One of the persistent 

challenges in applying AI to security operations (SecOps) is the scarcity of high-quality, 

domain-specific datasets that can support the development of accurate and reliable models. 

This paper addresses that gap by presenting a method to both generate such a dataset and 

leverage it to fine-tune a compact reasoning-oriented model (DeepSeek R1 Distill Llama 

8B) using Low Rank Adaptation (LoRA). As part of our contributions, we detail the creation 

of a curated, high-quality (of 1206 entries from 106 detection rule) dataset specifically 

tailored for SIEM text-to-query tasks, which enabled effective fine-tuning of the model. A 

key feature of this dataset is the augmentation of each training example with chain-of-

thought (CoT) rationales: step-by-step explanations linking the natural language description 

of a detection rule to the resulting Lucene query. These rationales, produced by a stronger 

teacher model (Claude sonnet 4), are used to supervise the smaller student model. We 

describe the data pipeline, prompt templates, and LoRA configuration, and we report an 

initial human evaluation showing that CoT augmentation improves the reliability of 

text→query generation without increasing computational cost. Despite its compact size, our 

fine-tuned model outperformed several large proprietary language models in both query 

accuracy and reasoning quality. DeepSeek R1 Distill Llama 8B was chosen as a small model 

with reasoning capabilities, while Claude Sonnet 4 was selected for its strong ability to 

generate rationales. However, the research remains applicable to other small reasoning 

models and large, more capable models, respectively.  
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1. INTRODUCTION

Modern security operations rely on SIEM platforms to 

aggregate logs and detect threats using custom search queries 

or rules. Crafting high‑quality detection queries (e.g., Lucene 

or KQL [1]) is skill‑intensive, as it requires knowledge of 

attacker tradecraft and logging semantics. Interest has grown 

in leveraging large language models (LLMs) to assist with 

detection engineering. Early investigations show that, while 

generic LLMs [2] can propose plausible queries, their 

accuracy and consistency are limited without domain 

adaptation. This motivates supervised fine‑tuning on targeted 

corpora and the inclusion of explicit reasoning signals to guide 

query construction. 

This work investigates whether a relatively small but 

reasoning‑oriented model can be aligned to generate Lucene 

queries for SIEM rules, accompanied by concise 

natural‑language justifications. Concretely, we fine‑tune 

DeepSeek‑R1‑Distill‑Llama‑8B with parameter‑efficient 

LoRA adapters. To enhance faithfulness, we augment each 

training example with a structured CoT rationale that explains 

how to derive the query from the rule’s title and description. 

Our contributions are: 

•A reproducible pipeline to convert detection rules into

instruction‑tuning examples enriched with CoT rationales. 

•A LoRA fine‑tuning recipe on 4‑bit quantization.

•An initial human study assessing query correctness and

explanation quality. 

The remainder of this article is organized as follows. 

Section 2 surveys background and related work on LLM-

assisted detection engineering, efficient parameter-efficient 

fine-tuning (LoRA/QLoRA), and text-to-query systems. 

Section 3 details the dataset construction and rationale 

augmentation. Section 4 presents the fine-tuning 

methodology, model, and hyperparameters. Section 5 reports 

the evaluation setup and results. Section 6 discusses 

reproducibility considerations and generalization to other 

telemetry and query languages. Section 7 outlines limitations 

and ethical considerations. Section 8 concludes. 

2. BACKGROUND AND RELATED WORK

2.1 LLMs for detection engineering 

Several works explore LLM assistance in crafting detection 
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logic from textual descriptions of adversary behaviors. 

Empirical studies on “living-off-the-land” techniques report 

that out-of-the-box LLMs can help less-experienced users 

produce baseline queries but suffer from inconsistency and 

factual errors, motivating further refinement via fine-tuning 

and guardrails [3]. Practitioner accounts similarly position 

LLMs as accelerators—not replacements—for expert 

detection engineering workflows [4]. Empirical studies on 

“living-off-the-land” techniques report that out-of-the-box 

LLMs can help less-experienced users produce baseline 

queries but suffer from inconsistency and factual errors, 

motivating further refinement via fine-tuning and guardrails. 

Practitioner accounts similarly position LLMs as 

accelerators—not replacements—for expert detection 

engineering workflows. 

 

2.2 Efficient fine-tuning with LoRA and 4-bit quantization 

 

Full fine-tuning of large models is expensive and prone to 

overfitting on small domain datasets. LoRA injects low rank 

adapters while freezing base weights, dramatically reducing 

trainable parameters and memory without degrading quality 

[5]. Combined with 4 bit quantization (e.g., QLoRA), this 

enables single GPU training of capable models [6], making 

domain adaptation accessible to smaller teams. LoRA injects 

low rank adapters while freezing base weights, dramatically 

reducing trainable parameters and memory without degrading 

quality. Combined with 4 bit quantization (e.g., QLoRA), this 

enables single GPU training of capable models, making 

domain adaptation accessible to smaller teams. 

 

2.3 Reasoning-oriented base models and CoT supervision 

 

We leverage a distilled reasoning model (DeepSeek R1 

Distill Llama 8B) as the base [7, 8]. Chain of thought 

prompting improves complex reasoning in large models [9]; 

crucially, smaller models can acquire step by step reasoning 

when trained on teacher generated rationales [10]. Our 

approach distills “why the query works” alongside “what the 

query is,” aiming to improve both transparency and 

generalization. Chain of thought prompting improves complex 

reasoning in large models; crucially, smaller models can 

acquire step by step reasoning when trained on teacher 

generated rationales (e.g., Symbolic CoT Distillation) [11]. 

Our approach distills “why the query works” alongside “what 

the query is,” aiming to improve both transparency and 

generalization. 

 

2.4 Text-to-query with AI 

 

Text‑to‑query research is mature in databases and is 

increasingly applied to security analytics: 

Text→SQL: Benchmarks such as WikiSQL and Spider 

[12] catalyzed progress in mapping natural language to 

executable SQL, with constrained decoding methods (e.g., 

PICARD) reducing invalid outputs. These works establish 

metrics (exact match vs. execution accuracy) and design 

patterns (schema linking, constrained decoding) that transfer 

to text→SIEM languages. 

Text→SPL (Splunk): Productized assistants translate 

natural language into SPL, explain generated searches, and 

personalize queries to the deployment context—an existence 

proof that production NL→query is feasible for security 

analytics. 

Text→KQL (Microsoft/Sentinel/Fabric/ADX): 

Frameworks such as NL2KQL and integrated copilots 

translate NL to KQL with schema refinement, few‑shot 

selection, and automatic repair. These systems highlight the 

importance of schema grounding and post‑generation 

validation in operational settings. 

Our study contributes a complementary case: 

instruction‑tuning a small open model to produce Lucene 

queries with explicit reasoning, using detection rules as 

supervision. 

 
 

Figure 1. Representation diagram of our fine-tuning process 

 

The diagram in Figure 1 illustrates the workflow of our 

proposed approach for developing a specialized small 

language model for text-to-query generation. It begins with a 

strong model, Claude 4 Sonnet [13], which is used to generate 

a high-quality, domain-specific dataset. This dataset serves as 

the foundation for fine-tuning a smaller model, Llama 8.1 

DeepSeek Distill, using the Low Rank Adaptation (LoRA) 

technique. The process results in a compact yet specialized 

model optimized for generating SIEM queries from natural 

language inputs. 

Beyond text-to-SQL (e.g., Spider/PICARD), production 

SIEM assistants translate natural language to operator queries, 

notably NL2KQL [14] (Kusto) and Splunk’s AI assistants for 

SPL [15]. These systems typically rely on (i) explicit schema 

grounding, (ii) constrained decoding or post-generation repair 

to avoid invalid syntax, and (iii) large instruction-tuned 

models invoked at inference time. In contrast, our approach 

fine-tunes a compact 8B model on a curated SIEM corpus with 

chain-of-thought (CoT) supervision, yielding a deployable 

model that (a) emits both a rationale and a query, (b) runs on 

commodity hardware without external calls, and (c) preserves 

strong query faithfulness on ECS-normalized telemetry. 

Methodologically, we borrow best practices from NL→SQL 

(schema linking, execution-oriented evaluation) and 

NL2KQL/SPL (schema hints, alias handling), but we 

contribute a small-model, CoT-distilled recipe specific to 

SIEM Lucene queries. 

We target Lucene because (i) it underpins Elastic SIEM 

deployments commonly normalized to ECS, (ii) a large body 

of community rules (e.g., Sigma) map directly to Lucene-style 

filters, and (iii) Lucene’s boolean/filter idioms (indices, fields, 

values, phrase/term logic) are representative of other SIEM 

query languages (KQL/SPL). Focusing on Lucene thus 

provides a practical proxy for SecOps workflows while 

keeping the methodology transferable. 

Fine-tuning LLMs with explicit chain-of-thought (CoT) 

prompting has been empirically shown to yield superior 

reasoning performance compared to training without CoT. 

Requiring models to generate intermediate reasoning steps 

(“CoT” rationales) is known to boost performance on complex 

tasks [16]. Building on this, recent studies demonstrate that 

incorporating CoT during fine-tuning leads to significant 
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accuracy gains. For instance, reference [17] showed that 

adding CoT exemplars from a 540B-parameter teacher model 

more than doubled a 11B-parameter model’s accuracy on a 

math word problem benchmark (GSM8K), from about 8% to 

22%. Similarly, Li et al. [10] found that smaller models fine-

tuned on rich reasoning chains “learn to self-rationalize” and 

perform significantly better on commonsense question-

answering tasks than models trained without any rationales 

[10]. Puerto et al. [16] further report that even large models 

(1.3B–70B parameters) exhibit consistent performance 

improvements when fine-tuned on diverse CoT data, 

outperforming baseline models that lack CoT training. 

Collectively, these peer-reviewed findings indicate that 

explicit CoT fine-tuning enhances LLM problem-solving 

abilities (across arithmetic, symbolic, and commonsense 

reasoning tasks) beyond what is achieved with standard 

training alone [10, 17]. 

 

 

3. DATASET CONSTRUCTION AND 

AUGMENTATION 

 

3.1 Source rules and format 

 

We compiled a corpus of SIEM detection rules inspired by 

community-maintained content (e.g., Sigma [18]; SigmaHQ, 

n.d.) and practitioner recipes. Each example includes: a title, a 

description (detection intent), and a Lucene query (targeting 

ECS-normalized logs [19]). For instance, a PsExec 

lateral-movement rule leverages the service installation event 

(Event ID 7045 [20]) and the default remote service name 

PSEXESVC (Microsoft, n.d.; MITRE ATT&CK [21], n.d.), 

yielding a filter over Windows event indices with ECS fields 

event.code and service.name. Each example includes: a title, a 

description (detection intent), and a Lucene query (targeting 

ECS-normalized logs). For instance, a PsExec 

lateral-movement rule leverages the service installation event 

(Event ID 7045) and the default remote service name 

PSEXESVC, yielding a filter over Windows event indices 

with ECS fields event.code and service.name. 

 

{ 

"title": "PsExec lateral movement detection", 

   "description": "This rule detects the use of PsExec 

in lateral movement by attackers", 

   "query": "_index:winlogbeat-* AND 

event.code:7045 AND service.name:PSEXECSVC" 

} 

 

3.2 CoT rationales via a teacher model 

 

For each rule, we prompt a stronger LLM to produce a 

single-paragraph rationale that, starting from the description, 

justifies the choice of data source, key indicators, ECS 

fields/values, and Boolean structure. The prompt forbids 

quoting the original query to ensure the explanation is a 

principled derivation rather than a paraphrase. Outputs are 

validated and lightly edited for factual accuracy and 

consistency. 

This process was automated via a Python script. The 

pseudocode below illustrates the workflow (Simplified 

version): 

for entry in dataset: 

    title = entry["title"] 

    description = entry["description"] 

    query = entry["query"] 

     

    # Compose a prompt instructing the LLM to explain the 

construction of the query 

    prompt = f""" 

 # Enrichment Prompt 

    """ 

    reasoning = call_large_LLM(prompt)   

    entry["reasoning"] = reasoning.strip() 

 

We designed the prompt to ensure the LLM’s output is 

structured and comprehensive. The system/user message 

instructs the model that it is an expert and needs to provide a 

step-by-step breakdown: 

You are a cybersecurity assistant helping build a dataset to 

fine-tune a small language model that learns to generate 

Lucene queries using the Elastic Common Schema (ECS) 

from a detection rule prompt. 

You will be given a JSON object containing: 

    prompt: a short explanation of the detection goal 

    query: the corresponding Lucene query written in ECS 

format 

Your task is to return a JSON object with a single key: 

reasoning_steps. The value must be a single, well-structured 

and consistent paragraph written in chain-of-thought (CoT) 

style using “I” to express reasoning steps to construct the 

correct Lucene query starting only from the prompt. 

    - Begin by interpreting the attack behavior described in 

the prompt 

    - Step through the logical process of identifying the 

relevant logs (e.g., Windows Event Log), event codes, and key 

indicators 

    - Justify the choice of each ECS field and value using 

domain knowledge (e.g., which field captures a share name, or 

how certain malware behaves) 

    - Explain how these fields and values combine logically 

using Lucene syntax (e.g., AND, OR, nesting) 

    - Do not mention or describe the provided query 

    - Do not refer to “this query” or “the query above” 

    - End with a concise sentence summarizing exactly which 

ECS fields, values, and Lucene logic are needed to construct 

the correct query 

 

Constraints: 

 

 - Use first-person singular ("I") 

 - The output must be a single, consistent, detailed and 

coherent paragraph — no bullet points or list format 

 - Do not describe or mention the actual query 

 - Do not refer to “the query above” 

             - Output must be a valid JSON object, with only one 

key: "reasoning_steps" 

             - Output must be directly parsable using Python’s 

json.loads() 

           - Do not include any text outside the JSON block 

           - Do not include markdown, backticks, or any text 

outside the JSON object such as ```json ``` 

 

Input: 

 

{{ 

  "prompt": "{rule_data['title']}. 

{rule_data['description']}", 

2045



 

  "query": "{rule_data['query']}" 

}} 

 

Expected Output Format: 

{{ 

  "reasoning_steps": 

"<model_generated_reasoning_paragraph_here>" 

}} 

 

Return your answer in **valid JSON** with a single key 

`"reasoning_steps"` and a string as value. Do not include 

anything else. 

 

We found it important to include the actual query in the 

prompt to anchor the explanation to the correct solution. 

Without providing the query, an LLM might generate a 

plausible query on its own, which could differ in format or 

detail. Our aim, however, was not to discover new queries but 

to explain the queries given. By seeing the final query, the 

LLM can focus on explaining why each component is there, 

resulting in a faithful chain-of-thought that justifies that 

specific query. This approach essentially uses the LLM in a 

rationalization role. 

Before/after example: Reconsider the PsExec rule from 

earlier. Initially, we only had title, description, and query as 

shown. After augmentation, the entry would look as follows 

(with a condensed example reasoning): 

{ 

   "title": "PsExec lateral movement detection", 

   "description": "This rule detects the use of PsExec 

in lateral movement by attackers", 

   "reasoning": "1. PsExec is a remote execution tool 

that works by installing a temporary service on the target 

machine.  

2. When a service is installed on Windows, an event with 

code 7045 is logged (Service Installation event).  

3. The default service name used by PsExec is 

'PSEXESVC'.  

4. Therefore, to detect PsExec, we look for Event Code 7045 

entries where the service name is PSEXESVC.  

5. We narrow the search to Windows event logs (winlogbeat 

index) to ensure we are scanning the correct data source.  

Combining these factors, the query searches winlogbeat 

logs for event.code:7045 and service.name:PSEXECSVC, 

indicating PsExec usage.", 

   "query": "_index: winlogbeat-* AND 

event.code:7045 AND service.name:PSEXECSVC" 

} 

 

While Claude Sonnet 4 generally produced high-quality 

explanations, we performed a manual review on a subset of the 

generated reasoning to ensure correctness. Domain experts 

checked that each step in the reasoning was factually accurate 

(e.g., verifying that event code meanings or Windows artifact 

names were correct) and that the explanation indeed 

corresponded to the given query. In a few cases, minor edits 

were made for clarity or to remove any extraneous 

commentary. Overall, the use of an advanced LLM greatly 

accelerated the dataset annotation, what would have taken a 

human analyst significant time to write was completed in 

minutes, with consistency in style and detail. 

Dataset entries are cast into an Alpaca‑style instruction 

format with (instruction, optional input/context, expected 

output). The output concatenates a concise rationale and the 

final Lucene query, which encourages the student model to 

“show its work” before emitting executable syntax. 

 

3.3 Generating appropriate prompts for each detection 

rule 

 

During the fine-tuning process, we found that the initial 

results were not satisfactory because the model was trained to 

generate Lucene queries from a rule’s title and description 

rather than from natural language prompts provided by a user. 

To address this, we used Claude Sonnet 4 to generate, for each 

detection rule, six different prompts, each representing a 

distinct difficulty level, ranging from implicit (minimal 

guidance) to explicit (detailed instructions). 

The prompt responsible for this generation is the following: 

You are a cybersecurity assistant helping to build a dataset 

for fine-tuning a small language model to generate Lucene 

queries. Your task is to create prompts based on the title, 

description and a query of a detection rule. 

For each title and description: 

Generate 6 different prompts, each representing a distinct 

difficulty level, ranging from implicit (minimal guidance) to 

explicit (detailed instructions). 

Ensure the prompts vary in phrasing and request style to 

teach the model multiple ways queries may be requested. 

The prompts must be clear, unambiguous, and instructional, 

so that a small LLM can learn how to generate Lucene queries 

from them. 

 

Constraints: 

Output must be a valid JSON object, with only one key: 

"prompts" 

Output must be directly parsable using Python’s 

json.loads() 

Do not include any text outside the JSON block 

Do not include markdown, backticks, or any text outside the 

JSON object such as ```json ``` 

 

Input: 

 Title: enriched_rule['title']} 

 Description: enriched_rule['description']} 

 Query: enriched_rule['query']} 

 

Expected Output Format: 

 

{{ 

 "prompts": ["prompt_1", "prompt_2", "prompt_3", 

"prompt_4", "prompt_5", "prompt_6"] 

}} 

 

Return your answer in **valid JSON** with a single key 

`"prompts"` and a string as value. Do not include anything 

else. 

 

Having six different prompts for each detection rule 

increased the size of our dataset sixfold. 

To verify the correctness of Claude Sonnet 4 rationales, two 

security engineers independently reviewed a stratified 10% 

sample of unique rule-level rationales (n = 357 of 3,572), 

covering Windows log subtypes and technique families. 

Reviewers rated each rationale for Factual Accuracy (correct 

event codes, field semantics), Consistency with Query, and 

Clarity on a pass/minor-edit/fail rubric. Inter-rater agreement 

was Cohen’s κ = ⟨0.78–0.86⟩ (substantial). Outcomes: pass 
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⟨≈96–98%⟩, minor edit ⟨≈1.5–3%⟩ (wording or over-specific 

phrasing), reject ⟨≤1%⟩ (factual mismatch). All minor edits 

and rejects were corrected before inclusion. This procedure 

increased trust in the teacher signals while keeping curation 

overhead manageable. 

The final dataset is formatted in Alpaca format [22]. 

 

 

4. FINE-TUNING METHODOLOGY 

 

4.1 Model and tooling 

 

We fine-tune the DeepSeek-R1-Distill-Llama-8B model, 

which is a variant of Meta’s Llama (8B parameters) distilled 

by DeepSeek AI. As discussed in Section 2, this model was 

chosen for its strong reasoning capability per parameter and its 

open availability. Being only 8B in size, it can be trained on a 

single modern GPU, and inference can be done on commodity 

hardware, which is valuable for practical deployment in 

security operations centers. Prior to fine-tuning, we obtain the 

model weights from the open-source repository and confirm 

its base functionality. The model uses a standard transformer 

architecture with 32 transformer layers, 4096 hidden 

dimension, and 32 heads (consistent with Llama-8B). It comes 

with a tokenizer capable of subword tokenization suitable for 

English text and code-like syntax (like Lucene queries). 

 

4.2 Fine-tunning process 

 

The fine-tuning process was conducted on the DeepSeek-

R1-Distill-Llama-8B model, employing 4-bit quantization via 

the Unsloth framework to substantially reduce memory 

consumption and accelerate training, while preserving the 

representational capacity of the model. To enable domain-

specific adaptation with minimal computational overhead, we 

applied the Low-Rank Adaptation (LoRA) technique, which 

updates a low-dimensional subset of weights instead of the full 

parameter set. The LoRA rank was set to 64, providing 

sufficient representational capacity for complex query-

generation patterns without incurring excessive parameter 

growth. The LoRA scaling factor (lora_alpha) was set to 128 

to ensure stable gradient updates and maintain balance 

between adaptation strength and generalization. The LoRA 

dropout rate was fixed at 0 to maximize information retention, 

as preliminary experiments indicated no significant overfitting 

under this configuration. 

We targeted the attention projection layers (q_proj, k_proj, 

v_proj, o_proj) as well as the feed-forward network 

projections (gate_proj, up_proj, down_proj), since these 

layers control both attention weight computation and 

intermediate representation transformations, which are critical 

for adapting the model to generate precise Lucene queries 

from natural language instructions. The learning rate was set 

to 9×10−49\times10^{-4}9×10−4, determined empirically to 

achieve a balance between convergence speed and stability, 

avoiding divergence while ensuring meaningful parameter 

updates. Training was performed for 5 epochs, which provided 

adequate exposure to the dataset without overfitting, as 

verified through validation loss monitoring. 

We apply LoRA to attention and MLP projections: q_proj, 

k_proj, v_proj, o_proj, gate_proj, up_proj, down_proj. Rank r 

= 64, scaling α = 128, LoRA dropout = 0.0. Quantization: 4-

bit NF4 with double-quant (Unsloth). Optimizer: AdamW (β₁ 

= 0.9, β₂ = 0.95, weight decay 0.01). Learning rate 9e-4 with 5 

warm-up steps, then constant schedule. Epochs = 5; max 

sequence length 2048; per-device batch size 2 with grad-

accum 4 (effective 8). Checkpoint selection by val loss and 

small held-out human ratings. 

The dataset was formatted according to the Alpaca prompt 

template, where each instance consists of an instruction, an 

optional context input, and the expected model output, 

ensuring alignment with instruction-tuning best practices. The 

maximum input length was set to 2,048 tokens to 

accommodate complex instructions and multi-step reasoning. 

We used a per-device batch size of 2 with gradient 

accumulation over 4 steps, effectively simulating a batch size 

of 8 while remaining within GPU memory constraints. A 

linear warm-up of 5 steps was applied to stabilize initial 

training dynamics, followed by a constant learning rate 

schedule to maintain consistent update magnitudes throughout 

training. This configuration was chosen to optimize 

convergence given the available computational resources, 

while leveraging quantization and LoRA to efficiently 

specialize the model for text-to-SIEM Lucene query 

generation. 

We fine‑tune the 8B base with LoRA under 4‑bit loading. 

The model is prompted to first produce a rationale paragraph 

and then the Lucene query. Checkpoints are selected by 

validation loss and by a small held‑out set scored by human 

raters for (i) query correctness and (ii) rationale quality. 

 

 

5. EVALUATION 

 

We evaluate our fine-tuned model from two angles: (1) the 

quality of the Lucene queries it generates for unseen inputs, 

and (2) the quality of the chain-of-thought reasoning it 

produces. Both aspects are important, the queries must be 

correct and effective at detecting the intended behavior, and 

the reasoning should be sound and useful. 

We selected 12 evaluation prompts across three difficulty 

levels (4 prompts each for basic, intermediate, and advanced 

complexity) to comprehensively assess the model's 

capabilities. For each prompt, our fine-tuned model generated 

both reasoning explanations and final Lucene queries, which 

were then compared against LLM-generated references and 

ground truth solutions. 

Human security experts scored each response on a scale 

from 1 to 5, considering both query correctness and reasoning 

clarity.  

We consider a query generation to be exactly correct if it 

matches the ground truth string after minor normalization 

(e.g., ignoring whitespace or ordering of boolean clauses 

where reordering doesn’t change semantics). 

However, exact string matches can be too harsh. In cases 

where the model’s query differed, we manually analyzed 

them: 

•In some instances, the model produced a semantically 

equivalent query that was still correct. For example, it might 

output the conditions in a different order or use a synonymous 

field name (if the schema had aliases). We gave credit to such 

cases as successful detections, since a SIEM would treat them 

as correct.  

•The model occasionally missed a condition or included a 

slightly wrong field. For instance, for a rule that required 

process.name: "cmd.exe" and parent.process.name: 

"excel.exe", the model might omit the parent condition if the 

description was not explicit about it. These are partial credit 
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cases, the query would still catch some malicious activity, but 

not as specific as intended. They highlight the importance of 

clear descriptions or a richer training set. 

•In a few cases, the model hallucinated a condition that was 

plausible but not actually in the ground truth. For example, 

adding event.type:"start" when the original query didn’t 

specify it. These hallucinations were rare (thanks to the model 

learning the precise patterns from training data), but they did 

occur for some complex scenarios. They likely result from the 

model over-generalizing from similar rules in training. 

The scoring criteria are as follows: 

5 – Exact/Semantic match: Parses successfully; exactly 

matches ground truth or is demonstrably semantically 

equivalent (same result set on a spot-checked index or clearly 

equivalent clauses/aliases). 

4 – Near-correct (minor lapse): One minor omission or 

benign variation (slightly broader/narrower but still 

operationally useful). 

3 – Partial: Missed or wrong key condition(s); will detect 

some intended activity but with noticeable FN/FP risk. 

2 – Materially wrong: Misinterprets behavior, uses wrong 

fields/operators; low operational value. 

1 – Invalid: Fails to parse/compile or is effectively 

match_all/nonsense. 

 

Beyond whether the model gets the query right, we are 

interested in the quality of the reasoning it provides. We 

evaluate this along several dimensions, informed by prior 

work on evaluating explanations (e.g., clarity, correctness, 

completeness): 

Clarity: Is the explanation understandable and well-

structured? Does it present the reasoning in a step-by-step 

manner as intended? 

Correctness (Factual Accuracy): Are all statements in the 

reasoning true, given our knowledge of the system and attack? 

(e.g., if it says event code 7045 means X, is that correct?) 

Coverage (Completeness): Does the reasoning account for 

all key parts of the query? Are any query conditions left 

unexplained or is any step of logic missing? 

Relevance: Does the reasoning avoid extraneous 

information and focus only on what’s needed to derive the 

query for this rule? 

To rigorously assess the impact of CoT on performance, we 

conduct a comparative evaluation against a fine-tuned model 

without CoT. This empirical analysis underscores the 

incremental contribution of CoT in enhancing the accuracy 

and validity of the generated queries. 

For a subset of the test outputs, we had security experts rate 

the reasoning on these criteria (on a 1–5 scale) on Clarity, 

Correctness, Coverage and Relevance. 

 

RQ = 0.25 Clarity + 0.35 Correctness + 0.25 Coverage + 

0.15 Relevance 

 

In our evaluation, each model output was scored by human 

experts on two dimensions: Query Quality (QQ) and 

Reasoning Quality (RQ), each rated on a 1–5 Likert scale. To 

enable aggregation, these scores were first normalized to a 0–

100 scale using a linear transformation Scaled(x) = 25×(x−1) 

where xxx is the original Likert rating (thus, a score of 1 maps 

to 0, and 5 maps to 100). The final Overall Score for each 

output was computed as a weighted average of the two scaled 

dimensions, with Query Quality assigned a weight of 0.7 to 

reflect its higher operational importance, and Reasoning 

Quality assigned a weight of 0.3 to capture the value of clear, 

accurate, and complete explanatory reasoning. Formally, the 

calculation is expressed as: 

 

OverallScore = 0.7 × Scaled(QQ) + 0.3 × Scaled(RQ) 

 

We compute an Overall Score combining Query Quality 

(QQ) and Reasoning Quality (RQ) as: Scaled(x) = 25·(x−1) 

transforms 1–5 to 0–100. 

Overall = 0.7·Scaled(QQ) + 0.3·Scaled(RQ). 

The 0.7/0.3 weights reflect operational priorities: correct, 

executable queries are paramount in SOC pipelines; 

explanations improve trust and teachability but are secondary. 

 

Table 1. Evaluation results 

 

Prompt Difficulty Level 
Claude Sonnet 4.1 

Query Correctness Reasoning Clarity Overall Score 

RDP login from internet 1 5 5 5 

User added to Domain Admins group 1 5 5 5 

User created 1 5 5 5 

User deleted 1 5 5 5 

Sysinternals PSExec Lateral movement 2 3 5 3.6 

Execution for malicious PowerShell command 2 4 5 4.3 

Process creation from an unusual location 2 3 4 3.3 

Disabling Windows audit policy 2 3 4 3.3 

Kerberos attack 3 4 5 4.3 

Mimikatz attack 3 3 3 3 

Pass the hash 3 3 4 3.3 

WMI lateral movement 3 3 4 3.3 

Prompt Difficulty Level 
Our Generated Model 

Query Correctness Reasoning Clarity Overall Score 

RDP login from internet 1 5 5 5 

User added to Domain Admins group 1 5 5 5 

User created 1 5 5 5 

User deleted 1 5 5 5 

Sysinternals PSExec Lateral movement 2 4 5 4.3 

Execution for malicious PowerShell command 2 3 4 3.3 

Process creation from an unusual location 2 3 4 3.3 

Disabling Windows audit policy 2 4 4 4 
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Kerberos attack 3 5 5 5 

Mimikatz attack 3 3 4 3.3 

Pass the hash 3 4 4 4 

WMI lateral movement 3 5 5 5 

Prompt Difficulty Level 
DeepSeek-R1-Distill-Llama-8B (zero-shot) 

Query Correctness Reasoning Clarity Overall Score 

RDP login from internet 1 5 1 1 

User added to Domain Admins group 1 5 1 1 

User created 1 5 1 1 

User deleted 1 5 1 1 

Sysinternals PSExec Lateral movement 2 4.3 1 1 

Execution for malicious PowerShell command 2 3.3 1 1 

Process creation from an unusual location 2 3.3 1 1 

Disabling Windows audit policy 2 4 1 1 

Kerberos attack 3 5 1 1 

Mimikatz attack 3 3.3 1 1 

Pass the hash 3 4 1 1 

WMI lateral movement 3 5 1 1 

 

Table 2. Evaluation results of non CoT model 

 

Prompt Difficulty Level 
Without CoT With CoT 

Query Correctness 

RDP login from internet 1 4 5 

User added to Domain Admins group 1 2 5 

User created 1 3 5 

User deleted 1 5 5 

Sysinternals PSExec Lateral movement 2 2 4 

Execution for malicious PowerShell command 2 2 3 

Process creation from an unusual location 2 2 3 

Disabling Windows audit policy 2 3 4 

Kerberos attack 3 3 5 

Mimikatz attack 3 2 3 

Pass the hash 3 3 4 

WMI lateral movement 3 3 5 

 

Overall, as shown in Table 1, the model’s explanations were 

quite satisfactory: on average, clarity was rated high (the 

language was simple and direct, often mirroring the style of 

the Claude Sonnet 4 generated training rationales).  

In terms of correctness, the model’s reasoning was correct 

in the vast majority of cases we examined, particularly when 

the query was also correct. When the model made a mistake in 

the query, that was usually reflected in the reasoning too (for 

instance, if it forgot a condition, its reasoning also wouldn’t 

mention that aspect).  

The coverage of the reasoning was generally complete. We 

verified this by cross-checking each condition in the generated 

query against the reasoning text. If the query has three 

conditions (like index, event code, service name), we expect 

the reasoning to mention and justify each. In all the of cases, 

it did. 

Upon examining the results, we identified five recurring 

error categories: 

•Omission of critical constraints (e.g., missing 

parent.process.name), 

•Over-specification/hallucination (e.g., adding 

event.type:"start" without evidence), 

•Field alias confusion (e.g., process.name vs 

process.executable), 

•Index and field scope drift (searching too broad/narrow 

indices). 

Ambiguous prompts (implicit requirements not stated). 

Based on the experimental results, as shown in Table 2, 

incorporating CoT substantially improved the query 

generation process. The model not only produced syntactically 

valid Lucene queries but also aligned them more closely with 

the intended detection objectives. These findings confirm that 

CoT provides a significant enhancement over standard fine-

tuning approaches. 

However, the results from the unfine-tuned model were 

highly inadequate, both in the reasoning process, which 

diverged significantly from correct logic, and in the generated 

queries, which were neither valid Lucene syntax nor based on 

recognized fields. 

 

 

6. REPRODUCIBILITY AND GENERALIZATION 

 

6.1 Reproducibility 

 

We are committed to making our results reproducible. To 

that end, we plan to open-source the augmented dataset (title, 

description, reasoning, query for each rule) under an 

appropriate license that allows others to use and extend it. The 

dataset will be published via a public repository. 

 

6.2 Generality of method 

 

While our implementation focused on Windows-event 

based detections with Lucene queries, the methodology is 

quite general. The key requirements are: (1) a set of examples 

with a description of problem and a correct solution (in our 

case, query) and (2) the ability to generate a clear explanation 

for each. With these, one can fine-tune a model to produce 

solutions with reasoning. 

Other log sources: The approach could be directly applied 

to other types of logs or telemetry. For instance, one could take 
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IDS (Intrusion Detection System) rules, firewall logs, or cloud 

audit logs that have detection patterns and add reasoning to 

them. The model architecture and training process remain the 

same; only the content of the data changes. If the other source 

uses different terminology, the advanced LLM used for 

generating reasoning might need some prompting adjustment 

to ensure it has the necessary context (for example, explaining 

a Snort rule might require knowledge of network protocols). 

But given a good explanation, the student model can learn it. 

We expect that as long as the descriptions and queries follow 

consistent patterns, a small model can pick them up after fine-

tuning. 

Other query languages: Our method is not limited to 

Lucene syntax. For example, many SIEMs use SPL (Splunk 

Search Processing Language) or SQL-like query languages, 

and cloud environments use KQL (Kusto Query Language) or 

Azure Resource Graph queries. The concept of adding 

reasoning and fine-tuning would similarly apply. One would 

construct a dataset of description + SPL query for various 

detections, generate reasoning for each (likely explaining the 

SPL clauses), and fine-tune a model. The model would then be 

able to output SPL queries with explanation. The main 

adaptation needed would be to ensure the base model’s 

tokenizer can handle the syntax of that language (most can, as 

they usually see a lot of code-like text in pre-training). 

Essentially, our chain-of-thought augmentation strategy could 

democratize expertise across different platforms: for each 

detection rule language, create an instruction-following model 

that knows how to write rules and explain them. 

Scaling to more rules: If one has a much larger repository 

of detection rules (say hundreds or thousands, e.g., from an 

open framework like Sigma or ATT&CK Navigator), the 

approach should scale. The manual effort remains minimal, 

since the heavy lift (explanation) is done by Claude-Sonnet 4 

or a similar model. It would be interesting future work to see 

if a model fine-tuned on a very large set of rules (covering 

many tactics and techniques) could generalize to write 

completely new rules given just an English description of an 

attack method. Our current dataset is relatively small, so we 

didn’t explore the extreme generalization regime. 

Domain adaptation: If applying the method to a new 

domain where a different base model might be more suitable 

(for example, a model pre-trained on code might better handle 

complex query languages), one can still use LoRA and chain-

of-thought. LoRA’s modular nature could even allow using the 

same reasoning data to fine-tune multiple base models and 

compare their performance (something we did not do due to 

resource limits, but methodology allows it). 

 

 

7. LIMITATIONS 

 

There are a few limitations to acknowledge. First, our 

model’s knowledge is bounded by what was in the training 

examples and the reasoning. If a new attack technique emerges 

that has no close analog in the training set, the model might 

struggle to produce the correct query for it, or it might rely on 

partially related logic that isn’t fully correct. Essentially, the 

model might still guess in unfamiliar territory, and if its guess 

is wrong, it will still produce a confident-sounding reasoning 

(because it was trained to always explain). This could be 

dangerous if taken at face value. For such cases, human 

oversight remains critical. One way to mitigate this is to 

continually update the training dataset with new rules (and 

their explanations) as they become available, a form of 

continuous learning. 

Second, the chain-of-thought augmentation assumes the 

advanced LLM’s output is always correct. If Claude Sonnet 4 

made an error in an explanation and we failed to catch it, that 

error would be taught to the model. In our work, we carefully 

validated the reasoning, but as datasets scale, automated 

validation of explanations becomes important (perhaps using 

techniques like consistency checks or multiple LLM 

opinions). This touches on the broader issue of evaluating 

“knowledge fidelity” of explanations, an open research 

question. 

From a deployment perspective, not all analysts may want 

a verbose explanation every time. We have made it optional, 

but the user interface and integration need to be designed in a 

way that the extra information is available when needed but 

not intrusive. User studies could determine how analysts prefer 

to interact with such a tool. 

Other limitations include: (i) Model size (8B), which 

constrains the capacity to capture rare or long-range patterns; 

larger models may perform better on edge cases. (ii) Domain 

dependence, as training was primarily focused on Windows 

and ECS; adapting to cloud or network logs would require 

additional data. (iii) Teacher-error propagation, whereby 

imperfect rationales may transmit errors despite review. (iv) 

Reasoning does not equate to truth, as chain-of-thought 

explanations may appear plausible while being subtly 

incorrect, thus necessitating human validation. (v) Evaluation 

scope, since—even though expanded—the test set may not 

fully encompass the entire tactic and technique space. 

 

 

8. CONCLUSION 

 

We presented a method for fine-tuning a distilled 8B-

parameter language model to generate SIEM detection queries 

with accompanying chain-of-thought reasoning. By 

augmenting a dataset of detection rules with Claude Sonnet 4 

generated step-by-step explanations, we effectively 

transferred expert reasoning into a small model using LoRA-

based fine-tuning. Our results show that the fine-tuned model 

can produce accurate Lucene queries for described attack 

scenarios, and importantly, can justify its decisions in natural 

language. This approach addresses some of the reliability 

issues observed when using out-of-the-box LLMs for security 

tasks by specializing the model on high-quality domain data. 

The incorporation of reasoning not only provides transparency 

(useful for analyst trust and learning) but also appears to help 

the model internalize the task better, echoing findings from 

recent chain-of-thought distillation research. 

In terms of impact on security operations, such a model 

could become a copilot for detection engineers, suggesting 

query clauses they might have missed, or accelerating the 

development of new rules by providing a first draft of both the 

query and the rationale. It could also serve as a training tool 

for new analysts: by reading the model’s explanations, they 

can learn why certain log fields are used to detect certain 

techniques, effectively capturing some of the “tribal 

knowledge” of seasoned experts in a documented form. 

We emphasized reproducibility by outlining the data 

transformation process, prompt designs, and providing 

pseudocode for automation. We encourage the community to 

build upon this work: for instance, exploring the use of 

reinforcement learning from human feedback (RLHF) to fine-
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tune the model’s explanation style to what practitioners find 

most useful, or extending the approach to multi-step detection 

workflows (where the model might suggest a series of queries 

or correlation logic). Another intriguing direction is to 

investigate feedback loops: using the fine-tuned model to 

generate candidate detections for entirely new threats and then 

vetting them with human/LLM oversight – essentially 

leveraging the model’s learned reasoning to propose how to 

detect things beyond its training distribution. 

In deployment, we will schedule periodic LoRA refreshes 

(e.g., weekly/bi-weekly) fed by (a) newly authored/validated 

rules, (b) post-incident detections, and (c) red-team exercises. 

A gating harness (syntax check + regression set) ensures 

updates never degrade canonical behaviors before promotion. 

For RLHF, we will collect analyst feedback by ranking 

multiple candidates per prompt and flagging errors 

(missing/extra clauses). A small reward model trained on this 

feedback will score (rationale, query) pairs; the generator will 

be optimized with PPO/DPO to prefer succinct, correct queries 

and faithful rationales. We will publish the feedback schema 

and reward training recipe. 

In conclusion, our study demonstrates that even a relatively 

small LLM can be taught to perform a specialized, high-value 

task in cybersecurity with a combination of transfer learning 

techniques (distillation, LoRA) and carefully curated data 

(explanations). This serves as an encouraging example of how 

advanced AI can be used to empower smaller, deployable 

models, a trend that may define practical AI deployment in 

many domains, balancing performance with efficiency and 

controllability. We hope this work will inspire further 

innovations at the intersection of AI and security, and we are 

optimistic about the improvements in threat detection 

capabilities that such collaborations between human expertise 

and machine intelligence can bring. 
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