Z‘ I El' A International Information and

Engineering Technology Association

Ingénierie des Systéemes d’Information
Vol. 30, No. 8, August , 2025, pp. 2043-2052

Journal homepage: http://iieta.org/journals/isi

Chain-of-Thought Augmented Fine-Tuning of a Distilled Llama-8B Model for SIEM]

Detection Query Generation

Tarek Radah™ Habiba Chaoui

Check for
updates

, Chaimae Saadi

Advanced Systems Engineering (ISA), National School of Applied Sciences, IBN TOFAIL University, Kenitra 14000,

Morocco

Corresponding Author Email: tarekradah@gmail.com

Copyright: ©2025 The authors. This article is published by IIETA and is licensed under the CC BY 4.0 license

(http://creativecommons.org/licenses/by/4.0/).

https://doi.org/10.18280/is1.300810

ABSTRACT

Received: 16 June 2025

Revised: 20 August 2025
Accepted: 28 August 2025
Available online: 31 August 2025

Keywords:

large language model, cybersecurity, SIEM,
TextToQuery, AISOC, security copilot,
LORA, parameter-efficient fine-tuning

Writing effective security detection rules for SIEM systems is a complex and time-
consuming task that traditionally requires deep domain expertise. One of the persistent
challenges in applying Al to security operations (SecOps) is the scarcity of high-quality,
domain-specific datasets that can support the development of accurate and reliable models.
This paper addresses that gap by presenting a method to both generate such a dataset and
leverage it to fine-tune a compact reasoning-oriented model (DeepSeek R1 Distill Llama
8B) using Low Rank Adaptation (LoRA). As part of our contributions, we detail the creation
of a curated, high-quality (of 1206 entries from 106 detection rule) dataset specifically
tailored for SIEM text-to-query tasks, which enabled effective fine-tuning of the model. A
key feature of this dataset is the augmentation of each training example with chain-of-
thought (CoT) rationales: step-by-step explanations linking the natural language description
of a detection rule to the resulting Lucene query. These rationales, produced by a stronger
teacher model (Claude sonnet 4), are used to supervise the smaller student model. We
describe the data pipeline, prompt templates, and LoRA configuration, and we report an
initial human evaluation showing that CoT augmentation improves the reliability of
text—query generation without increasing computational cost. Despite its compact size, our
fine-tuned model outperformed several large proprietary language models in both query
accuracy and reasoning quality. DeepSeek R1 Distill Llama 8B was chosen as a small model
with reasoning capabilities, while Claude Sonnet 4 was selected for its strong ability to
generate rationales. However, the research remains applicable to other small reasoning
models and large, more capable models, respectively.

1. INTRODUCTION

*A reproducible pipeline to convert detection rules into
instruction-tuning examples enriched with CoT rationales.

Modern security operations rely on SIEM platforms to
aggregate logs and detect threats using custom search queries
or rules. Crafting high-quality detection queries (e.g., Lucene
or KQL [1]) is skill-intensive, as it requires knowledge of
attacker tradecraft and logging semantics. Interest has grown
in leveraging large language models (LLMs) to assist with
detection engineering. Early investigations show that, while
generic LLMs [2] can propose plausible queries, their
accuracy and consistency are limited without domain
adaptation. This motivates supervised fine-tuning on targeted
corpora and the inclusion of explicit reasoning signals to guide
query construction.

This work investigates whether a relatively small but
reasoning-oriented model can be aligned to generate Lucene
queries for SIEM rules, accompanied by concise
natural-language justifications. Concretely, we fine-tune
DeepSeek-R1-Distill-Llama-8B with parameter-efficient
LoRA adapters. To enhance faithfulness, we augment each
training example with a structured CoT rationale that explains
how to derive the query from the rule’s title and description.
Our contributions are:

2043

*A LoRA fine-tuning recipe on 4-bit quantization.

*An initial human study assessing query correctness and
explanation quality.

The remainder of this article is organized as follows.
Section 2 surveys background and related work on LLM-
assisted detection engineering, efficient parameter-efficient
fine-tuning (LoRA/QLoRA), and text-to-query systems.
Section 3 details the dataset construction and rationale
augmentation. Section 4 presents the fine-tuning
methodology, model, and hyperparameters. Section 5 reports
the evaluation setup and results. Section 6 discusses
reproducibility considerations and generalization to other
telemetry and query languages. Section 7 outlines limitations
and ethical considerations. Section 8 concludes.

2. BACKGROUND AND RELATED WORK
2.1 LLMs for detection engineering

Several works explore LLM assistance in crafting detection

https://orcid.org/0000-0002-5893-1591
https://orcid.org/0000-0001-8892-9612
https://orcid.org/0000-0003-4944-1846
https://crossmark.crossref.org/dialog/?doi=https://doi.org/10.18280/isi.300810&domain=pdf

logic from textual descriptions of adversary behaviors.
Empirical studies on “living-off-the-land” techniques report
that out-of-the-box LLMs can help less-experienced users
produce baseline queries but suffer from inconsistency and
factual errors, motivating further refinement via fine-tuning
and guardrails [3]. Practitioner accounts similarly position
LLMs as accelerators—not replacements—for expert
detection engineering workflows [4]. Empirical studies on
“living-off-the-land” techniques report that out-of-the-box
LLMs can help less-experienced users produce baseline
queries but suffer from inconsistency and factual errors,
motivating further refinement via fine-tuning and guardrails.
Practitioner accounts similarly position LLMs as
accelerators—not replacements—for expert detection
engineering workflows.

2.2 Efficient fine-tuning with LoRA and 4-bit quantization

Full fine-tuning of large models is expensive and prone to
overfitting on small domain datasets. LoRA injects low rank
adapters while freezing base weights, dramatically reducing
trainable parameters and memory without degrading quality
[5]. Combined with 4 bit quantization (e.g., QLoRA), this
enables single GPU training of capable models [6], making
domain adaptation accessible to smaller teams. LoRA injects
low rank adapters while freezing base weights, dramatically
reducing trainable parameters and memory without degrading
quality. Combined with 4 bit quantization (e.g., QLoRA), this
enables single GPU training of capable models, making
domain adaptation accessible to smaller teams.

2.3 Reasoning-oriented base models and CoT supervision

We leverage a distilled reasoning model (DeepSeek R1
Distill Llama 8B) as the base [7, 8]. Chain of thought
prompting improves complex reasoning in large models [9];
crucially, smaller models can acquire step by step reasoning
when trained on teacher generated rationales [10]. Our
approach distills “why the query works” alongside “what the
query is,” aiming to improve both transparency and
generalization. Chain of thought prompting improves complex
reasoning in large models; crucially, smaller models can
acquire step by step reasoning when trained on teacher
generated rationales (e.g., Symbolic CoT Distillation) [11].
Our approach distills “why the query works” alongside “what
the query is,” aiming to improve both transparency and
generalization.

2.4 Text-to-query with Al

Text-to-query research is mature in databases and is
increasingly applied to security analytics:

Text—SQL: Benchmarks such as WikiSQL and Spider
[12] catalyzed progress in mapping natural language to
executable SQL, with constrained decoding methods (e.g.,
PICARD) reducing invalid outputs. These works establish
metrics (exact match vs. execution accuracy) and design
patterns (schema linking, constrained decoding) that transfer
to text—SIEM languages.

Text—SPL (Splunk): Productized assistants translate
natural language into SPL, explain generated searches, and
personalize queries to the deployment context—an existence
proof that production NL—query is feasible for security
analytics.

2044

Text—KQL (Microsoft/Sentinel/Fabric/ADX):
Frameworks such as NL2KQL and integrated copilots
translate NL to KQL with schema refinement, few-shot
selection, and automatic repair. These systems highlight the
importance of schema grounding and post-generation
validation in operational settings.

Our study contributes a complementary case:
instruction-tuning a small open model to produce Lucene
queries with explicit reasoning, using detection rules as
supervision.

Strong
Model

1

Input

l i l Chain-
-Thought

Reasoning
Smaller
Model

Figure 1. Representation diagram of our fine-tuning process

The diagram in Figure 1 illustrates the workflow of our
proposed approach for developing a specialized small
language model for text-to-query generation. It begins with a
strong model, Claude 4 Sonnet [13], which is used to generate
a high-quality, domain-specific dataset. This dataset serves as
the foundation for fine-tuning a smaller model, Llama 8.1
DeepSeek Distill, using the Low Rank Adaptation (LoRA)
technique. The process results in a compact yet specialized
model optimized for generating SIEM queries from natural
language inputs.

Beyond text-to-SQL (e.g., Spider/PICARD), production
SIEM assistants translate natural language to operator queries,
notably NL2KQL [14] (Kusto) and Splunk’s Al assistants for
SPL [15]. These systems typically rely on (i) explicit schema
grounding, (ii) constrained decoding or post-generation repair
to avoid invalid syntax, and (iii) large instruction-tuned
models invoked at inference time. In contrast, our approach
fine-tunes a compact 8B model on a curated SIEM corpus with
chain-of-thought (CoT) supervision, yielding a deployable
model that (a) emits both a rationale and a query, (b) runs on
commodity hardware without external calls, and (c) preserves
strong query faithfulness on ECS-normalized telemetry.
Methodologically, we borrow best practices from NL—SQL
(schema linking, execution-oriented evaluation) and
NL2KQL/SPL (schema hints, alias handling), but we
contribute a small-model, CoT-distilled recipe specific to
SIEM Lucene queries.

We target Lucene because (i) it underpins Elastic SIEM
deployments commonly normalized to ECS, (ii) a large body
of community rules (e.g., Sigma) map directly to Lucene-style
filters, and (iii) Lucene’s boolean/filter idioms (indices, fields,
values, phrase/term logic) are representative of other SIEM
query languages (KQL/SPL). Focusing on Lucene thus
provides a practical proxy for SecOps workflows while
keeping the methodology transferable.

Fine-tuning LLMs with explicit chain-of-thought (CoT)
prompting has been empirically shown to yield superior
reasoning performance compared to training without CoT.
Requiring models to generate intermediate reasoning steps
(“CoT” rationales) is known to boost performance on complex
tasks [16]. Building on this, recent studies demonstrate that
incorporating CoT during fine-tuning leads to significant

accuracy gains. For instance, reference [17] showed that
adding CoT exemplars from a 540B-parameter teacher model
more than doubled a 11B-parameter model’s accuracy on a
math word problem benchmark (GSM8K), from about 8% to
22%. Similarly, Li et al. [10] found that smaller models fine-
tuned on rich reasoning chains “learn to self-rationalize” and
perform significantly better on commonsense question-
answering tasks than models trained without any rationales
[10]. Puerto et al. [16] further report that even large models
(1.3B-70B parameters) exhibit consistent performance
improvements when fine-tuned on diverse CoT data,
outperforming baseline models that lack CoT training.
Collectively, these peer-reviewed findings indicate that
explicit CoT fine-tuning enhances LLM problem-solving
abilities (across arithmetic, symbolic, and commonsense
reasoning tasks) beyond what is achieved with standard
training alone [10, 17].

3. DATASET
AUGMENTATION

CONSTRUCTION AND

3.1 Source rules and format

We compiled a corpus of SIEM detection rules inspired by
community-maintained content (e.g., Sigma [18]; SigmaHQ,
n.d.) and practitioner recipes. Each example includes: a title, a
description (detection intent), and a Lucene query (targeting
ECS-normalized logs [19]). For instance, a PsExec
lateral-movement rule leverages the service installation event
(Event ID 7045 [20]) and the default remote service name
PSEXESVC (Microsoft, n.d.; MITRE ATT&CK [21], n.d.),
yielding a filter over Windows event indices with ECS fields
event.code and service.name. Each example includes: a title, a
description (detection intent), and a Lucene query (targeting
ECS-normalized logs). For instance, a PsExec
lateral-movement rule leverages the service installation event
(Event ID 7045) and the default remote service name
PSEXESVC, yielding a filter over Windows event indices
with ECS fields event.code and service.name.

"title": "PsExec lateral movement detection",
"description': "This rule detects the use of PsExec
in lateral movement by attackers",
"query": " index:winlogbeat-*
event.code:7045 AND service.name:PSEXECSVC"
H

AND

3.2 CoT rationales via a teacher model

For each rule, we prompt a stronger LLM to produce a
single-paragraph rationale that, starting from the description,
justifies the choice of data source, key indicators, ECS
fields/values, and Boolean structure. The prompt forbids
quoting the original query to ensure the explanation is a
principled derivation rather than a paraphrase. Outputs are
validated and lightly edited for factual accuracy and
consistency.

This process was automated via a Python script. The
pseudocode below illustrates the workflow (Simplified
version):

for entry in dataset:

title = entry["title"]

2045

description = entry["description"]
query = entry["query"]

Compose a prompt instructing the LLM to explain the
construction of the query
prompt = """
Enrichment Prompt

nnn

reasoning = call large LLM(prompt)
entry["'reasoning''] = reasoning.strip()

We designed the prompt to ensure the LLM’s output is
structured and comprehensive. The system/user message
instructs the model that it is an expert and needs to provide a
step-by-step breakdown:

You are a cybersecurity assistant helping build a dataset to
fine-tune a small language model that learns to generate
Lucene queries using the Elastic Common Schema (ECS)
from a detection rule prompt.

You will be given a JSON object containing:

prompt: a short explanation of the detection goal
query: the corresponding Lucene query written in ECS
format

Your task is to return a JSON object with a single key:
reasoning_steps. The value must be a single, well-structured
and consistent paragraph written in chain-of-thought (CoT)
style using “I” to express reasoning steps to construct the
correct Lucene query starting only from the prompt.

- Begin by interpreting the attack behavior described in
the prompt

- Step through the logical process of identifying the
relevant logs (e.g., Windows Event Log), event codes, and key
indicators

- Justify the choice of each ECS field and value using
domain knowledge (e.g., which field captures a share name, or
how certain malware behaves)

- Explain how these fields and values combine logically
using Lucene syntax (e.g., AND, OR, nesting)

- Do not mention or describe the provided query

- Do not refer to “this query” or “the query above”

- End with a concise sentence summarizing exactly which
ECS fields, values, and Lucene logic are needed to construct
the correct query

Constraints:

- Use first-person singular ("I")
- The output must be a single, consistent, detailed and
coherent paragraph — no bullet points or list format
- Do not describe or mention the actual query
- Do not refer to “the query above”
- Output must be a valid JSON object, with only one
key: "reasoning_steps"
- Output must be directly parsable using Python’s
json.loads()
- Do not include any text outside the JSON block
- Do not include markdown, backticks, or any text
outside the JSON object such as **‘json "

Input:

{l
"prompt"’:
{rule_data['description']}",

"frule_data['title']}.

"query": "{rule_data['query']}"
7

Expected Output Format:
{
"reasoning steps":
"<model _generated reasoning paragraph_here>"

M

Return your answer in **valid JSON** with a single key
“"reasoning_steps"’ and a string as value. Do not include
anything else.

We found it important to include the actual query in the
prompt to anchor the explanation to the correct solution.
Without providing the query, an LLM might generate a
plausible query on its own, which could differ in format or
detail. Our aim, however, was not to discover new queries but
to explain the queries given. By seeing the final query, the
LLM can focus on explaining why each component is there,
resulting in a faithful chain-of-thought that justifies that
specific query. This approach essentially uses the LLM in a
rationalization role.

Before/after example: Reconsider the PsExec rule from
earlier. Initially, we only had title, description, and query as
shown. After augmentation, the entry would look as follows
(with a condensed example reasoning):

{

"title": "PsExec lateral movement detection",

"description': "This rule detects the use of PsExec
in lateral movement by attackers",

"reasoning': "1. PsExec is a remote execution tool
that works by installing a temporary service on the target
machine.

2. When a service is installed on Windows, an event with
code 7045 is logged (Service Installation event).

3. The default service name used by PsExec
'PSEXESVC..

4. Therefore, to detect PsExec, we look for Event Code 7045
entries where the service name is PSEXESVC.

5. We narrow the search to Windows event logs (winlogbeat
index) to ensure we are scanning the correct data source.

Combining these factors, the query searches winlogbeat
logs for event.code:7045 and service.name:PSEXECSVC,
indicating PsExec usage.",

"query": " index: winlogbeat-*
event.code:7045 AND service.name:PSEXECSVC"

H

is

AND

While Claude Sonnet 4 generally produced high-quality
explanations, we performed a manual review on a subset of the
generated reasoning to ensure correctness. Domain experts
checked that each step in the reasoning was factually accurate
(e.g., verifying that event code meanings or Windows artifact
names were correct) and that the explanation indeed
corresponded to the given query. In a few cases, minor edits
were made for clarity or to remove any extraneous
commentary. Overall, the use of an advanced LLM greatly
accelerated the dataset annotation, what would have taken a
human analyst significant time to write was completed in
minutes, with consistency in style and detail.

Dataset entries are cast into an Alpaca-style instruction
format with (instruction, optional input/context, expected
output). The output concatenates a concise rationale and the

2046

final Lucene query, which encourages the student model to
“show its work™ before emitting executable syntax.

3.3 Generating appropriate prompts for each detection
rule

During the fine-tuning process, we found that the initial
results were not satisfactory because the model was trained to
generate Lucene queries from a rule’s title and description
rather than from natural language prompts provided by a user.
To address this, we used Claude Sonnet 4 to generate, for each
detection rule, six different prompts, each representing a
distinct difficulty level, ranging from implicit (minimal
guidance) to explicit (detailed instructions).

The prompt responsible for this generation is the following:

You are a cybersecurity assistant helping to build a dataset
for fine-tuning a small language model to generate Lucene
queries. Your task is to create prompts based on the title,
description and a query of a detection rule.

For each title and description:

Generate 6 different prompts, each representing a distinct
difficulty level, ranging from implicit (minimal guidance) to
explicit (detailed instructions).

Ensure the prompts vary in phrasing and request style to
teach the model multiple ways queries may be requested.

The prompts must be clear, unambiguous, and instructional,
so that a small LLM can learn how to generate Lucene queries
from them.

Constraints:

Output must be a valid JSON object, with only one key:
"prompts"

Output must be directly parsable using Python’s

json.loads()

Do not include any text outside the JSON block

Do not include markdown, backticks, or any text outside the
JSON object such as **‘json ™

Input:
Title: enriched_rule['title']}
Description: enriched rule['description']}
Query: enriched_rule['query']}

Expected Output Format:

{H
"prompts": ["prompt 1", "prompt 2", "prompt 3",
"prompt_4", "prompt_5", "prompt 6"]
i

Return your answer in **valid JSON** with a single key
prompts™ and a string as value. Do not include anything
else.

Having six different prompts for each detection rule
increased the size of our dataset sixfold.

To verify the correctness of Claude Sonnet 4 rationales, two
security engineers independently reviewed a stratified 10%
sample of unique rule-level rationales (n = 357 of 3,572),
covering Windows log subtypes and technique families.
Reviewers rated each rationale for Factual Accuracy (correct
event codes, field semantics), Consistency with Query, and
Clarity on a pass/minor-edit/fail rubric. Inter-rater agreement
was Cohen’s k = (0.78—0.86) (substantial). Outcomes: pass

(~96-98%), minor edit (~1.5-3%) (wording or over-specific
phrasing), reject (<1%) (factual mismatch). All minor edits
and rejects were corrected before inclusion. This procedure
increased trust in the teacher signals while keeping curation
overhead manageable.

The final dataset is formatted in Alpaca format [22].

4. FINE-TUNING METHODOLOGY
4.1 Model and tooling

We fine-tune the DeepSeek-R1-Distill-Llama-8B model,
which is a variant of Meta’s Llama (8B parameters) distilled
by DeepSeck Al. As discussed in Section 2, this model was
chosen for its strong reasoning capability per parameter and its
open availability. Being only 8B in size, it can be trained on a
single modern GPU, and inference can be done on commodity
hardware, which is valuable for practical deployment in
security operations centers. Prior to fine-tuning, we obtain the
model weights from the open-source repository and confirm
its base functionality. The model uses a standard transformer
architecture with 32 transformer layers, 4096 hidden
dimension, and 32 heads (consistent with Llama-8B). It comes
with a tokenizer capable of subword tokenization suitable for
English text and code-like syntax (like Lucene queries).

4.2 Fine-tunning process

The fine-tuning process was conducted on the DeepSeek-
RI-Distill-Llama-8B model, employing 4-bit quantization via
the Unsloth framework to substantially reduce memory
consumption and accelerate training, while preserving the
representational capacity of the model. To enable domain-
specific adaptation with minimal computational overhead, we
applied the Low-Rank Adaptation (LoRA) technique, which
updates a low-dimensional subset of weights instead of the full
parameter set. The LoRA rank was set to 64, providing
sufficient representational capacity for complex query-
generation patterns without incurring excessive parameter
growth. The LoRA scaling factor (lora_alpha) was set to 128
to ensure stable gradient updates and maintain balance
between adaptation strength and generalization. The LoRA
dropout rate was fixed at 0 to maximize information retention,
as preliminary experiments indicated no significant overfitting
under this configuration.

We targeted the attention projection layers (¢_proj, k_proj,
v_proj, o _proj) as well as the feed-forward network
projections (gate_proj, up proj, down_proj), since these
layers control both attention weight computation and
intermediate representation transformations, which are critical
for adapting the model to generate precise Lucene queries
from natural language instructions. The learning rate was set
to 9x10—49\times10"{-4}9x10—4, determined empirically to
achieve a balance between convergence speed and stability,
avoiding divergence while ensuring meaningful parameter
updates. Training was performed for 5 epochs, which provided
adequate exposure to the dataset without overfitting, as
verified through validation loss monitoring.

We apply LoRA to attention and MLP projections: q_proj,
k_proj, v_proj, o_proj, gate_proj, up_proj, down_proj. Rank r
= 64, scaling o = 128, LoRA dropout = 0.0. Quantization: 4-
bit NF4 with double-quant (Unsloth). Optimizer: AdamW (B
=0.9, B2=0.95, weight decay 0.01). Learning rate 9e-4 with 5

2047

warm-up steps, then constant schedule. Epochs = 5; max
sequence length 2048; per-device batch size 2 with grad-
accum 4 (effective 8). Checkpoint selection by val loss and
small held-out human ratings.

The dataset was formatted according to the Alpaca prompt
template, where each instance consists of an instruction, an
optional context input, and the expected model output,
ensuring alignment with instruction-tuning best practices. The
maximum input length was set to 2,048 tokens to
accommodate complex instructions and multi-step reasoning.
We used a per-device batch size of 2 with gradient
accumulation over 4 steps, effectively simulating a batch size
of 8 while remaining within GPU memory constraints. A
linear warm-up of 5 steps was applied to stabilize initial
training dynamics, followed by a constant learning rate
schedule to maintain consistent update magnitudes throughout
training. This configuration was chosen to optimize
convergence given the available computational resources,
while leveraging quantization and LoRA to -efficiently
specialize the model for text-to-SIEM Lucene query
generation.

We fine-tune the 8B base with LoRA under 4-bit loading.
The model is prompted to first produce a rationale paragraph
and then the Lucene query. Checkpoints are selected by
validation loss and by a small held-out set scored by human
raters for (i) query correctness and (ii) rationale quality.

5. EVALUATION

We evaluate our fine-tuned model from two angles: (1) the
quality of the Lucene queries it generates for unseen inputs,
and (2) the quality of the chain-of-thought reasoning it
produces. Both aspects are important, the queries must be
correct and effective at detecting the intended behavior, and
the reasoning should be sound and useful.

We selected 12 evaluation prompts across three difficulty
levels (4 prompts each for basic, intermediate, and advanced
complexity) to comprehensively assess the model's
capabilities. For each prompt, our fine-tuned model generated
both reasoning explanations and final Lucene queries, which
were then compared against LLM-generated references and
ground truth solutions.

Human security experts scored each response on a scale
from 1 to 5, considering both query correctness and reasoning
clarity.

We consider a query generation to be exactly correct if it
matches the ground truth string after minor normalization
(e.g., ignoring whitespace or ordering of boolean clauses
where reordering doesn’t change semantics).

However, exact string matches can be too harsh. In cases
where the model’s query differed, we manually analyzed
them:

*In some instances, the model produced a semantically
equivalent query that was still correct. For example, it might
output the conditions in a different order or use a synonymous
field name (if the schema had aliases). We gave credit to such
cases as successful detections, since a SIEM would treat them
as correct.

*The model occasionally missed a condition or included a
slightly wrong field. For instance, for a rule that required
process.name: "emd.exe" and parent.process.name:
"excel.exe", the model might omit the parent condition if the
description was not explicit about it. These are partial credit

cases, the query would still catch some malicious activity, but
not as specific as intended. They highlight the importance of
clear descriptions or a richer training set.

*In a few cases, the model hallucinated a condition that was
plausible but not actually in the ground truth. For example,
adding event.type:"start" when the original query didn’t
specify it. These hallucinations were rare (thanks to the model
learning the precise patterns from training data), but they did
occur for some complex scenarios. They likely result from the
model over-generalizing from similar rules in training.

The scoring criteria are as follows:

5 — Exact/Semantic match: Parses successfully; exactly
matches ground truth or is demonstrably semantically
equivalent (same result set on a spot-checked index or clearly
equivalent clauses/aliases).

4 — Near-correct (minor lapse): One minor omission or
benign variation (slightly broader/narrower but still
operationally useful).

3 — Partial: Missed or wrong key condition(s); will detect
some intended activity but with noticeable FN/FP risk.

2 — Materially wrong: Misinterprets behavior, uses wrong
fields/operators; low operational value.

1 — Invalid: Fails to parse/compile or is effectively
match_all/nonsense.

Beyond whether the model gets the query right, we are
interested in the quality of the reasoning it provides. We
evaluate this along several dimensions, informed by prior
work on evaluating explanations (e.g., clarity, correctness,
completeness):

Clarity: Is the explanation understandable and well-
structured? Does it present the reasoning in a step-by-step
manner as intended?

Correctness (Factual Accuracy): Are all statements in the
reasoning true, given our knowledge of the system and attack?
(e.g., if it says event code 7045 means X, is that correct?)

Coverage (Completeness): Does the reasoning account for
all key parts of the query? Are any query conditions left
unexplained or is any step of logic missing?

Relevance: Does the reasoning avoid extraneous
information and focus only on what’s needed to derive the
query for this rule?

To rigorously assess the impact of CoT on performance, we
conduct a comparative evaluation against a fine-tuned model
without CoT. This empirical analysis underscores the
incremental contribution of CoT in enhancing the accuracy
and validity of the generated queries.

For a subset of the test outputs, we had security experts rate
the reasoning on these criteria (on a 1-5 scale) on Clarity,
Correctness, Coverage and Relevance.

RQ = 0.25 Clarity + 0.35 Correctness + 0.25 Coverage +
0.15 Relevance

In our evaluation, each model output was scored by human
experts on two dimensions: Query Quality (QQ) and
Reasoning Quality (RQ), each rated on a 1-5 Likert scale. To
enable aggregation, these scores were first normalized to a 0—
100 scale using a linear transformation Scaled(x) = 25x(x—1)
where xxx is the original Likert rating (thus, a score of 1 maps
to 0, and 5 maps to 100). The final Overall Score for each
output was computed as a weighted average of the two scaled
dimensions, with Query Quality assigned a weight of 0.7 to
reflect its higher operational importance, and Reasoning
Quality assigned a weight of 0.3 to capture the value of clear,
accurate, and complete explanatory reasoning. Formally, the
calculation is expressed as:

OverallScore = 0.7 *x Scaled(QQ) + 0.3 x Scaled(RQ)

We compute an Overall Score combining Query Quality
(QQ) and Reasoning Quality (RQ) as: Scaled(x) = 25-(x—1)
transforms 1-5 to 0-100.
Overall 0.7-Scaled(QQ) + 0.3-Scaled(RQ).
The 0.7/0.3 weights reflect operational priorities: correct,
executable queries are paramount in SOC pipelines;
explanations improve trust and teachability but are secondary.

Table 1. Evaluation results

Claude Sonnet 4.1

Prompt Difficulty Level Query Correctness Reasoning Clarity Overall Score
RDP login from internet 1 5 5 5
User added to Domain Admins group 1 5 5 5
User created 1 5 5 5
User deleted 1 5 5 5
Sysinternals PSExec Lateral movement 2 3 5 3.6
Execution for malicious PowerShell command 2 4 5 4.3
Process creation from an unusual location 2 3 4 33
Disabling Windows audit policy 2 3 4 33
Kerberos attack 3 4 5 43
Mimikatz attack 3 3 3 3
Pass the hash 3 3 4 33
WMI lateral movement 3 3 4 3.3

. Our Generated Model

Prompt Difficulty Level Query Correctness Reasoning Clarity Overall Score
RDP login from internet 1 5 5 5
User added to Domain Admins group 1 5 5 5
User created 1 5 5 5
User deleted 1 5 5 5
Sysinternals PSExec Lateral movement 2 4 5 43
Execution for malicious PowerShell command 2 3 4 33
Process creation from an unusual location 2 3 4 33
Disabling Windows audit policy 2 4 4 4

2048

Kerberos attack 3 5 5 5

Mimikatz attack 3 3 4 33
Pass the hash 3 4 4 4
‘WMI lateral movement 3 5 5 5

. DeepSeek-R1-Distill-Llama-8B (zero-shot)
Prompt Difficulty Level Query Correctness Reasoning Clarity Overall Score

RDP login from internet 1 5 1 1
User added to Domain Admins group 1 5 1 1
User created 1 5 1 1
User deleted 1 5 1 1
Sysinternals PSExec Lateral movement 2 43 1 1
Execution for malicious PowerShell command 2 33 1 1
Process creation from an unusual location 2 33 1 1
Disabling Windows audit policy 2 4 1 1
Kerberos attack 3 5 1 1
Mimikatz attack 3 33 1 1
Pass the hash 3 4 1 1
‘WMI lateral movement 3 5 1 1

Table 2. Evaluation results of non CoT model

Prompt

Difficulty Level

Without CoT With CoT
Query Correctness

RDP login from internet
User added to Domain Admins group
User created
User deleted
Sysinternals PSExec Lateral movement

Execution for malicious PowerShell command

Process creation from an unusual location
Disabling Windows audit policy
Kerberos attack
Mimikatz attack
Pass the hash
WMI lateral movement

4

W W WWNNDNN =~ ——
W WMNWWNNDND WL W
DNk WU hAWWhRowou i

Overall, as shown in Table 1, the model’s explanations were
quite satisfactory: on average, clarity was rated high (the
language was simple and direct, often mirroring the style of
the Claude Sonnet 4 generated training rationales).

In terms of correctness, the model’s reasoning was correct
in the vast majority of cases we examined, particularly when
the query was also correct. When the model made a mistake in
the query, that was usually reflected in the reasoning too (for
instance, if it forgot a condition, its reasoning also wouldn’t
mention that aspect).

The coverage of the reasoning was generally complete. We
verified this by cross-checking each condition in the generated
query against the reasoning text. If the query has three
conditions (like index, event code, service name), we expect
the reasoning to mention and justify each. In all the of cases,
it did.

Upon examining the results, we identified five recurring
error categories:

*Omission of critical constraints (e.g., missing
parent.process.name),
*Over-specification/hallucination (e.g., adding

event.type:"start" without evidence),

*Field alias confusion (e.g.,
process.executable),

*Index and field scope drift (searching too broad/narrow
indices).

Ambiguous prompts (implicit requirements not stated).

Based on the experimental results, as shown in Table 2,
incorporating CoT substantially improved the query
generation process. The model not only produced syntactically
valid Lucene queries but also aligned them more closely with

process.name V§

2049

the intended detection objectives. These findings confirm that
CoT provides a significant enhancement over standard fine-
tuning approaches.

However, the results from the unfine-tuned model were
highly inadequate, both in the reasoning process, which
diverged significantly from correct logic, and in the generated
queries, which were neither valid Lucene syntax nor based on
recognized fields.

6. REPRODUCIBILITY AND GENERALIZATION
6.1 Reproducibility

We are committed to making our results reproducible. To
that end, we plan to open-source the augmented dataset (title,
description, reasoning, query for each rule) under an
appropriate license that allows others to use and extend it. The
dataset will be published via a public repository.

6.2 Generality of method

While our implementation focused on Windows-event
based detections with Lucene queries, the methodology is
quite general. The key requirements are: (1) a set of examples
with a description of problem and a correct solution (in our
case, query) and (2) the ability to generate a clear explanation
for each. With these, one can fine-tune a model to produce
solutions with reasoning.

Other log sources: The approach could be directly applied
to other types of logs or telemetry. For instance, one could take

IDS (Intrusion Detection System) rules, firewall logs, or cloud
audit logs that have detection patterns and add reasoning to
them. The model architecture and training process remain the
same; only the content of the data changes. If the other source
uses different terminology, the advanced LLM used for
generating reasoning might need some prompting adjustment
to ensure it has the necessary context (for example, explaining
a Snort rule might require knowledge of network protocols).
But given a good explanation, the student model can learn it.
We expect that as long as the descriptions and queries follow
consistent patterns, a small model can pick them up after fine-
tuning.

Other query languages: Our method is not limited to
Lucene syntax. For example, many SIEMs use SPL (Splunk
Search Processing Language) or SQL-like query languages,
and cloud environments use KQL (Kusto Query Language) or
Azure Resource Graph queries. The concept of adding
reasoning and fine-tuning would similarly apply. One would
construct a dataset of description + SPL query for various
detections, generate reasoning for each (likely explaining the
SPL clauses), and fine-tune a model. The model would then be
able to output SPL queries with explanation. The main
adaptation needed would be to ensure the base model’s
tokenizer can handle the syntax of that language (most can, as
they usually see a lot of code-like text in pre-training).
Essentially, our chain-of-thought augmentation strategy could
democratize expertise across different platforms: for each
detection rule language, create an instruction-following model
that knows how to write rules and explain them.

Scaling to more rules: If one has a much larger repository
of detection rules (say hundreds or thousands, e.g., from an
open framework like Sigma or ATT&CK Navigator), the
approach should scale. The manual effort remains minimal,
since the heavy lift (explanation) is done by Claude-Sonnet 4
or a similar model. It would be interesting future work to see
if a model fine-tuned on a very large set of rules (covering
many tactics and techniques) could generalize to write
completely new rules given just an English description of an
attack method. Our current dataset is relatively small, so we
didn’t explore the extreme generalization regime.

Domain adaptation: If applying the method to a new
domain where a different base model might be more suitable
(for example, a model pre-trained on code might better handle
complex query languages), one can still use LoRA and chain-
of-thought. LoORA’s modular nature could even allow using the
same reasoning data to fine-tune multiple base models and
compare their performance (something we did not do due to
resource limits, but methodology allows it).

7. LIMITATIONS

There are a few limitations to acknowledge. First, our
model’s knowledge is bounded by what was in the training
examples and the reasoning. If a new attack technique emerges
that has no close analog in the training set, the model might
struggle to produce the correct query for it, or it might rely on
partially related logic that isn’t fully correct. Essentially, the
model might still guess in unfamiliar territory, and if its guess
is wrong, it will still produce a confident-sounding reasoning
(because it was trained to always explain). This could be
dangerous if taken at face value. For such cases, human
oversight remains critical. One way to mitigate this is to
continually update the training dataset with new rules (and

2050

their explanations) as they become available, a form of
continuous learning.

Second, the chain-of-thought augmentation assumes the
advanced LLM’s output is always correct. If Claude Sonnet 4
made an error in an explanation and we failed to catch it, that
error would be taught to the model. In our work, we carefully
validated the reasoning, but as datasets scale, automated
validation of explanations becomes important (perhaps using
techniques like consistency checks or multiple LLM
opinions). This touches on the broader issue of evaluating
“knowledge fidelity” of explanations, an open research
question.

From a deployment perspective, not all analysts may want
a verbose explanation every time. We have made it optional,
but the user interface and integration need to be designed in a
way that the extra information is available when needed but
not intrusive. User studies could determine how analysts prefer
to interact with such a tool.

Other limitations include: (i) Model size (8B), which
constrains the capacity to capture rare or long-range patterns;
larger models may perform better on edge cases. (ii) Domain
dependence, as training was primarily focused on Windows
and ECS; adapting to cloud or network logs would require
additional data. (iii) Teacher-error propagation, whereby
imperfect rationales may transmit errors despite review. (iv)
Reasoning does not equate to truth, as chain-of-thought
explanations may appear plausible while being subtly
incorrect, thus necessitating human validation. (v) Evaluation
scope, since—even though expanded—the test set may not
fully encompass the entire tactic and technique space.

8. CONCLUSION

We presented a method for fine-tuning a distilled 8B-
parameter language model to generate SIEM detection queries
with accompanying chain-of-thought reasoning. By
augmenting a dataset of detection rules with Claude Sonnet 4
generated step-by-step explanations, we effectively
transferred expert reasoning into a small model using LoRA-
based fine-tuning. Our results show that the fine-tuned model
can produce accurate Lucene queries for described attack
scenarios, and importantly, can justify its decisions in natural
language. This approach addresses some of the reliability
issues observed when using out-of-the-box LLMs for security
tasks by specializing the model on high-quality domain data.
The incorporation of reasoning not only provides transparency
(useful for analyst trust and learning) but also appears to help
the model internalize the task better, echoing findings from
recent chain-of-thought distillation research.

In terms of impact on security operations, such a model
could become a copilot for detection engineers, suggesting
query clauses they might have missed, or accelerating the
development of new rules by providing a first draft of both the
query and the rationale. It could also serve as a training tool
for new analysts: by reading the model’s explanations, they
can learn why certain log fields are used to detect certain
techniques, effectively capturing some of the “tribal
knowledge” of seasoned experts in a documented form.

We emphasized reproducibility by outlining the data
transformation process, prompt designs, and providing
pseudocode for automation. We encourage the community to
build upon this work: for instance, exploring the use of
reinforcement learning from human feedback (RLHF) to fine-

tune the model’s explanation style to what practitioners find
most useful, or extending the approach to multi-step detection
workflows (where the model might suggest a series of queries
or correlation logic). Another intriguing direction is to
investigate feedback loops: using the fine-tuned model to
generate candidate detections for entirely new threats and then
vetting them with human/LLM oversight — essentially
leveraging the model’s learned reasoning to propose how to
detect things beyond its training distribution.

In deployment, we will schedule periodic LoORA refreshes
(e.g., weekly/bi-weekly) fed by (a) newly authored/validated
rules, (b) post-incident detections, and (c) red-team exercises.
A gating harness (syntax check + regression set) ensures
updates never degrade canonical behaviors before promotion.
For RLHF, we will collect analyst feedback by ranking
multiple candidates per prompt and flagging errors
(missing/extra clauses). A small reward model trained on this
feedback will score (rationale, query) pairs; the generator will
be optimized with PPO/DPO to prefer succinct, correct queries
and faithful rationales. We will publish the feedback schema
and reward training recipe.

In conclusion, our study demonstrates that even a relatively
small LLM can be taught to perform a specialized, high-value
task in cybersecurity with a combination of transfer learning
techniques (distillation, LoRA) and carefully curated data
(explanations). This serves as an encouraging example of how
advanced Al can be used to empower smaller, deployable
models, a trend that may define practical Al deployment in
many domains, balancing performance with efficiency and
controllability. We hope this work will inspire further
innovations at the intersection of Al and security, and we are
optimistic about the improvements in threat detection
capabilities that such collaborations between human expertise
and machine intelligence can bring.

REFERENCES
[1] Microsoft. (2025). Kusto Query Language (KQL)
overview. https://learn.microsoft.com/en-
us/kusto/query/.

Camburu, O.M., Rocktidschel, T., Lukasiewicz, T.,
Blunsom, P. (2018). e-SNLI: natural language inference
with natural language explanations. In Proceedings of the
32nd International Conference on Neural Information
Processing Systems, Montréal, Canada, pp. 9560-9572.
Konstantinou, A., Kasimatis, D., Buchanan, W.J., Jan,
S.U., Ahmad, J., Politis, I., Pitropakis, N. (2025).
Leveraging LLMs for non-security experts in threat
hunting: Detecting living off the land techniques.
Machine Learning and Knowledge Extraction, 7(2): 31.
https://doi.org/10.3390/make7020031

Naglieri, J. (2024). Scaling detection writing with LLMs.
https://www.detectionatscale.com/p/llm-detection-
writing.

Hu, E.J., Shen, Y., Wallis, P., Allen-Zhu, Z., et al.
(2021). LoRA: Low-rank adaptation of large language
models. arXiv preprint arXiv:2106.09685.
https://doi.org/10.48550/arXiv.2106.09685

Dettmers, T., Pagnoni, A., Holtzman, A., Zettlemoyer, L.
(2023). QLORA: Efficient finetuning of quantized
LLMs. In Proceedings of the 37th International
Conference on Neural Information Processing Systems,
New Orleans, LA, USA, pp. 10088-10115.

(2]

(3]

(4]

(3]

(6]

2051

DeepSeek-Al, Guo, D., Yang, D., Zhang, H., et al.
(2025). DeepSeek-R1: Incentivizing reasoning capability
in LLMs via reinforcement learning. arXiv preprint
arXiv:2501.12948.
https://doi.org/10.48550/arXiv.2501.12948
Pathak, R., Patel, H., Singh, 1., Rankey, M., Zhang, Y.
(2025). Deploy DeepSeek-R1 distilled Llama models
with Amazon Bedrock custom model import.
https://aws.amazon.com/blogs/machine-
learning/deploy-deepseek-r1-distilled-llama-models-
with-amazon-bedrock-custom-model-import/.
Wei, J., Wang, X., Schuurmans, D., Bosma, M., et al.
(2022). Chain-of-thought prompting elicits reasoning in
large language models. In Proceedings of the 36th
International Conference on Neural Information
Processing Systems, New Orleans, LA, USA, pp. 24824-
24837.
Li, L.H., Hessel, J., Yu, Y., Ren, X., Chang, K.W., Choi,
Y. (2023). Symbolic chain-of-thought distillation: Small
models can also “think” step-by-step. In Proceedings of
the 61st Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers),
Toronto, Canada, pp- 2665-2679.
https://doi.org/10.18653/v1/2023.acl-long.150
Wang, Y., Kordi, Y., Mishra, S., Liu, A., Smith, N.A.,
Khashabi, D., Hajishirzi, H. (2023). Self-Instruct:
Aligning language models with self-generated
instructions. In Proceedings of the 61st Annual Meeting
of the Association for Computational Linguistics
(Volume 1: Long Papers), Toronto, Canada, pp. 13484-
13508. https://doi.org/10.18653/v1/2023.acl-long.754
Yu, T., Zhang, R., Yang, K., Yasunaga, M., et al. (2018).
Spider: A large-scale human-labeled dataset for complex
and cross-domain semantic parsing and text-to-SQL task.
In Proceedings of the 2018 Conference on Empirical
Methods in Natural Language Processing, Brussels,
Belgium, pp- 3911-3921.
https://doi.org/10.18653/v1/D18-1425
Anthropic. (2025). Claude 3.7 Sonnet
card/overview].
https://www.anthropic.com/news/claude-37.
[14] Tang, X., Abdi, A.H., Eichelbaum, J., Das, M., et al.
(2024). NI2kql: From natural language to kusto query.
arXiv preprint arXiv:2404.02933.
https://doi.org/10.48550/arXiv.2404.02933
[15] Splunk. (2024). Splunk AI Assistant for SPL.
https://docs.splunk.com/Documentation/AlAssistant.
[16] Puerto, H., Chubakov, T., Zhu, X., Madabushi, H.T.,
Gurevych, 1. (2025). Fine-tuning on diverse reasoning
chains drives within-inference CoT refinement in LLMs.
In Proceedings of the 63rd Annual Meeting of the
Association for Computational Linguistics (Volume 1:
Long Papers), Vienna, Austria, pp. 3789-3808.
https://doi.org/10.18653/v1/2025.acl-long.191
Magister, L.C., Mallinson, J., Adamek, J., Malmi, E.,
Severyn, A. (2023). Teaching small language models to
reason. In Proceedings of the 61st Annual Meeting of the
Association for Computational Linguistics (Volume 2:
Short Papers), Toronto, Canada, pp. 1773-1781.
https://doi.org/10.18653/v1/2023.acl-short.151
[18] SigmaHQ. Sigma: Generic signature format for SIEM
systems. https://github.com/SigmaHQ/sigma.
[19] Elastic. (2025). ECS reference: Event fields (v9).
https://www.elastic.co/docs/reference/ecs/ecs-event.

(8]

[10]

[11]

[13] [Model

[17]

[20] Microsoft Ignite. (2021). 4697(S): A service was event IDs (incl. 7045).

installed in the system. https://learn.microsoft.com/en- https://attack.mitre.org/datasources/DS0019/.

us/previous-versions/windows/it-pro/windows- [22] Stanford CRFM. (2023). Alpaca: A strong, replicable

10/security/threat-protection/auditing/event-4697. instruction-following model.
[21] MITRE ATT&CK®. Data Source — Service: Windows https://crfm.stanford.edu/2023/03/13/alpaca.html.

2052

