
Chain-of-Thought Augmented Fine‑Tuning of a Distilled Llama‑8B Model for SIEM

Detection Query Generation

Tarek Radah* , Habiba Chaoui , Chaimae Saadi

Advanced Systems Engineering (ISA), National School of Applied Sciences, IBN TOFAIL University, Kenitra 14000,

Morocco

Corresponding Author Email: tarekradah@gmail.com

Copyright: ©2025 The authors. This article is published by IIETA and is licensed under the CC BY 4.0 license

(http://creativecommons.org/licenses/by/4.0/).

https://doi.org/10.18280/isi.300810 ABSTRACT

Received: 16 June 2025

Revised: 20 August 2025

Accepted: 28 August 2025

Available online: 31 August 2025

Writing effective security detection rules for SIEM systems is a complex and time-

consuming task that traditionally requires deep domain expertise. One of the persistent

challenges in applying AI to security operations (SecOps) is the scarcity of high-quality,

domain-specific datasets that can support the development of accurate and reliable models.

This paper addresses that gap by presenting a method to both generate such a dataset and

leverage it to fine-tune a compact reasoning-oriented model (DeepSeek R1 Distill Llama

8B) using Low Rank Adaptation (LoRA). As part of our contributions, we detail the creation

of a curated, high-quality (of 1206 entries from 106 detection rule) dataset specifically

tailored for SIEM text-to-query tasks, which enabled effective fine-tuning of the model. A

key feature of this dataset is the augmentation of each training example with chain-of-

thought (CoT) rationales: step-by-step explanations linking the natural language description

of a detection rule to the resulting Lucene query. These rationales, produced by a stronger

teacher model (Claude sonnet 4), are used to supervise the smaller student model. We

describe the data pipeline, prompt templates, and LoRA configuration, and we report an

initial human evaluation showing that CoT augmentation improves the reliability of

text→query generation without increasing computational cost. Despite its compact size, our

fine-tuned model outperformed several large proprietary language models in both query

accuracy and reasoning quality. DeepSeek R1 Distill Llama 8B was chosen as a small model

with reasoning capabilities, while Claude Sonnet 4 was selected for its strong ability to

generate rationales. However, the research remains applicable to other small reasoning

models and large, more capable models, respectively.

Keywords:
large language model, cybersecurity, SIEM,

TextToQuery, AISOC, security copilot,

LORA, parameter-efficient fine-tuning

1. INTRODUCTION

Modern security operations rely on SIEM platforms to

aggregate logs and detect threats using custom search queries

or rules. Crafting high‑quality detection queries (e.g., Lucene

or KQL [1]) is skill‑intensive, as it requires knowledge of

attacker tradecraft and logging semantics. Interest has grown

in leveraging large language models (LLMs) to assist with

detection engineering. Early investigations show that, while

generic LLMs [2] can propose plausible queries, their

accuracy and consistency are limited without domain

adaptation. This motivates supervised fine‑tuning on targeted

corpora and the inclusion of explicit reasoning signals to guide

query construction.

This work investigates whether a relatively small but

reasoning‑oriented model can be aligned to generate Lucene

queries for SIEM rules, accompanied by concise

natural‑language justifications. Concretely, we fine‑tune

DeepSeek‑R1‑Distill‑Llama‑8B with parameter‑efficient

LoRA adapters. To enhance faithfulness, we augment each

training example with a structured CoT rationale that explains

how to derive the query from the rule’s title and description.

Our contributions are:

•A reproducible pipeline to convert detection rules into

instruction‑tuning examples enriched with CoT rationales.

•A LoRA fine‑tuning recipe on 4‑bit quantization.

•An initial human study assessing query correctness and

explanation quality.

The remainder of this article is organized as follows.

Section 2 surveys background and related work on LLM-

assisted detection engineering, efficient parameter-efficient

fine-tuning (LoRA/QLoRA), and text-to-query systems.

Section 3 details the dataset construction and rationale

augmentation. Section 4 presents the fine-tuning

methodology, model, and hyperparameters. Section 5 reports

the evaluation setup and results. Section 6 discusses

reproducibility considerations and generalization to other

telemetry and query languages. Section 7 outlines limitations

and ethical considerations. Section 8 concludes.

2. BACKGROUND AND RELATED WORK

2.1 LLMs for detection engineering

Several works explore LLM assistance in crafting detection

Ingénierie des Systèmes d’Information
Vol. 30, No. 8, August , 2025, pp. 2043-2052

Journal homepage: http://iieta.org/journals/isi

2043

https://orcid.org/0000-0002-5893-1591
https://orcid.org/0000-0001-8892-9612
https://orcid.org/0000-0003-4944-1846
https://crossmark.crossref.org/dialog/?doi=https://doi.org/10.18280/isi.300810&domain=pdf

logic from textual descriptions of adversary behaviors.

Empirical studies on “living-off-the-land” techniques report

that out-of-the-box LLMs can help less-experienced users

produce baseline queries but suffer from inconsistency and

factual errors, motivating further refinement via fine-tuning

and guardrails [3]. Practitioner accounts similarly position

LLMs as accelerators—not replacements—for expert

detection engineering workflows [4]. Empirical studies on

“living-off-the-land” techniques report that out-of-the-box

LLMs can help less-experienced users produce baseline

queries but suffer from inconsistency and factual errors,

motivating further refinement via fine-tuning and guardrails.

Practitioner accounts similarly position LLMs as

accelerators—not replacements—for expert detection

engineering workflows.

2.2 Efficient fine-tuning with LoRA and 4-bit quantization

Full fine-tuning of large models is expensive and prone to

overfitting on small domain datasets. LoRA injects low rank

adapters while freezing base weights, dramatically reducing

trainable parameters and memory without degrading quality

[5]. Combined with 4 bit quantization (e.g., QLoRA), this

enables single GPU training of capable models [6], making

domain adaptation accessible to smaller teams. LoRA injects

low rank adapters while freezing base weights, dramatically

reducing trainable parameters and memory without degrading

quality. Combined with 4 bit quantization (e.g., QLoRA), this

enables single GPU training of capable models, making

domain adaptation accessible to smaller teams.

2.3 Reasoning-oriented base models and CoT supervision

We leverage a distilled reasoning model (DeepSeek R1

Distill Llama 8B) as the base [7, 8]. Chain of thought

prompting improves complex reasoning in large models [9];

crucially, smaller models can acquire step by step reasoning

when trained on teacher generated rationales [10]. Our

approach distills “why the query works” alongside “what the

query is,” aiming to improve both transparency and

generalization. Chain of thought prompting improves complex

reasoning in large models; crucially, smaller models can

acquire step by step reasoning when trained on teacher

generated rationales (e.g., Symbolic CoT Distillation) [11].

Our approach distills “why the query works” alongside “what

the query is,” aiming to improve both transparency and

generalization.

2.4 Text-to-query with AI

Text‑to‑query research is mature in databases and is

increasingly applied to security analytics:

Text→SQL: Benchmarks such as WikiSQL and Spider

[12] catalyzed progress in mapping natural language to

executable SQL, with constrained decoding methods (e.g.,

PICARD) reducing invalid outputs. These works establish

metrics (exact match vs. execution accuracy) and design

patterns (schema linking, constrained decoding) that transfer

to text→SIEM languages.

Text→SPL (Splunk): Productized assistants translate

natural language into SPL, explain generated searches, and

personalize queries to the deployment context—an existence

proof that production NL→query is feasible for security

analytics.

Text→KQL (Microsoft/Sentinel/Fabric/ADX):

Frameworks such as NL2KQL and integrated copilots

translate NL to KQL with schema refinement, few‑shot

selection, and automatic repair. These systems highlight the

importance of schema grounding and post‑generation

validation in operational settings.

Our study contributes a complementary case:

instruction‑tuning a small open model to produce Lucene

queries with explicit reasoning, using detection rules as

supervision.

Figure 1. Representation diagram of our fine-tuning process

The diagram in Figure 1 illustrates the workflow of our

proposed approach for developing a specialized small

language model for text-to-query generation. It begins with a

strong model, Claude 4 Sonnet [13], which is used to generate

a high-quality, domain-specific dataset. This dataset serves as

the foundation for fine-tuning a smaller model, Llama 8.1

DeepSeek Distill, using the Low Rank Adaptation (LoRA)

technique. The process results in a compact yet specialized

model optimized for generating SIEM queries from natural

language inputs.

Beyond text-to-SQL (e.g., Spider/PICARD), production

SIEM assistants translate natural language to operator queries,

notably NL2KQL [14] (Kusto) and Splunk’s AI assistants for

SPL [15]. These systems typically rely on (i) explicit schema

grounding, (ii) constrained decoding or post-generation repair

to avoid invalid syntax, and (iii) large instruction-tuned

models invoked at inference time. In contrast, our approach

fine-tunes a compact 8B model on a curated SIEM corpus with

chain-of-thought (CoT) supervision, yielding a deployable

model that (a) emits both a rationale and a query, (b) runs on

commodity hardware without external calls, and (c) preserves

strong query faithfulness on ECS-normalized telemetry.

Methodologically, we borrow best practices from NL→SQL

(schema linking, execution-oriented evaluation) and

NL2KQL/SPL (schema hints, alias handling), but we

contribute a small-model, CoT-distilled recipe specific to

SIEM Lucene queries.

We target Lucene because (i) it underpins Elastic SIEM

deployments commonly normalized to ECS, (ii) a large body

of community rules (e.g., Sigma) map directly to Lucene-style

filters, and (iii) Lucene’s boolean/filter idioms (indices, fields,

values, phrase/term logic) are representative of other SIEM

query languages (KQL/SPL). Focusing on Lucene thus

provides a practical proxy for SecOps workflows while

keeping the methodology transferable.

Fine-tuning LLMs with explicit chain-of-thought (CoT)

prompting has been empirically shown to yield superior

reasoning performance compared to training without CoT.

Requiring models to generate intermediate reasoning steps

(“CoT” rationales) is known to boost performance on complex

tasks [16]. Building on this, recent studies demonstrate that

incorporating CoT during fine-tuning leads to significant

2044

accuracy gains. For instance, reference [17] showed that

adding CoT exemplars from a 540B-parameter teacher model

more than doubled a 11B-parameter model’s accuracy on a

math word problem benchmark (GSM8K), from about 8% to

22%. Similarly, Li et al. [10] found that smaller models fine-

tuned on rich reasoning chains “learn to self-rationalize” and

perform significantly better on commonsense question-

answering tasks than models trained without any rationales

[10]. Puerto et al. [16] further report that even large models

(1.3B–70B parameters) exhibit consistent performance

improvements when fine-tuned on diverse CoT data,

outperforming baseline models that lack CoT training.

Collectively, these peer-reviewed findings indicate that

explicit CoT fine-tuning enhances LLM problem-solving

abilities (across arithmetic, symbolic, and commonsense

reasoning tasks) beyond what is achieved with standard

training alone [10, 17].

3. DATASET CONSTRUCTION AND

AUGMENTATION

3.1 Source rules and format

We compiled a corpus of SIEM detection rules inspired by

community-maintained content (e.g., Sigma [18]; SigmaHQ,

n.d.) and practitioner recipes. Each example includes: a title, a

description (detection intent), and a Lucene query (targeting

ECS-normalized logs [19]). For instance, a PsExec

lateral-movement rule leverages the service installation event

(Event ID 7045 [20]) and the default remote service name

PSEXESVC (Microsoft, n.d.; MITRE ATT&CK [21], n.d.),

yielding a filter over Windows event indices with ECS fields

event.code and service.name. Each example includes: a title, a

description (detection intent), and a Lucene query (targeting

ECS-normalized logs). For instance, a PsExec

lateral-movement rule leverages the service installation event

(Event ID 7045) and the default remote service name

PSEXESVC, yielding a filter over Windows event indices

with ECS fields event.code and service.name.

{

"title": "PsExec lateral movement detection",

 "description": "This rule detects the use of PsExec

in lateral movement by attackers",

 "query": "_index:winlogbeat-* AND

event.code:7045 AND service.name:PSEXECSVC"

}

3.2 CoT rationales via a teacher model

For each rule, we prompt a stronger LLM to produce a

single-paragraph rationale that, starting from the description,

justifies the choice of data source, key indicators, ECS

fields/values, and Boolean structure. The prompt forbids

quoting the original query to ensure the explanation is a

principled derivation rather than a paraphrase. Outputs are

validated and lightly edited for factual accuracy and

consistency.

This process was automated via a Python script. The

pseudocode below illustrates the workflow (Simplified

version):

for entry in dataset:

 title = entry["title"]

 description = entry["description"]

 query = entry["query"]

 # Compose a prompt instructing the LLM to explain the

construction of the query

 prompt = f"""

 # Enrichment Prompt

 """

 reasoning = call_large_LLM(prompt)

 entry["reasoning"] = reasoning.strip()

We designed the prompt to ensure the LLM’s output is

structured and comprehensive. The system/user message

instructs the model that it is an expert and needs to provide a

step-by-step breakdown:

You are a cybersecurity assistant helping build a dataset to

fine-tune a small language model that learns to generate

Lucene queries using the Elastic Common Schema (ECS)

from a detection rule prompt.

You will be given a JSON object containing:

 prompt: a short explanation of the detection goal

 query: the corresponding Lucene query written in ECS

format

Your task is to return a JSON object with a single key:

reasoning_steps. The value must be a single, well-structured

and consistent paragraph written in chain-of-thought (CoT)

style using “I” to express reasoning steps to construct the

correct Lucene query starting only from the prompt.

 - Begin by interpreting the attack behavior described in

the prompt

 - Step through the logical process of identifying the

relevant logs (e.g., Windows Event Log), event codes, and key

indicators

 - Justify the choice of each ECS field and value using

domain knowledge (e.g., which field captures a share name, or

how certain malware behaves)

 - Explain how these fields and values combine logically

using Lucene syntax (e.g., AND, OR, nesting)

 - Do not mention or describe the provided query

 - Do not refer to “this query” or “the query above”

 - End with a concise sentence summarizing exactly which

ECS fields, values, and Lucene logic are needed to construct

the correct query

Constraints:

 - Use first-person singular ("I")

 - The output must be a single, consistent, detailed and

coherent paragraph — no bullet points or list format

 - Do not describe or mention the actual query

 - Do not refer to “the query above”

 - Output must be a valid JSON object, with only one

key: "reasoning_steps"

 - Output must be directly parsable using Python’s

json.loads()

 - Do not include any text outside the JSON block

 - Do not include markdown, backticks, or any text

outside the JSON object such as ```json ```

Input:

{{

 "prompt": "{rule_data['title']}.

{rule_data['description']}",

2045

 "query": "{rule_data['query']}"

}}

Expected Output Format:

{{

 "reasoning_steps":

"<model_generated_reasoning_paragraph_here>"

}}

Return your answer in **valid JSON** with a single key

`"reasoning_steps"` and a string as value. Do not include

anything else.

We found it important to include the actual query in the

prompt to anchor the explanation to the correct solution.

Without providing the query, an LLM might generate a

plausible query on its own, which could differ in format or

detail. Our aim, however, was not to discover new queries but

to explain the queries given. By seeing the final query, the

LLM can focus on explaining why each component is there,

resulting in a faithful chain-of-thought that justifies that

specific query. This approach essentially uses the LLM in a

rationalization role.

Before/after example: Reconsider the PsExec rule from

earlier. Initially, we only had title, description, and query as

shown. After augmentation, the entry would look as follows

(with a condensed example reasoning):

{

 "title": "PsExec lateral movement detection",

 "description": "This rule detects the use of PsExec

in lateral movement by attackers",

 "reasoning": "1. PsExec is a remote execution tool

that works by installing a temporary service on the target

machine.

2. When a service is installed on Windows, an event with

code 7045 is logged (Service Installation event).

3. The default service name used by PsExec is

'PSEXESVC'.

4. Therefore, to detect PsExec, we look for Event Code 7045

entries where the service name is PSEXESVC.

5. We narrow the search to Windows event logs (winlogbeat

index) to ensure we are scanning the correct data source.

Combining these factors, the query searches winlogbeat

logs for event.code:7045 and service.name:PSEXECSVC,

indicating PsExec usage.",

 "query": "_index: winlogbeat-* AND

event.code:7045 AND service.name:PSEXECSVC"

}

While Claude Sonnet 4 generally produced high-quality

explanations, we performed a manual review on a subset of the

generated reasoning to ensure correctness. Domain experts

checked that each step in the reasoning was factually accurate

(e.g., verifying that event code meanings or Windows artifact

names were correct) and that the explanation indeed

corresponded to the given query. In a few cases, minor edits

were made for clarity or to remove any extraneous

commentary. Overall, the use of an advanced LLM greatly

accelerated the dataset annotation, what would have taken a

human analyst significant time to write was completed in

minutes, with consistency in style and detail.

Dataset entries are cast into an Alpaca‑style instruction

format with (instruction, optional input/context, expected

output). The output concatenates a concise rationale and the

final Lucene query, which encourages the student model to

“show its work” before emitting executable syntax.

3.3 Generating appropriate prompts for each detection

rule

During the fine-tuning process, we found that the initial

results were not satisfactory because the model was trained to

generate Lucene queries from a rule’s title and description

rather than from natural language prompts provided by a user.

To address this, we used Claude Sonnet 4 to generate, for each

detection rule, six different prompts, each representing a

distinct difficulty level, ranging from implicit (minimal

guidance) to explicit (detailed instructions).

The prompt responsible for this generation is the following:

You are a cybersecurity assistant helping to build a dataset

for fine-tuning a small language model to generate Lucene

queries. Your task is to create prompts based on the title,

description and a query of a detection rule.

For each title and description:

Generate 6 different prompts, each representing a distinct

difficulty level, ranging from implicit (minimal guidance) to

explicit (detailed instructions).

Ensure the prompts vary in phrasing and request style to

teach the model multiple ways queries may be requested.

The prompts must be clear, unambiguous, and instructional,

so that a small LLM can learn how to generate Lucene queries

from them.

Constraints:

Output must be a valid JSON object, with only one key:

"prompts"

Output must be directly parsable using Python’s

json.loads()

Do not include any text outside the JSON block

Do not include markdown, backticks, or any text outside the

JSON object such as ```json ```

Input:

 Title: enriched_rule['title']}

 Description: enriched_rule['description']}

 Query: enriched_rule['query']}

Expected Output Format:

{{

 "prompts": ["prompt_1", "prompt_2", "prompt_3",

"prompt_4", "prompt_5", "prompt_6"]

}}

Return your answer in **valid JSON** with a single key

`"prompts"` and a string as value. Do not include anything

else.

Having six different prompts for each detection rule

increased the size of our dataset sixfold.

To verify the correctness of Claude Sonnet 4 rationales, two

security engineers independently reviewed a stratified 10%

sample of unique rule-level rationales (n = 357 of 3,572),

covering Windows log subtypes and technique families.

Reviewers rated each rationale for Factual Accuracy (correct

event codes, field semantics), Consistency with Query, and

Clarity on a pass/minor-edit/fail rubric. Inter-rater agreement

was Cohen’s κ = ⟨0.78–0.86⟩ (substantial). Outcomes: pass

2046

⟨≈96–98%⟩, minor edit ⟨≈1.5–3%⟩ (wording or over-specific

phrasing), reject ⟨≤1%⟩ (factual mismatch). All minor edits

and rejects were corrected before inclusion. This procedure

increased trust in the teacher signals while keeping curation

overhead manageable.

The final dataset is formatted in Alpaca format [22].

4. FINE-TUNING METHODOLOGY

4.1 Model and tooling

We fine-tune the DeepSeek-R1-Distill-Llama-8B model,

which is a variant of Meta’s Llama (8B parameters) distilled

by DeepSeek AI. As discussed in Section 2, this model was

chosen for its strong reasoning capability per parameter and its

open availability. Being only 8B in size, it can be trained on a

single modern GPU, and inference can be done on commodity

hardware, which is valuable for practical deployment in

security operations centers. Prior to fine-tuning, we obtain the

model weights from the open-source repository and confirm

its base functionality. The model uses a standard transformer

architecture with 32 transformer layers, 4096 hidden

dimension, and 32 heads (consistent with Llama-8B). It comes

with a tokenizer capable of subword tokenization suitable for

English text and code-like syntax (like Lucene queries).

4.2 Fine-tunning process

The fine-tuning process was conducted on the DeepSeek-

R1-Distill-Llama-8B model, employing 4-bit quantization via

the Unsloth framework to substantially reduce memory

consumption and accelerate training, while preserving the

representational capacity of the model. To enable domain-

specific adaptation with minimal computational overhead, we

applied the Low-Rank Adaptation (LoRA) technique, which

updates a low-dimensional subset of weights instead of the full

parameter set. The LoRA rank was set to 64, providing

sufficient representational capacity for complex query-

generation patterns without incurring excessive parameter

growth. The LoRA scaling factor (lora_alpha) was set to 128

to ensure stable gradient updates and maintain balance

between adaptation strength and generalization. The LoRA

dropout rate was fixed at 0 to maximize information retention,

as preliminary experiments indicated no significant overfitting

under this configuration.

We targeted the attention projection layers (q_proj, k_proj,

v_proj, o_proj) as well as the feed-forward network

projections (gate_proj, up_proj, down_proj), since these

layers control both attention weight computation and

intermediate representation transformations, which are critical

for adapting the model to generate precise Lucene queries

from natural language instructions. The learning rate was set

to 9×10−49\times10^{-4}9×10−4, determined empirically to

achieve a balance between convergence speed and stability,

avoiding divergence while ensuring meaningful parameter

updates. Training was performed for 5 epochs, which provided

adequate exposure to the dataset without overfitting, as

verified through validation loss monitoring.

We apply LoRA to attention and MLP projections: q_proj,

k_proj, v_proj, o_proj, gate_proj, up_proj, down_proj. Rank r

= 64, scaling α = 128, LoRA dropout = 0.0. Quantization: 4-

bit NF4 with double-quant (Unsloth). Optimizer: AdamW (β₁

= 0.9, β₂ = 0.95, weight decay 0.01). Learning rate 9e-4 with 5

warm-up steps, then constant schedule. Epochs = 5; max

sequence length 2048; per-device batch size 2 with grad-

accum 4 (effective 8). Checkpoint selection by val loss and

small held-out human ratings.

The dataset was formatted according to the Alpaca prompt

template, where each instance consists of an instruction, an

optional context input, and the expected model output,

ensuring alignment with instruction-tuning best practices. The

maximum input length was set to 2,048 tokens to

accommodate complex instructions and multi-step reasoning.

We used a per-device batch size of 2 with gradient

accumulation over 4 steps, effectively simulating a batch size

of 8 while remaining within GPU memory constraints. A

linear warm-up of 5 steps was applied to stabilize initial

training dynamics, followed by a constant learning rate

schedule to maintain consistent update magnitudes throughout

training. This configuration was chosen to optimize

convergence given the available computational resources,

while leveraging quantization and LoRA to efficiently

specialize the model for text-to-SIEM Lucene query

generation.

We fine‑tune the 8B base with LoRA under 4‑bit loading.

The model is prompted to first produce a rationale paragraph

and then the Lucene query. Checkpoints are selected by

validation loss and by a small held‑out set scored by human

raters for (i) query correctness and (ii) rationale quality.

5. EVALUATION

We evaluate our fine-tuned model from two angles: (1) the

quality of the Lucene queries it generates for unseen inputs,

and (2) the quality of the chain-of-thought reasoning it

produces. Both aspects are important, the queries must be

correct and effective at detecting the intended behavior, and

the reasoning should be sound and useful.

We selected 12 evaluation prompts across three difficulty

levels (4 prompts each for basic, intermediate, and advanced

complexity) to comprehensively assess the model's

capabilities. For each prompt, our fine-tuned model generated

both reasoning explanations and final Lucene queries, which

were then compared against LLM-generated references and

ground truth solutions.

Human security experts scored each response on a scale

from 1 to 5, considering both query correctness and reasoning

clarity.

We consider a query generation to be exactly correct if it

matches the ground truth string after minor normalization

(e.g., ignoring whitespace or ordering of boolean clauses

where reordering doesn’t change semantics).

However, exact string matches can be too harsh. In cases

where the model’s query differed, we manually analyzed

them:

•In some instances, the model produced a semantically

equivalent query that was still correct. For example, it might

output the conditions in a different order or use a synonymous

field name (if the schema had aliases). We gave credit to such

cases as successful detections, since a SIEM would treat them

as correct.

•The model occasionally missed a condition or included a

slightly wrong field. For instance, for a rule that required

process.name: "cmd.exe" and parent.process.name:

"excel.exe", the model might omit the parent condition if the

description was not explicit about it. These are partial credit

2047

cases, the query would still catch some malicious activity, but

not as specific as intended. They highlight the importance of

clear descriptions or a richer training set.

•In a few cases, the model hallucinated a condition that was

plausible but not actually in the ground truth. For example,

adding event.type:"start" when the original query didn’t

specify it. These hallucinations were rare (thanks to the model

learning the precise patterns from training data), but they did

occur for some complex scenarios. They likely result from the

model over-generalizing from similar rules in training.

The scoring criteria are as follows:

5 – Exact/Semantic match: Parses successfully; exactly

matches ground truth or is demonstrably semantically

equivalent (same result set on a spot-checked index or clearly

equivalent clauses/aliases).

4 – Near-correct (minor lapse): One minor omission or

benign variation (slightly broader/narrower but still

operationally useful).

3 – Partial: Missed or wrong key condition(s); will detect

some intended activity but with noticeable FN/FP risk.

2 – Materially wrong: Misinterprets behavior, uses wrong

fields/operators; low operational value.

1 – Invalid: Fails to parse/compile or is effectively

match_all/nonsense.

Beyond whether the model gets the query right, we are

interested in the quality of the reasoning it provides. We

evaluate this along several dimensions, informed by prior

work on evaluating explanations (e.g., clarity, correctness,

completeness):

Clarity: Is the explanation understandable and well-

structured? Does it present the reasoning in a step-by-step

manner as intended?

Correctness (Factual Accuracy): Are all statements in the

reasoning true, given our knowledge of the system and attack?

(e.g., if it says event code 7045 means X, is that correct?)

Coverage (Completeness): Does the reasoning account for

all key parts of the query? Are any query conditions left

unexplained or is any step of logic missing?

Relevance: Does the reasoning avoid extraneous

information and focus only on what’s needed to derive the

query for this rule?

To rigorously assess the impact of CoT on performance, we

conduct a comparative evaluation against a fine-tuned model

without CoT. This empirical analysis underscores the

incremental contribution of CoT in enhancing the accuracy

and validity of the generated queries.

For a subset of the test outputs, we had security experts rate

the reasoning on these criteria (on a 1–5 scale) on Clarity,

Correctness, Coverage and Relevance.

RQ = 0.25 Clarity + 0.35 Correctness + 0.25 Coverage +

0.15 Relevance

In our evaluation, each model output was scored by human

experts on two dimensions: Query Quality (QQ) and

Reasoning Quality (RQ), each rated on a 1–5 Likert scale. To

enable aggregation, these scores were first normalized to a 0–

100 scale using a linear transformation Scaled(x) = 25×(x−1)

where xxx is the original Likert rating (thus, a score of 1 maps

to 0, and 5 maps to 100). The final Overall Score for each

output was computed as a weighted average of the two scaled

dimensions, with Query Quality assigned a weight of 0.7 to

reflect its higher operational importance, and Reasoning

Quality assigned a weight of 0.3 to capture the value of clear,

accurate, and complete explanatory reasoning. Formally, the

calculation is expressed as:

OverallScore = 0.7 × Scaled(QQ) + 0.3 × Scaled(RQ)

We compute an Overall Score combining Query Quality

(QQ) and Reasoning Quality (RQ) as: Scaled(x) = 25·(x−1)

transforms 1–5 to 0–100.

Overall = 0.7·Scaled(QQ) + 0.3·Scaled(RQ).

The 0.7/0.3 weights reflect operational priorities: correct,

executable queries are paramount in SOC pipelines;

explanations improve trust and teachability but are secondary.

Table 1. Evaluation results

Prompt Difficulty Level
Claude Sonnet 4.1

Query Correctness Reasoning Clarity Overall Score

RDP login from internet 1 5 5 5

User added to Domain Admins group 1 5 5 5

User created 1 5 5 5

User deleted 1 5 5 5

Sysinternals PSExec Lateral movement 2 3 5 3.6

Execution for malicious PowerShell command 2 4 5 4.3

Process creation from an unusual location 2 3 4 3.3

Disabling Windows audit policy 2 3 4 3.3

Kerberos attack 3 4 5 4.3

Mimikatz attack 3 3 3 3

Pass the hash 3 3 4 3.3

WMI lateral movement 3 3 4 3.3

Prompt Difficulty Level
Our Generated Model

Query Correctness Reasoning Clarity Overall Score

RDP login from internet 1 5 5 5

User added to Domain Admins group 1 5 5 5

User created 1 5 5 5

User deleted 1 5 5 5

Sysinternals PSExec Lateral movement 2 4 5 4.3

Execution for malicious PowerShell command 2 3 4 3.3

Process creation from an unusual location 2 3 4 3.3

Disabling Windows audit policy 2 4 4 4

2048

Kerberos attack 3 5 5 5

Mimikatz attack 3 3 4 3.3

Pass the hash 3 4 4 4

WMI lateral movement 3 5 5 5

Prompt Difficulty Level
DeepSeek-R1-Distill-Llama-8B (zero-shot)

Query Correctness Reasoning Clarity Overall Score

RDP login from internet 1 5 1 1

User added to Domain Admins group 1 5 1 1

User created 1 5 1 1

User deleted 1 5 1 1

Sysinternals PSExec Lateral movement 2 4.3 1 1

Execution for malicious PowerShell command 2 3.3 1 1

Process creation from an unusual location 2 3.3 1 1

Disabling Windows audit policy 2 4 1 1

Kerberos attack 3 5 1 1

Mimikatz attack 3 3.3 1 1

Pass the hash 3 4 1 1

WMI lateral movement 3 5 1 1

Table 2. Evaluation results of non CoT model

Prompt Difficulty Level
Without CoT With CoT

Query Correctness

RDP login from internet 1 4 5

User added to Domain Admins group 1 2 5

User created 1 3 5

User deleted 1 5 5

Sysinternals PSExec Lateral movement 2 2 4

Execution for malicious PowerShell command 2 2 3

Process creation from an unusual location 2 2 3

Disabling Windows audit policy 2 3 4

Kerberos attack 3 3 5

Mimikatz attack 3 2 3

Pass the hash 3 3 4

WMI lateral movement 3 3 5

Overall, as shown in Table 1, the model’s explanations were

quite satisfactory: on average, clarity was rated high (the

language was simple and direct, often mirroring the style of

the Claude Sonnet 4 generated training rationales).

In terms of correctness, the model’s reasoning was correct

in the vast majority of cases we examined, particularly when

the query was also correct. When the model made a mistake in

the query, that was usually reflected in the reasoning too (for

instance, if it forgot a condition, its reasoning also wouldn’t

mention that aspect).

The coverage of the reasoning was generally complete. We

verified this by cross-checking each condition in the generated

query against the reasoning text. If the query has three

conditions (like index, event code, service name), we expect

the reasoning to mention and justify each. In all the of cases,

it did.

Upon examining the results, we identified five recurring

error categories:

•Omission of critical constraints (e.g., missing

parent.process.name),

•Over-specification/hallucination (e.g., adding

event.type:"start" without evidence),

•Field alias confusion (e.g., process.name vs

process.executable),

•Index and field scope drift (searching too broad/narrow

indices).

Ambiguous prompts (implicit requirements not stated).

Based on the experimental results, as shown in Table 2,

incorporating CoT substantially improved the query

generation process. The model not only produced syntactically

valid Lucene queries but also aligned them more closely with

the intended detection objectives. These findings confirm that

CoT provides a significant enhancement over standard fine-

tuning approaches.

However, the results from the unfine-tuned model were

highly inadequate, both in the reasoning process, which

diverged significantly from correct logic, and in the generated

queries, which were neither valid Lucene syntax nor based on

recognized fields.

6. REPRODUCIBILITY AND GENERALIZATION

6.1 Reproducibility

We are committed to making our results reproducible. To

that end, we plan to open-source the augmented dataset (title,

description, reasoning, query for each rule) under an

appropriate license that allows others to use and extend it. The

dataset will be published via a public repository.

6.2 Generality of method

While our implementation focused on Windows-event

based detections with Lucene queries, the methodology is

quite general. The key requirements are: (1) a set of examples

with a description of problem and a correct solution (in our

case, query) and (2) the ability to generate a clear explanation

for each. With these, one can fine-tune a model to produce

solutions with reasoning.

Other log sources: The approach could be directly applied

to other types of logs or telemetry. For instance, one could take

2049

IDS (Intrusion Detection System) rules, firewall logs, or cloud

audit logs that have detection patterns and add reasoning to

them. The model architecture and training process remain the

same; only the content of the data changes. If the other source

uses different terminology, the advanced LLM used for

generating reasoning might need some prompting adjustment

to ensure it has the necessary context (for example, explaining

a Snort rule might require knowledge of network protocols).

But given a good explanation, the student model can learn it.

We expect that as long as the descriptions and queries follow

consistent patterns, a small model can pick them up after fine-

tuning.

Other query languages: Our method is not limited to

Lucene syntax. For example, many SIEMs use SPL (Splunk

Search Processing Language) or SQL-like query languages,

and cloud environments use KQL (Kusto Query Language) or

Azure Resource Graph queries. The concept of adding

reasoning and fine-tuning would similarly apply. One would

construct a dataset of description + SPL query for various

detections, generate reasoning for each (likely explaining the

SPL clauses), and fine-tune a model. The model would then be

able to output SPL queries with explanation. The main

adaptation needed would be to ensure the base model’s

tokenizer can handle the syntax of that language (most can, as

they usually see a lot of code-like text in pre-training).

Essentially, our chain-of-thought augmentation strategy could

democratize expertise across different platforms: for each

detection rule language, create an instruction-following model

that knows how to write rules and explain them.

Scaling to more rules: If one has a much larger repository

of detection rules (say hundreds or thousands, e.g., from an

open framework like Sigma or ATT&CK Navigator), the

approach should scale. The manual effort remains minimal,

since the heavy lift (explanation) is done by Claude-Sonnet 4

or a similar model. It would be interesting future work to see

if a model fine-tuned on a very large set of rules (covering

many tactics and techniques) could generalize to write

completely new rules given just an English description of an

attack method. Our current dataset is relatively small, so we

didn’t explore the extreme generalization regime.

Domain adaptation: If applying the method to a new

domain where a different base model might be more suitable

(for example, a model pre-trained on code might better handle

complex query languages), one can still use LoRA and chain-

of-thought. LoRA’s modular nature could even allow using the

same reasoning data to fine-tune multiple base models and

compare their performance (something we did not do due to

resource limits, but methodology allows it).

7. LIMITATIONS

There are a few limitations to acknowledge. First, our

model’s knowledge is bounded by what was in the training

examples and the reasoning. If a new attack technique emerges

that has no close analog in the training set, the model might

struggle to produce the correct query for it, or it might rely on

partially related logic that isn’t fully correct. Essentially, the

model might still guess in unfamiliar territory, and if its guess

is wrong, it will still produce a confident-sounding reasoning

(because it was trained to always explain). This could be

dangerous if taken at face value. For such cases, human

oversight remains critical. One way to mitigate this is to

continually update the training dataset with new rules (and

their explanations) as they become available, a form of

continuous learning.

Second, the chain-of-thought augmentation assumes the

advanced LLM’s output is always correct. If Claude Sonnet 4

made an error in an explanation and we failed to catch it, that

error would be taught to the model. In our work, we carefully

validated the reasoning, but as datasets scale, automated

validation of explanations becomes important (perhaps using

techniques like consistency checks or multiple LLM

opinions). This touches on the broader issue of evaluating

“knowledge fidelity” of explanations, an open research

question.

From a deployment perspective, not all analysts may want

a verbose explanation every time. We have made it optional,

but the user interface and integration need to be designed in a

way that the extra information is available when needed but

not intrusive. User studies could determine how analysts prefer

to interact with such a tool.

Other limitations include: (i) Model size (8B), which

constrains the capacity to capture rare or long-range patterns;

larger models may perform better on edge cases. (ii) Domain

dependence, as training was primarily focused on Windows

and ECS; adapting to cloud or network logs would require

additional data. (iii) Teacher-error propagation, whereby

imperfect rationales may transmit errors despite review. (iv)

Reasoning does not equate to truth, as chain-of-thought

explanations may appear plausible while being subtly

incorrect, thus necessitating human validation. (v) Evaluation

scope, since—even though expanded—the test set may not

fully encompass the entire tactic and technique space.

8. CONCLUSION

We presented a method for fine-tuning a distilled 8B-

parameter language model to generate SIEM detection queries

with accompanying chain-of-thought reasoning. By

augmenting a dataset of detection rules with Claude Sonnet 4

generated step-by-step explanations, we effectively

transferred expert reasoning into a small model using LoRA-

based fine-tuning. Our results show that the fine-tuned model

can produce accurate Lucene queries for described attack

scenarios, and importantly, can justify its decisions in natural

language. This approach addresses some of the reliability

issues observed when using out-of-the-box LLMs for security

tasks by specializing the model on high-quality domain data.

The incorporation of reasoning not only provides transparency

(useful for analyst trust and learning) but also appears to help

the model internalize the task better, echoing findings from

recent chain-of-thought distillation research.

In terms of impact on security operations, such a model

could become a copilot for detection engineers, suggesting

query clauses they might have missed, or accelerating the

development of new rules by providing a first draft of both the

query and the rationale. It could also serve as a training tool

for new analysts: by reading the model’s explanations, they

can learn why certain log fields are used to detect certain

techniques, effectively capturing some of the “tribal

knowledge” of seasoned experts in a documented form.

We emphasized reproducibility by outlining the data

transformation process, prompt designs, and providing

pseudocode for automation. We encourage the community to

build upon this work: for instance, exploring the use of

reinforcement learning from human feedback (RLHF) to fine-

2050

tune the model’s explanation style to what practitioners find

most useful, or extending the approach to multi-step detection

workflows (where the model might suggest a series of queries

or correlation logic). Another intriguing direction is to

investigate feedback loops: using the fine-tuned model to

generate candidate detections for entirely new threats and then

vetting them with human/LLM oversight – essentially

leveraging the model’s learned reasoning to propose how to

detect things beyond its training distribution.

In deployment, we will schedule periodic LoRA refreshes

(e.g., weekly/bi-weekly) fed by (a) newly authored/validated

rules, (b) post-incident detections, and (c) red-team exercises.

A gating harness (syntax check + regression set) ensures

updates never degrade canonical behaviors before promotion.

For RLHF, we will collect analyst feedback by ranking

multiple candidates per prompt and flagging errors

(missing/extra clauses). A small reward model trained on this

feedback will score (rationale, query) pairs; the generator will

be optimized with PPO/DPO to prefer succinct, correct queries

and faithful rationales. We will publish the feedback schema

and reward training recipe.

In conclusion, our study demonstrates that even a relatively

small LLM can be taught to perform a specialized, high-value

task in cybersecurity with a combination of transfer learning

techniques (distillation, LoRA) and carefully curated data

(explanations). This serves as an encouraging example of how

advanced AI can be used to empower smaller, deployable

models, a trend that may define practical AI deployment in

many domains, balancing performance with efficiency and

controllability. We hope this work will inspire further

innovations at the intersection of AI and security, and we are

optimistic about the improvements in threat detection

capabilities that such collaborations between human expertise

and machine intelligence can bring.

REFERENCES

[1] Microsoft. (2025). Kusto Query Language (KQL)

overview. https://learn.microsoft.com/en-

us/kusto/query/.

[2] Camburu, O.M., Rocktäschel, T., Lukasiewicz, T.,

Blunsom, P. (2018). e-SNLI: natural language inference

with natural language explanations. In Proceedings of the

32nd International Conference on Neural Information

Processing Systems, Montréal, Canada, pp. 9560-9572.

[3] Konstantinou, A., Kasimatis, D., Buchanan, W.J., Jan,

S.U., Ahmad, J., Politis, I., Pitropakis, N. (2025).

Leveraging LLMs for non-security experts in threat

hunting: Detecting living off the land techniques.

Machine Learning and Knowledge Extraction, 7(2): 31.

https://doi.org/10.3390/make7020031

[4] Naglieri, J. (2024). Scaling detection writing with LLMs.

https://www.detectionatscale.com/p/llm-detection-

writing.

[5] Hu, E.J., Shen, Y., Wallis, P., Allen-Zhu, Z., et al.

(2021). LoRA: Low-rank adaptation of large language

models. arXiv preprint arXiv:2106.09685.

https://doi.org/10.48550/arXiv.2106.09685

[6] Dettmers, T., Pagnoni, A., Holtzman, A., Zettlemoyer, L.

(2023). QLORA: Efficient finetuning of quantized

LLMs. In Proceedings of the 37th International

Conference on Neural Information Processing Systems,

New Orleans, LA, USA, pp. 10088-10115.

[7] DeepSeek-AI, Guo, D., Yang, D., Zhang, H., et al.

(2025). DeepSeek-R1: Incentivizing reasoning capability

in LLMs via reinforcement learning. arXiv preprint

arXiv:2501.12948.

https://doi.org/10.48550/arXiv.2501.12948

[8] Pathak, R., Patel, H., Singh, I., Rankey, M., Zhang, Y.

(2025). Deploy DeepSeek-R1 distilled Llama models

with Amazon Bedrock custom model import.

https://aws.amazon.com/blogs/machine-

learning/deploy-deepseek-r1-distilled-llama-models-

with-amazon-bedrock-custom-model-import/.

[9] Wei, J., Wang, X., Schuurmans, D., Bosma, M., et al.

(2022). Chain-of-thought prompting elicits reasoning in

large language models. In Proceedings of the 36th

International Conference on Neural Information

Processing Systems, New Orleans, LA, USA, pp. 24824-

24837.

[10] Li, L.H., Hessel, J., Yu, Y., Ren, X., Chang, K.W., Choi,

Y. (2023). Symbolic chain-of-thought distillation: Small

models can also “think” step-by-step. In Proceedings of

the 61st Annual Meeting of the Association for

Computational Linguistics (Volume 1: Long Papers),

Toronto, Canada, pp. 2665-2679.

https://doi.org/10.18653/v1/2023.acl-long.150

[11] Wang, Y., Kordi, Y., Mishra, S., Liu, A., Smith, N.A.,

Khashabi, D., Hajishirzi, H. (2023). Self-Instruct:

Aligning language models with self-generated

instructions. In Proceedings of the 61st Annual Meeting

of the Association for Computational Linguistics

(Volume 1: Long Papers), Toronto, Canada, pp. 13484-

13508. https://doi.org/10.18653/v1/2023.acl-long.754

[12] Yu, T., Zhang, R., Yang, K., Yasunaga, M., et al. (2018).

Spider: A large-scale human-labeled dataset for complex

and cross-domain semantic parsing and text-to-SQL task.

In Proceedings of the 2018 Conference on Empirical

Methods in Natural Language Processing, Brussels,

Belgium, pp. 3911-3921.

https://doi.org/10.18653/v1/D18-1425

[13] Anthropic. (2025). Claude 3.7 Sonnet [Model

card/overview].

https://www.anthropic.com/news/claude-37.

[14] Tang, X., Abdi, A.H., Eichelbaum, J., Das, M., et al.

(2024). Nl2kql: From natural language to kusto query.

arXiv preprint arXiv:2404.02933.

https://doi.org/10.48550/arXiv.2404.02933

[15] Splunk. (2024). Splunk AI Assistant for SPL.

https://docs.splunk.com/Documentation/AIAssistant.

[16] Puerto, H., Chubakov, T., Zhu, X., Madabushi, H.T.,

Gurevych, I. (2025). Fine-tuning on diverse reasoning

chains drives within-inference CoT refinement in LLMs.

In Proceedings of the 63rd Annual Meeting of the

Association for Computational Linguistics (Volume 1:

Long Papers), Vienna, Austria, pp. 3789-3808.

https://doi.org/10.18653/v1/2025.acl-long.191

[17] Magister, L.C., Mallinson, J., Adamek, J., Malmi, E.,

Severyn, A. (2023). Teaching small language models to

reason. In Proceedings of the 61st Annual Meeting of the

Association for Computational Linguistics (Volume 2:

Short Papers), Toronto, Canada, pp. 1773-1781.

https://doi.org/10.18653/v1/2023.acl-short.151

[18] SigmaHQ. Sigma: Generic signature format for SIEM

systems. https://github.com/SigmaHQ/sigma.

[19] Elastic. (2025). ECS reference: Event fields (v9).

https://www.elastic.co/docs/reference/ecs/ecs-event.

2051

[20] Microsoft Ignite. (2021). 4697(S): A service was

installed in the system. https://learn.microsoft.com/en-

us/previous-versions/windows/it-pro/windows-

10/security/threat-protection/auditing/event-4697.

[21] MITRE ATT&CK®. Data Source – Service: Windows

event IDs (incl. 7045).

https://attack.mitre.org/datasources/DS0019/.

[22] Stanford CRFM. (2023). Alpaca: A strong, replicable

instruction-following model.

https://crfm.stanford.edu/2023/03/13/alpaca.html.

2052

