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This work provides DepthFusion, a novel and advanced 2D-to-3D image reconstruction 

system grounded on state-of-the-art artificial intelligence methods. The proposed method 

guarantees computational efficiency by means of Generative Adversarial Networks 

(GANs), diffusion models, and monocular depth map estimation, so addressing major 

challenges in 3D reconstruction including precise depth estimate, effective handling of 

occluded regions, and maintaining geometric consistency across complex structures. In our 

framework, monocular depth map estimation is performed using a pre-trained model, which 

ensures robust and efficient initialization without requiring end-to-end training from 

scratch. Extensive study on well-known databases such as ShapeNet and KITTI shows how 

better our method is than current new concepts. Apart from major computing time savings, 

DepthFusion performs remarkably across widely utilized metrics including Peak Signal-to-

Noise Ratio (PSNR), Structural Similarity Index (SSIM), and Chamfer Distance (CD). 

These results indicate how well our model balances efficiency with quality. Moreover, the 

adaptability of the suggested approach qualifies it for a wide spectrum of pragmatic uses 

including augmented reality (AR), medical imaging, and autonomous driving. DepthFusion 

sets new benchmarks in artificial intelligence-driven image processing throughout various 

domains by enhancing accuracy and computational feasibility, therefore providing a 

revolutionary solution to 2D-to-3D reconstruction problems.  
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1. INTRODUCTION

From 2D images is of great importance in many computer 

vision applications such as virtual reality (VR), augmented 

reality (AR), autonomous driving, industrial design, and 

medical imaging [1]. Reconstructing 3D objects or scenes 

from limited 2D inputs provides more immersive experiences, 

improved spatial awareness, and detailed visualizations, all of 

which are crucial for decision-making in several domains. 

Traditional approaches such as multi-view stereo (MVS) 

and structure-from-motion (SfM) rely on multiple images 

captured from different viewpoints to generate a 3D model [2]. 

While effective, these methods are computationally expensive 

and impractical in many real-time applications. As a result, 

increasing attention is being given to systems capable of 

producing high-quality 3D reconstructions from a single 2D 

image. However, single-view reconstruction remains a highly 

challenging problem due to depth ambiguities, occlusions, and 

complex scene geometries [3]. 

Estimating depth from a single image is inherently ill-posed 

since multiple 3D scenes can yield the same 2D projection, 

which makes accurate reconstruction particularly challenging 

[3]. Occluded regions in the input image introduce further 

difficulty, as the system must infer missing or hidden details 

[4]. Additionally, ensuring geometric consistency across 

reconstructed surfaces is essential, especially in areas with 

sparse or uncertain depth information [5]. Finally, 

computational efficiency must be preserved without 

sacrificing quality to make 3D reconstruction viable for real-

time use cases such as autonomous driving and AR [6]. 

To address these challenges, this work introduces 

DepthFusion, a novel depth-guided 2D-to-3D reconstruction 

framework that combines Generative Adversarial Networks 

(GANs) with diffusion models. DepthFusion leverages a pre-

trained monocular depth estimation network to guide the 

diffusion process, ensuring accurate geometry and consistent 

reconstructions even in occluded regions. This integration 

allows our approach to significantly improve upon 

conventional methods while remaining computationally 

efficient. 

The main contributions of this work are summarized as 

follows: 
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1. We propose DepthFusion, a depth-guided framework that 

integrates GANs with diffusion models for single-view 2D-to-

3D reconstruction, ensuring geometric consistency across 

complex structures. 

2. By incorporating a pre-trained monocular depth 

estimation network, our method accurately reconstructs 

occluded areas and preserves fine details often lost in 

traditional techniques. 

3. Our framework achieves substantial reductions in 

computation time compared to conventional multi-view 

approaches, making it suitable for real-time applications such 

as AR/VR and autonomous driving. 

4. We extensively evaluate DepthFusion on benchmark 

datasets (ShapeNet, KITTI), where it demonstrates superior 

performance across widely adopted metrics (PSNR, SSIM, 

CD), establishing new benchmarks for single-view 3D 

reconstruction.  

 

 

2. RELATED WORK 

 

2.1 CNN-based depth estimation 

 

The Using CNN Leveraging its capacity to extract 

hierarchical features from 2D images, CNNs have been 

extensively used in depth estimation problems [7]. Published 

first [3], Depth Estimation from Monocular Images showed a 

multi-scale deep network capable of depth prediction from 

single images. Still more improvement of this approach made 

feasible by Laina et al. [8]. By means of deeper CNN models, 

one improves depth prediction accuracy. 

CNN-based methods, however, often struggle to manage 

demanding situations with occlusions, uneven geometries, or 

limited depth information. Therefore, depth maps generated by 

CNNs by themselves could not be enough for realistic 3D 

reconstructions in pragmatic applications [9]. 

 

2.2 Generative Adversarial Networks (GANs) for 3D 

model generation 

 

Define Generative Adversarial Networks (GANs) are two 

neural networks: a generator and a discriminator, first 

proposed by Cheng et al. [10]. Whereas the generator creates 

data samples—in this example, 3D models, the discriminator 

seeks to discriminate between produced and genuine samples. 

GANs have produced realistic 3D models for 3D object 

generating problems [11] using minimal input data. Looking 

at 3D GANs for voxel-based form synthesis has shown that 

GANs can efficiently create 3D objects from 2D photos [12].  

GANs can be computationally costly and typically ask for 

huge training datasets even if they generate visually consistent 

models. GANs can especially provide partial or geometrically 

erroneous models in obstructed or unclear areas [13].  

 

2.3 Diffusion models in image processing 

 

Diffusion models, which help to correct distortions and 

improve the quality of produced models have drawn attention 

in image processing iteratively improving images or structures 

by modest, progressive updates [14]. Researching the use of 

diffusion models to 3D form manufacturing found that 

diffusion processes can greatly increase the geometric 

accuracy of 3D models created by GANs [15]. Especially in 

regions with little or obstructed depth information, we guide 

the diffusion process with depth maps to increase the accuracy 

of 3D reconstructions 

 

2.4 Monocular depth estimation 

 

Monocular depth assessment has attracted much more 

attention recently in recent years. Methods have proven deep 

learning models to be quite precisely in predicting depth maps 

from single 2D images [16]. These depth maps provide 

required spatial information for direction of the 3D 

reconstruction process. The suggested uncertainty modeling 

into depth estimate was presented to boost the resilience of 

depth forecasts in demanding circumstances [17].  

By controlling the diffusion process using depth maps, 

thereby utilizing these breakthroughs, our method assures 

geometric consistency and accurate occlusion handling. 

 

2.5 Hybrid approaches in 2D-to-3D reconstruction 

 

CNN-based feature extraction, GAN-based generation, and 

depth estimation have been proposed as two-dimensional to 

three-dimensional hybrid approaches for reconstruction with 

promise. Using ordinal regression to improve depth estimation 

accuracy [18], a hybrid model combining depth estimate with 

GANs was developed to generate 3D reconstructions of 

outdoor landscapes.  

Our approach presents depth-guided diffusion to improve 

the first GAN-generated 3D model, so producing a more 

accurate and geometrically consistent reconstruction 

expanding these ideas. 

 

 

3. PROPOSED METHOD: DEPTHFUSION 

 

3.1 Architecture overview 

 

 
 

Figure 1. Architecture of DepthFusion 

 

As shown in Figure 1, this design ensures that, by means of 

depth information to enhance the accuracy and realism of the 

reconstructed models, the DepthFusion Architecture can 

generate high-quality 3D models from 2D images.  

Three main aspects define the DepthFusion architecture: 

1. One: We extract visual features from the input 2D image 
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using a deep CNN, therefore capturing major information 

like textures, edges, and object outlines.  

2. Second: Using GANs, an initial 3D model is produced 

using the obtained features. The generator creates a 

rudimentary 3D model while the discriminator assures 

that the generated model is realistic and geometritionally 

sensible.  

3. Third: A depth map produced from monocular depth 

estimate model predictions guides the diffusion process. 

This method guarantees proper reconstruction of blocked 

areas and correction of geometric distortions, so 

enhancing the basic 3D model. 

 

3.2 CNN-based feature extraction 

 

ResNet architecture [19] has been much valued for its 

capacity to acquire local and global visual information. We 

derive features with this CNN-Based Characteristic Extraction 

technique, as shown in Figures 2 and 3.  

From the 2D input image, ResNet generates hierarchical 

features that are subsequently forwarded to the GAN for 3D 

model building.  

 

 
 

Figure 2. The structure of a Convolutional Neural Network (CNN) for 3D reconstruction 

 

 
 

Figure 3. Architecture of a Residual Convolutional Neural Network (ResNet) with residual connections 

 

3.3 GAN-based initial 3D model generation 

 

From the obtained features, the GAN creates an initial 3D 

model using GAN-Based First Three-D Model Creation. This 

model catches the basic form and structure of the thing even 

though it may lack specifics in hidden or confusing parts. The 

discriminator evaluates the generated model's quality and 

responds to progressively improve the generator's 

performance over time, as shown in Figure 4. 

 

 
 

Figure 4. Process of reconstructing 3D shapes from a 2D 

sketch using a deep learning network based on GANs 

Nevertheless, the first 3D model requires more 

development; this is addressed by the diffusion approach since 

GANs cannot deal with depth ambiguities and obscurities. 

 

3.4 Depth-guided diffusion refinement 

 

 
 

Figure 5. Steps of depth-guided diffusion refinement 
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The coarse 3D model produced by the GAN often lacks fine 

structural details and struggles to reconstruct occluded 

regions. To overcome these limitations, we introduce a depth-

guided diffusion refinement stage as the core contribution of 

our framework. Similar hybrid approaches have shown 

promising results in combining adversarial learning with 

diffusion-based refinement for improving generation quality 

[11, 20]. 

At the architectural level, this stage is built upon a UNet-

based diffusion model, where the encoder progressively 

extracts multi-scale features from noisy latent representations, 

the decoder reconstructs cleaner outputs through upsampling, 

and skip connections ensure the preservation of fine-grained 

spatial details [21]. This design allows the model to balance 

global geometric structure with local feature precision, a 

property that is particularly relevant for high-fidelity 3D 

reconstruction tasks [22]. 

The diffusion process follows the paradigm of Denoising 

Diffusion Probabilistic Models (DDPM). During the forward 

process, Gaussian noise is gradually added over T = 1000 

iterations, while the reverse process learns to iteratively 

denoise using the UNet backbone [22]. To ensure both 

stability and reconstruction quality, a cosine-based noise 

schedule is employed, and a linear β-schedule is used during 

training with variance values ranging from 10⁻⁴ to 0.02 [20]. 

A crucial component of our approach is the integration of 

the monocular depth map as a guidance signal. At each 

denoising step, the depth information is injected via a cross-

attention mechanism, which enforces geometric consistency, 

reduces depth ambiguity, and enables accurate reconstruction 

of occluded or complex regions [23]. This conditioning 

significantly improves reconstruction quality compared to 

GAN-only approaches. 

By combining GAN-based coarse generation with depth-

guided diffusion refinement in Figure 5, DepthFusion achieves 

a robust trade-off between computational efficiency and 

reconstruction fidelity. This integration allows the framework 

to generate high-quality, geometrically consistent 3D models 

suitable for real-time applications such as autonomous driving, 

augmented/virtual reality, and medical imaging [22, 23]. 

 

3.5 Training procedure 

 

Training Course of Action Combining ground truth 3D 

model with supervised loss based on the depth map and 

adversarial loss from the GAN helps the model to be trained. 

Whereas the adversarial loss drives the generator to create 

realistic 3D models, the supervised loss ensures that the depth 

map correctly guides the diffusion process. Large datasets 

include ShapeNet [20] and KITTI [5] provide matching 2D 

images and ground truth 3D models, hence directing the 

training process. The GAN creates first 3D models and the 

diffusion process polishes them depending on the depth map; 

the training is iterative. 

 

 

4. EXPERIMENTAL SETUP 

 

For the experimental evaluation, we used two benchmark 

datasets: ShapeNet [24] for large-scale synthetic 3D objects 

and KITTI [5] for real-world autonomous driving scenes. 

Following standard practice, each dataset was divided into 

70% for training, 15% for validation, and 15% for testing. The 

validation set was used for hyperparameter tuning and 

preventing overfitting, while the final performance was 

reported on the held-out test set. 

To assess the generalization capability of the proposed 

DepthFusion framework, we also conducted cross-dataset 

validation: the model was trained on ShapeNet and tested on 

KITTI, and conversely trained on KITTI and tested on 

ShapeNet. This procedure highlights the robustness of our 

system when transferring from synthetic data to real-world 

scenarios. 

For depth estimation, we integrated a pre-trained network 

(MiDaS/DPT) [25], whose weights were frozen during all 

experiments. The generated depth maps were used as 

conditioning signals in the diffusion module. The GAN 

module was trained for 200 epochs using the Adam optimizer 

(learning rate = 1e-4, batch size = 16), with a combination of 

adversarial loss and reconstruction losses (L1 and Chamfer 

Distance). The diffusion module, based on a UNet architecture 

[21], followed the denoising diffusion probabilistic model 

(DDPM) framework [22], with 1000 denoising steps and a 

cosine noise schedule [20]. 

All experiments were implemented in PyTorch and 

executed on an NVIDIA RTX 3090 GPU (24GB). Final results 

were averaged over three independent runs to ensure statistical 

robustness. 

 

 

5. DISCUSSIVE RESULTS AND ANALYSIS 

 

5.1 Quantitative results 

 

Several state-of- the-art techniques, including CNN-only, 

GAN-only, and multi-view stereo approaches, were tested 

against DepthFusion. Table 1 contains the results. 

Table 1 shows that in both accuracy and computing 

efficiency DepthFusion beats the baseline approaches.  

Comparing it to the ground truth, it shows more accurate and 

perceptually similar reconstructions as seen by the highest 

PSNR and SSIM values.  Furthermore, the reduced Chamfer 

Distance shows that our approach generates geometrically 

coherent models; meanwhile, the shortened computing time 

qualifies for real-time uses. 

 

Table 1. DepthFusion superiority in reconstruction quality and efficiency over baselines 

 
Method PSNR SSIM Computation Time Complex Detail Handling Chamfer Distance (CD) 

CNN-based Methods 28.5 0.88 3 seconds Limited 0.20 

GAN-based Methods 30.2 0.91 5 seconds Moderate 0.15 

NeRF [26] 32.1 0.93 5–10 seconds Very Good 0.12 

Diffusion Models [22] 33.0 0.94 10+ seconds Very Good 0.10 

DepthFusion 33.4 0.94 4–6 seconds Excellent 0.08 
Note: The reported values of PSNR, SSIM, and CD correspond to averages computed across both ShapeNet and KITTI datasets. 
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Figure 6. Comparative performance of 2D-to-3D reconstruction methods 

 

This graph shows that DepthFusion is the best method for 

turning 2D images into 3D models in Figure 6. 

It gives the most accurate and realistic results (green and 

yellow bars), keeps fine details (red bar is lowest), and works 

faster than most advanced methods (grey bar is shorter than 

others). So, it’s both smart and efficient. 

 

Table 2. Comparative analysis of existing methods versus the proposed DepthFusion approach. 

 

Criteria 
CNN-Based 

Methods 

GAN-Based 

Methods 
NeRF [26] 

Denoising Diffusion 

Models 

[22] 

DepthFusion 

Basic Principle 
2D feature 

extraction 

3D object 

generation from 

noise 

3D view synthesis 

from limited 2D 

data 

Image generation by 

progressively refining 

noise 

Combination of GANs 

with diffusion and depth 

maps 

Use of Depth Maps 

No (limited to 

visual 

features) 

No (requires 

more training 

data) 

Yes, to improve 

geometric 

consistency 

No (refinement of 

geometric details without 

direct depth info) 

Yes, to guide generation 

and correct perspective 

Ability to Handle 

Complex Details 

Low, lacks 

spatial 

perception 

Medium, good 

but data-

dependent 

Very good, with 

improved geometric 

accuracy 

Very good, but 

computationally intensive 

Excellent, with diffusion 

improving detail accuracy 

Geometric 

Accuracy 
Low Medium Very high Very high 

Very high, with diffusion 

correction 

Generation Speed 
Fast (3-5 

seconds) 

Medium (5-10 

seconds) 

Medium (5-10 

seconds) 

Slow (computationally 

expensive) 
Medium (4-6 seconds) 

Training Data 

Requirements 

Low to 

medium 
Very high Moderate to high Moderate to high 

Moderate (due to 

diffusion corrections) 

Handling Multi-

view (Multiple 

Views) 

Limited Limited Excellent No 
Improved with guided 

diffusion 

Major Challenges Lack of depth 

Training 

difficulties 

(requires large 

datasets) 

Requires multiple 

views for optimal 

performance 

Computationally 

expensive 

Moderate computational 

cost, depends on 

managing geometric 

details 

 

Summary of Key Differences: 

1. Use of Depth Maps: Unlike many existing methods, 

DepthFusion integrates depth maps to guide and correct 

perspective errors, which enhances geometric consistency. 

2. Ability to Handle Complex Details: Thanks to the 

diffusion method, DepthFusion handles complex details better 

than traditional CNN or GAN methods. 

3. Generation Speed: The generation speed of DepthFusion 

is moderate, between CNN and GAN methods, while offering 

superior geometric accuracy. 

4. Handling Multi-view: DepthFusion improves multi-view 

handling compared to GANs and CNNs, thanks to guided 

diffusion. 

In summary, DepthFusion combines the strengths of GANs, 

diffusion techniques, and depth maps to provide better 

geometric accuracy and improved handling of details while 

maintaining reasonable computational speed, as shown in 

Table 2. 

 

5.2 Qualitative results 

 

The comparison of three-dimensional models generated by 

multiple methods reveals clear differences in quality. 

Especially in blocked areas, the CNN-only approach generates 

partial reconstructions clearly showing geometric aberrations. 

Conversely, the GAN-only method produces more realistic 

models but still has problems with artifacts and variances in 

complex areas. But DepthFusion provides amazing 3D models 

that accurately preserve delicate details and geometric 

consistency all around the object. The very accurate 

reconstruction of blocked areas is enhanced by the depth-

guided diffusion process, so generating a model quite nearly 
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matching with the ground reality, as shown in Figures 7 and 8.  

 

 
 

Figure 7. 3D model reconstruction using DepthFusion 

 

 
 

Figure 8. Comparison of 3D reconstruction results across 

different methods 

 

5.3 Discussion 

 

Talk about controlling Geometric Consistency and 

Conflicts DepthFusion shines in controlling blocked areas, 

when conventional approaches fail. Including depth maps into 

the diffusion process enables our approach to deduce missing 

information and very precisely replicate hidden areas of the 

object. This guarantee, even in tough situations, visually 

realistic and geometrically consistent final 3D model.  

Mathematical accuracy multi-view stereo approaches are 

useless in cases where only one image is accessible even if 

they attain tremendous accuracy since they depend on several 

images. While it significantly reduces processing time, 

DepthFusion provides either equivalent or better results with a 

single image. This makes our method very suitable for real-

time applications, including augmented reality or autonomous 

driving, where exact and speedy 3D reconstruction is critical.  

Our method performs on the KITTI and ShapeNet dataset, 

thereby generalizing to a range of challenging conditions. 

Depth-guided diffusion paired with GAN-based generation 

allows DepthFusion to control difficult outdoor environments 

with various illumination conditions, occlusions, and 

geometries. This flexibility makes our method fit for a wide 

range of useful scenarios. 

However, despite these strengths, DepthFusion also 

presents several limitations that should be acknowledged. 

First, the performance of the framework is highly dependent 

on the quality of the monocular depth maps: noisy or 

inaccurate depth estimates may negatively affect 

reconstruction fidelity. Second, DepthFusion struggles in 

highly dynamic scenes where moving objects and occlusions 

introduce additional ambiguities that are difficult to resolve. 

Third, although the method is computationally more efficient 

than traditional diffusion models, large-scale or real-time 

applications still demand considerable resources. Finally, the 

robustness of the approach decreases in the presence of high 

noise levels or incomplete input data, which suggests that 

future research should investigate noise-tolerant strategies and 

more efficient diffusion mechanisms for practical deployment. 

 

 

6. CONCLUSION 

 

At last, we presented in this work a novel approach for 2D 

to 3D picture reconstruction integrating GANs with a depth-

guided diffusion process: DepthFusion. Our approach solves 

important problems in 3D reconstruction by means of 

computation of overhead reduction, geometric consistency 

maintenance, and handling of occlusions. Particularly relevant 

for pragmatic applications including medical imaging, 

augmented reality, and autonomous driving. Experimental 

results on the ShapeNet and KITTI datasets reveal that, in 

terms of accuracy and computing economy, DepthFusion 

beats present methods.  

Investigating unsupervised or semi-supervised learning 

techniques to reduce the load on large labeled datasets and 

extending DepthFusion to dynamic scenes, where objects 

change over time, will be the main foci of research.  

Moreover, we wish to improve the deployment technique on 

edge devices so facilitating real-time 3D reconstruction on 

mobile and embedded systems. 
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