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This work provides DepthFusion, a novel and advanced 2D-to-3D image reconstruction
system grounded on state-of-the-art artificial intelligence methods. The proposed method
guarantees computational efficiency by means of Generative Adversarial Networks
(GANs), diffusion models, and monocular depth map estimation, so addressing major
challenges in 3D reconstruction including precise depth estimate, effective handling of
occluded regions, and maintaining geometric consistency across complex structures. In our
framework, monocular depth map estimation is performed using a pre-trained model, which
ensures robust and efficient initialization without requiring end-to-end training from
scratch. Extensive study on well-known databases such as ShapeNet and KITTI shows how
better our method is than current new concepts. Apart from major computing time savings,
DepthFusion performs remarkably across widely utilized metrics including Peak Signal-to-
Noise Ratio (PSNR), Structural Similarity Index (SSIM), and Chamfer Distance (CD).
These results indicate how well our model balances efficiency with quality. Moreover, the
adaptability of the suggested approach qualifies it for a wide spectrum of pragmatic uses
including augmented reality (AR), medical imaging, and autonomous driving. DepthFusion
sets new benchmarks in artificial intelligence-driven image processing throughout various
domains by enhancing accuracy and computational feasibility, therefore providing a
revolutionary solution to 2D-to-3D reconstruction problems.

1. INTRODUCTION

which makes accurate reconstruction particularly challenging
[3]. Occluded regions in the input image introduce further

From 2D images is of great importance in many computer
vision applications such as virtual reality (VR), augmented
reality (AR), autonomous driving, industrial design, and
medical imaging [1]. Reconstructing 3D objects or scenes
from limited 2D inputs provides more immersive experiences,
improved spatial awareness, and detailed visualizations, all of
which are crucial for decision-making in several domains.

Traditional approaches such as multi-view stereo (MVS)
and structure-from-motion (SfM) rely on multiple images
captured from different viewpoints to generate a 3D model [2].
While effective, these methods are computationally expensive
and impractical in many real-time applications. As a result,
increasing attention is being given to systems capable of
producing high-quality 3D reconstructions from a single 2D
image. However, single-view reconstruction remains a highly
challenging problem due to depth ambiguities, occlusions, and
complex scene geometries [3].

Estimating depth from a single image is inherently ill-posed
since multiple 3D scenes can yield the same 2D projection,
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difficulty, as the system must infer missing or hidden details
[4]. Additionally, ensuring geometric consistency across
reconstructed surfaces is essential, especially in areas with
sparse or uncertain depth information [5]. Finally,
computational efficiency must be preserved without
sacrificing quality to make 3D reconstruction viable for real-
time use cases such as autonomous driving and AR [6].

To address these challenges, this work introduces
DepthFusion, a novel depth-guided 2D-to-3D reconstruction
framework that combines Generative Adversarial Networks
(GANs) with diffusion models. DepthFusion leverages a pre-
trained monocular depth estimation network to guide the
diffusion process, ensuring accurate geometry and consistent
reconstructions even in occluded regions. This integration
allows our approach to significantly improve upon
conventional methods while remaining computationally
efficient.

The main contributions of this work are summarized as
follows:
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1. We propose DepthFusion, a depth-guided framework that
integrates GANs with diffusion models for single-view 2D-to-
3D reconstruction, ensuring geometric consistency across
complex structures.

2. By incorporating a pre-trained monocular depth
estimation network, our method accurately reconstructs
occluded areas and preserves fine details often lost in
traditional techniques.

3. Our framework achieves substantial reductions in
computation time compared to conventional multi-view
approaches, making it suitable for real-time applications such
as AR/VR and autonomous driving.

4. We extensively evaluate DepthFusion on benchmark
datasets (ShapeNet, KITTI), where it demonstrates superior
performance across widely adopted metrics (PSNR, SSIM,
CD), establishing new benchmarks for single-view 3D
reconstruction.

2. RELATED WORK
2.1 CNN-based depth estimation

The Using CNN Leveraging its capacity to extract
hierarchical features from 2D images, CNNs have been
extensively used in depth estimation problems [7]. Published
first [3], Depth Estimation from Monocular Images showed a
multi-scale deep network capable of depth prediction from
single images. Still more improvement of this approach made
feasible by Laina et al. [8]. By means of deeper CNN models,
one improves depth prediction accuracy.

CNN-based methods, however, often struggle to manage
demanding situations with occlusions, uneven geometries, or
limited depth information. Therefore, depth maps generated by
CNNs by themselves could not be enough for realistic 3D
reconstructions in pragmatic applications [9].

2.2 Generative Adversarial Networks (GANs) for 3D
model generation

Define Generative Adversarial Networks (GANs) are two
neural networks: a generator and a discriminator, first
proposed by Cheng et al. [10]. Whereas the generator creates
data samples—in this example, 3D models, the discriminator
seeks to discriminate between produced and genuine samples.
GANs have produced realistic 3D models for 3D object
generating problems [11] using minimal input data. Looking
at 3D GANs for voxel-based form synthesis has shown that
GANSs can efficiently create 3D objects from 2D photos [12].

GANs can be computationally costly and typically ask for
huge training datasets even if they generate visually consistent
models. GANs can especially provide partial or geometrically
erroneous models in obstructed or unclear areas [13].

2.3 Diffusion models in image processing

Diffusion models, which help to correct distortions and
improve the quality of produced models have drawn attention
in image processing iteratively improving images or structures
by modest, progressive updates [14]. Researching the use of
diffusion models to 3D form manufacturing found that
diffusion processes can greatly increase the geometric
accuracy of 3D models created by GANs [15]. Especially in
regions with little or obstructed depth information, we guide

2158

the diffusion process with depth maps to increase the accuracy
of 3D reconstructions

2.4 Monocular depth estimation

Monocular depth assessment has attracted much more
attention recently in recent years. Methods have proven deep
learning models to be quite precisely in predicting depth maps
from single 2D images [16]. These depth maps provide
required spatial information for direction of the 3D
reconstruction process. The suggested uncertainty modeling
into depth estimate was presented to boost the resilience of
depth forecasts in demanding circumstances [17].

By controlling the diffusion process using depth maps,
thereby utilizing these breakthroughs, our method assures
geometric consistency and accurate occlusion handling.

2.5 Hybrid approaches in 2D-to-3D reconstruction

CNN-based feature extraction, GAN-based generation, and
depth estimation have been proposed as two-dimensional to
three-dimensional hybrid approaches for reconstruction with
promise. Using ordinal regression to improve depth estimation
accuracy [18], a hybrid model combining depth estimate with
GANs was developed to generate 3D reconstructions of
outdoor landscapes.

Our approach presents depth-guided diffusion to improve
the first GAN-generated 3D model, so producing a more
accurate and geometrically consistent reconstruction
expanding these ideas.

3. PROPOSED METHOD: DEPTHFUSION

3.1 Architecture overview

Input 2D Image + Depht Map
l
Feature Extraction (CNN)
!
3D Model Generating by GAN
| 1
Diffusion for Detail Refinement
!
Geometric Refinement (Depth Map)
!
Optimisation (Loss Function)
!
Final 3D Model

Figure 1. Architecture of DepthFusion

As shown in Figure 1, this design ensures that, by means of
depth information to enhance the accuracy and realism of the
reconstructed models, the DepthFusion Architecture can
generate high-quality 3D models from 2D images.

Three main aspects define the DepthFusion architecture:

1. One: We extract visual features from the input 2D image



using a deep CNN, therefore capturing major information enhancing the basic 3D model.
like textures, edges, and object outlines.

2. Second: Using GANSs, an initial 3D model is produced 3.2 CNN-based feature extraction
using the obtained features. The generator creates a

rudimentary 3D model while the discriminator assures ResNet architecture [19] has been much valued for its
that the generated model is realistic and geometritionally capacity to acquire local and global visual information. We
sensible. derive features with this CNN-Based Characteristic Extraction
3. Third: A depth map produced from monocular depth technique, as shown in Figures 2 and 3.
estimate model predictions guides the diffusion process. From the 2D input image, ResNet generates hierarchical
This method guarantees proper reconstruction of blocked features that are subsequently forwarded to the GAN for 3D
areas and correction of geometric distortions, so model building.
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Figure 2. The structure of a Convolutional Neural Network (CNN) for 3D reconstruction
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Figure 3. Architecture of a Residual Convolutional Neural Network (ResNet) with residual connections

3.3 GAN-based initial 3D model generation sketch using a deep learning network based on GANs
Nevertheless, the first 3D model requires more
From the obtained features, the GAN creates an initial 3D development; this is addressed by the diffusion approach since

model using GAN-Based First Three-D Model Creation. This GANSs cannot deal with depth ambiguities and obscurities.
model catches the basic form and structure of the thing even

though it may lack specifics in hidden or confusing parts. The 3.4 Depth-guided diffusion refinement

discriminator evaluates the generated model's quality and
responds to progressively improve the generator's
performance over time, as shown in Figure 4.
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Figure 4. Process of reconstructing 3D shapes from a 2D Figure 5. Steps of depth-guided diffusion refinement
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The coarse 3D model produced by the GAN often lacks fine
structural details and struggles to reconstruct occluded
regions. To overcome these limitations, we introduce a depth-
guided diffusion refinement stage as the core contribution of
our framework. Similar hybrid approaches have shown
promising results in combining adversarial learning with
diffusion-based refinement for improving generation quality
[11,20].

At the architectural level, this stage is built upon a UNet-
based diffusion model, where the encoder progressively
extracts multi-scale features from noisy latent representations,
the decoder reconstructs cleaner outputs through upsampling,
and skip connections ensure the preservation of fine-grained
spatial details [21]. This design allows the model to balance
global geometric structure with local feature precision, a
property that is particularly relevant for high-fidelity 3D
reconstruction tasks [22].

The diffusion process follows the paradigm of Denoising
Diffusion Probabilistic Models (DDPM). During the forward
process, Gaussian noise is gradually added over T = 1000
iterations, while the reverse process learns to iteratively
denoise using the UNet backbone [22]. To ensure both
stability and reconstruction quality, a cosine-based noise
schedule is employed, and a linear B-schedule is used during
training with variance values ranging from 107* to 0.02 [20].

A crucial component of our approach is the integration of
the monocular depth map as a guidance signal. At each
denoising step, the depth information is injected via a cross-
attention mechanism, which enforces geometric consistency,
reduces depth ambiguity, and enables accurate reconstruction
of occluded or complex regions [23]. This conditioning
significantly improves reconstruction quality compared to
GAN-only approaches.

By combining GAN-based coarse generation with depth-
guided diffusion refinement in Figure 5, DepthFusion achieves
a robust trade-off between computational efficiency and
reconstruction fidelity. This integration allows the framework
to generate high-quality, geometrically consistent 3D models
suitable for real-time applications such as autonomous driving,
augmented/virtual reality, and medical imaging [22, 23].

3.5 Training procedure

Training Course of Action Combining ground truth 3D
model with supervised loss based on the depth map and
adversarial loss from the GAN helps the model to be trained.
Whereas the adversarial loss drives the generator to create
realistic 3D models, the supervised loss ensures that the depth
map correctly guides the diffusion process. Large datasets
include ShapeNet [20] and KITTI [5] provide matching 2D
images and ground truth 3D models, hence directing the
training process. The GAN creates first 3D models and the
diffusion process polishes them depending on the depth map;

the training is iterative.

4. EXPERIMENTAL SETUP

For the experimental evaluation, we used two benchmark
datasets: ShapeNet [24] for large-scale synthetic 3D objects
and KITTI [5] for real-world autonomous driving scenes.
Following standard practice, each dataset was divided into
70% for training, 15% for validation, and 15% for testing. The
validation set was used for hyperparameter tuning and
preventing overfitting, while the final performance was
reported on the held-out test set.

To assess the generalization capability of the proposed
DepthFusion framework, we also conducted cross-dataset
validation: the model was trained on ShapeNet and tested on
KITTI, and conversely trained on KITTI and tested on
ShapeNet. This procedure highlights the robustness of our
system when transferring from synthetic data to real-world
scenarios.

For depth estimation, we integrated a pre-trained network
(MiDaS/DPT) [25], whose weights were frozen during all
experiments. The generated depth maps were used as
conditioning signals in the diffusion module. The GAN
module was trained for 200 epochs using the Adam optimizer
(learning rate = 1e-4, batch size = 16), with a combination of
adversarial loss and reconstruction losses (L1 and Chamfer
Distance). The diffusion module, based on a UNet architecture
[21], followed the denoising diffusion probabilistic model
(DDPM) framework [22], with 1000 denoising steps and a
cosine noise schedule [20].

All experiments were implemented in PyTorch and
executed on an NVIDIA RTX 3090 GPU (24GB). Final results
were averaged over three independent runs to ensure statistical
robustness.

5. DISCUSSIVE RESULTS AND ANALYSIS
5.1 Quantitative results

Several state-of- the-art techniques, including CNN-only,
GAN-only, and multi-view stereo approaches, were tested
against DepthFusion. Table 1 contains the results.

Table 1 shows that in both accuracy and computing
efficiency DepthFusion beats the baseline approaches.
Comparing it to the ground truth, it shows more accurate and
perceptually similar reconstructions as seen by the highest
PSNR and SSIM values. Furthermore, the reduced Chamfer
Distance shows that our approach generates geometrically
coherent models; meanwhile, the shortened computing time
qualifies for real-time uses.

Table 1. DepthFusion superiority in reconstruction quality and efficiency over baselines

Method

PSNR SSIM  Computation Time

Complex Detail Handling Chamfer Distance (CD)

CNN-based Methods 28.5 0.88 3 seconds Limited 0.20
GAN-based Methods 30.2 0.91 5 seconds Moderate 0.15
NeRF [26] 32.1 0.93 5-10 seconds Very Good 0.12
Diffusion Models [22]  33.0 0.94 10+ seconds Very Good 0.10
DepthFusion 334 0.94 4-6 seconds Excellent 0.08

Note: The reported values of PSNR, SSIM, and CD correspond to averages computed across both ShapeNet and KITTI datasets.
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Comparison of Methods: PSNR, SSIM, CD, and Computation Time
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Figure 6. Comparative performance of 2D-to-3D reconstruction methods

This graph shows that DepthFusion is the best method for
turning 2D images into 3D models in Figure 6.
It gives the most accurate and realistic results (green and

yellow bars), keeps fine details (red bar is lowest), and works
faster than most advanced methods (grey bar is shorter than
others). So, it’s both smart and efficient.

Table 2. Comparative analysis of existing methods versus the proposed DepthFusion approach.

Denoising Diffusion

- CNN-Based GAN-Based .
Criteria Methods Methods NeRF [26] M[(;(;Tls DepthFusion
3D object 3D view synthesis Image generation by Combination of GANs
. — 2D feature . . . . o e
Basic Principle extraction generation from from limited 2D progressively refining with diffusion and depth
noise data noise maps

No (limited to

No (requires

Yes, to improve

No (refinement of

Yes, to guide generation

Use of Depth Maps visual more training geometric geometric details without and correct perspective
features) data) consistency direct depth info) persp
Ability to Handle Low, l.acks Medium, good . Very good, Wlth. Very good, but Excellent, with diffusion
. spatial but data- improved geometric g . . . . .
Complex Details . computationally intensive  improving detail accuracy
perception dependent accuracy
Geometric . . . Very high, with diffusion
Accuracy Low Medium Very high Very high correction
Generation Speed Fast (3-5 Medium (5-10 Medium (5-10 Slow (compqtatlonally Medium (4-6 seconds)
seconds) seconds) seconds) expensive)
Training Data Low to . . . Moderate (due to
Requirements medium Very high Moderate to high Moderate to high diffusion corrections)
Handling Multi- . .
view (Multiple Limited Limited Excellent No Improvgd Wl.th guided
i diffusion
Views)
Training . . Moderate computational
difficulties R.equlres multiple Computationally cost, depends on
Major Challenges  Lack of depth . views for optimal . . .
(requires large expensive managing geometric
performance >
datasets) details

Summary of Key Differences:

1. Use of Depth Maps: Unlike many existing methods,
DepthFusion integrates depth maps to guide and correct
perspective errors, which enhances geometric consistency.

2. Ability to Handle Complex Details: Thanks to the
diffusion method, DepthFusion handles complex details better
than traditional CNN or GAN methods.

3. Generation Speed: The generation speed of DepthFusion
is moderate, between CNN and GAN methods, while offering
superior geometric accuracy.

4. Handling Multi-view: DepthFusion improves multi-view
handling compared to GANs and CNNs, thanks to guided
diffusion.

In summary, DepthFusion combines the strengths of GANSs,
diffusion techniques, and depth maps to provide better
geometric accuracy and improved handling of details while
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maintaining reasonable computational speed, as shown in
Table 2.

5.2 Qualitative results

The comparison of three-dimensional models generated by
multiple methods reveals clear differences in quality.
Especially in blocked areas, the CNN-only approach generates
partial reconstructions clearly showing geometric aberrations.
Conversely, the GAN-only method produces more realistic
models but still has problems with artifacts and variances in
complex areas. But DepthFusion provides amazing 3D models
that accurately preserve delicate details and geometric
consistency all around the object. The very accurate
reconstruction of blocked areas is enhanced by the depth-
guided diffusion process, so generating a model quite nearly



matching with the ground reality, as shown in Figures 7 and 8.
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Figure 7. 3D model reconstruction using DepthFusion
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Figure 8. Comparison of 3D reconstruction results across
different methods

5.3 Discussion

Talk about controlling Geometric Consistency and
Conflicts DepthFusion shines in controlling blocked areas,
when conventional approaches fail. Including depth maps into
the diffusion process enables our approach to deduce missing
information and very precisely replicate hidden areas of the
object. This guarantee, even in tough situations, visually
realistic and geometrically consistent final 3D model.

Mathematical accuracy multi-view stereo approaches are
useless in cases where only one image is accessible even if
they attain tremendous accuracy since they depend on several
images. While it significantly reduces processing time,
DepthFusion provides either equivalent or better results with a
single image. This makes our method very suitable for real-
time applications, including augmented reality or autonomous
driving, where exact and speedy 3D reconstruction is critical.

Our method performs on the KITTI and ShapeNet dataset,
thereby generalizing to a range of challenging conditions.
Depth-guided diffusion paired with GAN-based generation
allows DepthFusion to control difficult outdoor environments
with various illumination conditions, occlusions, and
geometries. This flexibility makes our method fit for a wide
range of useful scenarios.

However, despite these strengths, DepthFusion also
presents several limitations that should be acknowledged.
First, the performance of the framework is highly dependent
on the quality of the monocular depth maps: noisy or
inaccurate depth estimates may negatively affect
reconstruction fidelity. Second, DepthFusion struggles in
highly dynamic scenes where moving objects and occlusions
introduce additional ambiguities that are difficult to resolve.
Third, although the method is computationally more efficient
than traditional diffusion models, large-scale or real-time
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applications still demand considerable resources. Finally, the
robustness of the approach decreases in the presence of high
noise levels or incomplete input data, which suggests that
future research should investigate noise-tolerant strategies and
more efficient diffusion mechanisms for practical deployment.

6. CONCLUSION

At last, we presented in this work a novel approach for 2D
to 3D picture reconstruction integrating GANs with a depth-
guided diffusion process: DepthFusion. Our approach solves
important problems in 3D reconstruction by means of
computation of overhead reduction, geometric consistency
maintenance, and handling of occlusions. Particularly relevant
for pragmatic applications including medical imaging,
augmented reality, and autonomous driving. Experimental
results on the ShapeNet and KITTI datasets reveal that, in
terms of accuracy and computing economy, DepthFusion
beats present methods.

Investigating unsupervised or semi-supervised learning
techniques to reduce the load on large labeled datasets and
extending DepthFusion to dynamic scenes, where objects
change over time, will be the main foci of research.

Moreover, we wish to improve the deployment technique on
edge devices so facilitating real-time 3D reconstruction on
mobile and embedded systems.
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