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This paper presents a source–filter compressive sensing (CS) technique for speech signal 

compression. The model adopts sparse representation methods to estimate both source and 

frequency envelop or filter components of speech. Traditional approaches such as Linear 

Predictive Coding (LPC), Mel-Frequency Cepstral Coefficients (MFCC), and Perceptual 

Linear Prediction (PLP) typically produce dense parameter vectors, which are not 

inherently sparse. In contrast, the method introduced here leverages CS and sparse coding 

to represent the source and filter parameters in a sparse format Two objectives are 

addressed: (i) estimating predictive coefficients in a sparse mode, and (ii) employing a data-

driven dictionary or sensing matrix, generated directly from the speech signal, as an 

alternative to generic bases such as the Discrete Cosine Transform (DCT) or Fast Fourier 

Transform (FFT). The implementation of the framework is done with the most widely used 

software languages Python and MATLAB. The performance of the proposed technique is 

evaluated against LPC-based parameter estimation and DCT-basis CS. Experiments are 

conducted on both voiced and unvoiced speech signals. Results show that the data-driven 

source–filter dictionary improves reconstruction quality compared to conventional DCT-

based CS. Sparse estimation is carried out using CVX and Least Absolute Shrinkage and 

Selection Operator (LASSO), and their outcomes are compared. System performance is 

assessed using quantitative metrics such as Mean Square Error (MSE) and Signal-to-Noise 

Ratio (SNR), showing consistent improvements in speech compression and reconstruction 

accuracy. 
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1. INTRODUCTION

Since the beginning of humankind, speech has been the 

main means of human-to-human interaction. With the 

development of life towards digital communication, signals 

have become increasingly complicated in terms of processing, 

storage, or even transmission. As a result, data becomes huge 

and hard to manage. Therefore, in recent years, many 

techniques and software have been proposed and to reduce the 

data size by either removing some unnecessary components 

(i.e., lossy compression) or lowering the bit rate or sample rate 

to a level that does not affect the speech signal (lossless 

compression) [1, 2]. 

Techniques like Wavelet transform [3], Huffman Coding 

[4], Lempel-Ziv-Welch (LZW) [5], Adaptive arithmetic 

Coding [6], Discrete cosine transform [7, 8], linear predictive 

coding (LPC) [9], and other techniques which are 

implemented in various software languages that are utilized in 

signal compression with different levels of compression ratio, 

complexity, information lost, and the clarity of signal 

reconstruction. 

In recent years, technique called compressed sensing (CS), 

a method exploits the sparsity of nearly all signals in nature 

[10]. Signals like speech, show their sparse nature especially 

with short period of time [11]. Thus, segmenting the signal 

before processing will be an essential step for proper 

compression. 

Nyquist’s theorem, that the CS technique try to defeat, state 

that for any digital signal the sampling rate needed to be equal 

to or greater than twice the highest frequency of the signal 

[12]. 

In contrast, the CS technique suggests that a signal can be 

represented or reconstructed from a smaller number of 

components or samples as its shows a level of sparsity in one 

domain, much fewer than the Nyquist sampling rate. Beating 

the Nyquist restriction is the key role of the CS model in terms 

of signal encoding and compression. 

Accordingly, CS has found interest in many applications, 

such as signal processing, medical imaging, wireless 

communications, image and video processing, audio and 

acoustics, and remote sensing. In the study [13], the 

compressed sensing technique, along with Long Short-Term 

Memory (LSTM) networks used for speech reconstruction 

enhancement in a noisy environment. The model suggests that 

the CS can enhance the system performance in terms of time 

complexity and prior knowledge of the signal. 

The technique proposed in the reference [14] adopted sparse 

Bayesian inference (SBI) and nonnegative matrix factorization 

(NMF) in two separate speech signals. It states that the spatial 

information can be better estimated with SBI compared with 
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traditional compressed sensing. Also, CS can be used in 

reconstructing the signal generated from the neural network by 

sparse latent inputs [15]. The authors in the reference [16] 

presented some main applications that used the CS in their 

proposed systems, such as Radar, sonar, video and audio 

processing, and other applications that find the CS is a very 

effective technique in terms of time consumption and signal 

size. 

Some papers [17, 18] used what it called data-driven 

sensing matrix or dictionary to estimate some features 

presented in signal data or to extract the signal or image buried 

under noisy data. 

In this paper, a model takes advantage from a compressed 

sensing perspective and sparse optimization is presented for 

speech signal compression. The proposed system will utilize 

the combination of the LPC method and sparse coding. 

The proposed model will deal with the speech signal as two 

parts, namely, the frequency envelope coefficients, which 

represent frequency resonance of the vocal tract (VT). The 

second part is the source signal (residual), which will be either 

a train of pulses (in the case of voiced speech) or a noise-like 

signal (in the case of unvoiced speech). The vocal tract 

envelope and its excitation signal (source) with converted to 

sparse vectors holding only effective parameters without 

reducing the signal clarity. In other words, need to compress 

both parts of the speech signal (i.e., the source excitation signal 

and filter or envelope) to the level that the system can 

reconstruct the original signal (as close as possible to the 

original signal) without distorting or deforming the original 

speech. The main challenge in this system is how to create or 

derive a data-driven dictionary matrix, which is used to 

represent the signal in compact form (create a vector of fewer 

measurement that represent the original form). The idea is how 

to choose the proper dictionary matrix (DM) that would be 

convenient with the speech data and it will be the key role of 

the highest sparsity and best compression ratio alike. In the 

sparse coding and compressed sensing-based methods, there 

have been many suggested dictionary matrices, such as DCT, 

FFT, and DWT matrices. As the signal and the system 

performance are highly sensitive to the selected dictionary 

matrix, which consequently affects the algorithms used to 

recover the original signal. The contribution in this paper is to 

suggest that the DM will be created from the signal itself, a 

step that plays a huge role in system performance. The 

effective columns of DM, called atoms, later will be the seed 

for speech signal reconstruction. 

2. COMPRESSIVE SENSING MODEL

As mentioned earlier, Compressive Sensing (CS) is an 

effective way in signal processing methodology that enables 

reliable reconstruction of sparse signals from a reduced 

number of observations or measurements, far below the 

Nyquist sampling rate. These sparse signals will hold the most 

effective components of the signal that will be used to store, 

transmit, or reconstruct the original signal. In other words, 

once the signal is compressed, there is no need to store or 

transmit the whole signal; just a few non-zero values (sparse 

vector) will be enough to rebuild the speech signal. 

Finding the sparse vector that is compatible with the signal 

measurements is not an easy task and needs a special kind of 

algorithms that promote sparsity (these algorithms are 

normally called convex algorithms used to find the sparse 

solution by L1_norm). These methods like; Basis pursuit (BP), 

Least Absolute Shrinkage and Selection Operator (LASSO), 

Orthogonal Matching Pursuit (OMP) and so many other 

methods are used to enforce sparsity in the solution vector and 

solve an underdetermined system (systems when the variables 

are more than the equations) [19]. An alternative to these 

approaches is the greedy algorithms (such as CVX and 

CoSaMP), which are easy and computationally efficient and 

use an iterative matching Pursuit for the L1_minimization 

problem. 

These algorithms estimate the original signal using a linear 

combination of fewer components of a learned dictionary 

(some vector of an over-complete dictionary called atoms) 

with a (K-sparse) signal or sparse code (a signal that has only 

K non-zero values). The algorithms do not emphasize that the 

atom vectors have to be orthogonal, which makes them 

flexible to adapt to the specific speech signal. 

Mathematically, if 𝑓 ∈ Rn is a compressible signal in some 

domain, say frequency domain for example, then it is possible 

to select a set of components (far fewer samples or 

measurements called sparse measurements) to represent the 

original signal without losing the important details [20].  

f s= (1) 

where, 𝑠  is The coefficient vector contains entries that are 

almost zeros or near zero, Ψ ∈  Rn×n is the transform basis 

matrix, or sparse basis (such as FFT, DWT, or DCT). 

In this case, 𝑠  will contain only K non-zero values (the 

signal will be called K-sparse signal), where K is far less than 

the actual length of the signal. 

For example, the Ψ matrix is the wavelet basis, Ψ= [ψ1 ψ2 

ψ3 … ψn], then the original signal 𝑓 can be represented as: 

0

( ) ( )
n

i i

i
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=
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In this context, the signal 𝑓  is expressed as a weighted 

combination of the coefficient vector and the basis functions. 

Let's say it in another way: if 𝑓 is a signal in the time domain 

(such as a speech signal), then there is another representation 

of the signal in another domain (the frequency domain) that 

describes the actual signal 𝑓 with many fewer components. In 

Eq. (1), 𝑓 and 𝑠 are both of the same length (𝑓, 𝑠 ∈ Rn), but the 

vector 𝑠 contains only K non-zero values, and the others are 

either zeros or nearly zero values. 

In this case, the original signal 𝑓 can be reconstructed using 

a few terms of the linear combination between the basis matrix 

Ψ and the sparse signal vector 𝑠. The only constraint is that the 

transform basis must be generic. In short, a generic transform 

basis should have two properties: first, incoherence (low 

correlation with the sparsifying basis); second, the Restricted 

Isometry Property (RIP), which preserves the distances 

between sparse vectors when projected [21]. 

In compressive sensing theory, an essential term that plays 

a vital role, especially in signal acquisition or representation 

that is the measurement matrix. 

The measurement matrix is the mathematical operator that 

transform the high-dimensional signal 𝑓  ∈ Rn into a lower-

dimensional collections of measurements y ∈ Rm where 𝑚 ≪
𝑛: 

y f= (3) 
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where, y is a vector holding values of random positions of the 

original signal, φ ∈  Rm×n is the measurement matrix [20].

In this formula, we project (correlate) each row of the 

measurement matrix (sensing function) with the signal 

samples to generate a single measurement represent one 

component. The vector components in 𝑦 later be used to 

reconstruct (estimate) the original signal 𝑓. 

The measurement matrix is theoretically chosen to satisfy 

the criteria of incoherence and/or the limited isometry 

property, hence ensuring the reliable reconstruction of sparse 

signals. 

To make things clear, in order to recover 𝑓  in classical 

signal processing, we require at least as many measurements 

as the signal dimension (𝑚 ≥ 𝑛). Sensing functions (the rows 

of the measurement matrix) 𝑚 must, however, be significantly 

smaller than the signal's dimension n in order to use the 

compressed sensing technique. Reconstruction or recovery 

can be accomplished with just these few observations if the 

signal has sparse characteristics in some domain. Therefore, 

when we enter formula (1) into the linear model (3), we obtain: 

𝑦 = 𝜑𝑓 =  𝜑 Ψ 𝑠 

Define 𝐴 = 𝜑 Ψ, so 

𝑦 = 𝐴 𝑠 (4) 

where, 𝐴 ∈ Rm×n is the dictionary matrix, set of basis vectors 

used to sparsify the signal. This formula states that the 

compreed version of the signal y can be expressed as a linear 

combination of sparse vector s  with only a few dictionary 

columns (atoms). 

The compressed sensing algorithms will be used to find the 

sparse vector 𝑠 under this constraint [20]; 

𝑠̂  = argmin
𝑠

||𝑠||1 𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 𝑦 =  𝐴 𝑠 (5) 

where ||.||1 is L1_norm and 𝑠̂ is the estimated sparse signal. 

Estimating 𝑠 will then used to recover the signal 𝑓 using (1). 

Adoping 1_norm minimization is for two reasons; first, it will 

ensure that the solution is sparse (which is opposite to the L2-

norm, which will not guarantee a sparse solution. Second is 

convex, namely, the solution can be found with less 

computational complexity. Moreover, the selection of the 

dictionary matrix 𝐴 is very crucial in compressed sensing it 

could skew the signal values to the level that will be unable to 

reconstruct the original signal [21]. One of the fundamental 

concepts of dictionary learning is that the dictionary must be 

derived from the incoming data. The fact is that the sparse 

technique needs to use a minimal number of dictionary 

components in order to represent the original signal. 

Previously, predetermined dictionaries such as Fourier or 

wavelet transformations were commonly used. In some 

circumstances, a dictionary gained from the original input data 

can considerably enhance the sparsity. 

3. SOURCE-FILTER SPARSE PROPOSED MODEL

In this section, the main steps of our proposed system will 

be presented. The system is composed of phases. The first 

phase will involve signal separation into two parts: the signal 

source (of the excitation signal or residual of the LPC method), 

and the filter (the frequency envelope or vocal tract filter). 

These two parts of the signal will pass into the second phase, 

which will involve estimating the sparse version (the 

compressed mode of the signal parts). The two phases, along 

with their main steps and equations, will be illustrated in the 

next subsections. 

3.1 Excitation and frequency envelop components of the 

speech signal 

Basically, one of the most practical representations of the 

speech signal is to present it as two crucial interacting 

components (ingredients) that convolve in time domain to 

produce a specific word sound. These are: the excitation signal 

produced either at vocal folds (in the case of voiced speech) or 

a noise-like signal produced at the vocal cavity (in the case of 

unvoiced speech). In both cases, the excitation signal will be 

shaped by the vocal tract organ (which will work as a set of 

band-pass filters around the resonance frequencies). Many 

methods are utilized to estimate (or extract) these components 

from speech. Methods like MFCC, PLP, LPC can estimate the 

vocal tract envelope coefficients and use them as filter 

parameters to extract the residual signal (the source signal). 

LPC technique is one of the best methods used in speech 

compression [22]. This approach states that the speech signal 

can be approximated as a linear combination of the past speech 

samples with a set of predictive coefficients (a set of 

parameters estimated by the LPC approach) [22]. 

     
0

, 1..
P

p

p

f i f i p e i i n
=

= − + = (6) 

where, 𝛼 is the prediction coefficients or weights, and 𝑒 is the 

error or residual signal (excitation signal in the case of voiced 

signal, or noise-like signal in the case of unvoiced signal). The 

task is to estimate the prediction coefficients (which represent 

the formant frequency envelope of vocal tract filter 

parameters) and the source signal (which represent the 

excitation of the speech signal). Many methods have been 

presented to estimate the production coefficients, such as 

Autocorrelation, Covariance, and Maximum Likelihood 

Estimation (MLE) methods [23].  

As we mentioned above, one of the successful signal 

recovery methods is the proper selection of the sensing matrix 

(A in this article). 

In the paper, we will take advantage of the original equation 

of speech (6) to build up the sensing matrix with columns 

equal to the filter coefficient length p (here 𝑝 = 𝑚 in formula 

(3)), and use it as a dictionary matrix for sparse signal coding. 

The matrix will build as follows: 

( )[1.. , 2.. 1 , .. ]A f n p n p p n= − − −  (7) 

Here, 𝐴 will represent the measurement matrix (with rows 

= 𝑝 and columns = (𝑛 − 𝑝). Each row is representing a sensing 

waveform estimated from the signal itself with one-values 

shifted of the signal to maintain the matrix width (size) and to 

cover all signal samples. These sensing waveforms represent 

the dictionary atoms and it will be used (in our proposed 

system) as the dictionary or compressive sensing basis for 

signal compression. 
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3.2 The sparsity of the excitation and the envelop 

parameters 

The proper dictionary or sensing matrix is the key role in 

compressed sensing and sparse representation of the signal. In 

our model, the dictionary matrix is formed from the signal 

itself. Compressive sensing technique aims to reconstruct the 

original signal f (or its sparse coefficients s) from the reduced 

measurements y by solving the optimization problem. In our 

proposed model, the optimization problem will utilize the 

frequency envelop coefficients 𝛼 and the source signal 𝑟. The 

convex optimization is as follow: 

argmin
𝛼,𝑟

||𝐴 𝛼 − 𝑓||1 +  𝛽||𝑟||1 + ⅄||𝛼||1 (8) 

subject to 

𝐴 𝛼 + 𝑟 = 𝑓 

where A and 𝛼 are as mentioned before, 𝑟 ∈ Rn in the source 

signal (residual), ⅄ is the regulator parameter (or scale) used 

to control the level between accuracy and sparsity of the 

prediction coefficients (or envelop coefficients), 𝛽 is the scale 

that regulate the sparsity in source signal 𝑟. The goal of this 

system equations is to estimate the frequency envelop 

coefficients vectors 𝛼 and source signal 𝑟 in their most sparse 

representation and using them to reconstruct the original 

speech signal with tolerated error. 

Actually, LPC and inverse filtering techniques can be used 

to estimate these two vectors, however, the resulting values are 

not sparse and the reconstructed signal needs full-valued 

parameters of both vectors. 

Many methods are used to solve this optimization. In our 

proposed system, we used CVX (as a software package within 

the MATLAB environment) and LASSO methods. In fact, 

LASSO results were nearly as same as CVX. However, CVX 

can estimate 𝛼 and 𝑟 vectors at the same time, LASSO on the 

other hand can only be used to estimate frequency envelope 

coefficients (𝛼), then an inverse filter is used then to estimate 

the sparse source signal (𝑟). 

Also, the system tested with different values of ⅄  and 𝛽 

parameters to examine how these parameters can affect the 

sparsity and the quality of signal reconstruction. 

For 𝛼 parameters, the number of coefficients will be set to 

be between 20-45 coefficients (by experiment this range is the 

best for the 𝛼 parameters). 

In terms of the source signal parameters r generated by this 

model is, most of their values are zeros or nearly zeros. Thus, 

a threshold is used to regulate the signal sparsity by setting low 

values (below the threshold) to zero. 

4. EXPERIMENTAL RESULTS

In this paper, we proposed a compressive sensing 

framework for speech signal compression, exploiting the 

useful diverse function and libraries for signal processing 

which are provided by Python and MATLAB to write the code 

of the system [24, 25]. The system utilized the LPC strategy to 

construct a special measurement or sensing matrix then use it 

to generate the source signal 𝑟  and the frequency envelop 

coefficients 𝛼 in a sparse mode. These vectors (𝑟 and α) are 

then used to recover the original speech signal. 

Here the dataset can be any speech signal. There is no 

restricted to some kind of data. The only need requirement is 

the signal has to be clean (unnoisy signal) since no noise 

removal is used in this system.  

This section will present the signal compression results of 

the sparse optimization of the α and 𝑟 vectors of the system 

equation (8). The sparse coding techniques CVX and LASSO 

will be used in our experiment and the results will compare 

with technique adopt DCT basis matrix in compressive 

sensing. The compression ratio and error measurements are 

used to examine the system performance with different values 

of sparsity levels. 

The system will utilize two types of speech signals: voiced 

and unvoiced. First, the speech signal is divided into fixed-

length frames, typically ranging from 20 to 30 milliseconds. 

This approach is used because speech within this time frame 

tends to be quasi-stationary, resulting in parameters that show 

minimal fluctuation. 

(a) 

(b) 

(c) 

Figure 1. Speech signal spectral and its envelope estimated 

using LPC method with p=30 (a), predictive coefficients (b), 

and the source signal (c) 

The optimization algorithms are utilized to find the sparsity 

values for the envelope parameters and the source signal (α 

and 𝑟). By the experiment, both algorithms (CVX, LASSO) 

will generate a sparse frequency envelope coefficients α and 

sparse source signal 𝑟 . For the source signal, a threshold 

parameter will be applied to set coefficients with small values 

to zero. The result is sparse vectors that represent the source 

and filter coefficients with fewer values than those produced 

by LPC method. 
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In our proposed system, no DCT or FFT transform has been 

used, so signal analysis will stay in the time domain. The goal 

of our system is to use the speech data to build up the 

measurement matrix, which in turn, will ensure that the L1-

Norm optimization will estimate the sparsest solution for the 

parameters. Basically, this idea benefits from the learning-

based approach, which exploits the real data in modeling and 

processing the signal [26].  

Using both terms of the speech signal (source and the 

predictive coefficients) will reduce the system complexity and 

reduce calculation time as well as will guaranteed that the 

produced source signal and prediction coefficients are 

correlated. In fact, CVX optimization method can estimate 

both vectors, however, LASSO method need an extra step 

(inverse filtering) to estimate the source signal.  

In order to evaluate the proposed system, the test materials 

are signal frames segmented from a speech signal with a 

sampling frequency 12500 Hz. Figure 1 gives an example of 

the spectra and frequency envelope for voiced speech, the 

predictive coefficients, and the source signal estimated using 

LPC and inverse filtering respectively. 

In the compression scenario, these two vectors (prediction 

coefficients and the source signal) would not effectively 

contribute to the data reduction since they both are fully-

valued vectors (dense format). 

To reconstruct the original signal, these two parts of the 

speech (the source signal the predictive coefficients) have to 

recombined together. 

An alternative technique is to use the sparse optimization 

algorithms to estimate these two vectors in sparse, which 

means that only few parameters (or significant) will need to 

reconstruct the original signal. 

Figure 2 shows the sparse prediction coefficients and the 

sparse source signal of the same voiced frame. These vectors 

are about only 40% sparse level (only 40% of its data are non-

zero values). 

(a) (b) 

Figure 2. Sparse predictive coefficients (a) and sparse source signal (b) 

In our algorithm, first, we need to build up the dictionary 

matrix out of the data of each frame. It will work like a key 

mark that characterizes each speech frame (speech segment) 

to build its own dictionary. Then, use the generated matrix 

(dictionary) to estimate the predictive coefficients and the 

source signal in sparse format. 

CVX algorithm is used to estimate the source and the 

envelope coefficients simultaneously. This mean that the 

envelope coefficients and the source signal will estimate at the 

same time and there is no need to use the inverse filter to 

estimate the source signal. 

As stated in formula (8) 𝛽 and ⅄ parameters use to regulate 

the sparsity level in source signal and predictive coefficients 

respectively. 

Figure 3 shows the histogram of the source signal with 

different values of 𝛽 .The figure shows the effect of two 𝛽 

regulators on the source signals. From the hierograms we can 

notes that the sparsity will increase by decrease the value of 

the regulator 𝛽 and vice versa. 

(a) (b) 

Figure 3. The Histogram of the sparse source signal of different values of β regulator. β = 0.05 (a), β = 5 (b) 
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The utility of the proposed system in Eq. (8) with different 

regulators quantities is evaluated in a voiced and unvoiced 

speech signal compression task. We compare the performance 

of our proposed system using CVX and LASSO techniques in 

estimating the sparse solution of the source and predictive 

coefficients components with the DCT basis compressive 

sensing compression of the speech signal. 

Figures 4(a)-(c) summarize the results of the comparison 

between the original speech signal with the reconstructed 

signal of different values of sparsity regulators 𝛽 and ⅄.  

Figure 4(a) shows the original and reconstructed voiced 

speech singles for β=5, ⅄=0.5 with source sparsity level=42% 

of the original length. The MSE error between the original 

signal and the reconstructed signal is 2.8817e-04, and 

SNR=16.8863. 

Figure 4(b) shows the signals with β=0.5, ⅄=0.1 and 

sparsity level=73%. The MSE= 4.9655e-05, and SNR= 

24.5231. 

Figure 4(c) summarizes the accuracy of the original and the 

reconstructed unvoiced speech signal. The regulation 

parameters are as follow; β=5, ⅄=0.01, the sparsity level= 

45%. MES= 4.3556e-08, SNR= 14.0132. 

Figure 4(d) shows the accuracy of the signals (unvoiced) 

with β=2, ⅄=0.5, the sparsity level= 64%. MES= 3.8661e-09, 

SNR= 24.5310. 

(a) (b) 

(c) (d) 

Figure 4. The original signal with its reconstructive counterpart of voiced and unvoiced speech 

(a) (b) 

Figure 5. Sparsity level vs. the MSE error measurement between the original and estimated signals, voiced speech (a), 

unvoiced speech 

As mentioned before, we can change the sparsity level by 

changing the values of the regulator parameters β  and ⅄ , 

however, this can affect the compression ratio, error 

measurement and the reconstruction accuracy. 

Figure 5 shows the MSE error between the original and the 

estimated signals of different levels of source signal sparsity 
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with fixed filter coefficients p = 30. It is clear that the MSE 

will decrease as the sparsity level increases (increasing the 

non-zero or significant values). We always need to take care 

of the sparsity level and compression ratio. 

Other optimization technique like LASSO can also be used 

to estimate the sparse vectors of the source-filter model, but it 

needs more than one round for sparse components estimation. 

The first round will be to estimate the sparse filter or envelope 

coefficients. Then, the second step, is to use the inverse filter 

to estimate the source signal. LASSO cannot estimate the two 

vectors simultaneously as the CVX does. Figure 6 shows the 

original and the estimated signals using LASSO technique. To 

examine to what extent the proposed system produces better 

performance in terms of compression ratio and reconstruction 

accuracy, Figure 7 illustrates the results of speech signal 

compression and reconstruction using compressive sensing 

with DCT basis dictionary. 

Figure 7(a) shows the original and reconstructed voiced 

speech singles with signal sparsity level=45% (y length of 

system Eq. (2), here p=200 and n=450 (the signal frame 

length). The MSE error between the original signal and the 

reconstructed signal is 5.3840e-04, and SNR= 14.1717.  

Figure 7(b) summarizes the results of the unvoiced speech, 

the sparsity level= 45%. MSE= 2.3170e-07, SNR= 10.7110. 

(a) (b) 

Figure 6. The original and the estimated signal out of sparse source and envelope coefficients using LASSO technique 

(a) (b) 

Figure 7. Compressive sensing using DCT basis dictionary for voiced speech (a) and unvoiced speech (b) 

The experimental results presented in Figures 4 and 6 

demonstrate the effectiveness of employing a data-driven 

dictionary matrix in compressive sensing for speech 

compression. Compared with the traditional DCT-basis 

approach (Figure 7), the proposed system invariably achieves 

lower reconstruction error and higher signal quality. A key 

factor in this improvement is the use of sparse source signals 

together with sparse envelope coefficients, which enable more 

accurate recovery of both excitation and spectral envelope 

characteristics of speech. By jointly exploiting these sparse 

representations, the system produces a more faithful 

reconstruction of both voiced and unvoiced segments. This 

advantage is reflected in the quantitative measures: The Mean 

Square Error (MSE) is reduced, while the Signal-To-Noise 

Ratio (SNR) is improved relative to the DCT-based CS 

system. These results confirm that adapting the dictionary to 

the statistical structure of the speech signal-while leveraging 

sparsity in both source and filter domains-yields more efficient 

compression and reconstruction, validating the central premise 

of our approach. 

5. CONCLUSION

This paper has presented a new encoding technique that rely 

on the sparse optimization methods. The technique was able to 

estimate the elements of the two parts that model the speech 

signal, namely, the source and filter in a sparse form. One of 

the main challenges in sparsity techniques is the selection of 

the proper dictionary matrix. In this system, the matrix was 

built from the signal itself. This makes the system converge 

easily to the best sparse solution (the sparsest solution). The 
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system is tested with two different types of speech, voiced and 

unvoiced. Results show that the unvoiced signal can be 

reconstructed with highly sparse source and filter coefficients. 

This is because the unvoiced signal holds less energy, 

especially at the low-frequency part of the signal. Also, the 

experiment shows that the level of sparsity (the amount of zero 

values present in the signal) can increase the compression 

ratio, however, it can affect the reconstruction accuracy since 

it will ignore a lot of important information presented in the 

speech signal. So, it is always very important to follow a trade-

off between the accuracy and the sparsity level. Finally, there 

are many methods presented for sparse relaxation 

(optimization). However, some need more than one round to 

estimate both signal parts, such as LASSO. Others need more 

steps to converge, such as OMP. CVX, on the other hand, 

Python and MATLAB are the best choice in coding the 

system, it is easy to apply (a MATLAB and Python package is 

available for free), and it usually converts the problem to 

standard form and always converges to the sparsest solution. 

Also, it returns the sparse solution of the source signal and 

filter (or frequency envelope) coefficients at once. 
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