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This paper presents a source—filter compressive sensing (CS) technique for speech signal
compression. The model adopts sparse representation methods to estimate both source and
frequency envelop or filter components of speech. Traditional approaches such as Linear
Predictive Coding (LPC), Mel-Frequency Cepstral Coefficients (MFCC), and Perceptual
Linear Prediction (PLP) typically produce dense parameter vectors, which are not
inherently sparse. In contrast, the method introduced here leverages CS and sparse coding
to represent the source and filter parameters in a sparse format Two objectives are
addressed: (i) estimating predictive coefficients in a sparse mode, and (ii) employing a data-
driven dictionary or sensing matrix, generated directly from the speech signal, as an
alternative to generic bases such as the Discrete Cosine Transform (DCT) or Fast Fourier
Transform (FFT). The implementation of the framework is done with the most widely used
software languages Python and MATLAB. The performance of the proposed technique is
evaluated against LPC-based parameter estimation and DCT-basis CS. Experiments are
conducted on both voiced and unvoiced speech signals. Results show that the data-driven
source—filter dictionary improves reconstruction quality compared to conventional DCT-
based CS. Sparse estimation is carried out using CVX and Least Absolute Shrinkage and
Selection Operator (LASSO), and their outcomes are compared. System performance is
assessed using quantitative metrics such as Mean Square Error (MSE) and Signal-to-Noise
Ratio (SNR), showing consistent improvements in speech compression and reconstruction

accuracy.

1. INTRODUCTION

Since the beginning of humankind, speech has been the
main means of human-to-human interaction. With the
development of life towards digital communication, signals
have become increasingly complicated in terms of processing,
storage, or even transmission. As a result, data becomes huge
and hard to manage. Therefore, in recent years, many
techniques and software have been proposed and to reduce the
data size by either removing some unnecessary components
(i.e., lossy compression) or lowering the bit rate or sample rate
to a level that does not affect the speech signal (lossless
compression) [1, 2].

Techniques like Wavelet transform [3], Huffman Coding
[4], Lempel-Ziv-Welch (LZW) [5], Adaptive arithmetic
Coding [6], Discrete cosine transform [7, 8], linear predictive
coding (LPC) [9], and other techniques which are
implemented in various software languages that are utilized in
signal compression with different levels of compression ratio,
complexity, information lost, and the clarity of signal
reconstruction.

In recent years, technique called compressed sensing (CS),
a method exploits the sparsity of nearly all signals in nature
[10]. Signals like speech, show their sparse nature especially
with short period of time [11]. Thus, segmenting the signal
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before processing will be an essential step for proper
compression.

Nyquist’s theorem, that the CS technique try to defeat, state
that for any digital signal the sampling rate needed to be equal
to or greater than twice the highest frequency of the signal
[12].

In contrast, the CS technique suggests that a signal can be
represented or reconstructed from a smaller number of
components or samples as its shows a level of sparsity in one
domain, much fewer than the Nyquist sampling rate. Beating
the Nyquist restriction is the key role of the CS model in terms
of signal encoding and compression.

Accordingly, CS has found interest in many applications,
such as signal processing, medical imaging, wireless
communications, image and video processing, audio and
acoustics, and remote sensing. In the study [13], the
compressed sensing technique, along with Long Short-Term
Memory (LSTM) networks used for speech reconstruction
enhancement in a noisy environment. The model suggests that
the CS can enhance the system performance in terms of time
complexity and prior knowledge of the signal.

The technique proposed in the reference [14] adopted sparse
Bayesian inference (SBI) and nonnegative matrix factorization
(NMF) in two separate speech signals. It states that the spatial
information can be better estimated with SBI compared with
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traditional compressed sensing. Also, CS can be used in
reconstructing the signal generated from the neural network by
sparse latent inputs [15]. The authors in the reference [16]
presented some main applications that used the CS in their
proposed systems, such as Radar, sonar, video and audio
processing, and other applications that find the CS is a very
effective technique in terms of time consumption and signal
size.

Some papers [17, 18] used what it called data-driven
sensing matrix or dictionary to estimate some features
presented in signal data or to extract the signal or image buried
under noisy data.

In this paper, a model takes advantage from a compressed
sensing perspective and sparse optimization is presented for
speech signal compression. The proposed system will utilize
the combination of the LPC method and sparse coding.

The proposed model will deal with the speech signal as two
parts, namely, the frequency envelope coefficients, which
represent frequency resonance of the vocal tract (VT). The
second part is the source signal (residual), which will be either
a train of pulses (in the case of voiced speech) or a noise-like
signal (in the case of unvoiced speech). The vocal tract
envelope and its excitation signal (source) with converted to
sparse vectors holding only effective parameters without
reducing the signal clarity. In other words, need to compress
both parts of the speech signal (i.e., the source excitation signal
and filter or envelope) to the level that the system can
reconstruct the original signal (as close as possible to the
original signal) without distorting or deforming the original
speech. The main challenge in this system is how to create or
derive a data-driven dictionary matrix, which is used to
represent the signal in compact form (create a vector of fewer
measurement that represent the original form). The idea is how
to choose the proper dictionary matrix (DM) that would be
convenient with the speech data and it will be the key role of
the highest sparsity and best compression ratio alike. In the
sparse coding and compressed sensing-based methods, there
have been many suggested dictionary matrices, such as DCT,
FFT, and DWT matrices. As the signal and the system
performance are highly sensitive to the selected dictionary
matrix, which consequently affects the algorithms used to
recover the original signal. The contribution in this paper is to
suggest that the DM will be created from the signal itself, a
step that plays a huge role in system performance. The
effective columns of DM, called atoms, later will be the seed
for speech signal reconstruction.

2. COMPRESSIVE SENSING MODEL

As mentioned earlier, Compressive Sensing (CS) is an
effective way in signal processing methodology that enables
reliable reconstruction of sparse signals from a reduced
number of observations or measurements, far below the
Nyquist sampling rate. These sparse signals will hold the most
effective components of the signal that will be used to store,
transmit, or reconstruct the original signal. In other words,
once the signal is compressed, there is no need to store or
transmit the whole signal; just a few non-zero values (sparse
vector) will be enough to rebuild the speech signal.

Finding the sparse vector that is compatible with the signal
measurements is not an easy task and needs a special kind of
algorithms that promote sparsity (these algorithms are
normally called convex algorithms used to find the sparse
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solution by L1 norm). These methods like; Basis pursuit (BP),
Least Absolute Shrinkage and Selection Operator (LASSO),
Orthogonal Matching Pursuit (OMP) and so many other
methods are used to enforce sparsity in the solution vector and
solve an underdetermined system (systems when the variables
are more than the equations) [19]. An alternative to these
approaches is the greedy algorithms (such as CVX and
CoSaMP), which are easy and computationally efficient and
use an iterative matching Pursuit for the L1 minimization
problem.

These algorithms estimate the original signal using a linear
combination of fewer components of a learned dictionary
(some vector of an over-complete dictionary called atoms)
with a (K-sparse) signal or sparse code (a signal that has only
K non-zero values). The algorithms do not emphasize that the
atom vectors have to be orthogonal, which makes them
flexible to adapt to the specific speech signal.

Mathematically, if f € R" is a compressible signal in some
domain, say frequency domain for example, then it is possible
to select a set of components (far fewer samples or
measurements called sparse measurements) to represent the
original signal without losing the important details [20].

f=%¥s (1
where, s is The coefficient vector contains entries that are
almost zeros or near zero, ¥ € R™ is the transform basis
matrix, or sparse basis (such as FFT, DWT, or DCT).

In this case, s will contain only K non-zero values (the
signal will be called K-sparse signal), where K is far less than
the actual length of the signal.

For example, the ¥ matrix is the wavelet basis, Y= [y y»
V3 ... Wa], then the original signal f can be represented as:

f(0= 500 @)

In this context, the signal f is expressed as a weighted
combination of the coefficient vector and the basis functions.

Let's say it in another way: if f is a signal in the time domain
(such as a speech signal), then there is another representation
of the signal in another domain (the frequency domain) that
describes the actual signal f with many fewer components. In
Eq. (1), f and s are both of the same length (f, s € R"), but the
vector s contains only K non-zero values, and the others are
either zeros or nearly zero values.

In this case, the original signal f can be reconstructed using
a few terms of the linear combination between the basis matrix
¥ and the sparse signal vector s. The only constraint is that the
transform basis must be generic. In short, a generic transform
basis should have two properties: first, incoherence (low
correlation with the sparsifying basis); second, the Restricted
Isometry Property (RIP), which preserves the distances
between sparse vectors when projected [21].

In compressive sensing theory, an essential term that plays
a vital role, especially in signal acquisition or representation
that is the measurement matrix.

The measurement matrix is the mathematical operator that
transform the high-dimensional signal f € R" into a lower-
dimensional collections of measurements y € R™ where m <«
n:

y=of 3)



where, y is a vector holding values of random positions of the
original signal, @ € R™™ is the measurement matrix [20].

In this formula, we project (correlate) each row of the
measurement matrix (sensing function) with the signal
samples to generate a single measurement represent one
component. The vector components in y later be used to
reconstruct (estimate) the original signal f.

The measurement matrix is theoretically chosen to satisfy
the criteria of incoherence and/or the limited isometry
property, hence ensuring the reliable reconstruction of sparse
signals.

To make things clear, in order to recover f in classical
signal processing, we require at least as many measurements
as the signal dimension (m = n). Sensing functions (the rows
of the measurement matrix) m must, however, be significantly
smaller than the signal's dimension n in order to use the
compressed sensing technique. Reconstruction or recovery
can be accomplished with just these few observations if the
signal has sparse characteristics in some domain. Therefore,
when we enter formula (1) into the linear model (3), we obtain:

y=¢f = ¢W¥s
Define A = ¢ ¥, so

y=As @)
where, A € R™™ is the dictionary matrix, set of basis vectors
used to sparsify the signal. This formula states that the
compreed version of the signal y can be expressed as a linear
combination of sparse vector s with only a few dictionary
columns (atoms).

The compressed sensing algorithms will be used to find the
sparse vector s under this constraint [20];

§ = argmin ||s||; subjecttoy = As
S

)

where ||.||i is Li_norm and § is the estimated sparse signal.
Estimating s will then used to recover the signal f using (1).
Adoping 1 _norm minimization is for two reasons; first, it will
ensure that the solution is sparse (which is opposite to the L.
norm, which will not guarantee a sparse solution. Second is
convex, namely, the solution can be found with less
computational complexity. Moreover, the selection of the
dictionary matrix A is very crucial in compressed sensing it
could skew the signal values to the level that will be unable to
reconstruct the original signal [21]. One of the fundamental
concepts of dictionary learning is that the dictionary must be
derived from the incoming data. The fact is that the sparse
technique needs to use a minimal number of dictionary
components in order to represent the original signal.
Previously, predetermined dictionaries such as Fourier or
wavelet transformations were commonly used. In some
circumstances, a dictionary gained from the original input data
can considerably enhance the sparsity.

3. SOURCE-FILTER SPARSE PROPOSED MODEL

In this section, the main steps of our proposed system will
be presented. The system is composed of phases. The first
phase will involve signal separation into two parts: the signal
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source (of the excitation signal or residual of the LPC method),
and the filter (the frequency envelope or vocal tract filter).
These two parts of the signal will pass into the second phase,
which will involve estimating the sparse version (the
compressed mode of the signal parts). The two phases, along
with their main steps and equations, will be illustrated in the
next subsections.

3.1 Excitation and frequency envelop components of the
speech signal

Basically, one of the most practical representations of the
speech signal is to present it as two crucial interacting
components (ingredients) that convolve in time domain to
produce a specific word sound. These are: the excitation signal
produced either at vocal folds (in the case of voiced speech) or
a noise-like signal produced at the vocal cavity (in the case of
unvoiced speech). In both cases, the excitation signal will be
shaped by the vocal tract organ (which will work as a set of
band-pass filters around the resonance frequencies). Many
methods are utilized to estimate (or extract) these components
from speech. Methods like MFCC, PLP, LPC can estimate the
vocal tract envelope coefficients and use them as filter
parameters to extract the residual signal (the source signal).

LPC technique is one of the best methods used in speech
compression [22]. This approach states that the speech signal
can be approximated as a linear combination of the past speech
samples with a set of predictive coefficients (a set of
parameters estimated by the LPC approach) [22].

f[i]:gap ti- pl+ei], i=1.n ©

where, a is the prediction coefficients or weights, and e is the
error or residual signal (excitation signal in the case of voiced
signal, or noise-like signal in the case of unvoiced signal). The
task is to estimate the prediction coefficients (which represent
the formant frequency envelope of vocal tract filter
parameters) and the source signal (which represent the
excitation of the speech signal). Many methods have been
presented to estimate the production coefficients, such as
Autocorrelation, Covariance, and Maximum Likelihood
Estimation (MLE) methods [23].

As we mentioned above, one of the successful signal
recovery methods is the proper selection of the sensing matrix
(A in this article).

In the paper, we will take advantage of the original equation
of speech (6) to build up the sensing matrix with columns
equal to the filter coefficient length p (here p = m in formula
(3)), and use it as a dictionary matrix for sparse signal coding.
The matrix will build as follows:

A= f[l.n—p, 2.n—(p-1)...,p.n] (7)

Here, A will represent the measurement matrix (with rows
= p and columns = (n — p). Each row is representing a sensing
waveform estimated from the signal itself with one-values
shifted of the signal to maintain the matrix width (size) and to
cover all signal samples. These sensing waveforms represent
the dictionary atoms and it will be used (in our proposed
system) as the dictionary or compressive sensing basis for
signal compression.



3.2 The sparsity of the excitation and the envelop
parameters

The proper dictionary or sensing matrix is the key role in
compressed sensing and sparse representation of the signal. In
our model, the dictionary matrix is formed from the signal
itself. Compressive sensing technique aims to reconstruct the
original signal f (or its sparse coefficients s) from the reduced
measurements y by solving the optimization problem. In our
proposed model, the optimization problem will utilize the
frequency envelop coefficients a and the source signal r. The
convex optimization is as follow:

argmin ||A a — f||, + BlIrllL + Allall; (8)
a,r

subject to
Aa+r=f

where A and a are as mentioned before, r € R in the source
signal (residual), A is the regulator parameter (or scale) used
to control the level between accuracy and sparsity of the
prediction coefficients (or envelop coefficients), f is the scale
that regulate the sparsity in source signal r. The goal of this
system equations is to estimate the frequency envelop
coefficients vectors a and source signal r in their most sparse
representation and using them to reconstruct the original
speech signal with tolerated error.

Actually, LPC and inverse filtering techniques can be used
to estimate these two vectors, however, the resulting values are
not sparse and the reconstructed signal needs full-valued
parameters of both vectors.

Many methods are used to solve this optimization. In our
proposed system, we used CVX (as a software package within
the MATLAB environment) and LASSO methods. In fact,
LASSO results were nearly as same as CVX. However, CVX
can estimate « and r vectors at the same time, LASSO on the
other hand can only be used to estimate frequency envelope
coefficients (@), then an inverse filter is used then to estimate
the sparse source signal (r').

Also, the system tested with different values of A and 8
parameters to examine how these parameters can affect the
sparsity and the quality of signal reconstruction.

For a parameters, the number of coefficients will be set to
be between 20-45 coefficients (by experiment this range is the
best for the a parameters).

In terms of the source signal parameters r generated by this
model is, most of their values are zeros or nearly zeros. Thus,
a threshold is used to regulate the signal sparsity by setting low
values (below the threshold) to zero.

4. EXPERIMENTAL RESULTS

In this paper, we proposed a compressive sensing
framework for speech signal compression, exploiting the
useful diverse function and libraries for signal processing
which are provided by Python and MATLAB to write the code
of the system [24, 25]. The system utilized the LPC strategy to
construct a special measurement or sensing matrix then use it
to generate the source signal r and the frequency envelop
coefficients a in a sparse mode. These vectors (r and a) are
then used to recover the original speech signal.

Here the dataset can be any speech signal. There is no
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restricted to some kind of data. The only need requirement is
the signal has to be clean (unnoisy signal) since no noise
removal is used in this system.

This section will present the signal compression results of
the sparse optimization of the o and r vectors of the system
equation (8). The sparse coding techniques CVX and LASSO
will be used in our experiment and the results will compare
with technique adopt DCT basis matrix in compressive
sensing. The compression ratio and error measurements are
used to examine the system performance with different values
of sparsity levels.

The system will utilize two types of speech signals: voiced
and unvoiced. First, the speech signal is divided into fixed-
length frames, typically ranging from 20 to 30 milliseconds.
This approach is used because speech within this time frame
tends to be quasi-stationary, resulting in parameters that show
minimal fluctuation.
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Figure 1. Speech signal spectral and its envelope estimated
using LPC method with p=30 (a), predictive coefficients (b),
and the source signal (c)

The optimization algorithms are utilized to find the sparsity
values for the envelope parameters and the source signal (a
and r). By the experiment, both algorithms (CVX, LASSO)
will generate a sparse frequency envelope coefficients o and
sparse source signal r. For the source signal, a threshold
parameter will be applied to set coefficients with small values
to zero. The result is sparse vectors that represent the source
and filter coefficients with fewer values than those produced
by LPC method.



In our proposed system, no DCT or FFT transform has been
used, so signal analysis will stay in the time domain. The goal
of our system is to use the speech data to build up the
measurement matrix, which in turn, will ensure that the L;-
Norm optimization will estimate the sparsest solution for the
parameters. Basically, this idea benefits from the learning-
based approach, which exploits the real data in modeling and
processing the signal [26].

Using both terms of the speech signal (source and the
predictive coefficients) will reduce the system complexity and
reduce calculation time as well as will guaranteed that the
produced source signal and prediction coefficients are
correlated. In fact, CVX optimization method can estimate
both vectors, however, LASSO method need an extra step
(inverse filtering) to estimate the source signal.

In order to evaluate the proposed system, the test materials
are signal frames segmented from a speech signal with a
sampling frequency 12500 Hz. Figure 1 gives an example of

1 T T T
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15 i i i i i
0
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Amplitude

the spectra and frequency envelope for voiced speech, the
predictive coefficients, and the source signal estimated using
LPC and inverse filtering respectively.

In the compression scenario, these two vectors (prediction
coefficients and the source signal) would not effectively
contribute to the data reduction since they both are fully-
valued vectors (dense format).

To reconstruct the original signal, these two parts of the
speech (the source signal the predictive coefficients) have to
recombined together.

An alternative technique is to use the sparse optimization
algorithms to estimate these two vectors in sparse, which
means that only few parameters (or significant) will need to
reconstruct the original signal.

Figure 2 shows the sparse prediction coefficients and the
sparse source signal of the same voiced frame. These vectors
are about only 40% sparse level (only 40% of its data are non-
zero values).
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Figure 2. Sparse predictive coefficients (a) and sparse source signal (b)

In our algorithm, first, we need to build up the dictionary
matrix out of the data of each frame. It will work like a key
mark that characterizes each speech frame (speech segment)
to build its own dictionary. Then, use the generated matrix
(dictionary) to estimate the predictive coefficients and the
source signal in sparse format.

CVX algorithm is used to estimate the source and the
envelope coefficients simultaneously. This mean that the
envelope coefficients and the source signal will estimate at the
same time and there is no need to use the inverse filter to
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estimate the source signal.

As stated in formula (8) 8 and A parameters use to regulate
the sparsity level in source signal and predictive coefficients
respectively.

Figure 3 shows the histogram of the source signal with
different values of f.The figure shows the effect of two
regulators on the source signals. From the hierograms we can
notes that the sparsity will increase by decrease the value of
the regulator 8 and vice versa.
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Figure 3. The Histogram of the sparse source signal of different values of  regulator. § = 0.05 (a), B = 5 (b)
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The utility of the proposed system in Eq. (8) with different
regulators quantities is evaluated in a voiced and unvoiced
speech signal compression task. We compare the performance
of our proposed system using CVX and LASSO techniques in
estimating the sparse solution of the source and predictive
coefficients components with the DCT basis compressive
sensing compression of the speech signal.

Figures 4(a)-(c) summarize the results of the comparison
between the original speech signal with the reconstructed
signal of different values of sparsity regulators 5 and A.

Figure 4(a) shows the original and reconstructed voiced
speech singles for B=5, A=0.5 with source sparsity level=42%
of the original length. The MSE error between the original

signal and the reconstructed signal is 2.8817e-04, and
SNR=16.8863.

Figure 4(b) shows the signals with p=0.5, A=0.1 and
sparsity level=73%. The MSE= 4.9655¢-05, and SNR=
24.5231.

Figure 4(c) summarizes the accuracy of the original and the
reconstructed unvoiced speech signal. The regulation
parameters are as follow; p=5, A=0.01, the sparsity level=
45%. MES=4.3556e-08, SNR=14.0132.

Figure 4(d) shows the accuracy of the signals (unvoiced)
with =2, A=0.5, the sparsity level= 64%. MES= 3.8661¢-09,
SNR=24.5310.
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Figure 4. The original signal with its reconstructive counterpart of voiced and unvoiced speech
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Figure 5. Sparsity level vs. the MSE error measurement between the original and estimated signals, voiced speech (a),
unvoiced speech

As mentioned before, we can change the sparsity level by
changing the values of the regulator parameters 3 and A,
however, this can affect the compression ratio, error

measurement and the reconstruction accuracy.
Figure 5 shows the MSE error between the original and the
estimated signals of different levels of source signal sparsity
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with fixed filter coefficients p = 30. It is clear that the MSE
will decrease as the sparsity level increases (increasing the
non-zero or significant values). We always need to take care
of the sparsity level and compression ratio.

Other optimization technique like LASSO can also be used
to estimate the sparse vectors of the source-filter model, but it
needs more than one round for sparse components estimation.
The first round will be to estimate the sparse filter or envelope
coefficients. Then, the second step, is to use the inverse filter
to estimate the source signal. LASSO cannot estimate the two
vectors simultaneously as the CVX does. Figure 6 shows the
original and the estimated signals using LASSO technique. To

examine to what extent the proposed system produces better
performance in terms of compression ratio and reconstruction
accuracy, Figure 7 illustrates the results of speech signal
compression and reconstruction using compressive sensing
with DCT basis dictionary.

Figure 7(a) shows the original and reconstructed voiced
speech singles with signal sparsity level=45% (y length of
system Eq. (2), here p=200 and n=450 (the signal frame
length). The MSE error between the original signal and the
reconstructed signal is 5.3840e-04, and SNR= 14.1717.

Figure 7(b) summarizes the results of the unvoiced speech,
the sparsity level=45%. MSE= 2.3170e-07, SNR= 10.7110.
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Figure 7. Compressive sensing using DCT basis dictionary for voiced speech (a) and unvoiced speech (b)

The experimental results presented in Figures 4 and 6
demonstrate the effectiveness of employing a data-driven
dictionary matrix in compressive sensing for speech
compression. Compared with the traditional DCT-basis
approach (Figure 7), the proposed system invariably achieves
lower reconstruction error and higher signal quality. A key
factor in this improvement is the use of sparse source signals
together with sparse envelope coefficients, which enable more
accurate recovery of both excitation and spectral envelope
characteristics of speech. By jointly exploiting these sparse
representations, the system produces a more faithful
reconstruction of both voiced and unvoiced segments. This
advantage is reflected in the quantitative measures: The Mean
Square Error (MSE) is reduced, while the Signal-To-Noise
Ratio (SNR) is improved relative to the DCT-based CS
system. These results confirm that adapting the dictionary to
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the statistical structure of the speech signal-while leveraging
sparsity in both source and filter domains-yields more efficient
compression and reconstruction, validating the central premise
of our approach.

5. CONCLUSION

This paper has presented a new encoding technique that rely
on the sparse optimization methods. The technique was able to
estimate the elements of the two parts that model the speech
signal, namely, the source and filter in a sparse form. One of
the main challenges in sparsity techniques is the selection of
the proper dictionary matrix. In this system, the matrix was
built from the signal itself. This makes the system converge
easily to the best sparse solution (the sparsest solution). The



system is tested with two different types of speech, voiced and
unvoiced. Results show that the unvoiced signal can be
reconstructed with highly sparse source and filter coefficients.
This is because the unvoiced signal holds less energy,
especially at the low-frequency part of the signal. Also, the
experiment shows that the level of sparsity (the amount of zero
values present in the signal) can increase the compression
ratio, however, it can affect the reconstruction accuracy since
it will ignore a lot of important information presented in the
speech signal. So, it is always very important to follow a trade-
off between the accuracy and the sparsity level. Finally, there
are many methods presented for sparse relaxation
(optimization). However, some need more than one round to
estimate both signal parts, such as LASSO. Others need more
steps to converge, such as OMP. CVX, on the other hand,
Python and MATLAB are the best choice in coding the
system, it is easy to apply (a MATLAB and Python package is
available for free), and it usually converts the problem to
standard form and always converges to the sparsest solution.
Also, it returns the sparse solution of the source signal and
filter (or frequency envelope) coefficients at once.
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