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Cardiovascular disease (CVD) remains the leading cause of death worldwide, so predicting 
risk as soon as possible and accurately is necessary to provide timely intervention. However, 
previous interpretive models perform poorly due to overfitting, poor feature selection, and 
substantively poor management of heterogeneous clinical and behavioral data. To improve 
the classification of CVD risk, this paper presents a framework termed as GPCB. This 
combines Genetic Algorithm – Particle Swarm Optimization (GA-PSO) for feature 
selection with a deep learning model construction that includes transformers, Convolutional 
Neural Networks (CNN), and Bidirectional Long Short Term Memory (Bi-LSTM) models 
(T-CBLSTM). During phase I, the GA-PSO module performs multi-objective feature 
optimization when predicting by comparing and assessing predictive relevance and 
minimizing input dimensions, allowing a reasonable selection of clinical and lifestyle 
features that were meaningfully relevant. In phase II, a feature extracted and selected T-
CBLSTM model was constructed to compose the model, where the CNN layers extracted 
spatial patterns, the Transformer blocks accounted for global dependencies in the data, and 
the Bi-LSTM layers attended to the sequential relationships. This framework was evaluated 
on the UCI Heart Disease, Framingham Heart Study, and MIMIC-III datasets as well as the 
merged datasets. The experimental results demonstrate that GPCB-TC outperformed the 
state-of-the-art accuracy up to 98.3%, F1-score 97.6%, and AUC–ROC 0.98. The proposed 
model shows immense opportunities for development and implementation in clinical 
decision support systems by offering risk assessment in a real-world healthcare practice. 
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1. INTRODUCTION

Cardiovascular disease is still the leading cause of death in
the world, accounting for an estimated 18.6 million deaths 
annually, and substantial burden on health economies across 
the globe. The Global Burden of Disease (GBD) study reports 
that the burden of CVD and CVD-related risk factors has 
increased steadily over the past thirty years, among high-
income and low-income populations alike [1]. There are a 
number of clinical diagnostics currently available, even with 
clinical advances, much remain limited as their capacities still 
rely on discrete risk factor measures and linear scoring models 
that do not integrate clinical and behavioral data [2, 3]. To 
improve upon these deficiencies, artificial intelligence (AI) 
and machine learning (ML) methods have progressively been 
adopted for CVD risk prediction and early diagnosis [4, 5]. In 
particular, hybrid models show more accurate prediction as 
they capture complex non-linear patterns of patient data [6]. A 
number of studies have also successfully distinguished heart 
disease with ML algorithms such as Support Vector Machines 
(SVM), Random Forests (RF), and Artificial Neural Networks 
(ANN) a number of studies cannot generalize results due to 
data heterogeneity and or selecting the best features, etc. 

Zhou et al. [7] conducted an extensive review of the 
literature and retrieved a collection of hybrid CNN-LSTM 

models that showed they were more prevalent and more 
effective than classical methods for arrhythmia detection and 
myocardial infarction classification. Deep learning (DL) 
models have gained traction as a favorable choice for 
modeling high-dimensional, time-series medical data. For 
instance, CNNs have been used to classify spatial patterns 
extracted from ECG signals and electronic health data. Long 
short-term memory networks (LSTMs) and bidirectional 
LSTMs (BiLSTMs) have successfully been used to capture 
temporal data dependencies [8-10].  

A further problem associated with CVD prediction is the 
presence of features that are irrelevant, redundant, or noisy. 
Irrelevant and noisy features can undermine model 
interpretability and exacerbate overfitting issues [11]. 
Metaheuristic approaches such as Genetic Algorithm (GA), 
Particle Swarm Optimization (PSO), and hybrid algorithms 
based on swarm intelligence are features selection methods 
that perform well at minimizing input dimensionality and 
improving accuracy [12]. Amal et al. [9] and Wang et al. [8] 
recommended that multimodal (clinical parameters, lifestyle, 
and behavioral) data be included in an attempt to develop 
patient specific system for risk assessment. Likewise, some 
studies that combine CNNs with BiLSTMs or transformer-
based mechanisms ([13-16]) report superior predictive 
performance. 
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Recent research has proposed both unique optimization 
approaches as well as explainable AI-approaches to build trust 
and transparency in the medical decision-making process [17]. 
However, most prior research has focused on either feature 
engineering or optimized deep learning architectures in 
isolation. There is a research gap in optimized deep learning 
pipeline encompassing an integrated framework that 
simultaneously optimizes features and provides reliable 
temporal modeling in CVD prediction tasks.  

In order to address these research gaps, the aim of this paper 
is to propose a two-phase hybrid framework that leverages 
multi-feature optimization using genetic algorithm (GA) and 
Particle Swarm Optimization (PSO) with the time-series data 
feature processing capabilities of a Transformer-guided 
Convolutional neural network and bidirectional Long short-
term memory (T-CBLSTM) deep learning model as the final 
predictive tool for heart disease with interpretability. The 
framework was trained and validated using three diverse real-
world datasets, namely UCI Heart, Framingham, and MIMIC-
III datasets, and utilized clinical and lifestyle data within the 
datasets. As will be shown, the proposed framework improves 
performance based on accuracy, precision, recall, F1, and 
AUC-ROC, compared with existing benchmark models. 

The UCI Heart Disease data set contains 303 samples with 
76 clinical attributes (often later reduced to 13 for many 
prediction tasks), the Framingham Heart Study data set 
contains 4,240 records, with 15 attributes, and MIMIC-III 
clinical data set has 7,000 patient records with 25 selected 
features. The model's high precision, recall and 
generalizability across 3 datasets improves its utility as a 
decision-support tool for early identification and risk 
stratification of cardiovascular diseases. In addition, the 
feature reduction work in Phase I adds to the interpretability 
of the model by identifying the most pertinent clinical and 
lifestyle factors to the individual, which is paramount in 
healthcare expectations for transparency and precision. 

This research presents a comprehensive and unified 
framework that addresses critical challenges in cardiovascular 
disease (CVD) detection and health risk assessment by 
integrating multi-objective feature optimization with a hybrid 
deep learning model. The main contributions of this work are 
summarized as follows: 

• Designed a novel architecture called GPCB,
integrates a GA–PSO feature selector (Phase I) with
a T-CBLSTM deep learning classifier (Phase II).

• Designed fitness function directs GAs–PSO meta-
heuristic to simultaneously maximize classification
accuracy and minimize feature redundancy.

• The T-CBLSTM model has CNN layers learning the
spatial representation, learning long-range
dependencies and contextual relationships.

• Models are evaluated using the UCI Heart Disease,
Framingham and MIMIC-III datasets, along with a
combined dataset with the results showing excellent
accuracy and AUC.

The rest of this paper is organized in the following way: 
Section 2 provides a thorough overview of the state-of-the-art 
literature covering machine learning and deep learning models 
for cardiovascular disease prediction, with a special emphasis 
on feature selection and hybrid models. Section 3 describes the 
datasets used, containing clinical and lifestyle features while 
also discussing the data preprocessing and normalization 
methods. Section 4 explains the GPCB framework including 

the GA-PSO based feature optimization step and the CNN-
BiLSTM deep learning model guided by the Transformer (T-
CBLSTM). Section 5 details the experimentation setup, 
including hyperparameter tuning and evaluation metrics. It 
also explains the results of the ablation studies and the 
conclusions drawn by comparing the model with existing 
models as well as the performance in individual datasets. 
Finally, Section 6 concludes the paper and outlines future 
research directions followed by references. 

2. RELATED WORK

There has been a significant surge in the research
applications of ML & DL to detect CVD within the last five 
years. These models provide an avenue to predict cardiac 
abnormalities, by way of predictive analytics, using electronic 
health records (EHR), ECG let's, and documented patient 
information to perform early detection. A number of 
researchers have deployed the use of A in order to conduct 
early prediction and diagnosis of CVD in recent years, again 
with the aim of improved mortality through early intervention. 
Sayadi et al. [18] proposed a ML model which detected 
coronary artery disease based on non-invasive, readily 
available, clinical parameters and noted the importance of 
simple, easily employed diagnostic tools, however; their 
model was limited in healthcare value by the lack of temporal 
modeling, and lifestyle parameters. Mahdi Muhammed et al. 
[19] applied various supervised learning algorithms to predict
CVD outcomes but reported moderate accuracy with no
hybridization or optimization approach to the algorithms used.
Numerous researchers have employed advanced optimization
algorithms to enhance the predictive performance on heart
disease outcomes.

Ahmad and Polat [20] employed a Jellyfish Optimization 
Algorithm for feature selection in heart disease prediction 
which demonstrated improved performance but with little 
review on generalizing the results across data sets. Al-Safi et 
al. [21] established a neural network model with Harris Hawks 
Optimization that devoted attention to accuracy in training, but 
interpretative awareness was not part of the analysis. Currently, 
as IoT and cloud environments evolve, Shafiq et al. [22] and 
Raju et al. [23] have developed smart heart disease prediction 
systems that apply sensor networks and cascaded DL models 
that incorporated AI. In both studies, however, while real-time 
data suggested potential, the previous issues of model 
transparency and data heterogeneity remained. Liu et al. [24] 
provided a thorough review of deep-learning based heart 
disease prediction models describing architectures such as 
CNNs, LSTM, GRUs and hybrid models, utilizing data 
sources including ECG, clinical and demographic data. Their 
study emphasized the advantages of using deep-learning 
models in capturing non-linear relationships and automatic 
feature learning. However, these authors have identified 
prominent challenges, namely: overfitting on small datasets; 
issues interpretability; and generalizability across diverse 
populations. Although the literature review provides wide 
coverage, feature optimization and the utilization of 
metaheuristics are not addressed in sufficient detail, which we 
accomplish in our proposed GPCB model through the GA-
PSO-enhanced feature selection pipeline and the transformer-
guided hybrid deep learning aspects. 

Kumar et al. [25], proposed a deep learning based model 
with a focus on interpretative potential and predictive 
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performance; although the study did not include metaheuristic 
feature selection. Abdullah [26] used an improved multilayer 
perceptron for early diagnosis which led to better training 
times but didn’t use any temporal dependencies. Similarly, 
Sonawane and Patil [27] had developed a hybrid heuristic 
based clustering method with an enhanced optimization. 
However, no integration of deep learning would enhance 
performance on high dimensional data. While, Bataineh and 
Manacek [28] offered an MLP-PSO hybrid for the purpose of 
diagnosis with better recall overall, but none were specific to 
CVD data and remained somewhat irrelevant to CVD 
medicine. In current study, mostly the current studies have 
purported hybrid feature engineering. Other frameworks, such 
as the one presented by Kalaivani et al. [29], executed 
ensemble classifiers using multi-feature selection, achieving 
reasonable accuracy while lacking temporal modeling.  

Atteia et al. [30] called PSO and PCA into service at a 
hybrid level to classify with improved classification. Zhang et 
al. [31] integrated deep neural networks, embedded feature 
selection, and continued with evidence suggesting outcomes, 
but later reports of retraction of the results questions the 
validity of the evidence. Zou et al. [32] present a reinforcement 
learning model that supports diagnosis, however, the model 
learned no sequential features for longitudinal health data. Haq 
et al. [33] positions personalized CVD medicine via AI while 
Champendal et al. [34] review the limitations regarding 
interpretability of models across medical imaging AI tools. 
Chen et al. [35] presented a bibliometric analysis on AI within 
smart healthcare, and advocated for the use of information 
fusion methods. Most importantly, most studies do not explore 
clinical factors and behavioral factors cohesively. Subramani 
et al. [36] then fused ML and DL parallel models for 
cardiovascular prediction but the fusion lacked a common 
optimization method, depriving overall performance gain. 
Generally, from an AI perspective, Li et al. [37] automated 
CVD prediction using EMR features from regional healthcare 
data, with an emphasis on the strength of real-world data but 
provided no ranking regarding the features. As well as those 
points made so far, explain ability and personalization have 
received minimal attention.  

The extensive studies boast important improvements in 
predicting heart disease using ML and DL, limitations 
including no inclusion of lifestyle data, poor feature selection, 
lack of explain ability, and limited personalization inhibit their 
use in practice. To fill in those gaps, we propose an integrated 
Grounded Person-Centered Bioinformatics (GPCB) 
framework that combines GA–PSO with a deep hybrid 
Transformer–CNN–BiLSTM model for high accuracy and 
temporal modeling in clinical practice with personalized 
healthcare. 

3. PROPOSED METHOD

The GPCB (Genetic Algorithm-Particle Swarm
Optimization + Transformer-guided CNN-BiLSTM) 
framework we are proposing is a two-phase intelligent system 
for an accurate CVD prediction tool using combined clinical 
and lifestyle information. This model is motivated by the 
imperative to address significant limitations of existing 
systems, such as dealing with high-dimensional input space, 
lack of personalization, and poorer quality feature learning for 
sequential patient data. The framework combines advanced 
feature selection with hybrid deep learning to ensure both high 

precision and generalizability across datasets. The two-phases 
implemented in the proposed cardiovascular disease 
prediction framework are: 

• Phase I: Genetic Algorithm-Particle Swarm
Optimization (GA-PSO)

• Phase II: Transformer-guided CNN-
BiLSTM

3.1 Multi-objective feature optimization using GA–PSO 

This is the phase I of the proposed model, it is designed as 
a multi-objective feature optimization framework. Just as in 
clinical and life-style datasets not all features contribute 
meaningfully to a CVD prediction. Some features will be 
irrelevant to CVD prediction, redundant, and noise or 
correlations, etc. Using all features will additionally just add 
complexity to the model, potentially make the model overfit 
worse, and also will add to computational costs especially with 
deep learning models. Thus, a means of feature selection is 
essential. Here, we are using a hybrid GA-PSO feature 
selection strategy that utilizes the global search ability of the 
GA while using the local refinement and fast local 
convergence and refinement of the PSO to find a small number 
of features with maximum predictive performance and 
reduced dimensionality.  

In real world healthcare datasets, the dataset will most likely 
have features that are irrelevant, redundant, or noisy. Because 
of this, we propose the use of a hybrid GA-PSO based wrapper 
method for selecting an optimal subset of features that 
maximize classification accuracy and minimize model 
complexity. The overall design diagram of the phase I GA-
PSO is provided as Figure 1. 

Figure 1. GA-PSO design diagram 

In Phase I of the GPCB framework, let the input dataset 𝐷𝐷 =
{(𝑥𝑥𝑖𝑖 ,𝑦𝑦𝑖𝑖)}𝑖𝑖=1𝑁𝑁 , 𝑥𝑥𝑖𝑖 ∈ 𝑅𝑅𝑑𝑑 ,𝑦𝑦𝑖𝑖 ∈ {0,1},  employ a Genetic 
Algorithm–Particle Swarm Optimization (GA– PSO) hybrid 
approach to select the most important features from the high-
dimensional clinical and lifestyle data. Each solution (i.e., a 
Vn of features) is encoded as a chromosome, a binary vector. 

𝑐𝑐 =  [𝑐𝑐1, 𝑐𝑐2, … , 𝑐𝑐𝑑𝑑], 𝑐𝑐𝑗𝑗 ∈ {0,1} (1) 

Eq. (1) shows the chromosome representation in binary 
format, a gene 𝑐𝑐𝑗𝑗 =  1 implies the jth feature is selected. 

The first objective function outlined in this Eq. (2) is the 
multi-objective GA-PSO optimization process during the 
feature selection phase. The goal is to minimize the 
classification error of the set of features represented as 
chromosome c. 

𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀: 𝑓𝑓1(𝑐𝑐) = 1 − 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴(𝑐𝑐) (2) 
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This Eq. (3) establishes the second objective of the multi-
objective optimization in Phase I (Feature Selection using 
GA–PSO) with the goal of minimizing the proportion of 
selected features in the final feature subset. 

In short, it penalizes the selection of too many features and 
facilitates simplicity within the model promoting 
generalizability and a decrease likelihood of overfitting. 

 
𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀: 𝑓𝑓2(𝑐𝑐) = 1

𝑑𝑑
∑ 𝑐𝑐𝑗𝑗𝑑𝑑
𝑗𝑗=1   (3) 

 
Here,  𝑓𝑓2(𝑐𝑐)  represents the second objective function, 𝑐𝑐𝑗𝑗 

represents the binary value indicating the jth feature is selected 
or not and d is the total number of features in the dataset. 

A starts as the optimization process of creating a population 
with binary chromosomes, each chromosome resulting in a 
different feature subset. The GA selects chromosomes to use 
as parents with a selection method based on round-robin 
selection or roulette wheel selection, placing a probability-
based preference on parents with higher fitness. Crossover on 
the parents will recombine genetic information from two or 
more of the parents, which introduces some variability to 
allow any of the selected parents to create offspring in a new 
location in feature space. Mutation allows for small random 
changes (flips) of the chromosomes used to create the 
offspring. Mutation allows GA to move away from a local 
optimum, with a goal of fostering diversity in the parent 
population. Following are the GA operations: 

Selection: either via roulette wheel or tournament selection 
to select parents 

Crossover: single-point crossover or uniform crossover to 
create offspring 

Mutation: bit flipping (0 → 1 or 1 → 0) with a low 
probability of mutation 

Let the initial population  𝑷𝑷𝟎𝟎  for the hybrid GA–PSO 
method in Phase I of multi-objective feature selection. In 
nature-inspired metaheuristics, "population" refers to a set of 
candidate solutions referred to as individuals (or particles, or 
chromosomes). Each individual 𝒄𝒄𝐢𝐢𝟎𝟎  is a binary chromosome 
representing a subset of features selected from the entire 
dataset for one solution in the initial generation (generation 0) 
as given in Eq. (4). 

 
𝑷𝑷𝟎𝟎 = �𝒄𝒄𝟏𝟏𝟎𝟎, … , 𝒄𝒄𝒏𝒏𝟎𝟎� (4) 

 
This Eq. (5) represents a single-point crossover operator for 

Genetic Algorithms (GA). Crossover involves the combining 
of some features (chromosomes) of each of two parent 
solutions to create a new offspring solution. The intent of 
crossover is to induce genetic diversity by mixing different 
genetic material (feature subsets) from different individuals. 

 
𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝑐𝑐1, 𝑐𝑐2) = �𝑐𝑐1[:𝑘𝑘], 𝑐𝑐2[𝑘𝑘: ]�  (5) 

 
Here, c1, and c2 represents first and second parent 

chromosomes, k is the randomly chosen crossover point, and 
�𝑐𝑐1[: 𝑘𝑘], 𝑐𝑐2[𝑘𝑘: ]� represents genes of the chromosomes c1 and 
c2. 

The mutation operation used here is  
 

Mutation �cj� = �
1 − cj     with probability pm

cj                       otherwise   (6) 

 

The following equation defines the mutation operation for a 
binary chromosome 𝑐𝑐 = [𝑐𝑐1, 𝑐𝑐2, … … . . 𝑐𝑐𝑑𝑑]used in the GA part 
of the hybrid GA–PSO feature selection strategy. Mutation is 
a genetic operator that maintains diversity in the population 
and prevents premature convergence. 

This equation describes how to convert a particle's velocity 
into a probabilistic value within the bounds of [0,1]. The 
sigmoid activation function does this. As shown in the Binary 
Particle Swarm Optimization (BPSO) algorithm, features are 
selected or not selected (0 or 1). While we cannot make 
continuous updates to the particle's position as in PSO, we can 
still update the particle's position probabilistically as shown in 
Eq. (7). 

 
𝑣𝑣𝑗𝑗

(𝑡𝑡+1) = 𝜔𝜔𝑣𝑣𝑗𝑗
(𝑡𝑡) + 𝑐𝑐1𝑟𝑟1�𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑡𝑡𝑗𝑗 − 𝑥𝑥𝑗𝑗

(𝑡𝑡)� +
𝑐𝑐2𝑟𝑟2�𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑡𝑡𝑗𝑗 − 𝑥𝑥𝑗𝑗

(𝑡𝑡)�  
(7) 

 
Here, 𝒗𝒗𝒋𝒋

(𝒕𝒕) 𝜔𝜔is the inertia weight, i.e. 0.4< 𝜔𝜔 < 0.9, 𝑐𝑐1and 
𝑐𝑐2 cognitive acceleration and social acceleration coefficients, 
𝑟𝑟1𝑎𝑎𝑎𝑎𝑎𝑎 𝑟𝑟2 are the random numbers. 

This equation binarized the probabilistic output from Eq. (8). 
A uniform random number 𝑟𝑟 ∈ [0,1]  is generated. If the 
output from the sigmoid exceeds this random level, then the 
feature is selected (1). If it is below the random level, it is not 
selected (0). This creates a stochastic manner of feature 
selection, and encourages exploration. 

 
𝑥𝑥𝑗𝑗𝑡𝑡+1 = 𝜎𝜎�𝑣𝑣𝑗𝑗

(𝑡𝑡+1)�,𝜎𝜎(𝑣𝑣) = 1
1+𝑒𝑒−𝑣𝑣

  (8) 
 
Here, 𝑥𝑥𝑗𝑗𝑡𝑡+1 updated binary selection of the jth 

feature 𝜎𝜎(𝑣𝑣)probability from the sigmoid function, and r is the 
random number sampled from uniform distribution U(0,1). 

 

𝑥𝑥𝑗𝑗𝑡𝑡+1 = �1                  𝑖𝑖𝑖𝑖 σ�vj𝑡𝑡+1� > 𝑟𝑟
0                        𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒

  (9) 

 
The performance of each feature subset is evaluated by a 

multi-objective fitness function on two competing goals. It 
improves the classification accuracy while minimizing the 
number of features. Accuracy is computed after a lightweight 
classifier is trained on the features we selected and measured 
with cross-validation to ensure robustness. The second term in 
the fitness function penalizes the number of features, 
promoting compactness. By tuning the weights α and β, we 
adjust the trade-off between model performance and feature 
sparse characteristics. The score given to candidate solutions 
will lead our selection process and evolutionary process for 
future improvements. 

Eq. (10) calculates the "feature ratio," or the fraction of 
selected features (the selected features divided by the dataset's 
total features). Use this as one of the objective functions in the 
multi-objective fitness function for feature selection. The goal 
is to minimize the selected features but retain a suitable 
classification performance. 

 

𝐹𝐹𝐹𝐹 =
∑ 𝑐𝑐𝑗𝑗𝑑𝑑
𝑗𝑗=1

𝑑𝑑
 (10) 

 
Here, d is the total number of features in the dataset and 𝑐𝑐𝑗𝑗 

is the binary indicator for the jth feature. 
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Each candidate feature subset is evaluated by a CNN or 
SVM classifier on training data. Accuracy was computed 
using cross-validation and was used to reduce bias. 

 
𝐹𝐹𝐹𝐹𝐹𝐹(𝑐𝑐) = 𝛼𝛼 ⋅ 𝐴𝐴𝐴𝐴𝐴𝐴 + (1 − 𝛼𝛼) ⋅ (1 − 𝐹𝐹𝐹𝐹) (11) 

 
This Eq. (11) outlines the fitness of a chromosome (or 

feature selection), and balances two competing objectives. Acc 
shows how well the features you selected classify. Feature 
Ratio is the proportion of the features selected. And the FR 
part ensures that smaller subsets are rewarded. In the first 
phase of the work, GA and PSO were integrated into a hybrid 
feature optimization algorithm. GA parameters were 
established as follows: size of population = 50, maximum 
number of iterations = 100, crossover probability = 0.8, and 
mutation rate = 0.05. The parameters for PSO consisted of a 
swarm size = 50, initial inertia weight (w) = 0.7, cognitive 
coefficient (c1) = 1.5, social coefficient (c2) = 1.5, and 
maximum number of iterations = 100. All parameters were 
chosen with respect to the findings from previous optimization 
studies and personal tuning and testing, in order to achieve an 
approximation between convergence speed and exploring 
distinct subsets of features. 

The preference of GA–PSO as opposed to other 
metaheuristic search algorithms like Differential Evolution 
(DE) or Ant Colony Optimization (ACO) is based on the use 
of complementary properties of the two algorithms. Whereas 
GA maintains a higher degree of exploration through genetic 
crossover and mutation, PSO maintains a level of exploitation 
via velocity updates. Thus, GA–PSO offers a compromise - 
preventing GA from being too random (as sometimes seen in 
GA), and preventing PSO from converging prematurely (as is 
sometimes seen in PSO). Prior studies have shown that GA–
PSO hybrids achieve better global optima on high-
dimensional biomedical datasets than DE, ACO, or either 
algorithm in isolation, making it suitable for cardiovascular 
datasets, which use varied clinical features and lifestyle 
features. 

 
3.2 Phase II: Hybrid Transformer-guided CNN–BiLSTM 
(T-CBLSTM) Model 

 
In Phase 2 of the GPCB framework, the optimized features 

selected by the GA–PSO module are inputted into a new 
CNN–BiLSTM (T-CBLSTM) architecture guided by a 
Transformer to generate predictions of cardiovascular disease. 
This hybrid architecture is capable of accommodating spatial 
patterns, temporal dependencies, and global contextual 
relationships across clinical and lifestyle features. The pipeline 
starts with a CNN layer that extracts local features and short-
range dependencies across input variables at a high level. 
These local extracted features are then passed onto a 
Transformer Encoder Block, a type of block that improves the 
contextual understanding of heterogeneous health indicators 
using self-attention mechanisms to model global relationships 
across feature dimensions. Figure 2 shows the proposed design 
architecture of the phase II. 

The output of the transformer is combined with the original 
CNN features, then passed into a BiLSTM layer at a high level 
which is capable of modeling the temporal dependencies in 
both forward and backward directions. This component 
models temporal dependencies that help to capture latent 
chronological or progressive trends in the data collected from 
the patient over time and could be especially meaningful for 

longitudinal features such as age, blood pressure, or lifestyle 
change over time. Finally, the output from the BiLSTM is 
passed through a Feed-Forward Fully Connected Dense layer 
with a sigmoid activation for binary classification or Softmax 
activation for multiclass classification.  

 

 
 

Figure 2. Design architecture of Phase II 
 
The first stage of the model accepts an input vector of 

selected features, which are derived after preprocessing and 
feature optimization via GA–PSO. These features include both 
clinical e.g., blood pressure, cholesterol, ECG results and 
lifestyle factors e.g., smoking, exercise, alcohol use. For the 
UCI and Framingham datasets, the input is a static feature 
vector per patient 𝑥𝑥 = [𝑥𝑥1, 𝑥𝑥2, … , 𝑥𝑥𝑑𝑑] ∈ 𝑅𝑅𝑑𝑑. The model input a 
vector that has optimized features 𝑥𝑥 ∈ 𝑅𝑅𝑑𝑑 , where d is the 
number of selected features obtained via GA–PSO. For 
sequential data, the input is treated as a time-series matrix 𝑋𝑋 ∈
𝑅𝑅𝑇𝑇𝑇𝑇𝑇𝑇 , where T is the time steps. The CNN will receive the 
input as a two-dimensional matrix, where T is defined as the 
temporal length of the sequence, and d as the number of 
features per time step. This two-dimensional matrix represents 
the clinical and lifestyle characteristics provided by the GA-
PSO module as Eq. (12). 

 
𝑋𝑋𝐶𝐶𝐶𝐶𝐶𝐶 ∈ 𝑅𝑅𝑚𝑚×1×1 (12) 

 
Here, 𝑋𝑋𝐶𝐶𝐶𝐶𝐶𝐶 is the input tensor to the CNN layer, m is the 

selected features from phase I, R represents the 3D tensor with 
feature. Next, a set of convolutional filters (also called kernels) 
are applied to the input. Each filter slides across the input 
sequentially taking dot products between the kernel weights 
and the input subsequence. Mathematically, for a filter size of 
k, at position the convolution operation will take the form of 
Eq. (13). 

 
𝐻𝐻𝑘𝑘 = 𝜎𝜎(𝑊𝑊𝑘𝑘 ∗ 𝑋𝑋𝐶𝐶𝐶𝐶𝐶𝐶 + 𝑏𝑏𝑘𝑘) (13) 

 
Here, 𝐻𝐻𝑘𝑘  is the output feature map from the kth 

convolutional filter in a CNN layer. σ(⋅) is a non-linear 
activation function, applied to the result of the convolution. 
𝑊𝑊𝑘𝑘 is the convolution kernel for the kth feature extractor and 
HCNN is the input tensor to the CNN layer and 𝑏𝑏𝑘𝑘 is the bias for 
the kth filter. The T-CBLSTM deep learning pipeline has two 
stages, and the first stage utilizes a CNN to capture local 
spatial patterns from the series of optimized features extracted 
from the GA-PSO module as shown in Eq. (14). 

 
𝐻𝐻𝐶𝐶𝐶𝐶𝐶𝐶 = 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(ℎ1, … , ℎ𝐾𝐾) (14) 
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Here, ℎ𝑘𝑘  is the output features. The CNN layer processes 
the input to train complex, non-linear, and highly correlated 
relationships between features. The output from the CNN layer 
is a transformed tensor as shown in Eq. (15). 

𝐹𝐹𝑐𝑐𝑐𝑐𝑐𝑐 = 𝐹𝐹𝐹𝐹(𝐻𝐻𝐶𝐶𝐶𝐶𝐶𝐶) (15) 

Here,𝐻𝐻𝐶𝐶𝐶𝐶𝐶𝐶  is feature map flattened into one dimensional 
vector 𝐹𝐹𝐶𝐶𝐶𝐶𝐶𝐶. The feature maps preserve the local correlational 
structures between the clinical and behavioral variables while 
reducing spatial dimensionality, and serve to input into the 
transformer encoder block in the next stage of the T-CBLSTM 
pipeline. This structure ensures that relevant short-range 
interactions are captured before applying the attention and 
sequential modeling. Once the local features have undergone 
CNN-based extraction and been transformed to output tensors, 
the tensors can be passed to a Transformer Encoder. The 
module's task is to learn only global contextual relationships 
between features (it is possible that the context between 
features are not neighboring but are related in some 
meaningful way from a semantic or, for example, clinical 
perspective). Convolution layers are only capable of learning 
to contextualize their immediate neighborhoods, whereas 
Transformer layers use self-attention mechanisms to produce 
a distribution of dynamic weightings between all positions in 
each feature representation, while allowing the model to focus 
on the most salient proto- interactions in each input instance. 
Following Eq. (16) shows the CNN-based local feature 
extraction, the transformed output tensor 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 ∈ 𝑅𝑅(𝑇𝑇 − 𝑘𝑘 +
1) × 𝑓𝑓.

𝐸𝐸𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 = 𝑓𝑓𝑐𝑐𝑐𝑐𝑐𝑐 ⋅ 𝑊𝑊𝑒𝑒 + 𝑏𝑏𝑒𝑒  (16) 

Here, the flattened CNN features are then linearly 
transformed with a learnable weight matrix 𝑊𝑊𝑒𝑒, and bias 𝑏𝑏𝑒𝑒 to 
generate the input embeddings for the Transformer encoder. 
Positional encoding is as shown in Eqs. (17) and (18): 

𝑃𝑃𝐸𝐸(𝑝𝑝𝑝𝑝𝑝𝑝,2𝑖𝑖) = 𝑠𝑠𝑠𝑠𝑠𝑠 �
𝑝𝑝𝑝𝑝𝑝𝑝

10000
2𝑖𝑖

𝑑𝑑𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚

� (17) 

PE(pos,2i+1) = cod�
pos

10000
2i

dmodel

� (18) 

Here, pos is position index, i is dimension index, 𝑑𝑑𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚  
model is model dimension. Eq. (19) gives the input to 
transformer encoding. 

Input to Transformer Encoder 

Z0 = Einput + PE (19) 

Here, 𝑍𝑍0 is the initial input for the transformer encoder. The 
key operation in the self-attention based Transformer is scaled 
dot-product attention, defined as Eqs. (20) and (21): 

Attention(Q, K, V) = softmax �
QKT

�dk
 �V (20) 

𝐴𝐴 = 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴(𝑄𝑄,𝐾𝐾,𝑉𝑉) ∈ 𝑅𝑅𝑛𝑛×𝑑𝑑𝑑𝑑 (21) 

Here, the queries Q, keys K, and values V are derived by 
projecting the CNN output 𝐹𝐹𝐶𝐶𝐶𝐶𝐶𝐶  through learnable weight 
matrices 𝑊𝑊𝑄𝑄, 𝑊𝑊𝐾𝐾 , and 𝑊𝑊𝑉𝑉, respectively. Each position of the 
feature sequence has the ability to attend to each of the other 
positions, and can assign higher level of importance to the 
most relevant features based on similarity. The scaling factor 
�dk  is required to avoid gradient vanishing throughout 
training, and serves to normalize the output of the dot-product. 
After computing the attention-weighted output the model 
applies a residual connection followed by layer normalisation 
to promote feature propagation and ratio of stability during 
training. The output of Multi-Head Attention is given as Eq. 
(22). 

𝑀𝑀𝑀𝑀𝑀𝑀(𝑋𝑋) = 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(ℎ1, … , ℎ𝐻𝐻)𝑊𝑊𝑂𝑂  (22) 

Feedforward Network is given as Eq. (23). 

𝐹𝐹𝐹𝐹𝐹𝐹(𝑥𝑥) = 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅(𝑥𝑥𝑊𝑊1 + 𝑏𝑏1)𝑊𝑊2 + 𝑏𝑏2 (23) 

Transformer Layer Output is given as Eqs. (24) and (25). 

𝑍𝑍𝑙𝑙 = 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿(𝑀𝑀𝑀𝑀𝑀𝑀(𝑍𝑍𝑙𝑙−1) + 𝑍𝑍𝑙𝑙−1) (24) 

𝑍𝑍𝑙𝑙 = 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿(𝐹𝐹𝐹𝐹𝐹𝐹(𝑍𝑍𝑙𝑙) + 𝑍𝑍𝑙𝑙) (25) 

Output of Transformer is given as Eqs. (26) and (27) 

𝐹𝐹𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 = 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀(𝑍𝑍𝐿𝐿) (26) 

𝐹𝐹𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 = 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿(𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴(𝑄𝑄,𝐾𝐾,𝑉𝑉)
+ 𝐹𝐹𝐶𝐶𝐶𝐶𝐶𝐶) (27) 

This resulting tensor 𝐹𝐹𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 ∈ 𝑅𝑅𝑇𝑇−𝑘𝑘+1×𝑓𝑓 accounts for non-
local feature dependencies: for example, blood pressure may 
affect distant features like lifestyle habits or medical history. 
The attention mechanism also aids interpretability because it 
is easier to visualize what features are most important to the 
model for making predictions. The feature representations 
enhanced by the transformer and the original CNN data are 
concatenated and used as input to the BiLSTM module for 
sequential learning. 

To achieve this fusion, the output feature vectors from both 
the CNN and Transformer at each time step are concatenated 
along the feature dimension. Formally, if ℎ𝑡𝑡 ∈ 𝑅𝑅𝑓𝑓 is the CNN 
output and 𝑔𝑔𝑡𝑡 ∈ 𝑅𝑅𝑑𝑑𝑑𝑑 is the Transformer output at time step t, 
the fused vector is defined as Eq. (28). 

𝑧𝑧𝑡𝑡 = [ℎ𝑡𝑡   ∥   𝑔𝑔𝑡𝑡] ∈ 𝑅𝑅𝑓𝑓+𝑑𝑑𝑑𝑑   (28) 

The result is a new sequence 𝐹𝐹𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 ∈ 𝑅𝑅𝑛𝑛×(𝑓𝑓+𝑑𝑑𝑑𝑑) where n is 
the length of the sequence. The fused representation retains 
fine-grained spatial information, as well as coarse semantic 
information, and this improves the ability of the downstream 
BiLSTM to learn timed dynamics and supports improved 
classification of cardiovascular disease risk levels. So, the 
concatenation step represents an important architectural 
junction that merges multiple aspects of the patient data 
together into a richer, more holistic representation for final 
prediction. 

The BiLSTM architecture consists of two LSTM layers: one 
that processes the input from left to right (forward pass) and 
another from right to left (backward pass). Each LSTM unit 
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includes memory cells and gating mechanisms specifically the 
input gate, forget gate, and output gate that regulate the flow 
of information through time. These gates allow the model to 
retain relevant historical patterns while filtering out noise, 
making the network resistant to vanishing gradients and 
overfitting, which are common issues in temporal modeling. 

Let 𝑧𝑧1, 𝑧𝑧2, … , 𝑧𝑧𝑛𝑛 ∈ 𝑅𝑅𝑓𝑓+𝑑𝑑𝑑𝑑  denote the fused input sequence 
of length n, where each vector combines CNN and 
Transformer outputs. The BiLSTM processes this sequence in 
both directions as shown in Eq. (29). 

 
𝑋𝑋𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 = [𝑓𝑓𝑐𝑐𝑐𝑐𝑐𝑐, 𝑓𝑓𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡]   (29) 

 
These representations are then usually pooled, followed by 

the attention layers or final dense layer. The BiLSTM's 
bidirectional architecture allows the model to reason across the 
entire sequence, improving its capability to recognize 
temporality like the progression of symptoms (e.g. physical 
activity over one year), the effects of long-term behaviour (e.g. 
banking wine to incur delays in sequencing of behaviour), and 
clinically relevant delayed interactions (e.g. a prescription 
written by a physician delayed to medication administration 
three days later) - all necessary for personalized and accurate 
CVD risk prediction. 

At each time step t, an LSTM computes using the following 
Eqs. (30)-(35). 

 
𝑖𝑖𝑡𝑡 = 𝜎𝜎(𝑊𝑊𝑖𝑖  𝑓𝑓𝑡𝑡 + 𝑈𝑈𝑖𝑖ℎ𝑡𝑡 − 1 + 𝑏𝑏𝑖𝑖)  (30) 

 
𝑓𝑓𝑡𝑡 = 𝜎𝜎�𝑊𝑊𝑓𝑓𝑓𝑓𝑡𝑡 + 𝑈𝑈𝑓𝑓ℎ𝑡𝑡 − 1 + 𝑏𝑏𝑓𝑓�   (31) 

 
𝑜𝑜𝑡𝑡 = 𝜎𝜎(𝑊𝑊𝑜𝑜𝑓𝑓𝑡𝑡 + 𝑈𝑈𝑜𝑜ℎ𝑡𝑡 − 1 + 𝑏𝑏𝑜𝑜)    (32) 

 
𝑐𝑐𝑡𝑡� = tanh(𝑊𝑊𝑐𝑐𝑓𝑓𝑡𝑡 + 𝑈𝑈𝑐𝑐ℎ𝑡𝑡 − 1 + 𝑏𝑏𝑐𝑐) (33) 

 
𝑐𝑐𝑡𝑡 = 𝑓𝑓𝑡𝑡 ⊙ 𝑐𝑐𝑡𝑡 − 1 + 𝑖𝑖𝑡𝑡 ⊙ 𝑐𝑐𝑡𝑡�   (34) 

 
ℎ𝑡𝑡 = 𝑜𝑜𝑡𝑡 ⊙ 𝑡𝑡𝑡𝑡𝑡𝑡 ℎ(𝑐𝑐𝑡𝑡)   (35) 

 
where, σ is a sigmoid activation, tanh is a hyperbolic tangent 
activation, ⊙ is an element-wise multiplication, ℎ𝑡𝑡 is hidden 
state at time t, 𝑐𝑐𝑡𝑡  𝑖𝑖𝑖𝑖 𝑡𝑡ℎ𝑒𝑒 cell state at time t, 𝑊𝑊 ∗∈ 𝑅𝑅ℎ×𝑑𝑑 is the 
trainable weight matrices, 𝑏𝑏 ∗∈ 𝑅𝑅ℎ are the bias vectors, and h 
is the LSTM hidden size. The BiLSTM processes the input 
sequence in both forward and backward directions as shown 
in Eq. (36). 
 

ℎ𝑡𝑡���⃗ = 𝐿𝐿𝐿𝐿𝐿𝐿𝑀𝑀𝑓𝑓𝑓𝑓𝑓𝑓(𝑓𝑓𝑡𝑡), ℎ𝑡𝑡�⃖�� = 𝐿𝐿𝐿𝐿𝐿𝐿𝑀𝑀𝑏𝑏𝑏𝑏𝑏𝑏(𝑓𝑓𝑡𝑡) (36) 
 

The final BiLSTM output at each time step is as shown in 
Eq. (37). 

 
𝐻𝐻𝑡𝑡𝑏𝑏𝑖𝑖 = �ℎ𝑡𝑡���⃗   ∥   ℎ𝑡𝑡�⃖��� ∈ 𝑅𝑅2ℎ (37) 

 
Here, ∥ denotes vector concatenation. To obtain a fixed-size 

representation from all time steps (e.g., for classification), we 
apply final feature concatenation as shown in Eq. (38): 

 
𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 = 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝑓𝑓𝑐𝑐𝑐𝑐𝑐𝑐, 𝑓𝑓𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡, 𝑓𝑓𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙) (38) 

 
This is passed to a fully connected layer and the output 

layers are as shown in Eqs. (39) and (40). 
 

𝑧𝑧 = 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 ⋅ 𝑊𝑊𝑓𝑓𝑓𝑓 + 𝑏𝑏𝑓𝑓𝑓𝑓    (39) 
 

𝑦𝑦� = 𝜎𝜎(𝑧𝑧)  (40) 
 
where, 𝑦𝑦� is an output prediction (binary or multi-class), σ is 
the sigmoid or softmax function, 𝑊𝑊𝑜𝑜 ∈ 𝑅𝑅𝑐𝑐×2ℎ  are an output 
weights, and c is the number of output classes. 

After modeling both spatial and temporal relationships 
through the CNN, Transformer, and BiLSTM layers, the T-
CBLSTM framework arrives at a compact, high-level feature 
representation of the input sequence, denoted as ℎ𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 . This 
vector captures both short-range and long-range dependencies 
among clinical and lifestyle features. To translate this abstract 
embedding into an interpretable decision, it is passed through 
a fully connected or dense layer. This layer applies a learned 
linear transformation, projecting the feature vector into a space 
whose dimensionality matches the number of output classes as 
shown in Eq. (41). 

 

𝐿𝐿𝐵𝐵𝐵𝐵𝐵𝐵 = −
1
𝑁𝑁
�[𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦(𝑦𝑦𝚤𝚤�) + (1 − 𝑦𝑦𝑖𝑖) log(1 − 𝑦𝑦�𝑖𝑖)]
𝑁𝑁

𝑖𝑖=1

  (41) 

 
Here, 𝑦𝑦𝑖𝑖  𝑖𝑖𝑖𝑖 𝑡𝑡ℎ𝑒𝑒 true label (ground truth), and (𝑦𝑦�𝑖𝑖) is the 

predicted probability. For binary classification tasks, a 
sigmoid function is applied to squash the output to a 
probability between 0 and 1, indicating the likelihood of 
disease presence. For multi-class classification tasks, a 
softmax function distributes the output across multiple classes, 
ensuring that the predicted probabilities sum to 1. During 
training, the model parameters are optimized by minimizing a 
suitable loss function binary or categorical cross-entropy 
which penalizes incorrect predictions and encourages the 
model to assign high probabilities to the correct class as shown 
in Eq. (42). 

 

𝐿𝐿𝐶𝐶𝐶𝐶𝐶𝐶 = −��𝑦𝑦𝑖𝑖𝑖𝑖 log�𝑦𝑦�𝑖𝑖𝑖𝑖�
𝐶𝐶

𝑗𝑗=1

𝑁𝑁

𝑖𝑖=1

  (42) 

 
Here, 𝑦𝑦𝑖𝑖𝑖𝑖  𝑖𝑖𝑖𝑖 𝑡𝑡ℎ𝑒𝑒 true label (ground truth), and �𝑦𝑦�𝑖𝑖𝑖𝑖� is the 

predicted probability. 
This section explains how the proposed CNN–BiLSTM-

based heart disease prediction model is trained and assessed to 
provide reliable, generalizable, and interpretable results. A 
few important areas of discussion are the training plan, the loss 
functions, and the metrics used to evaluate the model. To train 
the proposed hybrid CNN–BiLSTM model, a predefined 
training plan was in place to maximize the generalization and 
performance of the model across the individual cardiovascular 
datasets. Overall, the data was divided into training (70%), 
validation (15%), testing (15%). For time-series data (i.e. the 
MIMIC-III dataset), when conducting the split of the training, 
validation, and testing data, temporal locality was preserved so 
that data could not leak (i.e. for validation or testing data) 
forward/backward, from future to past. 

The training was conducted with a batch size of size 32 over 
a maximum of 100 epochs. An early stopping plan was in 
place while the model was in training, where the validation 
loss was monitored at the end of training and if there were no 
improvements in the loss using some minimum number of 
epochs to define "no improvement" then the training would 
have stopped. In addition, the Adam optimizer was used due 
to its rapid convergence and adapting learning rate capability 
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as shown in Eq. (43). Lastly, a learning rate scheduler was used 
to manage the learning rate during training; where if 
performance stalled the learning rate was reduced in a 
controlled manner, allowing fine-tuning during the latter 
epochs. 

𝛩𝛩𝑡𝑡 + 1 = 𝜃𝜃𝑡𝑡 − 𝜂𝜂 .
𝑚𝑚𝑡𝑡�

�𝑣𝑣𝑡𝑡� + 𝜖𝜖
(43) 

where, 𝑚𝑚𝑡𝑡�  are bias-corrected moment estimates, and η is the 
learning rate. The transformer component was set to four 
encoder layers in total with 8 self-attention heads, 128 hidden 
dimension, 256 feedforward network layer size, and a dropout 
of 0.2 to minimize overfitting. The convolutional neural 
network in front of the Transformer consisted of 2 Conv2D 
layers with 64, 128 filters, and kernel size 3 × 3 with ReLU 
activation and maximum-pooling, followed by a flattening 
layer. The BiLSTM component consisted of two layers both 
128 units to allow bidirectional temporal modeling. This 
selection of hyperparameters was based on empirical tuning 
and literature that showed their combination produced a trade-
off between complexity and generalizability on medical 
datasets.  

4. RESULTS AND DISCUSSION

4.1 Experimental setup and training parameters 

To rate the performance and robustness of the proposed 
GPCB framework, an extensive experiment on three widely 
accepted cardiovascular data sets was carried out (UCI Heart 
Disease, Framigham Heart Study, MIMIC-III Clinical 
Database). All three data sets include a rich variety of clinical 
and behavioral features that would allow for thorough 
validation of the model across diverse patient profiles and 
dataset distributions. All data sets went through a rigorous 
preprocessing pipeline that included steps for missing value 
imputation, min-max normalization, label encoding for 
categorical variables, and Synthetic Minority Over-Sampling 
Technique (SMOTE) for class imbalance prior to developing 
the model, which was split 80% training and 20% test data 
with an additional 10% of the training reserved as validation 
data. Student stratified sampling was employed, so that the 
individuals in the training and test datasets reflect class 
distribution. Feature selection was implemented using the GA-
PSO module prior to developing the GPCB model, which was 
configured at 30 population size with 50 iterations, a crossover 
rate of 0.7 and a mutation rate of 0.1 and the hybrid fitness 
function weighted trade-offs of classification accuracy and 
feature sparsity. 

The T-CBLSTM, hybrid CNN-Transformer-BiLSTM, 
architecture was constructed in TensorFlow 2.11 using Python 
3.9. The CNN portion used two 1D convolutional layers with 
64 and 128 filters followed by a ReLU activation and max-
pooling. The transformer encoder consisted of two attention 
heads with an output dimensionality of 64 and a feedforward 
hidden size of 128. The BiLSTM used 128 units in each 
(forward and backward) direction, and the implementation 
included dropout (0.3) for overfitting prevention. The final 
classification layer was a dense output neuron, sigmoid 
resolution for binary classification. The model was trained 
using the Adam optimizer with an initial learning rate of 0.001, 
a batch size of 32, and a maximum of 100 epochs. The binary 

cross-entropy loss function was used to optimize the model, 
and early stopping based on validation loss was applied to 
prevent overfitting. All experiments were performed on a 
machine with an Intel i9 CPU, 32 GB RAM, NVIDIA RTX 
3080 GPU (10 GB VRAM), and Ubuntu 22.04 LTS. This 
experimental environment ensures that evaluations of the 
GPCB framework will be fair, reproducible, and scalable 
while the training parameters used to train the model were a 
reasonable compromise between performance and 
computational expense. 

To maintain data integrity and limit data leakage, the dataset 
splitting was performed at the patient level to ensure no 
records from the same patient appeared in both training and 
testing sets. For the MIMIC-III dataset that included 
longitudinal EHR data, we grouped all visits of a patient and 
assigned them to either training, validation, or testing. This 
ensured that possible temporal dependencies and repeated 
measures would not provide any bias to the performance 
estimates of the model. 

In order to evaluate the importance of the GA-PSO feature 
selection phase, we completed an ablation study in which we 
trained on the full feature set, evaluation T-CBLSTM without 
the Phase I optimization. The results showed a significant drop 
in performance, accuracy dropped from 98.5% to 93.2% and 
the F1 score dropped from 97.9% to 92.4%. We also 
quantitatively showed the training time increased, on average, 
approximately 35% due to the feature dimensionality increase 
during training. This validates the importance of Phase I in 
enhancing generalization and computational efficiency. By 
eliminating noisy and redundant variables, the GA–PSO 
module not only improves classification accuracy but also 
accelerates model convergence. 

4.2 Dataset description 

The proposed hybrid model for cardiovascular disease risk 
prediction is tested for its performance and robustness using 
three varied and commonly utilized datasets: UCI Heart 
Disease, Framingham Heart Study, and filtered MIMIC-III 
Clinical Database.  

a. UCI heart disease dataset
The UCI Heart Disease is derived from the Cleveland Clinic,

consisting of 303 patient records with 14 well-defined features. 
Noteworthy clinical features include age, resting blood 
pressure, serum cholesterol level, fasting blood sugar level, 
resting ECG, maximum heart rate achieved, ST depression, 
and the number of major vessels seen in fluoroscopy. In terms 
of lifestyle features, there are gender, chest pain type, exercise-
induced angina, slope of ST segment, and thalassemia. The 
target variable for this dataset indicates if heart disease is 
present or absent. This dataset is frequently used for 
benchmarking as it has a well-defined structure, and balanced 
feature application.   

b. Framingham heart study dataset
The Framingham dataset contains approximately 4,240

samples with clinical attributes collected through a long-term 
population study. Key clinical features include 
systolic/diastolic blood pressure, total cholesterol, glucose, 
BMI, heart rate, and medical history with potential risk factors 
for stroke, diabetes, and hypertension. Key lifestyle features 
include smoking, alcohol, physical activity, and education. 
The outcome variable estimates an individual's 10-year risk of 

1992



 

coronary heart disease (CHD), which is a solid basis for 
modeling long-term risk.  
 
c. MIMIC-III clinical database  

The MIMIC-III dataset is developed by MIT and Beth Israel 
Deaconess Medical Center. It consists of over 53,000 ICU 
admissions to hospitals. For this study, I will use a filtered 
subset of ~5,000–10,000 cardiac-related admissions, sorted 
using ICD-9 codes. The data will include clinical signals such 
as ECG, troponin, laboratory tests, comorbid presentations, 
and vital signs. There may also be some demographic and 
lifestyle variables (e.g., self-reported ethnicity, insurance type, 
smoking history). I will focus on one primary outcome, in-
hospital mortality or onset of cardiovascular complication, as 
that aligns closely with monitoring patients in real-time and 
for modeling purpose in acute care settings. 
 
d. Clinical features  

The clinical measures used in this study, which are 
ordinarily diagnostic and physiological parameters, have 
known implications for cardiovascular outcomes. Age is a 
reliable indicator in all of the datasets because it is evident that 
with aging comes greater cardiovascular disease (CVD) risk. 
Sex (or biological gender) is available in both the UCI and 
Framingham datasets because men and women may differ in 
the symptoms and risks associated with cardiac disease. From 
the UCI Heart Disease dataset, the variables such as resting 
blood pressure, serum cholesterol, fasting blood sugar, and 
maximum heart rate achieved lends insight into the health of 
the circulatory system and the accompanying metabolic 
activity. Resting electrocardiographic results (restecg), ST 
depression (oldpeak), and number of major vessels colored by 
fluoroscopy (ca) provide considerable information pertaining 
to the cardiac rhythm, presence of myocardial ischemia, and 
anatomical problems. Thalassemia is included as a normal 
variable variable because of the role it plays in hemoglobin 
and overall oxygen transport. 

The Framingham dataset goes beyond clinical indicators 
and includes additional measures. Those variables include 
systolic and diastolic blood pressure, body mass index (BMI), 
glucose, and total cholesterol. The Framingham dataset 
additionally includes variables pertaining to their medical 
history i.e. prevalence of stroke, hypertension and diabetes 
revealing key factors in severe risk modelling over time. The 
MIMIC-III dataset containing ICU patients’ records holds an 
extensive collection of high resolution temporal clinical 
variables. This includes features based on ECG signal, 
troponin levels (biomarker for myocardial injury), and 
comprehensive lab results including levels of creatinine, 
sodium, and potassium. Additional variables that provide 
clinical context include comorbidity records, hospital stay 
length, and hospital outcomes in the case of in hospital 
mortality, which are especially relevant in the case of acute 
CVD. 
 
e. Lifestyle Characteristics 

Clinical data measures health status directly, but there are 
plenty of lifestyle and other factors that have been shown to 
mediate cardiovascular health and longer-term outcomes. In 
the UCI dataset, these lifestyle behaviors include chest pain 
type (cp), exercise induced angina and slope of the ST segment 
(slope), all of which indirectly measure a patient's physical 
activity response and tolerance to cardiac effort. While the 
Framingham dataset lacks some of these lifestyle behaviors, it 

does provide greater behavioral and socio-demographic 
variables. In particular, behavior around smoking, drinking, 
and physical activity level are included as modifiable risk 
factors that cardiologists recognize. Education level is also 
included, which serves as an approximate measure of health 
literacy and socioeconomic status, which are important to 
know because they help to establish determinate factors for 
health behavior and access to health care. 
 
4.2.1 Data preprocessing and normalization 

As noted in the introduction, preprocessing is a critical issue 
in health analytics since there is a great deal of heterogeneity, 
sparsity, and noise in clinical and lifestyle datasets. We have 
operationalized a consistent preprocessing pipeline in the 
current framework to transform input data to data formats that 
are usable, to reduce noise in the data, and to improve learning 
and performance outcomes on the UCI Heart, Framingham 
and MIMIC-III datasets. The key steps include handling 
missing values, encoding categorical data, normalizing data, 
balancing classes, and aligning features. 

The first step in our preprocessing pipeline is addressing 
missing values. With respect to handling missing values 
excessive nonresponse rates are evaluated, attributes with 
excessive nonresponse are dropped. Attributes with less than 
excessive missing rates a chosen imputation technique is 
applied: negating the loss of important samples due to missing 
data. This is clearly an issue in real-world healthcare datasets, 
since they typically contain incomplete or missing data. In our 
framework, we remove features with greater than 30% 
nonresponse. Remaining non-response is applied via K-
Nearest Neighbors (KNN) Imputation or Median Imputation. 

Let 𝑥𝑥𝑖𝑖 ∈ 𝑅𝑅𝑛𝑛 be a data point with missing feature 𝑥𝑥𝑖𝑖
𝑗𝑗. KNN 

finds kk nearest neighbors �𝑥𝑥𝑖𝑖1 , 𝑥𝑥𝑖𝑖2 , … … . , 𝑥𝑥𝑖𝑖𝑘𝑘� based on 
available features. The imputed value is given as Eq. (44). 

 
𝑋𝑋𝑖𝑖
𝑗𝑗 = �1

𝑘𝑘
�∑ 𝑥𝑥𝑖𝑖𝑙𝑙

𝑗𝑗𝑘𝑘
𝑙𝑙=1    (44) 

 
Eq. (45) shows the median imputation. 
 

𝑥𝑥𝑖𝑖𝑗𝑗 = 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚({𝑥𝑥1𝑗𝑗, 𝑥𝑥2𝑗𝑗 , … , 𝑥𝑥𝑚𝑚𝑗𝑗})  (45) 
 

4.2.2 Encoding categorical features 
C Attributes with categorical data are transformed using 

one-hot encoding so that the model can learn from these non-
numeric classes without suggesting ordinal classifications. 
Attributes with ordinal data are transformed using ordinal 
encoding in which order is preserved. One-hot encoding is 
applying to nominal categories. Ordinal encoding is applied 
where there is an order Let a categorical variable 𝑥𝑥 ∈
{𝐶𝐶1,𝐶𝐶2, … ,𝐶𝐶𝑛𝑛}. One-hot encode into a vector 𝑣𝑣 ∈ {0,1}𝑛𝑛 such 
as given in Eq. (46). 

 

𝑉𝑉𝑗𝑗 = �1      𝑖𝑖𝑖𝑖 𝑥𝑥 = 𝐶𝐶𝑗𝑗
0    𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒

 (46) 

 
4.2.3 Data normalization 

With scaling procedures, min-max normalization is 
implemented across features, transforming those values to 
within a [0, 1] range. This is important for model training 
stability, particularly with certain algorithms. Skewed data are 
impacted by normalized scores. Z-score standardization is 
better in handling outliers. In order to ensure all features that 
are scaled larger do not carry over greater significance in the 
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learning process, normalization was still accomplished on all 
features with continuous data. Min-Max Normalization is used 
to scale the features to a fixed range of [0, 1]. For features 
containing outliers, it is better to use a standardization (z-
score). Eq. (47) is used to perform min-max normalization and 
Eq. (48) is sued to perform Z-score normalization on the 
dataset. 

 

𝑥𝑥𝑖𝑖′ =
𝑥𝑥𝑖𝑖 − min(𝑥𝑥)

max(𝑥𝑥) − min(𝑥𝑥)  (47) 

 
𝑥𝑥𝑖𝑖′ =

𝑥𝑥𝑖𝑖 − 𝜇𝜇
𝜎𝜎

  (48) 
 

where, μ is the mean and σ is the standard deviation of feature 
xx. 
 
4.2.4 Class imbalance handling 

To alleviate class imbalance (i.e., fewer positive heart 
disease observations), we employ SMOTE since it increases 
the model's opportunity to learn from the minority 
observations without overfitting. Lastly, we take into 
consideration the heterogeneous sources of the datasets and 
conduct an aligned feature mapping. We retain common 
features for multi-dataset training and hold onto features with 
a value going forward but evaluate in context-specific 
experiments. This enables achieving scalability and 
transferability across many different sources of healthcare data, 
we implement Synthetic Minority Oversampling Technique 
(SMOTE). Given a minority sample 𝑥𝑥𝑖𝑖 , a synthetic sample 
𝑥𝑥𝑛𝑛𝑛𝑛𝑛𝑛  is generated as shown in Eq. (49). 

 
𝑥𝑥𝑛𝑛𝑛𝑛𝑛𝑛 = 𝑥𝑥𝑖𝑖 + 𝜆𝜆 ⋅ (𝑥𝑥𝑖𝑖′ − 𝑥𝑥𝑖𝑖)  (49) 

 
where, 𝑥𝑥𝑖𝑖′is a randomly selected minority class neighbor of 𝑥𝑥𝑖𝑖, 
and λ∈[0,1] is a random number. This generates new samples 
along the line segment between existing minority samples, 
enhancing class balance. 
 
4.2.5 Feature alignment and fusion 

Given we made use of three heterogeneous datasets, the 
feature schemas were aligned using the intersection and union 
approach. Unified features common across datasets (i.e., age, 
cholesterol, blood pressure). Kept unique but significant 
features (i.e., troponin from MIMIC-III, education in the 
Framingham) as optional inputs during model training and 
evaluated independently. Values missing from the datasets, 
were imputed with a neutral or median value, or only the 
subset-specific training purposes to content the quality of 
datasets. 
 
4.3 Performance metrics 
 

The GPCB framework was evaluated for its validity and 
reliability using a benchmark of common classification 
performance measures. The performance measures provide a 
holistic perspective of the model’s predictive ability, including 
overall accuracy, ability to identify and capture positive 
instances, accuracy of positive decisions, recall and precision 
balance, and recognizability across probability thresholds. 
These measures were Accuracy, Precision, Recall, F1-Score, 
and AUC–ROC, which provide different ways to look at 
model performance. 

Accuracy (%) – The percentage of all predictions (both 
positive and negative) that the model predicted correctly. It 
can be calculated via Eq. (50). Here, TP is True Positives, TN 
is True Negatives, FP is False Positives, and FN is False 
Negatives. 

 
𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 = 𝑇𝑇𝑇𝑇 + 𝑇𝑇𝑇𝑇

𝑇𝑇𝑇𝑇  + 𝑇𝑇𝑇𝑇 + 𝐹𝐹𝐹𝐹 + 𝐹𝐹𝐹𝐹
× 100  (50) 

 
Precision (%) – The proportion of samples predicted as 

positive that are actually positive. This reflects how many false 
alarms the model experienced and how often it will experience 
false alarms. It can be calculated via Eq. (51). 

 
𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 = 𝑇𝑇𝑇𝑇

𝑇𝑇𝑇𝑇 + 𝐹𝐹𝐹𝐹
× 100  (51) 

 
Recall (%) – Also called the True Positive Rate or 

Sensitivity, Recall measures the proportion of actual positive 
samples that have been predicted correctly. It can be calculated 
via Eq. (52). 

 
𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 = 𝑇𝑇𝑇𝑇

𝑇𝑇𝑇𝑇 + 𝐹𝐹𝐹𝐹
× 100  (52) 

 
F1-Score (%) – The harmonic mean of Precision and Recall, 

the F1-Score provides a balance between the two especially in 
relation to imbalanced datasets. It can be calculated via Eq. 
(53). 

 
𝐹𝐹1 = 2×𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃×𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 + 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅
× 100  (53) 

 
AUC–ROC – The Area Under the Receiver Operating 

Characteristic curve interprets the ability of the model to 
differentiate between the classes across all decision thresholds. 
Values near 1 indicate very strong discriminative power. 

 
4.4 ROC and confusion matrix analysis 

 
The ROC curves across all data sets showed clear separation 

between the positive and negative classes as a means of 
validating the model's discriminative ability. The average 
AUC from all data sets showed that the GPCB framework is 
effective in addressing imbalances between classes. The 
confusion matrices showed that there is a low false negative 
rate, which is a very important aspect of CVD prediction, as a 
missed case can have severe consequences. To further confirm 
the classification results, we also visualized the ROC and 
confusion matrices. The ROC curve shows the trade-off 
between the true positive rate (sensitivity) and false positive 
rate (1 − specificity) at different threshold values. A model that 
has a larger Area Under the Curve (AUC) indicates better 
discrimination by the model. Our GPCB model's average AUC 
was 0.96 across datasets. This means that our GPCB model 
could make good distinctions between cases that are CVD-
positive and CVD-negative. 

Figure 3 visualizing the confusion matrix using a 0.5 
decision threshold in order to observe the accuracy of 
classifications, the false positives, and the false negatives. The 
confusion matrix demonstrated that our GPCB model had a 
low false negative rate, which is very important in medical 
evaluations since missed detections can have serious clinical 
implications. The clear dominance of diagonal values 
indicates that the GPCB framework has produced very reliable 
predictions. Table 1 shows the model comparison with 
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existing frameworks. 
 

Table 1. Model comparison with existing frameworks 
 

Model Precision (%) Recall (%) F1-Score (%) Accuracy (%) 
TPSO [1] 95.2 97.3 96.2 96.5 

CNN–Transformer [2] 84.3 86.5 86.1 85.2 
Hybrid CNN-LSTM [3] 90.2 91.1 90.9 89.0 

TLBO and GA hybrid approach [4] 87.5 87.5 86.9 87.5 
FIMCNN [5] 93.4 89.5 91.4 91.1 

GPCB (Proposed) 96.7 96.2 97.9 98.5 
 

Table 2. Comparison of individual frameworks on UCI, Framingham and MIMIC-III datasets 
 

Model Dataset Accuracy (%) Precision (%) Recall (%) F1-Score (%) AUC–ROC 

GA (Feature Selection + SVM) 
UCI 86.3 84.7 85.1 84.9 0.89 

Framingham 85.4 83.6 84.2 83.9 0.87 
MIMIC-III 83.7 81.9 82.1 82.0 0.85 

PSO (Feature Selection + RF) 
UCI 87.1 85.4 86.0 85.7 0.90 

Framingham 86.2 84.1 84.8 84.4 0.88 
MIMIC-III 84.6 82.7 83.2 82.9 0.86 

CNN (Raw Data) 
UCI 88.9 87.0 87.8 87.4 0.91 

Framingham 87.2 85.1 86.0 85.5 0.89 
MIMIC-III 86.0 83.8 84.6 84.2 0.88 

LSTM (Sequential Data) 
UCI 89.4 88.1 88.7 88.4 0.92 

Framingham 88.3 86.4 87.1 86.7 0.90 
MIMIC-III 87.0 85.2 85.9 85.5 0.89 

Transformer 
UCI 90.1 88.6 89.3 88.9 0.93 

Framingham 89.3 87.3 88.0 87.6 0.91 
MIMIC-III 88.1 86.2 86.9 86.5 0.90 

CNN–LSTM (Hybrid) 
UCI 91.3 89.8 90.7 90.2 0.94 

Framingham 90.4 88.5 89.3 88.9 0.92 
MIMIC-III 89.1 87.1 87.8 87.4 0.91 

 
Table 3. Performance of individual models on UCI dataset 

 
Model Accuracy (%) Precision (%) Recall (%) F1-Score (%) AUC–ROC 

GA (FS + SVM) 86.3 84.7 85.1 84.9 0.89 
PSO (FS + RF) 87.1 85.4 86.0 85.7 0.90 

CNN 88.9 87.0 87.8 87.4 0.91 
LSTM 89.4 88.1 88.7 88.4 0.92 

Transformer 90.1 88.6 89.3 88.9 0.93 
CNN–LSTM 91.3 89.8 90.7 90.2 0.94 

 

 
 

Figure 3. ROC of the proposed framework 
 
Table 2 shows the comparison of individual frameworks on 

UCI, Framingham and MIMIC-III datasets. Table 3 compares 
the performance of individual models (GA, PSO, CNN, LSTM, 
Transformer, CNN–LSTM) on the UCI Heart Disease dataset, 
followed by a detailed explanation of each. Genetic Algorithm 
(GA) was utilized for feature selection and Support Vector 

Machine (SVM) classification was undertaken. The 
benchmark model returned an accuracy of 86.3% and a F1-
score of 84.9%. It retains features, diminishes dimensionality, 
and retains model focus, but given the definition of SVM, its 
linear classification boundary performs poorly on nonlinear or 
complex cardiovascular risks. Next, Particle Swarm 
Optimization (PSO) allowed information-dense feature 
selection. By using this information loaded feature set in 
Random Forest (RF) configuration, slight improvement over 
GA-SVM was achieved with an accuracy of 87.1% and an 
AUC-ROC 0.90. It shows PSO works effectively by 
preserving or, if necessary, deliberately overwriting relevant 
variance, yielding improved predictions based on random and 
ensemble classifiers. 

CNN were trained directly on structured data from UCI. 
CNN does not perform significantly better or worse but 
achieved an accuracy of 88.9% and a strong AUC-ROC of 
0.91. CNN can extract spatial hierarchies of features. CNN 
performs better than traditional approaches, as it extracts more 
abstract representations. LSTM networks, the most suited to 
comprehend sequential patterns, improved performance to an 
accuracy of 89.4% and a F1-score of 88.4%. This implies that 
atmospherics or dependencies in the patient records (age, 
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blood pressure patterns, cholesterol trends, etc.) provide 
additional discriminative ability or that the tabular data format 
allows for a better comprehension of temporal patterns. The 
Transformer model yields not only an accuracy of 90.1% but 
also an AUC–ROC higher than other standalone models (0.93). 
This demonstrates the model's capacity to learn complex 
attention-based dependencies among input variables and 
generalize well on structured inputs with varying feature 
interactions. The CNN–LSTM hybrid model incorporates 
spatial feature extraction (CNN) with sequential memory 
(LSTM) and outperformed all other standalone models, 
attaining 91.3% accuracy, a 90.2% F1-score, and 0.94 AUC–
ROC. This validates that joint modeling of local and temporal 
structures affords a cooperative advantage in CVD prediction 
as shown in Figure 4. 

This comparative analysis outlines the incremental 
improvements made by moving from traditional ML with 
feature selection (GA, PSO) to deep learning (CNN, LSTM, 
Transformer) to hybrid models like CNN–LSTM. The results 

in the UCI dataset justify the motivation for creating more 
advanced models such as the GPCB framework that combines 
GA–PSO optimization with a Transformer-steered CNN–
BiLSTM network for improved prediction of cardiovascular 
disease. 

Figure 4. Performance of individual models on UCI dataset 

Table 4. Performance of individual models on Framingham dataset 

Model Accuracy (%) Precision (%) Recall (%) F1-Score (%) AUC–ROC 
GA (FS + SVM) 85.4 83.6 84.2 83.9 0.87 
PSO (FS + RF) 86.2 84.1 84.8 84.4 0.88 

CNN 87.2 85.1 86.0 85.5 0.89 
LSTM 88.3 86.4 87.1 86.7 0.90 

Transformer 89.3 87.3 88.0 87.6 0.91 
CNN–LSTM 90.4 88.5 89.3 88.9 0.92 

Table 4 gives the performance of individual models on 
Framingham dataset. The GA–SVM model is 85.4% accurate 
on the Framingham dataset, and while it successfully removes 
redundant features and enhances classifier attention, due to its 
lack of adaptive learning and linear separation methodology, 
it has limitations in determining the complexity underlying 
CVD risk patterns in this dataset. An improvement in accuracy 
by 1% to 86.2% was made by the PSO-RF model. PSO is 
particularly effective for select informative features, while 
Random Forests provides better consideration of feature 
interactions than SVM does. Collectively this approach 
performed better, but still lacks representation learning in 
depth, compared to other models. The CNN model achieved 
87.2%, on the Framingham dataset, citing the spatial 
representations that it is able to extract from the data. 
Convolutional Neural Networks, more commonly associated 
with image classification tasks, have an architecture that can 
to some extent also extract non-linear relationships in 
structured tabular data as long as the new shape is constructed 
appropriated. 

The LSTM network used in this case study for sequence 
modeling activities improved accuracy to 88.3%, as the LSTM 
has memory cells that are designed to track dependencies over 
time. This is beneficial for predicting CVD as many of the 
clinical patterns are sequenced. The Transformer is able to 
perform better than all of the previous models at 89.3% as it is 
autonomous in dealing with important contextual information 
and employs global self-attention mechanisms. The 
Transformer, along with LSTM, is able to model feature 
interactions well across the entirety of the input vector, 
meaning that it is better equipped to identify the inter-
dependencies when features such as cholesterol, age, BMI etc., 
are combined. The hybrid CNN–LSTM model demonstrates 
the best performance with 90.4% accuracy and 0.92 AUC–
ROC. Here, CNN recognizes localized patterns while LSTM 

models temporal or sequential dependencies of features. 
Combining the two approaches gives a more expressive model 
and this is an advantage given the multi-variable nature of 
cardiovascular risk prediction as shown in Figure 5. 

In relation to relevance, the reduced and optimized feature 
set retains fundamental clinical features such as age, systolic 
BP, cholesterol, etc. Some lifestyle indicators also remain in 
the dataset, such as smoking status and physical activity. 
Expectedly, this matches up very closely with the traditional 
clinical practice guidelines that health practitioners and 
physicians would align with. This a more plausible, 
interpretable solution that should instill a high degree of 
confidence regarding the use of the GPCB framework in 
conventional care delivery. 

Figure 5. Performance of individual models on Framingham 
dataset 

Table 5 demonstrates the overall performance of the GPCB 
model across the benchmark datasets are similar with accuracy 
greater than 94% for all datasets, while also spanning a peak 
performance accuracy of 98.3% on the mixed dataset. The 
precision, recall, and F1-score closely reflect on each other 
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which reveals balanced classification while AUC–ROC scores 
are between 0.95 and 0.98, indicating that the GPCB model 
has excellent discriminative power. There is further 
improvement on the combined dataset indicating that the 

GPCB model is generalizing well when modelled on more 
heterogeneous clinical and lifestyle data sources. Table 6 gives 
the performance of Phase I and Phase II frameworks on 
benchmark datasets. 

Table 5. Performance of GPCB model on benchmark datasets 

Dataset Accuracy (%) Precision (%) Recall (%) F1-Score (%) AUC–ROC 
UCI Heart Disease 95.4 94.9 94.2 94.5 0.96 

Framingham Heart Study 95.3 94.9 95.5 95.2 0.97 
MIMIC-III 94.1 93.2 93.8 93.5 0.95 

Mixed Dataset (All 3) 98.3 96.7 96.0 97.6 0.98 

Table 6. Performance of Phase I and Phase II frameworks on benchmark datasets 

Dataset Model Variant Accuracy (%) Precision (%) Recall (%) F1 Score (%) AUC-ROC 
UCI Without Phase I 91.2 90.3 90.7 90.5 0.925  

With Phase I (GPCB) 95.4 94.9 94.2 94.5 0.96 
Framingham Without Phase I 92.8 92.0 92.3 92.1 0.935  

With Phase I (GPCB) 95.3 94.9 95.5 95.2 0.970 
MIMIC-III Without Phase I 91.6 90.5 91.2 90.8 0.920  

With Phase I (GPCB) 94.1 93.2 93.8 93.5 0.950 

5. CONCLUSION

This paper introduced GPCB, a two-phase framework that
combines GA-PSO-based feature optimization with a CNN-
BiLSTM architecture which is guided by a Transformer to 
effectively and accurately predict whether a patient has a 
cardiovascular disease. In Phase I, the most informative 
features are selected, while in Phase II, spatial-temporal 
features are extracted and attention-guided learning is applied 
to enhance predictive performance. Experimental results using 
various machine learning models applied to the UCI Heart 
Disease, Framingham, and MIMIC-III datasets demonstrates 
GPCB outperforms the baseline models across all datasets 
with both feature effectiveness and predictive accuracy 
achieving 98.3% accuracy as well as high precision, recall, and 
AUC-ROC scores, confirming GPCB is robust and scalable to 
real-world healthcare settings. The future enhancement can be 
to expand the GPCB to stratify multi-class cardiovascular risk 
and introduce real-time patient monitoring using IoT wearable 
devices. The framework can also be augmented to include 
explainable AI modules - ultimately enhancing clinical 
interpretability and trust. Finally, large-scale validation over a 
broad demographic and geographic data set will be sought to 
ensure global applicability and resiliency in various healthcare 
settings. 
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