g’ I Er A International Information and

Lngineering Technology Association

Ingénierie des Systémes d’Information
Vol. 30, No. 8, August, 2025, pp. 1985-1999

Journal homepage: http://iieta.org/journals/isi

GPCB: A Hybrid GA-PSO and Transformer-guided CNN-BiLSTM Framework for |

Cardiovascular Disease Prediction

Roopa T* D. R. Ganesh

Check for
updates

School of Computing and Information Technology, REVA University, Bengaluru 560064, India

Corresponding Author Email: roopa25k@gmail.com

Copyright: ©2025 The authors. This article is published by IIETA and is licensed under the CC BY 4.0 license

(http://creativecommons.org/licenses/by/4.0/).

https://doi.org/10.18280/isi.300805

ABSTRACT

Received: 13 June 2025

Revised: 5 August 2025
Accepted: 20 August 2025
Available online: 31 August 2025

Keywords:
hybrid deep learning, Genetic Algorithm,
Particle  Swarm  Optimization, ~ CNN,

BiLSTM, explainable Al, risk prediction,
transformer

Cardiovascular disease (CVD) remains the leading cause of death worldwide, so predicting
risk as soon as possible and accurately is necessary to provide timely intervention. However,
previous interpretive models perform poorly due to overfitting, poor feature selection, and
substantively poor management of heterogeneous clinical and behavioral data. To improve
the classification of CVD risk, this paper presents a framework termed as GPCB. This
combines Genetic Algorithm — Particle Swarm Optimization (GA-PSO) for feature
selection with a deep learning model construction that includes transformers, Convolutional
Neural Networks (CNN), and Bidirectional Long Short Term Memory (Bi-LSTM) models
(T-CBLSTM). During phase I, the GA-PSO module performs multi-objective feature
optimization when predicting by comparing and assessing predictive relevance and
minimizing input dimensions, allowing a reasonable selection of clinical and lifestyle
features that were meaningfully relevant. In phase II, a feature extracted and selected T-
CBLSTM model was constructed to compose the model, where the CNN layers extracted
spatial patterns, the Transformer blocks accounted for global dependencies in the data, and
the Bi-LSTM layers attended to the sequential relationships. This framework was evaluated
on the UCI Heart Disease, Framingham Heart Study, and MIMIC-III datasets as well as the
merged datasets. The experimental results demonstrate that GPCB-TC outperformed the
state-of-the-art accuracy up to 98.3%, F1-score 97.6%, and AUC—ROC 0.98. The proposed
model shows immense opportunities for development and implementation in clinical

decision support systems by offering risk assessment in a real-world healthcare practice.

1. INTRODUCTION

Cardiovascular disease is still the leading cause of death in
the world, accounting for an estimated 18.6 million deaths
annually, and substantial burden on health economies across
the globe. The Global Burden of Disease (GBD) study reports
that the burden of CVD and CVD-related risk factors has
increased steadily over the past thirty years, among high-
income and low-income populations alike [1]. There are a
number of clinical diagnostics currently available, even with
clinical advances, much remain limited as their capacities still
rely on discrete risk factor measures and linear scoring models
that do not integrate clinical and behavioral data [2, 3]. To
improve upon these deficiencies, artificial intelligence (Al)
and machine learning (ML) methods have progressively been
adopted for CVD risk prediction and early diagnosis [4, 5]. In
particular, hybrid models show more accurate prediction as
they capture complex non-linear patterns of patient data [6]. A
number of studies have also successfully distinguished heart
disease with ML algorithms such as Support Vector Machines
(SVM), Random Forests (RF), and Artificial Neural Networks
(ANN) a number of studies cannot generalize results due to
data heterogeneity and or selecting the best features, etc.

Zhou et al. [7] conducted an extensive review of the
literature and retrieved a collection of hybrid CNN-LSTM
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models that showed they were more prevalent and more
effective than classical methods for arrhythmia detection and
myocardial infarction classification. Deep learning (DL)
models have gained traction as a favorable choice for
modeling high-dimensional, time-series medical data. For
instance, CNNs have been used to classify spatial patterns
extracted from ECG signals and electronic health data. Long
short-term memory networks (LSTMs) and bidirectional
LSTMs (BiLSTMs) have successfully been used to capture
temporal data dependencies [8-10].

A further problem associated with CVD prediction is the
presence of features that are irrelevant, redundant, or noisy.
Irrelevant and noisy features can undermine model
interpretability and exacerbate overfitting issues [11].
Metaheuristic approaches such as Genetic Algorithm (GA),
Particle Swarm Optimization (PSO), and hybrid algorithms
based on swarm intelligence are features selection methods
that perform well at minimizing input dimensionality and
improving accuracy [12]. Amal et al. [9] and Wang et al. [§]
recommended that multimodal (clinical parameters, lifestyle,
and behavioral) data be included in an attempt to develop
patient specific system for risk assessment. Likewise, some
studies that combine CNNs with BiLSTMs or transformer-
based mechanisms ([13-16]) report superior predictive
performance.
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Recent research has proposed both unique optimization
approaches as well as explainable Al-approaches to build trust
and transparency in the medical decision-making process [17].
However, most prior research has focused on either feature
engineering or optimized deep learning architectures in
isolation. There is a research gap in optimized deep learning
pipeline encompassing an integrated framework that
simultaneously optimizes features and provides reliable
temporal modeling in CVD prediction tasks.

In order to address these research gaps, the aim of this paper
is to propose a two-phase hybrid framework that leverages
multi-feature optimization using genetic algorithm (GA) and
Particle Swarm Optimization (PSO) with the time-series data
feature processing capabilities of a Transformer-guided
Convolutional neural network and bidirectional Long short-
term memory (T-CBLSTM) deep learning model as the final
predictive tool for heart disease with interpretability. The
framework was trained and validated using three diverse real-
world datasets, namely UCI Heart, Framingham, and MIMIC-
IIT datasets, and utilized clinical and lifestyle data within the
datasets. As will be shown, the proposed framework improves
performance based on accuracy, precision, recall, F1, and
AUC-ROC, compared with existing benchmark models.

The UCI Heart Disease data set contains 303 samples with
76 clinical attributes (often later reduced to 13 for many
prediction tasks), the Framingham Heart Study data set
contains 4,240 records, with 15 attributes, and MIMIC-III
clinical data set has 7,000 patient records with 25 selected
features. The model's high precision, recall and
generalizability across 3 datasets improves its utility as a
decision-support tool for early identification and risk
stratification of cardiovascular diseases. In addition, the
feature reduction work in Phase I adds to the interpretability
of the model by identifying the most pertinent clinical and
lifestyle factors to the individual, which is paramount in
healthcare expectations for transparency and precision.

This research presents a comprehensive and unified
framework that addresses critical challenges in cardiovascular
disease (CVD) detection and health risk assessment by
integrating multi-objective feature optimization with a hybrid
deep learning model. The main contributions of this work are
summarized as follows:

® Designed a novel architecture called GPCB,
integrates a GA—PSO feature selector (Phase 1) with

a T-CBLSTM deep learning classifier (Phase II).

Designed fitness function directs GAs—PSO meta-
heuristic to simultaneously maximize classification
accuracy and minimize feature redundancy.

The T-CBLSTM model has CNN layers learning the
spatial  representation,  learning  long-range
dependencies and contextual relationships.

Models are evaluated using the UCI Heart Disease,
Framingham and MIMIC-III datasets, along with a
combined dataset with the results showing excellent
accuracy and AUC.

The rest of this paper is organized in the following way:
Section 2 provides a thorough overview of the state-of-the-art
literature covering machine learning and deep learning models
for cardiovascular disease prediction, with a special emphasis
on feature selection and hybrid models. Section 3 describes the
datasets used, containing clinical and lifestyle features while
also discussing the data preprocessing and normalization
methods. Section 4 explains the GPCB framework including
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the GA-PSO based feature optimization step and the CNN-
BiLSTM deep learning model guided by the Transformer (T-
CBLSTM). Section 5 details the experimentation setup,
including hyperparameter tuning and evaluation metrics. It
also explains the results of the ablation studies and the
conclusions drawn by comparing the model with existing
models as well as the performance in individual datasets.
Finally, Section 6 concludes the paper and outlines future
research directions followed by references.

2. RELATED WORK

There has been a significant surge in the research
applications of ML & DL to detect CVD within the last five
years. These models provide an avenue to predict cardiac
abnormalities, by way of predictive analytics, using electronic
health records (EHR), ECG let's, and documented patient
information to perform early detection. A number of
researchers have deployed the use of A in order to conduct
early prediction and diagnosis of CVD in recent years, again
with the aim of improved mortality through early intervention.
Sayadi et al. [18] proposed a ML model which detected
coronary artery disease based on non-invasive, readily
available, clinical parameters and noted the importance of
simple, easily employed diagnostic tools, however; their
model was limited in healthcare value by the lack of temporal
modeling, and lifestyle parameters. Mahdi Muhammed et al.
[19] applied various supervised learning algorithms to predict
CVD outcomes but reported moderate accuracy with no
hybridization or optimization approach to the algorithms used.
Numerous researchers have employed advanced optimization
algorithms to enhance the predictive performance on heart
disease outcomes.

Ahmad and Polat [20] employed a Jellyfish Optimization
Algorithm for feature selection in heart disease prediction
which demonstrated improved performance but with little
review on generalizing the results across data sets. Al-Safi et
al. [21] established a neural network model with Harris Hawks
Optimization that devoted attention to accuracy in training, but
interpretative awareness was not part of the analysis. Currently,
as [oT and cloud environments evolve, Shafiq et al. [22] and
Raju et al. [23] have developed smart heart disease prediction
systems that apply sensor networks and cascaded DL models
that incorporated Al. In both studies, however, while real-time
data suggested potential, the previous issues of model
transparency and data heterogeneity remained. Liu et al. [24]
provided a thorough review of deep-learning based heart
disease prediction models describing architectures such as
CNNs, LSTM, GRUs and hybrid models, utilizing data
sources including ECG, clinical and demographic data. Their
study emphasized the advantages of using deep-learning
models in capturing non-linear relationships and automatic
feature learning. However, these authors have identified
prominent challenges, namely: overfitting on small datasets;
issues interpretability; and generalizability across diverse
populations. Although the literature review provides wide
coverage, feature optimization and the utilization of
metaheuristics are not addressed in sufficient detail, which we
accomplish in our proposed GPCB model through the GA-
PSO-enhanced feature selection pipeline and the transformer-
guided hybrid deep learning aspects.

Kumar et al. [25], proposed a deep learning based model
with a focus on interpretative potential and predictive



performance; although the study did not include metaheuristic
feature selection. Abdullah [26] used an improved multilayer
perceptron for early diagnosis which led to better training
times but didn’t use any temporal dependencies. Similarly,
Sonawane and Patil [27] had developed a hybrid heuristic
based clustering method with an enhanced optimization.
However, no integration of deep learning would enhance
performance on high dimensional data. While, Bataineh and
Manacek [28] offered an MLP-PSO hybrid for the purpose of
diagnosis with better recall overall, but none were specific to
CVD data and remained somewhat irrelevant to CVD
medicine. In current study, mostly the current studies have
purported hybrid feature engineering. Other frameworks, such
as the one presented by Kalaivani et al. [29], executed
ensemble classifiers using multi-feature selection, achieving
reasonable accuracy while lacking temporal modeling.

Atteia et al. [30] called PSO and PCA into service at a
hybrid level to classify with improved classification. Zhang et
al. [31] integrated deep neural networks, embedded feature
selection, and continued with evidence suggesting outcomes,
but later reports of retraction of the results questions the
validity of the evidence. Zou et al. [32] present a reinforcement
learning model that supports diagnosis, however, the model
learned no sequential features for longitudinal health data. Haq
et al. [33] positions personalized CVD medicine via Al while
Champendal et al. [34] review the limitations regarding
interpretability of models across medical imaging Al tools.
Chen et al. [35] presented a bibliometric analysis on Al within
smart healthcare, and advocated for the use of information
fusion methods. Most importantly, most studies do not explore
clinical factors and behavioral factors cohesively. Subramani
et al. [36] then fused ML and DL parallel models for
cardiovascular prediction but the fusion lacked a common
optimization method, depriving overall performance gain.
Generally, from an Al perspective, Li et al. [37] automated
CVD prediction using EMR features from regional healthcare
data, with an emphasis on the strength of real-world data but
provided no ranking regarding the features. As well as those
points made so far, explain ability and personalization have
received minimal attention.

The extensive studies boast important improvements in
predicting heart disease using ML and DL, limitations
including no inclusion of lifestyle data, poor feature selection,
lack of explain ability, and limited personalization inhibit their
use in practice. To fill in those gaps, we propose an integrated
Grounded  Person-Centered  Bioinformatics  (GPCB)
framework that combines GA-PSO with a deep hybrid
Transformer—CNN-BiLSTM model for high accuracy and
temporal modeling in clinical practice with personalized
healthcare.

3. PROPOSED METHOD
The GPCB (Genetic Algorithm-Particle =~ Swarm
Optimization +  Transformer-guided = CNN-BiLSTM)

framework we are proposing is a two-phase intelligent system
for an accurate CVD prediction tool using combined clinical
and lifestyle information. This model is motivated by the
imperative to address significant limitations of existing
systems, such as dealing with high-dimensional input space,
lack of personalization, and poorer quality feature learning for
sequential patient data. The framework combines advanced
feature selection with hybrid deep learning to ensure both high
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precision and generalizability across datasets. The two-phases

implemented in the proposed cardiovascular disease
prediction framework are:
. Phase I: Genetic Algorithm-Particle Swarm
Optimization (GA-PSO)
. Phase 1II: Transformer-guided CNN-
BiLSTM

3.1 Multi-objective feature optimization using GA-PSO

This is the phase I of the proposed model, it is designed as
a multi-objective feature optimization framework. Just as in
clinical and life-style datasets not all features contribute
meaningfully to a CVD prediction. Some features will be
irrelevant to CVD prediction, redundant, and noise or
correlations, etc. Using all features will additionally just add
complexity to the model, potentially make the model overfit
worse, and also will add to computational costs especially with
deep learning models. Thus, a means of feature selection is
essential. Here, we are using a hybrid GA-PSO feature
selection strategy that utilizes the global search ability of the
GA while using the local refinement and fast local
convergence and refinement of the PSO to find a small number
of features with maximum predictive performance and
reduced dimensionality.

In real world healthcare datasets, the dataset will most likely
have features that are irrelevant, redundant, or noisy. Because
of'this, we propose the use of a hybrid GA-PSO based wrapper
method for selecting an optimal subset of features that
maximize classification accuracy and minimize model
complexity. The overall design diagram of the phase I GA-
PSO is provided as Figure 1.

Genetic
Algorithm

| Reduced
Feature |
Subset

Multi-Objective |
Evaluation

Clinical & Lifestyle

Feature Features

Particle
Swarm

(2]

o8 o
o ¢ o

Figure 1. GA-PSO design diagram

In Phase I of the GPCB framework, let the input dataset D =
{(xLyO,,x* e R4,y €{0,1}, employ a  Genetic
Algorithm—Particle Swarm Optimization (GA— PSO) hybrid
approach to select the most important features from the high-
dimensional clinical and lifestyle data. Each solution (i.e., a
Vn of features) is encoded as a chromosome, a binary vector.

¢ = [c1,¢p, ey 4], c; €{0,1} (1

Eq. (1) shows the chromosome representation in binary
format, a gene ¢; = 1 implies the jth feature is selected.

The first objective function outlined in this Eq. (2) is the
multi-objective GA-PSO optimization process during the
feature selection phase. The goal is to minimize the
classification error of the set of features represented as
chromosome c.

Minimize: f,(c) = 1 — Accuracy(c)
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This Eq. (3) establishes the second objective of the multi-
objective optimization in Phase I (Feature Selection using
GA-PSO) with the goal of minimizing the proportion of
selected features in the final feature subset.

In short, it penalizes the selection of too many features and
facilitates  simplicity ~within the model promoting
generalizability and a decrease likelihood of overfitting.

Minimize: f,(c) = %Z?:l G 3)

Here, f,(c) represents the second objective function, c;
represents the binary value indicating the jth feature is selected
or not and d is the total number of features in the dataset.

A starts as the optimization process of creating a population
with binary chromosomes, each chromosome resulting in a
different feature subset. The GA selects chromosomes to use
as parents with a selection method based on round-robin
selection or roulette wheel selection, placing a probability-
based preference on parents with higher fitness. Crossover on
the parents will recombine genetic information from two or
more of the parents, which introduces some variability to
allow any of the selected parents to create offspring in a new
location in feature space. Mutation allows for small random
changes (flips) of the chromosomes used to create the
offspring. Mutation allows GA to move away from a local
optimum, with a goal of fostering diversity in the parent
population. Following are the GA operations:

Selection: either via roulette wheel or tournament selection
to select parents

Crossover: single-point crossover or uniform crossover to
create offspring

Mutation: bit flipping (0 — 1 or I — 0) with a low
probability of mutation

Let the initial population P® for the hybrid GA-PSO
method in Phase I of multi-objective feature selection. In
nature-inspired metaheuristics, "population" refers to a set of
candidate solutions referred to as individuals (or particles, or
chromosomes). Each individual ¢? is a binary chromosome
representing a subset of features selected from the entire
dataset for one solution in the initial generation (generation 0)
as given in Eq. (4).

P° ={c}, .., c%} 4)

This Eq. (5) represents a single-point crossover operator for
Genetic Algorithms (GA). Crossover involves the combining
of some features (chromosomes) of each of two parent
solutions to create a new offspring solution. The intent of
crossover is to induce genetic diversity by mixing different
genetic material (feature subsets) from different individuals.

Crossover(cy,c,) = [Cl[: k], c, [k:]] (5)

Here, c¢;, and c¢» represents first and second parent
chromosomes, k is the randomly chosen crossover point, and
[c1[: k), ca[k: ] represents genes of the chromosomes ¢; and
Ca.

The mutation operation used here is

with probabilit
p Y Pm ©)

M ) 1-— Cj
utation (Cj) 1 g otherwise
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The following equation defines the mutation operation for a
binary chromosome ¢ = [cy, ¢3, ... ..... CqJused in the GA part
of the hybrid GA-PSO feature selection strategy. Mutation is
a genetic operator that maintains diversity in the population
and prevents premature convergence.

This equation describes how to convert a particle's velocity
into a probabilistic value within the bounds of [0,1]. The
sigmoid activation function does this. As shown in the Binary
Particle Swarm Optimization (BPSO) algorithm, features are
selected or not selected (0 or 1). While we cannot make
continuous updates to the particle's position as in PSO, we can
still update the particle's position probabilistically as shown in

Eq. (7).

vj(Hl) = wvj(t) + ¢y (pbest]- - xj(t)) + ;
® 0
CZrz(gbest]-—xj )
Here, v](.t) wis the inertia weight, i.e. 0.4<w < 0.9, ¢;and

¢, cognitive acceleration and social acceleration coefficients,
ryand 1, are the random numbers.

This equation binarized the probabilistic output from Eq. (8).
A uniform random number r € [0,1] is generated. If the
output from the sigmoid exceeds this random level, then the
feature is selected (1). If it is below the random level, it is not
selected (0). This creates a stochastic manner of feature
selection, and encourages exploration.

1
1+e”V

t+1 __
Xt =

a(vj(tﬂ)), o) = 8)

Here, x/*' updated binary selection of the j®

feature o (v)probability from the sigmoid function, and r is the
random number sampled from uniform distribution U(0,1).

1
xulz{
! 0

The performance of each feature subset is evaluated by a
multi-objective fitness function on two competing goals. It
improves the classification accuracy while minimizing the
number of features. Accuracy is computed after a lightweight
classifier is trained on the features we selected and measured
with cross-validation to ensure robustness. The second term in
the fitness function penalizes the number of features,
promoting compactness. By tuning the weights a and B, we
adjust the trade-off between model performance and feature
sparse characteristics. The score given to candidate solutions
will lead our selection process and evolutionary process for
future improvements.

Eq. (10) calculates the "feature ratio," or the fraction of
selected features (the selected features divided by the dataset's
total features). Use this as one of the objective functions in the
multi-objective fitness function for feature selection. The goal
is to minimize the selected features but retain a suitable
classification performance.

if o(vi*') >r
otherwise

(€))

d
_ Zj:l Cj

0
; (10)

FR

Here, d is the total number of features in the dataset and ¢;
is the binary indicator for the jth feature.



Each candidate feature subset is evaluated by a CNN or
SVM classifier on training data. Accuracy was computed
using cross-validation and was used to reduce bias.

Fit(c)=a-Acc+ (1 —a)- (1 —FR) (11)

This Eq. (11) outlines the fitness of a chromosome (or
feature selection), and balances two competing objectives. Acc
shows how well the features you selected classify. Feature
Ratio is the proportion of the features selected. And the FR
part ensures that smaller subsets are rewarded. In the first
phase of the work, GA and PSO were integrated into a hybrid
feature optimization algorithm. GA parameters were
established as follows: size of population = 50, maximum
number of iterations = 100, crossover probability = 0.8, and
mutation rate = 0.05. The parameters for PSO consisted of a
swarm size = 50, initial inertia weight (w) = 0.7, cognitive
coefficient (cl1) = 1.5, social coefficient (c2) = 1.5, and
maximum number of iterations = 100. All parameters were
chosen with respect to the findings from previous optimization
studies and personal tuning and testing, in order to achieve an
approximation between convergence speed and exploring
distinct subsets of features.

The preference of GA-PSO as opposed to other
metaheuristic search algorithms like Differential Evolution
(DE) or Ant Colony Optimization (ACO) is based on the use
of complementary properties of the two algorithms. Whereas
GA maintains a higher degree of exploration through genetic
crossover and mutation, PSO maintains a level of exploitation
via velocity updates. Thus, GA-PSO offers a compromise -
preventing GA from being too random (as sometimes seen in
GA), and preventing PSO from converging prematurely (as is
sometimes seen in PSO). Prior studies have shown that GA—
PSO hybrids achieve better global optima on high-
dimensional biomedical datasets than DE, ACO, or either
algorithm in isolation, making it suitable for cardiovascular
datasets, which use varied clinical features and lifestyle
features.

3.2 Phase II: Hybrid Transformer-guided CNN-BiLSTM
(T-CBLSTM) Model

In Phase 2 of the GPCB framework, the optimized features
selected by the GA-PSO module are inputted into a new
CNN-BIiLSTM (T-CBLSTM) architecture guided by a
Transformer to generate predictions of cardiovascular disease.
This hybrid architecture is capable of accommodating spatial
patterns, temporal dependencies, and global contextual
relationships across clinical and lifestyle features. The pipeline
starts with a CNN layer that extracts local features and short-
range dependencies across input variables at a high level.
These local extracted features are then passed onto a
Transformer Encoder Block, a type of block that improves the
contextual understanding of heterogeneous health indicators
using self-attention mechanisms to model global relationships
across feature dimensions. Figure 2 shows the proposed design
architecture of the phase II.

The output of the transformer is combined with the original
CNN features, then passed into a BILSTM layer at a high level
which is capable of modeling the temporal dependencies in
both forward and backward directions. This component
models temporal dependencies that help to capture latent
chronological or progressive trends in the data collected from
the patient over time and could be especially meaningful for
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longitudinal features such as age, blood pressure, or lifestyle
change over time. Finally, the output from the BiLSTM is
passed through a Feed-Forward Fully Connected Dense layer
with a sigmoid activation for binary classification or Softmax
activation for multiclass classification.

2]
Transformmer
Encoder

Input
Sequence
LI
Qo o
Output
[

Dense

Concatenation
I 2}

Figure 2. Design architecture of Phase II

Concatenation

The first stage of the model accepts an input vector of
selected features, which are derived after preprocessing and
feature optimization via GA-PSO. These features include both
clinical e.g., blood pressure, cholesterol, ECG results and
lifestyle factors e.g., smoking, exercise, alcohol use. For the
UCI and Framingham datasets, the input is a static feature
vector per patient x = [x;, X, ..., X4] € R%. The model input a
vector that has optimized features x € R%, where d is the
number of selected features obtained via GA-PSO. For
sequential data, the input is treated as a time-series matrix X €
R™¥4 where T is the time steps. The CNN will receive the
input as a two-dimensional matrix, where T is defined as the
temporal length of the sequence, and d as the number of
features per time step. This two-dimensional matrix represents
the clinical and lifestyle characteristics provided by the GA-
PSO module as Eq. (12).

XCNN € R‘leXl (12)

Here, Xy is the input tensor to the CNN layer, m is the
selected features from phase I, R represents the 3D tensor with
feature. Next, a set of convolutional filters (also called kernels)
are applied to the input. Each filter slides across the input
sequentially taking dot products between the kernel weights
and the input subsequence. Mathematically, for a filter size of
k, at position the convolution operation will take the form of
Eq. (13).

Hy = (W * Xeyw + by) (13)

Here, H, is the output feature map from the k'
convolutional filter in a CNN layer. o(-) is a non-linear
activation function, applied to the result of the convolution.
W, is the convolution kernel for the k™ feature extractor and
Henn s the input tensor to the CNN layer and by, is the bias for
the k™ filter. The T-CBLSTM deep learning pipeline has two
stages, and the first stage utilizes a CNN to capture local
spatial patterns from the series of optimized features extracted
from the GA-PSO module as shown in Eq. (14).
v hie)

HCNN = Concat(hl, e (14)



Here, h;, is the output features. The CNN layer processes
the input to train complex, non-linear, and highly correlated
relationships between features. The output from the CNN layer
is a transformed tensor as shown in Eq. (15).

F;:nn = FI(HCNN) (15)

Here, Hpyy is feature map flattened into one dimensional
vector Fgyy. The feature maps preserve the local correlational
structures between the clinical and behavioral variables while
reducing spatial dimensionality, and serve to input into the
transformer encoder block in the next stage of the T-CBLSTM
pipeline. This structure ensures that relevant short-range
interactions are captured before applying the attention and
sequential modeling. Once the local features have undergone
CNN-based extraction and been transformed to output tensors,
the tensors can be passed to a Transformer Encoder. The
module's task is to learn only global contextual relationships
between features (it is possible that the context between
features are not neighboring but are related in some
meaningful way from a semantic or, for example, clinical
perspective). Convolution layers are only capable of learning
to contextualize their immediate neighborhoods, whereas
Transformer layers use self-attention mechanisms to produce
a distribution of dynamic weightings between all positions in
each feature representation, while allowing the model to focus
on the most salient proto- interactions in each input instance.
Following Eq. (16) shows the CNN-based local feature
extraction, the transformed output tensor FCNN € R(T — k +

D Xf.
Einput = fenn - We + be (16)
Here, the flattened CNN features are then linearly
transformed with a learnable weight matrix W, and bias b,, to

generate the input embeddings for the Transformer encoder.
Positional encoding is as shown in Eqs. (17) and (18):

pos

PE(pos,Zi) = sin 21 (17)
10000%modet
pos
PE(pos,2+1) = cod| ———— (18)
100009model

Here, pos is position index, i is dimension indeX, dp,pqer
model is model dimension. Eq. (19) gives the input to
transformer encoding.

Input to Transformer Encoder

Zy = Ejppue + PE (19)
Here, Z, is the initial input for the transformer encoder. The

key operation in the self-attention based Transformer is scaled
dot-product attention, defined as Egs. (20) and (21):

. QK"
Attention(Q, K, V) = softmax F \ (20)
K
A = Attention(Q,K,V) € R™*%k 21

Here, the queries Q, keys K, and values V are derived by
projecting the CNN output Fgyy through learnable weight
matrices W2, WX, and WV, respectively. Each position of the
feature sequence has the ability to attend to each of the other
positions, and can assign higher level of importance to the
most relevant features based on similarity. The scaling factor
\/d_k is required to avoid gradient vanishing throughout
training, and serves to normalize the output of the dot-product.
After computing the attention-weighted output the model
applies a residual connection followed by layer normalisation
to promote feature propagation and ratio of stability during
training. The output of Multi-Head Attention is given as Eq.
(22).

MHA(X) = Concat(hy, ..., hy )W (22)
Feedforward Network is given as Eq. (23).
FFN(x) = ReLU(xW, + b))W, + b, (23)
Transformer Layer Output is given as Egs. (24) and (25).
Z, = LayerNorm(MHA(Z,_,) + Z;_,) 24)
Z; = LayerNorm(FFN(Z)) + Z;) (25)
Output of Transformer is given as Egs. (26) and (27)
Firans = MeanPooling(Z,) (26)

Fryans = LayerNorm(Attention(Q,K,V)

+ Fenn) (7)

This resulting tensor Fr,qns € RT¥*1%/ accounts for non-
local feature dependencies: for example, blood pressure may
affect distant features like lifestyle habits or medical history.
The attention mechanism also aids interpretability because it
is easier to visualize what features are most important to the
model for making predictions. The feature representations
enhanced by the transformer and the original CNN data are
concatenated and used as input to the BILSTM module for
sequential learning.

To achieve this fusion, the output feature vectors from both
the CNN and Transformer at each time step are concatenated
along the feature dimension. Formally, if h, € R’ is the CNN
output and g, € R is the Transformer output at time step t,
the fused vector is defined as Eq. (28).

z, = [h, Il g,] € R7*% (28)

The result is a new sequence Fy,s0q € R™*VU+9) where n is
the length of the sequence. The fused representation retains
fine-grained spatial information, as well as coarse semantic
information, and this improves the ability of the downstream
BiLSTM to learn timed dynamics and supports improved
classification of cardiovascular disease risk levels. So, the
concatenation step represents an important architectural
junction that merges multiple aspects of the patient data
together into a richer, more holistic representation for final
prediction.

The BiLSTM architecture consists of two LSTM layers: one
that processes the input from left to right (forward pass) and
another from right to left (backward pass). Each LSTM unit



includes memory cells and gating mechanisms specifically the
input gate, forget gate, and output gate that regulate the flow
of information through time. These gates allow the model to
retain relevant historical patterns while filtering out noise,
making the network resistant to vanishing gradients and
overfitting, which are common issues in temporal modeling.

Let 2,2y, ..., Z, € R7* denote the fused input sequence
of length n, where each vector combines CNN and
Transformer outputs. The BiLSTM processes this sequence in
both directions as shown in Eq. (29).

Xlstm = [fcnn' ftrans] (29)

These representations are then usually pooled, followed by
the attention layers or final dense layer. The BiLSTM's
bidirectional architecture allows the model to reason across the
entire sequence, improving its capability to recognize
temporality like the progression of symptoms (e.g. physical
activity over one year), the effects of long-term behaviour (e.g.
banking wine to incur delays in sequencing of behaviour), and
clinically relevant delayed interactions (e.g. a prescription
written by a physician delayed to medication administration
three days later) - all necessary for personalized and accurate
CVD risk prediction.

At each time step t, an LSTM computes using the following
Egs. (30)-(35).

i, =0W, fy + Uih, — 1+ b;) (30)
fi = o(Wsf, + Ushy — 1 + by) (31)
o, =W, f; + Uyh, — 1+ b,) (32)
¢ = tanh(W.f; + U.hy — 1+ b,) (33)

a=0Qc¢—-1+iOC (34)
he = 0, © tan h(c;) (35)

where, o is a sigmoid activation, tanh is a hyperbolic tangent
activation, © is an element-wise multiplication, h; is hidden
state at time t, ¢, is the cell state at time t, W *€ R"*? is the
trainable weight matrices, b *€ R™ are the bias vectors, and h
is the LSTM hidden size. The BiLSTM processes the input
sequence in both forward and backward directions as shown
in Eq. (36).
hy = LSTMfwcl (ft)' he = LSTMbwd(ft) (36)
The final BILSTM output at each time step is as shown in
Eq. (37).
Hup, = [he Il he] € R?" (37)
Here, || denotes vector concatenation. To obtain a fixed-size
representation from all time steps (e.g., for classification), we
apply final feature concatenation as shown in Eq. (38):
ffinal = Concat(fcnn' ftrans' flstm) (38)

This is passed to a fully connected layer and the output
layers are as shown in Egs. (39) and (40).
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z= ffinal “Wee + bfc (39)

y=0(2) (40)
where, ¥ is an output prediction (binary or multi-class), ¢ is
the sigmoid or softmax function, W, € R°*2" are an output
weights, and c is the number of output classes.

After modeling both spatial and temporal relationships
through the CNN, Transformer, and BiLSTM layers, the T-
CBLSTM framework arrives at a compact, high-level feature
representation of the input sequence, denoted as Ag;pq;. This
vector captures both short-range and long-range dependencies
among clinical and lifestyle features. To translate this abstract
embedding into an interpretable decision, it is passed through
a fully connected or dense layer. This layer applies a learned
linear transformation, projecting the feature vector into a space
whose dimensionality matches the number of output classes as
shown in Eq. (41).

1 N
Locs = =3 » [ylog@) + (1= y)log(l =301 (41)

i=1

Here, y; is the true label (ground truth), and (9;) is the
predicted probability. For binary classification tasks, a
sigmoid function is applied to squash the output to a
probability between 0 and 1, indicating the likelihood of
disease presence. For multi-class classification tasks, a
softmax function distributes the output across multiple classes,
ensuring that the predicted probabilities sum to 1. During
training, the model parameters are optimized by minimizing a
suitable loss function binary or categorical cross-entropy
which penalizes incorrect predictions and encourages the
model to assign high probabilities to the correct class as shown
in Eq. (42).

(42)

N C
Lece = —z z yij log(9;;)
=1 j=1

Here, y;; is the true label (ground truth), and (yi j) is the
predicted probability.

This section explains how the proposed CNN-BiLSTM-
based heart disease prediction model is trained and assessed to
provide reliable, generalizable, and interpretable results. A
few important areas of discussion are the training plan, the loss
functions, and the metrics used to evaluate the model. To train
the proposed hybrid CNN-BiLSTM model, a predefined
training plan was in place to maximize the generalization and
performance of the model across the individual cardiovascular
datasets. Overall, the data was divided into training (70%),
validation (15%), testing (15%). For time-series data (i.e. the
MIMIC-III dataset), when conducting the split of the training,
validation, and testing data, temporal locality was preserved so
that data could not leak (i.e. for validation or testing data)
forward/backward, from future to past.

The training was conducted with a batch size of size 32 over
a maximum of 100 epochs. An early stopping plan was in
place while the model was in training, where the validation
loss was monitored at the end of training and if there were no
improvements in the loss using some minimum number of
epochs to define "no improvement”" then the training would
have stopped. In addition, the Adam optimizer was used due
to its rapid convergence and adapting learning rate capability



as shown in Eq. (43). Lastly, a learning rate scheduler was used
to manage the learning rate during training; where if
performance stalled the learning rate was reduced in a
controlled manner, allowing fine-tuning during the latter
epochs.

o~

m
Vo

where, m; are bias-corrected moment estimates, and 1 is the
learning rate. The transformer component was set to four
encoder layers in total with 8 self-attention heads, 128 hidden
dimension, 256 feedforward network layer size, and a dropout
of 0.2 to minimize overfitting. The convolutional neural
network in front of the Transformer consisted of 2 Conv2D
layers with 64, 128 filters, and kernel size 3 x 3 with ReLU
activation and maximum-pooling, followed by a flattening
layer. The BILSTM component consisted of two layers both
128 units to allow bidirectional temporal modeling. This
selection of hyperparameters was based on empirical tuning
and literature that showed their combination produced a trade-
off between complexity and generalizability on medical
datasets.

0,+1=6,—n. 43)
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4. RESULTS AND DISCUSSION
4.1 Experimental setup and training parameters

To rate the performance and robustness of the proposed
GPCB framework, an extensive experiment on three widely
accepted cardiovascular data sets was carried out (UCI Heart
Disease, Framigham Heart Study, MIMIC-III Clinical
Database). All three data sets include a rich variety of clinical
and behavioral features that would allow for thorough
validation of the model across diverse patient profiles and
dataset distributions. All data sets went through a rigorous
preprocessing pipeline that included steps for missing value
imputation, min-max normalization, label encoding for
categorical variables, and Synthetic Minority Over-Sampling
Technique (SMOTE) for class imbalance prior to developing
the model, which was split 80% training and 20% test data
with an additional 10% of the training reserved as validation
data. Student stratified sampling was employed, so that the
individuals in the training and test datasets reflect class
distribution. Feature selection was implemented using the GA-
PSO module prior to developing the GPCB model, which was
configured at 30 population size with 50 iterations, a crossover
rate of 0.7 and a mutation rate of 0.1 and the hybrid fitness
function weighted trade-offs of classification accuracy and
feature sparsity.

The T-CBLSTM, hybrid CNN-Transformer-BiLSTM,
architecture was constructed in TensorFlow 2.11 using Python
3.9. The CNN portion used two 1D convolutional layers with
64 and 128 filters followed by a ReLU activation and max-
pooling. The transformer encoder consisted of two attention
heads with an output dimensionality of 64 and a feedforward
hidden size of 128. The BiLSTM used 128 units in each
(forward and backward) direction, and the implementation
included dropout (0.3) for overfitting prevention. The final
classification layer was a dense output neuron, sigmoid
resolution for binary classification. The model was trained
using the Adam optimizer with an initial learning rate of 0.001,
a batch size of 32, and a maximum of 100 epochs. The binary
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cross-entropy loss function was used to optimize the model,
and early stopping based on validation loss was applied to
prevent overfitting. All experiments were performed on a
machine with an Intel i9 CPU, 32 GB RAM, NVIDIA RTX
3080 GPU (10 GB VRAM), and Ubuntu 22.04 LTS. This
experimental environment ensures that evaluations of the
GPCB framework will be fair, reproducible, and scalable
while the training parameters used to train the model were a
reasonable  compromise between performance and
computational expense.

To maintain data integrity and limit data leakage, the dataset
splitting was performed at the patient level to ensure no
records from the same patient appeared in both training and
testing sets. For the MIMIC-III dataset that included
longitudinal EHR data, we grouped all visits of a patient and
assigned them to either training, validation, or testing. This
ensured that possible temporal dependencies and repeated
measures would not provide any bias to the performance
estimates of the model.

In order to evaluate the importance of the GA-PSO feature
selection phase, we completed an ablation study in which we
trained on the full feature set, evaluation T-CBLSTM without
the Phase I optimization. The results showed a significant drop
in performance, accuracy dropped from 98.5% to 93.2% and
the F1 score dropped from 97.9% to 92.4%. We also
quantitatively showed the training time increased, on average,
approximately 35% due to the feature dimensionality increase
during training. This validates the importance of Phase I in
enhancing generalization and computational efficiency. By
eliminating noisy and redundant variables, the GA-PSO
module not only improves classification accuracy but also
accelerates model convergence.

4.2 Dataset description

The proposed hybrid model for cardiovascular disease risk
prediction is tested for its performance and robustness using
three varied and commonly utilized datasets: UCI Heart
Disease, Framingham Heart Study, and filtered MIMIC-III
Clinical Database.

a. UCI heart disease dataset

The UCI Heart Disease is derived from the Cleveland Clinic,
consisting of 303 patient records with 14 well-defined features.
Noteworthy clinical features include age, resting blood
pressure, serum cholesterol level, fasting blood sugar level,
resting ECG, maximum heart rate achieved, ST depression,
and the number of major vessels seen in fluoroscopy. In terms
of lifestyle features, there are gender, chest pain type, exercise-
induced angina, slope of ST segment, and thalassemia. The
target variable for this dataset indicates if heart disease is
present or absent. This dataset is frequently used for
benchmarking as it has a well-defined structure, and balanced
feature application.

b. Framingham heart study dataset

The Framingham dataset contains approximately 4,240
samples with clinical attributes collected through a long-term
population study. Key clinical features include
systolic/diastolic blood pressure, total cholesterol, glucose,
BMI, heart rate, and medical history with potential risk factors
for stroke, diabetes, and hypertension. Key lifestyle features
include smoking, alcohol, physical activity, and education.
The outcome variable estimates an individual's 10-year risk of



coronary heart disease (CHD), which is a solid basis for
modeling long-term risk.

¢. MIMIC-III clinical database

The MIMIC-III dataset is developed by MIT and Beth Israel
Deaconess Medical Center. It consists of over 53,000 ICU
admissions to hospitals. For this study, I will use a filtered
subset of ~5,000-10,000 cardiac-related admissions, sorted
using ICD-9 codes. The data will include clinical signals such
as ECG, troponin, laboratory tests, comorbid presentations,
and vital signs. There may also be some demographic and
lifestyle variables (e.g., self-reported ethnicity, insurance type,
smoking history). I will focus on one primary outcome, in-
hospital mortality or onset of cardiovascular complication, as
that aligns closely with monitoring patients in real-time and
for modeling purpose in acute care settings.

d. Clinical features

The clinical measures used in this study, which are
ordinarily diagnostic and physiological parameters, have
known implications for cardiovascular outcomes. Age is a
reliable indicator in all of the datasets because it is evident that
with aging comes greater cardiovascular disease (CVD) risk.
Sex (or biological gender) is available in both the UCI and
Framingham datasets because men and women may differ in
the symptoms and risks associated with cardiac disease. From
the UCI Heart Disease dataset, the variables such as resting
blood pressure, serum cholesterol, fasting blood sugar, and
maximum heart rate achieved lends insight into the health of
the circulatory system and the accompanying metabolic
activity. Resting electrocardiographic results (restecg), ST
depression (oldpeak), and number of major vessels colored by
fluoroscopy (ca) provide considerable information pertaining
to the cardiac rhythm, presence of myocardial ischemia, and
anatomical problems. Thalassemia is included as a normal
variable variable because of the role it plays in hemoglobin
and overall oxygen transport.

The Framingham dataset goes beyond clinical indicators
and includes additional measures. Those variables include
systolic and diastolic blood pressure, body mass index (BMI),
glucose, and total cholesterol. The Framingham dataset
additionally includes variables pertaining to their medical
history i.e. prevalence of stroke, hypertension and diabetes
revealing key factors in severe risk modelling over time. The
MIMIC-III dataset containing ICU patients’ records holds an
extensive collection of high resolution temporal clinical
variables. This includes features based on ECG signal,
troponin levels (biomarker for myocardial injury), and
comprehensive lab results including levels of creatinine,
sodium, and potassium. Additional variables that provide
clinical context include comorbidity records, hospital stay
length, and hospital outcomes in the case of in hospital
mortality, which are especially relevant in the case of acute
CVD.

e. Lifestyle Characteristics

Clinical data measures health status directly, but there are
plenty of lifestyle and other factors that have been shown to
mediate cardiovascular health and longer-term outcomes. In
the UCI dataset, these lifestyle behaviors include chest pain
type (cp), exercise induced angina and slope of the ST segment
(slope), all of which indirectly measure a patient's physical
activity response and tolerance to cardiac effort. While the
Framingham dataset lacks some of these lifestyle behaviors, it
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does provide greater behavioral and socio-demographic
variables. In particular, behavior around smoking, drinking,
and physical activity level are included as modifiable risk
factors that cardiologists recognize. Education level is also
included, which serves as an approximate measure of health
literacy and socioeconomic status, which are important to
know because they help to establish determinate factors for
health behavior and access to health care.

4.2.1 Data preprocessing and normalization

As noted in the introduction, preprocessing is a critical issue
in health analytics since there is a great deal of heterogeneity,
sparsity, and noise in clinical and lifestyle datasets. We have
operationalized a consistent preprocessing pipeline in the
current framework to transform input data to data formats that
are usable, to reduce noise in the data, and to improve learning
and performance outcomes on the UCI Heart, Framingham
and MIMIC-III datasets. The key steps include handling
missing values, encoding categorical data, normalizing data,
balancing classes, and aligning features.

The first step in our preprocessing pipeline is addressing
missing values. With respect to handling missing values
excessive nonresponse rates are evaluated, attributes with
excessive nonresponse are dropped. Attributes with less than
excessive missing rates a chosen imputation technique is
applied: negating the loss of important samples due to missing
data. This is clearly an issue in real-world healthcare datasets,
since they typically contain incomplete or missing data. In our
framework, we remove features with greater than 30%
nonresponse. Remaining non-response is applied via K-
Nearest Neighbors (KNN) Imputation or Median Imputation.

Let x; € R™ be a data point with missing feature xi] . KNN
finds kk nearest neighbors {xil, Kigy ee ees ,xik} based on
available features. The imputed value is given as Eq. (44).

— .
X = ()2, (@4

Eq. (45) shows the median imputation.
x;7 = median({x,7, x,7, ..., x,;,’ D) (45)

4.2.2 Encoding categorical features

C Attributes with categorical data are transformed using
one-hot encoding so that the model can learn from these non-
numeric classes without suggesting ordinal classifications.
Attributes with ordinal data are transformed using ordinal
encoding in which order is preserved. One-hot encoding is
applying to nominal categories. Ordinal encoding is applied
where there is an order Let a categorical variable x €
{C,,C,, ..., C,,}. One-hot encode into a vector v € {0,1}" such
as given in Eq. (46).

p={ Ux=G (46)
0 otherwise
4.2.3 Data normalization

With scaling procedures, min-max normalization is
implemented across features, transforming those values to
within a [0, 1] range. This is important for model training
stability, particularly with certain algorithms. Skewed data are
impacted by normalized scores. Z-score standardization is
better in handling outliers. In order to ensure all features that
are scaled larger do not carry over greater significance in the



learning process, normalization was still accomplished on all
features with continuous data. Min-Max Normalization is used
to scale the features to a fixed range of [0, 1]. For features
containing outliers, it is better to use a standardization (z-
score). Eq. (47) is used to perform min-max normalization and
Eq. (48) is sued to perform Z-score normalization on the
dataset.

. X~ min(x) 47
i = max(x) — min(x) “7)
=2k (48)

where, 1 is the mean and o is the standard deviation of feature
XX.

4.2.4 Class imbalance handling

To alleviate class imbalance (i.e., fewer positive heart
disease observations), we employ SMOTE since it increases
the model's opportunity to learn from the minority
observations without overfitting. Lastly, we take into
consideration the heterogeneous sources of the datasets and
conduct an aligned feature mapping. We retain common
features for multi-dataset training and hold onto features with
a value going forward but evaluate in context-specific
experiments. This enables achieving scalability and
transferability across many different sources of healthcare data,
we implement Synthetic Minority Oversampling Technique
(SMOTE). Given a minority sample X;, a synthetic sample
Xnew 18 generated as shown in Eq. (49).

Xnew = X + 4+ (X7 — x;) (49)

where, x;/is a randomly selected minority class neighbor of x;,
and A€[0,1] is a random number. This generates new samples
along the line segment between existing minority samples,
enhancing class balance.

4.2.5 Feature alignment and fusion

Given we made use of three heterogencous datasets, the
feature schemas were aligned using the intersection and union
approach. Unified features common across datasets (i.c., age,
cholesterol, blood pressure). Kept unique but significant
features (i.e., troponin from MIMIC-III, education in the
Framingham) as optional inputs during model training and
evaluated independently. Values missing from the datasets,
were imputed with a neutral or median value, or only the
subset-specific training purposes to content the quality of
datasets.

4.3 Performance metrics

The GPCB framework was evaluated for its validity and
reliability using a benchmark of common classification
performance measures. The performance measures provide a
holistic perspective of the model’s predictive ability, including
overall accuracy, ability to identify and capture positive
instances, accuracy of positive decisions, recall and precision
balance, and recognizability across probability thresholds.
These measures were Accuracy, Precision, Recall, F1-Score,
and AUC-ROC, which provide different ways to look at
model performance.
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Accuracy (%) — The percentage of all predictions (both
positive and negative) that the model predicted correctly. It
can be calculated via Eq. (50). Here, TP is True Positives, TN
is True Negatives, FP is False Positives, and FN is False
Negatives.

TP +TN
TP +TN + FP + FN

Accuracy = x 100 (50)

Precision (%) — The proportion of samples predicted as
positive that are actually positive. This reflects how many false

alarms the model experienced and how often it will experience
false alarms. It can be calculated via Eq. (51).

Precision = —— x 100 (51)
TP + FP
Recall (%) — Also called the True Positive Rate or
Sensitivity, Recall measures the proportion of actual positive
samples that have been predicted correctly. It can be calculated
via Eq. (52).
PRecall = —%— x 100 (52)
TP + FN
F1-Score (%) — The harmonic mean of Precision and Recall,
the F1-Score provides a balance between the two especially in
relation to imbalanced datasets. It can be calculated via Eq.
(53).

__ 2XPrecisionXRecall

F1= x 100 (53)

Precision + Recall

AUC-ROC — The Area Under the Receiver Operating

Characteristic curve interprets the ability of the model to

differentiate between the classes across all decision thresholds.
Values near 1 indicate very strong discriminative power.

4.4 ROC and confusion matrix analysis

The ROC curves across all data sets showed clear separation
between the positive and negative classes as a means of
validating the model's discriminative ability. The average
AUC from all data sets showed that the GPCB framework is
effective in addressing imbalances between classes. The
confusion matrices showed that there is a low false negative
rate, which is a very important aspect of CVD prediction, as a
missed case can have severe consequences. To further confirm
the classification results, we also visualized the ROC and
confusion matrices. The ROC curve shows the trade-off
between the true positive rate (sensitivity) and false positive
rate (1 — specificity) at different threshold values. A model that
has a larger Area Under the Curve (AUC) indicates better
discrimination by the model. Our GPCB model's average AUC
was 0.96 across datasets. This means that our GPCB model
could make good distinctions between cases that are CVD-
positive and CVD-negative.

Figure 3 visualizing the confusion matrix using a 0.5
decision threshold in order to observe the accuracy of
classifications, the false positives, and the false negatives. The
confusion matrix demonstrated that our GPCB model had a
low false negative rate, which is very important in medical
evaluations since missed detections can have serious clinical
implications. The clear dominance of diagonal values
indicates that the GPCB framework has produced very reliable
predictions. Table 1 shows the model comparison with



existing frameworks.

Table 1. Model comparison with existing frameworks

Model Precision (%) Recall (%) F1-Score (%) Accuracy (%)
TPSO [1] 95.2 97.3 96.2 96.5
CNN-Transformer [2] 84.3 86.5 86.1 85.2
Hybrid CNN-LSTM [3] 90.2 91.1 90.9 89.0
TLBO and GA hybrid approach [4] 87.5 87.5 86.9 87.5
FIMCNN [5] 93.4 89.5 91.4 91.1
GPCB (Proposed) 96.7 96.2 97.9 98.5

Table 2. Comparison of individual frameworks on UCI, Framingham and MIMIC-III datasets

Model Dataset Accuracy (%) Precision (%) Recall (%) F1-Score (%) AUC-ROC
UCI 86.3 84.7 85.1 84.9 0.89
GA (Feature Selection + SVM) Framingham 85.4 83.6 84.2 83.9 0.87
MIMIC-1IT 83.7 81.9 82.1 82.0 0.85
UCI 87.1 854 86.0 85.7 0.90
PSO (Feature Selection + RF)  Framingham 86.2 84.1 84.8 84.4 0.88
MIMIC-IIT 84.6 82.7 83.2 82.9 0.86
UCI 88.9 87.0 87.8 87.4 0.91
CNN (Raw Data) Framingham 87.2 85.1 86.0 85.5 0.89
MIMIC-IIT 86.0 83.8 84.6 84.2 0.88
UCI 89.4 88.1 88.7 88.4 0.92
LSTM (Sequential Data) Framingham 88.3 86.4 87.1 86.7 0.90
MIMIC-IIT 87.0 85.2 85.9 85.5 0.89
UCI 90.1 88.6 89.3 88.9 0.93
Transformer Framingham 89.3 87.3 88.0 87.6 0.91
MIMIC-IIT 88.1 86.2 86.9 86.5 0.90
UCI 91.3 89.8 90.7 90.2 0.94
CNN-LSTM (Hybrid) Framingham 90.4 88.5 89.3 88.9 0.92
MIMIC-IIT 89.1 87.1 87.8 874 0.91

Table 3. Performance of individual models on UCI dataset

Model Accuracy (%)

Precision (%) Recall (%) F1-Score (%) AUC-ROC

GA (FS +SVM) 86.3 84.7
PSO (FS + RF) 87.1 85.4
CNN 88.9 87.0
LSTM 89.4 88.1
Transformer 90.1 88.6
CNN-LSTM 91.3 89.8

85.1 84.9 0.89
86.0 85.7 0.90
87.8 87.4 0.91
88.7 88.4 0.92
89.3 88.9 0.93
90.7 90.2 0.94

ROC Curve (AUC = 1.00)
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Figure 3. ROC of the proposed framework

Table 2 shows the comparison of individual frameworks on
UCI, Framingham and MIMIC-III datasets. Table 3 compares
the performance of individual models (GA, PSO, CNN, LSTM,
Transformer, CNN-LSTM) on the UCI Heart Disease dataset,
followed by a detailed explanation of each. Genetic Algorithm
(GA) was utilized for feature selection and Support Vector
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Machine (SVM) classification was undertaken. The
benchmark model returned an accuracy of 86.3% and a F1-
score of 84.9%. It retains features, diminishes dimensionality,
and retains model focus, but given the definition of SVM, its
linear classification boundary performs poorly on nonlinear or
complex cardiovascular risks. Next, Particle Swarm
Optimization (PSO) allowed information-dense feature
selection. By using this information loaded feature set in
Random Forest (RF) configuration, slight improvement over
GA-SVM was achieved with an accuracy of 87.1% and an
AUC-ROC 0.90. It shows PSO works effectively by
preserving or, if necessary, deliberately overwriting relevant
variance, yielding improved predictions based on random and
ensemble classifiers.

CNN were trained directly on structured data from UCI.
CNN does not perform significantly better or worse but
achieved an accuracy of 88.9% and a strong AUC-ROC of
0.91. CNN can extract spatial hierarchies of features. CNN
performs better than traditional approaches, as it extracts more
abstract representations. LSTM networks, the most suited to
comprehend sequential patterns, improved performance to an
accuracy of 89.4% and a F1-score of 88.4%. This implies that
atmospherics or dependencies in the patient records (age,



blood pressure patterns, cholesterol trends, etc.) provide
additional discriminative ability or that the tabular data format
allows for a better comprehension of temporal patterns. The
Transformer model yields not only an accuracy of 90.1% but
also an AUC-ROC higher than other standalone models (0.93).
This demonstrates the model's capacity to learn complex
attention-based dependencies among input variables and
generalize well on structured inputs with varying feature
interactions. The CNN-LSTM hybrid model incorporates
spatial feature extraction (CNN) with sequential memory
(LSTM) and outperformed all other standalone models,
attaining 91.3% accuracy, a 90.2% F1-score, and 0.94 AUC—
ROC. This validates that joint modeling of local and temporal
structures affords a cooperative advantage in CVD prediction
as shown in Figure 4.

This comparative analysis outlines the incremental
improvements made by moving from traditional ML with
feature selection (GA, PSO) to deep learning (CNN, LSTM,
Transformer) to hybrid models like CNN-LSTM. The results

in the UCI dataset justify the motivation for creating more
advanced models such as the GPCB framework that combines
GA-PSO optimization with a Transformer-steered CNN—
BiLSTM network for improved prediction of cardiovascular
disease.
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Figure 4. Performance of individual models on UCI dataset

Table 4. Performance of individual models on Framingham dataset

Model Accuracy (%) Precision (%) Recall (%) F1-Score (%) AUC-ROC
GA (FS +SVM) 85.4 83.6 84.2 83.9 0.87
PSO (FS + RF) 86.2 84.1 84.8 84.4 0.88
CNN 87.2 85.1 86.0 85.5 0.89
LSTM 88.3 86.4 87.1 86.7 0.90
Transformer 89.3 87.3 88.0 87.6 0.91
CNN-LSTM 90.4 88.5 89.3 88.9 0.92

Table 4 gives the performance of individual models on
Framingham dataset. The GA—SVM model is 85.4% accurate
on the Framingham dataset, and while it successfully removes
redundant features and enhances classifier attention, due to its
lack of adaptive learning and linear separation methodology,
it has limitations in determining the complexity underlying
CVD risk patterns in this dataset. An improvement in accuracy
by 1% to 86.2% was made by the PSO-RF model. PSO is
particularly effective for select informative features, while
Random Forests provides better consideration of feature
interactions than SVM does. Collectively this approach
performed better, but still lacks representation learning in
depth, compared to other models. The CNN model achieved
87.2%, on the Framingham dataset, citing the spatial
representations that it is able to extract from the data.
Convolutional Neural Networks, more commonly associated
with image classification tasks, have an architecture that can
to some extent also extract non-linear relationships in
structured tabular data as long as the new shape is constructed
appropriated.

The LSTM network used in this case study for sequence
modeling activities improved accuracy to 88.3%, as the LSTM
has memory cells that are designed to track dependencies over
time. This is beneficial for predicting CVD as many of the
clinical patterns are sequenced. The Transformer is able to
perform better than all of the previous models at 89.3% as it is
autonomous in dealing with important contextual information
and employs global self-attention mechanisms. The
Transformer, along with LSTM, is able to model feature
interactions well across the entirety of the input vector,
meaning that it is better equipped to identify the inter-
dependencies when features such as cholesterol, age, BMI etc.,
are combined. The hybrid CNN-LSTM model demonstrates
the best performance with 90.4% accuracy and 0.92 AUC-
ROC. Here, CNN recognizes localized patterns while LSTM
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models temporal or sequential dependencies of features.
Combining the two approaches gives a more expressive model
and this is an advantage given the multi-variable nature of
cardiovascular risk prediction as shown in Figure 5.

In relation to relevance, the reduced and optimized feature
set retains fundamental clinical features such as age, systolic
BP, cholesterol, etc. Some lifestyle indicators also remain in
the dataset, such as smoking status and physical activity.
Expectedly, this matches up very closely with the traditional
clinical practice guidelines that health practitioners and
physicians would align with. This a more plausible,
interpretable solution that should instill a high degree of
confidence regarding the use of the GPCB framework in
conventional care delivery.
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Figure 5. Performance of individual models on Framingham
dataset

Table 5 demonstrates the overall performance of the GPCB

model across the benchmark datasets are similar with accuracy

greater than 94% for all datasets, while also spanning a peak

performance accuracy of 98.3% on the mixed dataset. The

precision, recall, and Fl-score closely reflect on each other



which reveals balanced classification while AUC-ROC scores
are between 0.95 and 0.98, indicating that the GPCB model
has excellent discriminative power. There is further
improvement on the combined dataset indicating that the

GPCB model is generalizing well when modelled on more
heterogeneous clinical and lifestyle data sources. Table 6 gives
the performance of Phase I and Phase II frameworks on
benchmark datasets.

Table 5. Performance of GPCB model on benchmark datasets

Dataset Accuracy (%) Precision (%) Recall (%) F1-Score (%) AUC-ROC
UCI Heart Disease 95.4 94.9 94.2 94.5 0.96
Framingham Heart Study 95.3 94.9 95.5 95.2 0.97
MIMIC-IIT 94.1 93.2 93.8 93.5 0.95
Mixed Dataset (All 3) 98.3 96.7 96.0 97.6 0.98

Table 6. Performance of Phase I and Phase II frameworks on benchmark datasets

Dataset Model Variant Accuracy (%) Precision (%) Recall (%) F1 Score (%) AUC-ROC
UCI Without Phase [ 91.2 90.3 90.7 90.5 0.925
With Phase I (GPCB) 95.4 94.9 94.2 94.5 0.96
Framingham Without Phase I 92.8 92.0 92.3 92.1 0.935
With Phase I (GPCB) 95.3 94.9 95.5 95.2 0.970
MIMIC-IIT Without Phase I 91.6 90.5 91.2 90.8 0.920
With Phase I (GPCB) 94.1 93.2 93.8 93.5 0.950
5. CONCLUSION [3] Ozcan, M., Peker, S. (2023). A classification and

This paper introduced GPCB, a two-phase framework that
combines GA-PSO-based feature optimization with a CNN-
BiLSTM architecture which is guided by a Transformer to
effectively and accurately predict whether a patient has a
cardiovascular disease. In Phase I, the most informative
features are selected, while in Phase II, spatial-temporal
features are extracted and attention-guided learning is applied
to enhance predictive performance. Experimental results using
various machine learning models applied to the UCI Heart
Disease, Framingham, and MIMIC-III datasets demonstrates
GPCB outperforms the baseline models across all datasets
with both feature effectiveness and predictive accuracy
achieving 98.3% accuracy as well as high precision, recall, and
AUC-ROC scores, confirming GPCB is robust and scalable to
real-world healthcare settings. The future enhancement can be
to expand the GPCB to stratify multi-class cardiovascular risk
and introduce real-time patient monitoring using loT wearable
devices. The framework can also be augmented to include
explainable Al modules - ultimately enhancing -clinical
interpretability and trust. Finally, large-scale validation over a
broad demographic and geographic data set will be sought to
ensure global applicability and resiliency in various healthcare
settings.
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