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The fisheries sector is vital for food security but remains vulnerable to supply fluctuations
and uncertain stock availability. This study develops a forecasting framework for buffer
stock estimation by applying the Autoregressive Integrated Moving Average (ARIMA) and
Fuzzy Time Series Markov-Chain (FTS-MC) approaches to historical data from Makassar
City, Indonesia during 2021-2025. The ARIMA (2,1,0) model produced acceptable
accuracy with a Mean Absolute Percentage Error (MAPE) of 13.67%, whereas the FTS-
MC method delivered superior outcomes with reduced errors (MAPE 10.91% and RMSE
246.94). These findings confirm the capability of FTS-MC in addressing volatility and
uncertainty, offering more dependable projections of raw material reserves. The study
provides practical implications for enhancing fisheries governance, stabilizing market
distribution, and supporting strategic planning. Future research should incorporate broader
datasets, real-time observations, and environmental parameters to refine predictive

performance across varied contexts.

1. INTRODUCTION

The fishing industry in Indonesia plays a vital role in the
national economy, contributing significantly to food security
and providing livelihoods for millions of individuals across
coastal communities. In recent years, Indonesia has become
one of the world's largest exporters of fishery products,
ranking eighth globally in 2020, despite the challenges posed
by the COVID-19 pandemic [1]. The country's diverse marine
ecosystem offers a plethora of aquatic resources, including
various species of fish, crustaceans, and mollusk, which are
essential for both domestic consumption and export markets.
However, the rapid expansion of the fishing sector has also led
to increased pressure on fish stocks, necessitating effective
management strategies to sustain its long-term viability.

One of the primary challenges facing the Indonesian fishing
industry is the issue of illegal, unreported, and unregulated
(IUU) fishing, which jeopardizes marine biodiversity and
undermines efforts to manage fisheries sustainably [2, 3]. With
a vast archipelagic coastline, Indonesia is particularly
vulnerable to IUU fishing practices that deplete fish stocks
beyond sustainable levels. Moreover, overfishing exacerbates
this problem, posing serious threats to marine ecosystems and
the livelihoods of local fishermen. The government has been
working to strengthen regulations and enforcement measures
to combat IUU fishing, but substantial challenges remain in
addressing this complex issue, including the need for
international cooperation and improved surveillance
capabilities [2, 3].

Another significant challenge lies in adapting to changes
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resulting from climate change. Fluctuations in ocean
temperature, rising sea levels, and altered fish migration
patterns have placed additional strain on the fishing industry,
which must constantly adjust its practices to respond to these
environmental shifts [4]. The impacts of climate change not
only threaten fish stocks but also affect the communities that
depend on fishing for their economic sustenance. To navigate
these challenges effectively, the industry must adopt
sustainable practices, enhance technological capacities, and
invest in alternative livelihoods for affected communities. This
transition is crucial to ensure the resilience of Indonesia's
fishing industry against both immediate and long-term threats.

Buffer stocks serve as a crucial element in managing the
volatility of fish supply and prices, particularly in Indonesia, a
nation renowned for its extensive fishing resources. The
primary role of buffer stocks is to stabilize fish markets by
ensuring availability during periods of scarcity that may arise
due to overfishing, seasonal catch variations, or environmental
changes. This becomes increasingly important in Indonesia,
where food security is a pressing concern amid rising
population demands and fluctuating fish stocks [5]. The
government’s strategic interventions via buffer stock schemes
not only maintain equilibrium in prices but also protect low-
income fishing communities from the adverse effects of
market volatility [6]. By having a readily available reserve,
fisheries can mitigate the risks associated with sudden supply
shocks, thereby promoting sustainability and the economic
welfare of fishing communities.

Moreover, buffer stocks contribute to
environmental sustainability in the fishing sector.

long-term
By
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regulating catch limits through managed stocks, buffer
systems can help prevent overfishing and allow fish
populations to recover naturally. This approach is vital in
Indonesia, where ecological balance is threatened by factors
such as climate change and habitat degradation [7].
Additionally, effective buffer stock management fosters
collaborative governance among stakeholders, ensuring that
both governmental and local community interests align in
sustainable fishing practices. Investments in buffer stock
initiatives thus not only stabilize food supplies but also
enhance social equity among fishing communities, ultimately
contributing to improved livelihoods and environmental health
[8]. In this context, buffer stocks play an indispensable role in
securing the future of Indonesia's fishing industry whilst
advancing broader socio-economic objectives.

Forecasting tools and methods in fisheries management
play a critical role in ensuring sustainable practices that
accommodate environmental variability and economic
demands. One widely acknowledged methodology is the
Autoregressive Integrated Moving Average (ARIMA) model,
which has been effectively employed in predicting future fish
stock levels and catch dynamics. Recent studies have indicated
that integrating environmental covariates into ARIMA models,
such as ocean temperature, enhances forecast accuracy
regarding fish recruitment and productivity [9]. For instance,
Porreca [10] demonstrates how ocean temperature forecasts
can shape effort allocation in tuna fisheries, indicating the
substantial impact of climatic factors on fishery outputs. This
evolution of forecasting practices emphasizes the necessity for
advanced statistical approaches that allow fisheries managers
to make informed decisions amid variable environmental
conditions [10].

In addition to ARIMA, the use of fuzzy time series and
machine learning techniques is gaining traction in fisheries
science, providing alternative approaches that can account for
the inherent uncertainties present in ecological systems. For
example, the amalgamation of genomic data with species
distribution modeling positions fisheries management to adopt
a more holistic view of stock assessments and environmental
interactions [11]. As highlighted by study [12], forecasting
systems designed to account for climate variability can
enhance the understanding of species dynamics, particularly
for species like squid, which are affected by fluctuating ocean
conditions. Furthermore, innovative assessments that combine
traditional ecological forecasting with contemporary modeling
tools offer increased predictive power, leading to better
resource management and sustainability strategies [13]. These
advancements herald a new era of fisheries management,
where data-driven approaches equipped with robust
forecasting methodologies can directly inform conservation
efforts while optimizing fishery outputs.

One of the primary challenges in forecasting fish stock
dynamics is the insufficient predictive accuracy of existing
methods. Traditional time series models, such as ARIMA,
have been widely employed for their ability to analyze
historical data and provide forecasts based on underlying
patterns and seasonality. However, significant shortcomings
arise when these models are applied to volatile systems like
fisheries, where various external factors, such as
environmental changes and market demand fluctuations,
significantly influence stock levels. Research has indicated
that ARIMA may yield low accuracy under conditions of high
variability, leading to potentially misguided management
strategies [14]. Furthermore, its dependency on historical
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linear relationships can overlook emerging trends, resulting in
forecasts that fail to accurately capture the state of the fishery
and its future dynamics. These limitations highlight a clear
research gap in fisheries forecasting: conventional ARIMA
models are not sufficiently capable of capturing the complex,
non-linear, and uncertain behavior of fish stock systems.
Addressing this gap requires forecasting techniques that
explicitly incorporate uncertainty and variability.

In addition to predictive accuracy issues, there are inherent
challenges associated with modeling complex systems such as
the fishing industry. The dynamics of fish populations are
influenced by a multitude of interrelated factors, including
climatic variations, ecological interactions, and socio-
economic forces. These complexities often elude simplistic
modeling approaches, leading to inadequate predictions and
ultimately ineffective fisheries management practices [15].
The integration of fuzzy logic with traditional forecasting
models, such as the Fuzzy Time Series (FTS) Markov Chain,
has shown promise in accommodating uncertainties and
providing a more robust framework for prediction. However,
this approach also faces its own challenges, such as the need
for effective fuzzification and defuzzification processes,
which can introduce additional uncertainty and affect the
overall forecasting accuracy [16].

The implementation of such models entails extensive
computational resources and a deep understanding of the
underlying processes governing dynamic interactions,
significantly complicating the modeling efforts. It is crucial for
further research to explore hybrid methodologies that can
dynamically adjust to changing conditions and provide
accurate forecasts within complex, real-world contexts [17].
Furthermore, literature highlights the necessity for continuous
adaptation of methodologies within fisheries management to
effectively account for the multifaceted nature of the
ecological and economic environments [18]. As fisheries
increasingly confront challenges from climate change and
human activity, enhancing the predictability of buffer stock
models remains an urgent priority for sustainable resource
management.

In this study, the primary objective is to design an integrated
forecasting model for buffer stock management in the fishing
industry, leveraging the strengths of the Autoregressive
Integrated Moving Average (ARIMA) and fuzzy time series
methods. By combining these methodologies, the proposed
model aims to provide a more nuanced forecasting capability
that accommodates the inherent uncertainties and complexities
of fish stock dynamics. The ARIMA model offers a robust
statistical framework for analyzing time series data, enabling
accurate predictions based on historical trends [19]. On the
other hand, fuzzy time series methods incorporate subjective
judgments and uncertainties into the forecasting process,
enhancing the model's adaptability to changing environmental
and market conditions. The integration of these approaches is
anticipated to create a comprehensive tool that enhances
decision-making processes for fishery managers by yielding
more reliable forecasts of buffer stock levels under various
scenarios [13].

The second research objective is to assess the effectiveness
of the integrated forecasting model in accurately predicting
fish stock levels and improving management outcomes.
Evaluating the model's performance involves comparing its
forecasts against actual fish landings and stock assessments
over a specified timeframe. This assessment will be conducted
using statistical metrics such as Mean Absolute Percentage



Error (MAPE) and Root Mean Square Error (RMSE) to gauge
the accuracy and reliability of the predictions [20]. By
conducting these assessments, the study seeks not only to
validate the model's efficacy but also to explore its
applicability across different fishing contexts and ecological
settings. A successful model will provide stakeholders within
the fishing industry with a tool to enhance adaptive
management strategies, improve resource allocation, and
ultimately contribute to the sustainability of fish stocks [21].

Furthermore, this research will also emphasize the
importance of real-time data integration and environmental
monitoring in enhancing the forecasting capabilities of the
proposed model. By incorporating environmental variables
and socio-economic factors, the forecasting model is expected
to provide a more holistic view of the factors affecting fish
stock dynamics [21]. This comprehensive approach ensures
that forecasts are not only statistically sound but also
contextually relevant, allowing fishery managers to respond
effectively to real-world challenges faced by the industry.
Overall, the primary goals of this research are to innovate in
forecasting methodologies specific to the fishing industry and
to create actionable, data-driven insights that bolster
sustainable fishing practices.

The significance of this study lies in its relevance to
sustainable fisheries management and the practical
applications of the developed forecasting model using
ARIMA and fuzzy time series Markov-Chain methods. With
the increasing pressures of climate change and overfishing,
effective management strategies must be rooted in robust
scientific forecasting to ensure the long-term viability of fish
stocks [10]. By integrating ARIMA and fuzzy time series
Markov-Chain approaches, this study aims to provide refined
predictions that consider the inherent uncertainties and
complexities of fishery dynamics, thereby supporting efforts
to maintain sustainable catches and prevent overexploitation
[22]. The practical implementation of this predictive model
holds substantial potential for informing policy development
and enhancing resource management within the fisheries
sector.

2. METHOD

The research design for this study centers around a
modeling approach that aims to forecast buffer stock levels in
the fishing industry using ARIMA and fuzzy time series
Markov-Chain methods. This approach effectively merges
statistical rigor with adaptability to fisheries management
uncertainties, supporting the goal of delivering precise,
practical insights for sustainability. The conceptual framework
underpinning this study draws from dynamic system theory,
where the interactions between ecological variables (such as
fish populations and environmental changes) and socio-
economic factors (such as market demands and regulatory
policies) are modeled to capture the complexity of fisheries
dynamics [23, 24]. By applying this approach, the study seeks
to contribute to policy-making and resource management in
the fishing industry, facilitating the development of strategies
that optimize both ecological resilience and economic viability
for communities reliant on fisheries [10, 25].

This study was conducted in the fishing industry of
Makassar City, South Sulawesi, from 2021 to 2025. The
location was selected as it represents one of the largest fishing
hubs in Eastern Indonesia, playing a strategic role in the
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seafood supply chain, and exhibiting ecosystem characteristics
and fishing dynamics representative of tropical coastal
fisheries. Secondary data were obtained from fishing
companies using a purposive non-probability sampling
approach to ensure that the selected sample captured specific
characteristics relevant to the research objectives, including
commodity types and the availability of historical raw material
inventory data.

Sample selection followed the inclusion criteria of: (1)
fishing companies operating within Makassar City; (2)
possessing continuous historical records of at least 70
observations for the primary variables during 2021-2025; and
(3) providing key observational variables, including inventory
data and observation dates. The >70 observation threshold was
adopted following [26], which recommends a minimum of 50-
70 observations in time series analysis to ensure parameter
stability and predictive accuracy. This requirement is also
supported by fisheries-related forecasting studies, such as the
studies [9, 19], which emphasize that sufficient sample sizes
are critical to improve robustness and reduce forecasting errors
in ecological and fisheries applications.

The analytical framework of this study is grounded in a
statistical modeling approach combined with machine learning
techniques, selected for their capability to capture temporal
patterns and non-linear relationships in fisheries raw material
inventory data. Model development was informed by
theoretical concepts drawn from the literature on time-series
analysis and predictive modeling, under assumptions
including data stationarity, residual independence, and
consistency of input variables throughout the observation
period. Data analysis was conducted using Minitab Statistical
Software 22 and RStudio with the R programming language
(version 4.4.2), employing methods such as ARIMA and fuzzy
time series based on the Markov Chain. Model performance
was evaluated using the Mean Absolute Percentage Error
(MAPE) and Root Mean Square Error (RMSE) to assess
predictive accuracy. Statistical significance was assessed
using 95% confidence intervals and a significance threshold of
p <0.05.

Historical time series data relevant to the analysis were
compiled, including variables such as raw material inventory
levels and measurement times. The ARIMA method was then
applied to analyze the data, following the structured sequence
of steps outlined below.

1. Exploratory data analysis: An initial exploratory data
analysis was conducted to characterize the underlying
structure of the time series. This involved visualizing
the data through line plots and examining the presence
of trends and seasonality.

Stationarity testing: ARIMA modeling requires
stationarity, so the Augmented Dickey-Fuller (ADF)
test was used to check it. To stabilize variance, a Box-
Cox transformation was applied before differencing.
The series was differenced repeatedly until stationarity
was achieved, meeting model assumptions [27, 28].
Model identification: After confirming stationarity, the
model parameters autoregressive order p, differencing
order d, and moving average order g were identified.
The differencing order d indicates how many
differencing operations were applied to achieve
stationarity. The values of p and g were determined by
analyzing ACF and PACF plots, using the cut-off
points in these plots to select appropriate parameters
[29, 30].



Model estimation: The ARIMA model is characterized
by three parameters p, d, and g, which correspond to
the autoregressive (AR), integrated (I), and moving
average (MA) components, respectively. These
parameters collectively determine the performance of
the model [31].

The AR component models the current value of a time series
as a weighted sum of its previous values plus a stochastic error
term. The general form of an AR(p) model is (Eq. (1)):

YVe=CH+ Vi1 + GoVeat o+ dpyepte; (D
where, c is a constant, e; is the error term, and y;_1, Y¢—2, ...,
Y¢-p are past observations.

The I component addresses non-stationarity in the data by
differencing the series d times, removing trends and
stabilizing the mean.

The MA component captures the linear dependence
between the current observation and a finite number of past
forecast errors. An MA(q) process is expressed as Eq. (2):

Xe = U+ QWi + PWe gy + o+ Wi + Wy (2)
where, u is the mean of the series and w; is the white noise.

The complete ARIMA model combines these elements into

(Eq. 3)):

y=c+ o1y +"‘+¢pJ’t—p+ﬂ_¢1Wt—1_"' 3)
- ¢th—q + We
with p indicating the AR order, d the differencing order, and

q the MA order.

5. Model diagnostics: After fitting the model, perform

diagnostic checks to validate its effectiveness. This
includes examining the residuals of the model to ensure
they resemble white noise (i.e., they should have a
mean of zero and no autocorrelation). Use residual
plots, ACF plots of residuals, and statistical tests (e.g.,
Ljung-Box test) to confirm the adequacy of the model
[32,33].
Forecasting: Use the fitted model to make forecasts.
This involves predicting future values based on the
model parameters derived from the historical data.
Generate confidence intervals to provide a range of
future values and quantify the uncertainty associated
with the forecasts [20].

Fuzzy Time Series Markov Chain (FTS-MC) integrates the
Fuzzy Time Series approach with the Markov Chain
framework, utilizing a transition matrix to determine the
highest probability and thereby achieve greater accuracy
compared to the conventional Fuzzy Time Series method. The
FTS-MC method employs the following algorithm, as
described by studies [34, 35].

1. The universe set U = [Dyn — D1, Dppax + Dy] is
defined by first determining the minimum D,,;,, and
maximum D,,,, values of the historical data. Then, D,
and D, are assigned as positive real numbers to extend
the range, ensuring that the intervals fully encompass
the data variation. Sturges formula: n = 1 + 3,3log N
(where N denotes the total count of historical data
points) is applied to calculate the optimal number of

intervals within U, and the interval length is determined
(Dmax+D2)—(Dmin—D1)
n

using | = , where n denotes the
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number of intervals. Each interval boundary is
calculated as u, = [B + (n — 1)[; B + nl], with B =
Dinin — Dy . This systematic partitioning provides a
structured foundation for the subsequent fuzzy time
series analysis.

Construct fuzzy sets by assigning membership degrees
to each element in the universe of discourse based on
its position relative to the historical data. For a fuzzy
set A;, the membership degree y;; toward u; is defined

as (Eq. (4)):
1, i=1
Mijz{o,s, j=i—lorj=i+1 “)
0, otherwise
Each fuzzy set is expressed as (Eq. (5)):
A= (052, B s n 5)
U Uy Un

This approach assigns a full membership value of 1 to the
central element, a partial membership value of 0.5 to its
neighboring elements, and zero to all others, thereby
preserving local relationships among data points and ensuring
a structured, consistent representation for forecasting models.

3. The historical data is fuzzified into a fuzzy set 4; if it
belongs to the interval u;.

The Fuzzy Logical Relationship (FLR) is defined to
capture the causal connection between consecutive
fuzzy observations. Specifically, if the fuzzy state
F(t — 1) = A; precedes and causes the fuzzy state
F(t) = A;, this is defined as an FLR represented by
A;j = A;. Following the FLRs, the next step is to
determine the Fuzzy Logical Relationship Group
(FLRG). This process groups together all FLRs that
share the same left-hand side (LHS).

Construct a transition probability matrix P;; = (pi j),
p;j is the probability of a one-step transition between
state i and state j. The matrix P;; which contains the
transition probabilities for the state space, is shown as

Eq. (6):

4.

P11 P12
P21 P22

P1n
P2n

Pij : : (6)
Pn1  Pn2 Pnn

6. Forecasting procedure based on FTS-MC

The forecasting process using the FTS-MC model consists
of three main stages:

a. Initial forecast calculation

At time t, when the data belong to state A4;, the initial
forecast is determined as follows:

Rule 1. If A; = @, then the forecast equals the midpoint of
interval u;: F(t) = m;

Rule 2. If A; —» A, with a unique transition, the forecast
equals the midpoint of u,: F(t) = my,

Rule 3. If A; - A, A,, ..., A, , then the forecast is a
weighted sum of the midpoints based on transition
probabilities:  F(t) = myp;; + mypip + -+ mMj_qp; j—q +
Y(t — Dp;j + Mjy1Dijsr + -+ m, where m; is the
midpoint of interval u; , and p;; denotes the transition
probability from state i to state j.



b. Adjustment value calculation
To improve accuracy, adjustment values are introduced
according to the direction and step size of the transition:
Rule 1. Upward transition (i < j): D;; = é
Rule 2. Downward transition (i > j): Dy = —%

Rule 3. Forward shift by s states (i = i + 5): Dy, = (g) s

Rule 4. Backward shift by v states (i »i—v): Dy, =
L
-(5)v
where, L is the interval length.
c. Final forecast
The final forecast value is obtained by correcting the initial
forecast with the adjustment values (Eq. (7)):
F*(t) = F(t) £ D¢y £ Dy, (7
Model validation is conducted to evaluate the predictive
performance of the ARIMA and FTS-MC model by
comparing its forecasts against a hold-out sample of historical
data excluded from the model fitting process. This approach
ensures that the assessment reflects the model’s ability to

generalize beyond the training dataset. A commonly used
performance metric is the MAPE, defined as Eq. (8):

n

100% ol
mapp = — 2% [

Yt

@®)

where, y; denotes the actual observed value at time t, J; is the
forecasted value, and n represents the number of observations
in the validation set. Lower MAPE values indicate better
forecasting accuracy, with values below 10% generally
considered highly accurate in many practical applications [36].

In addition to using the MAPE, the performance of a model
can also be evaluated through the RMSE. RMSE provides
information about the average magnitude of prediction errors
in the same units as the measured variable, thereby facilitating
the interpretation of model performance. A smaller RMSE
value indicates better model accuracy and is mathematically
expressed as Eq. (9):

n
1
RMSE = |~ (=9, ©)
t=1
3. RESULT
The following time series data illustrate weekly

observations collected from early 2022 to 2024. To better
understand the characteristics of the dataset, descriptive
statistical analysis was conducted to examine measures of
central tendency and data dispersion. The overall data pattern
is visualized in Figure 1.

Figure 1 illustrates the time series data from 2022 onward,
consisting of 101 weekly observations. The series has a mean
of approximately 1,836, which is close to the median of 1,843,
indicating a relatively balanced distribution. The values range
between 1,050 and 2,900, reflecting considerable variability,
with a standard deviation of 388.685. The skewness value of
0.036 suggests an almost symmetric distribution, with no
pronounced deviation to either side. However, symmetry in
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distribution does not necessarily imply linearity in the time
series behavior. The dataset may still exhibit non-linear
dynamics, underscoring the need for forecasting methods
capable of addressing both linear and non-linear patterns.
Several upward peaks above 2,500 and downward troughs
below 1,500 further highlight the pronounced fluctuations
over time. Prior to ARIMA modeling, the data were tested for
stationarity to ensure the appropriateness of the model
specification.

2
5]
2

2000

15600

Raw material (kg)

1000
25 560

Time index

75 1ee

Figure 1. Time series plot
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Figure 2. Box-Cox transformation

Figure 2 illustrates the Box-Cox transformation, where (a)
shows the distribution before transformation and (b) after
transformation. Prior to transformation, the rounded value of
lambda (L) was approximately —0.50, indicating the need for
variance  stabilization. After applying the Box-Cox
transformation, the A = 1, suggesting that the variance of the
series had been stabilized and achieved stationarity.
Subsequently, the stationarity of the mean was examined using
the ADF test to further validate the adequacy of the
transformation for time series modeling. The result showed a
p = 0.169, indicating that the series was not yet stationary with
respect to the mean. Therefore, first-order differencing was
applied, after which the ADF test yielded a p = 0.000. This
confirmed that the differenced series had achieved stationarity
in the mean. Following this, model identification was
conducted through the inspection of the ACF and PACF plots.

Based on Figure 3, the ACF plot exhibits a cut-off at lag 1,
while the PACF plot shows a cut-off at lags 1 and 2. This
indicates potential autoregressive parameters p = 1,2 and a
moving average parameter ¢ = 1. Consequently, tentative
models were constructed with differencing order d = 1,
resulting in the following ARIMA specifications:
ARIMA(0,1,1), ARIMA(1,1,0), ARIMA(1,1,1),
ARIMA(2,1,0), and ARIMA(2,1,1).
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Figure 3. ACF and PACF plot

Following the estimation of tentative models, diagnostic
checking was performed to validate model adequacy. This
involved examining the residuals to ensure they exhibited
white noise characteristics, namely a mean close to zero and
the absence of significant autocorrelation. The Ljung—Box test
confirmed the independence of residuals, indicating that the
ARIMA(2,1,0) model satisfied the diagnostic criteria with p >
0.05. Consequently, ARIMA(2,1,0) was selected as the most
suitable model for the series. The model was then applied to
the time series data for forecasting to evaluate its performance
and predictive accuracy, with the results presented in Figure 4.

30001 Variable
—— Actual

- - Forecast

25001

20001

Raw material (kg)

1500

10004

40 60 70 80 920 100

Time index

Figure 4. Comparison between actual and forecast values
using the ARIMA(2,1,0) model

The ARIMA(2,1,0) model achieved an RMSE of 314.79
and a MAPE of 13.67%, corresponding to an accuracy of
86.33%. As illustrated in Figure 4, the forecasted values
closely followed the actual series, capturing both trend and

fluctuations. Although the MAPE is slightly above the <10%
threshold typically regarded as highly accurate, the results still
demonstrate that the model provides a reliable level of
forecasting accuracy. These results were then compared with
the FTS-MC model to determine the most suitable model for
time series forecasting.

The first step in FTS-MC modeling involves defining the
universe of discourse based on the available data. In this study,
the number of intervals (k) was set to 7, with a minimum value
of 1,050, a maximum value of 2,900, and an interval width of
264.29. The corresponding fuzzy intervals are summarized in
Table 1.

Table 1. Fuzzy intervals

Interval Lower Upper Midpoint
[1,050 —1,314.29] 1,050 1,314.29  1,182.14
[1,314.29 - 1,578.57] 1,31429  1,578.57  1,446.43
[1,578.57 —1,842.86] 1,578.57  1,842.86  1,710.71
[1,842.86 —2,107.14] 1,842.86  2,107.14 1975
[2,107.14 —2,371.43] 2,107.14  2,371.43  2,239.29
[2,371.43 —2,635.71] 2,371.43  2,635.71  2,503.57
[2,635.71 —2,900] 2,635.71 2,900 2,767.86

Next, the fuzzification process was performed to transform
the actual data into fuzzy sets. This step allowed the
identification of FLR between consecutive observations. The
resulting FLRs are presented in Table 2.

Table 2. FLR result

t Ve state, Vel state; 4 FLR

1 1,602.637 3 1,661.886 3 Az > As
2 1,661.886 3 1,692.556 3 Az > As
3 1,692.556 3 1,757.069 3 Az - A
98 2424.743 6 1750.970 3 Ag » As
99 1750.970 3 2900 7 A; - A,
100 2900 7 1943,849 4 A; o Ay
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Table 2 shows the Fuzzy Logical Relationship (FLR) results,
which illustrate the transitions between fuzzy states over time
based on historical data. These transitions form the basis for
constructing the FLRG, which are summarized in Table 3.

Table 3. FLRG result

“State Next State State
Ay 7(A1), 3(A4), 2(A2), 1(A3) 13
Ay 4(A4), 4(43), 3(42), 3(46), 1(41) 15
Az 6(A43), 5(As), 4(A2])(:43()A5), 2(A1), 1(46), 22
Ay 8(44), 5(45), 3(42), 27(146), 2(A43), 1(41), 23

1(47), 1(44)
As T(4s), 4(A4), 4(A2), 2(A3), 1(46), 1(A7) 19
Ag 3(43), 2(4s), 1(44)
A7 1(4¢), 1(44) 2

The FLRG shown above represents the transition patterns
from each current state (4;) to one or more next states (4;)
based on the frequency of occurrences in historical data. These
groups summarize how often a system in one state moves to
other states, providing insights into the system's behavioral
trends over time. The FLRG serves as the foundation for



constructing the Transition Probability Matrix, which
expresses these transitions in terms of probabilities. Each
probability is calculated by dividing the frequency of a specific
transition by the total number of transitions from the current
state. This matrix provides a numerical representation of the
FLRG and is essential for forecasting in fuzzy time series
models. The transition probability matrix derived from Eq. (6)
is shown below:

0.692 0.154 0

p. = 0.133 0.333 0
ij = : : :
0 0 0

The values in the transition probability matrix P;; indicate
the probability of moving from the current state i to the next
state j. For example, a value of 0.692 means there is a 69.2%
chance the system remains in the same state, while 0.154
represents a 15.4% chance of transitioning to the next state.
Each row sums to 1, representing the total probability
distribution of all possible transitions from a given state. Based
on the transition probabilities shown in the matrix, the next
step involves forecasting the future states of the system. The
forecasting results, along with their corresponding defuzzified
values, are summarized in Table 4.

Table 4. Forecasting and defuzzification result

¢ Actual Initial Adjustment Final

Value Value Value Forecast
2 1,661.886 1,902.92 0 1,902.92
3 1,692.556 1,902.92 0 1,902.92
4 1,757.069 1,902.92 0 1,902.92
99 1,750.970 1,886.90 792.86 1,094.05
100 2,900 1,902.92 -1,057.14 2,960.06
101 1,943.849 2,239.29 792.86 1,446.43

Table 4 shows the forecasting process, including the actual
values, initial forecast values, adjustment values, and the final
forecast results for each time period. The adjustment values
represent corrections applied to improve the accuracy of the
initial forecasts. Figure 5 below illustrates the comparison
between the actual values and the final forecast values.

3000 Variable

—&— Actual
—B— Forecast

2500 L

2000 il

Raw material (kg)

1500

1000
40
Time index

Figure 5. Comparison between actual and forecast values
using the FTS-MC model

Figure 5 presents the comparison between the actual and
forecast values generated by the FTS-MC model. The model
evaluation results show a MAPE of 10.91% and an RMSE of
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246.94, indicating a relatively high forecasting accuracy.
Compared to the ARIMA(2,1,0) model, which achieved a
MAPE of 13.67%, the FTS-MC model yielded lower
forecasting errors, with a MAPE of 10.91% and an RMSE of
246.94, thereby confirming its superior performance. This
advantage arises from the ability of FTS-MC to capture non-
linear dynamics and manage uncertainty in fisheries data,
which are often affected by environmental variability,
seasonal fluctuations, and market-driven shocks. Unlike
ARIMA, which is constrained by linearity and stationarity
assumptions, FTS-MC incorporates fuzzy logic and
probabilistic state transitions, enabling it to more effectively
represent irregularities and abrupt changes in the series.
Consequently, the FTS-MC model can be regarded as the most
appropriate approach for forecasting buffer stock requirements
in this context. Based on the forecasting results, the estimated
buffer stock requirement for the next period using FTS-MC is
1,975 kg.

4. CONCLUSIONS

This study demonstrates that the ARIMA(2,1,0) model
achieved acceptable forecasting performance with a MAPE of
13.67%. Nevertheless, the FTS-MC model produced superior
outcomes, with lower forecasting errors (MAPE 10.91% and
RMSE 246.94), thereby confirming its greater capability in
capturing variability and uncertainty in fisheries data. These
findings highlight the critical role of advanced forecasting
approaches in supporting sustainable fisheries management,
stabilizing supply chains, and improving evidence-based
decision-making.

In addition, the conclusion provides practical
recommendations for fisheries managers and policymakers.
Specifically, fisheries managers are encouraged to implement
adaptive buffer stock planning to anticipate seasonal supply
shortages, while policymakers can use the forecasting results
to improve market stability and protect small-scale fishers
from income volatility. These strategies will help strengthen
resilience and ensure the long-term sustainability of the
fisheries supply chain.

Future research should build upon this work by
incorporating broader datasets, real-time monitoring, and
environmental variables to further enhance predictive
precision across diverse fisheries contexts.
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