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The fisheries sector is vital for food security but remains vulnerable to supply fluctuations 

and uncertain stock availability. This study develops a forecasting framework for buffer 

stock estimation by applying the Autoregressive Integrated Moving Average (ARIMA) and 

Fuzzy Time Series Markov-Chain (FTS-MC) approaches to historical data from Makassar 

City, Indonesia during 2021–2025. The ARIMA (2,1,0) model produced acceptable 

accuracy with a Mean Absolute Percentage Error (MAPE) of 13.67%, whereas the FTS-

MC method delivered superior outcomes with reduced errors (MAPE 10.91% and RMSE 

246.94). These findings confirm the capability of FTS-MC in addressing volatility and 

uncertainty, offering more dependable projections of raw material reserves. The study 

provides practical implications for enhancing fisheries governance, stabilizing market 

distribution, and supporting strategic planning. Future research should incorporate broader 

datasets, real-time observations, and environmental parameters to refine predictive 

performance across varied contexts. 
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1. INTRODUCTION

The fishing industry in Indonesia plays a vital role in the 

national economy, contributing significantly to food security 

and providing livelihoods for millions of individuals across 

coastal communities. In recent years, Indonesia has become 

one of the world's largest exporters of fishery products, 

ranking eighth globally in 2020, despite the challenges posed 

by the COVID-19 pandemic [1]. The country's diverse marine 

ecosystem offers a plethora of aquatic resources, including 

various species of fish, crustaceans, and mollusk, which are 

essential for both domestic consumption and export markets. 

However, the rapid expansion of the fishing sector has also led 

to increased pressure on fish stocks, necessitating effective 

management strategies to sustain its long-term viability. 

One of the primary challenges facing the Indonesian fishing 

industry is the issue of illegal, unreported, and unregulated 

(IUU) fishing, which jeopardizes marine biodiversity and 

undermines efforts to manage fisheries sustainably [2, 3]. With 

a vast archipelagic coastline, Indonesia is particularly 

vulnerable to IUU fishing practices that deplete fish stocks 

beyond sustainable levels. Moreover, overfishing exacerbates 

this problem, posing serious threats to marine ecosystems and 

the livelihoods of local fishermen. The government has been 

working to strengthen regulations and enforcement measures 

to combat IUU fishing, but substantial challenges remain in 

addressing this complex issue, including the need for 

international cooperation and improved surveillance 

capabilities [2, 3]. 

Another significant challenge lies in adapting to changes 

resulting from climate change. Fluctuations in ocean 

temperature, rising sea levels, and altered fish migration 

patterns have placed additional strain on the fishing industry, 

which must constantly adjust its practices to respond to these 

environmental shifts [4]. The impacts of climate change not 

only threaten fish stocks but also affect the communities that 

depend on fishing for their economic sustenance. To navigate 

these challenges effectively, the industry must adopt 

sustainable practices, enhance technological capacities, and 

invest in alternative livelihoods for affected communities. This 

transition is crucial to ensure the resilience of Indonesia's 

fishing industry against both immediate and long-term threats. 

Buffer stocks serve as a crucial element in managing the 

volatility of fish supply and prices, particularly in Indonesia, a 

nation renowned for its extensive fishing resources. The 

primary role of buffer stocks is to stabilize fish markets by 

ensuring availability during periods of scarcity that may arise 

due to overfishing, seasonal catch variations, or environmental 

changes. This becomes increasingly important in Indonesia, 

where food security is a pressing concern amid rising 

population demands and fluctuating fish stocks [5]. The 

government’s strategic interventions via buffer stock schemes 

not only maintain equilibrium in prices but also protect low-

income fishing communities from the adverse effects of 

market volatility [6]. By having a readily available reserve, 

fisheries can mitigate the risks associated with sudden supply 

shocks, thereby promoting sustainability and the economic 

welfare of fishing communities. 

Moreover, buffer stocks contribute to long-term 

environmental sustainability in the fishing sector. By 
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regulating catch limits through managed stocks, buffer 

systems can help prevent overfishing and allow fish 

populations to recover naturally. This approach is vital in 

Indonesia, where ecological balance is threatened by factors 

such as climate change and habitat degradation [7]. 

Additionally, effective buffer stock management fosters 

collaborative governance among stakeholders, ensuring that 

both governmental and local community interests align in 

sustainable fishing practices. Investments in buffer stock 

initiatives thus not only stabilize food supplies but also 

enhance social equity among fishing communities, ultimately 

contributing to improved livelihoods and environmental health 

[8]. In this context, buffer stocks play an indispensable role in 

securing the future of Indonesia's fishing industry whilst 

advancing broader socio-economic objectives. 

Forecasting tools and methods in fisheries management 

play a critical role in ensuring sustainable practices that 

accommodate environmental variability and economic 

demands. One widely acknowledged methodology is the 

Autoregressive Integrated Moving Average (ARIMA) model, 

which has been effectively employed in predicting future fish 

stock levels and catch dynamics. Recent studies have indicated 

that integrating environmental covariates into ARIMA models, 

such as ocean temperature, enhances forecast accuracy 

regarding fish recruitment and productivity [9]. For instance, 

Porreca [10] demonstrates how ocean temperature forecasts 

can shape effort allocation in tuna fisheries, indicating the 

substantial impact of climatic factors on fishery outputs. This 

evolution of forecasting practices emphasizes the necessity for 

advanced statistical approaches that allow fisheries managers 

to make informed decisions amid variable environmental 

conditions [10]. 

In addition to ARIMA, the use of fuzzy time series and 

machine learning techniques is gaining traction in fisheries 

science, providing alternative approaches that can account for 

the inherent uncertainties present in ecological systems. For 

example, the amalgamation of genomic data with species 

distribution modeling positions fisheries management to adopt 

a more holistic view of stock assessments and environmental 

interactions [11]. As highlighted by study [12], forecasting 

systems designed to account for climate variability can 

enhance the understanding of species dynamics, particularly 

for species like squid, which are affected by fluctuating ocean 

conditions. Furthermore, innovative assessments that combine 

traditional ecological forecasting with contemporary modeling 

tools offer increased predictive power, leading to better 

resource management and sustainability strategies [13]. These 

advancements herald a new era of fisheries management, 

where data-driven approaches equipped with robust 

forecasting methodologies can directly inform conservation 

efforts while optimizing fishery outputs. 

One of the primary challenges in forecasting fish stock 

dynamics is the insufficient predictive accuracy of existing 

methods. Traditional time series models, such as ARIMA, 

have been widely employed for their ability to analyze 

historical data and provide forecasts based on underlying 

patterns and seasonality. However, significant shortcomings 

arise when these models are applied to volatile systems like 

fisheries, where various external factors, such as 

environmental changes and market demand fluctuations, 

significantly influence stock levels. Research has indicated 

that ARIMA may yield low accuracy under conditions of high 

variability, leading to potentially misguided management 

strategies [14]. Furthermore, its dependency on historical 

linear relationships can overlook emerging trends, resulting in 

forecasts that fail to accurately capture the state of the fishery 

and its future dynamics. These limitations highlight a clear 

research gap in fisheries forecasting: conventional ARIMA 

models are not sufficiently capable of capturing the complex, 

non-linear, and uncertain behavior of fish stock systems. 

Addressing this gap requires forecasting techniques that 

explicitly incorporate uncertainty and variability. 

In addition to predictive accuracy issues, there are inherent 

challenges associated with modeling complex systems such as 

the fishing industry. The dynamics of fish populations are 

influenced by a multitude of interrelated factors, including 

climatic variations, ecological interactions, and socio-

economic forces. These complexities often elude simplistic 

modeling approaches, leading to inadequate predictions and 

ultimately ineffective fisheries management practices [15]. 

The integration of fuzzy logic with traditional forecasting 

models, such as the Fuzzy Time Series (FTS) Markov Chain, 

has shown promise in accommodating uncertainties and 

providing a more robust framework for prediction. However, 

this approach also faces its own challenges, such as the need 

for effective fuzzification and defuzzification processes, 

which can introduce additional uncertainty and affect the 

overall forecasting accuracy [16]. 

The implementation of such models entails extensive 

computational resources and a deep understanding of the 

underlying processes governing dynamic interactions, 

significantly complicating the modeling efforts. It is crucial for 

further research to explore hybrid methodologies that can 

dynamically adjust to changing conditions and provide 

accurate forecasts within complex, real-world contexts [17]. 

Furthermore, literature highlights the necessity for continuous 

adaptation of methodologies within fisheries management to 

effectively account for the multifaceted nature of the 

ecological and economic environments [18]. As fisheries 

increasingly confront challenges from climate change and 

human activity, enhancing the predictability of buffer stock 

models remains an urgent priority for sustainable resource 

management. 

In this study, the primary objective is to design an integrated 

forecasting model for buffer stock management in the fishing 

industry, leveraging the strengths of the Autoregressive 

Integrated Moving Average (ARIMA) and fuzzy time series 

methods. By combining these methodologies, the proposed 

model aims to provide a more nuanced forecasting capability 

that accommodates the inherent uncertainties and complexities 

of fish stock dynamics. The ARIMA model offers a robust 

statistical framework for analyzing time series data, enabling 

accurate predictions based on historical trends [19]. On the 

other hand, fuzzy time series methods incorporate subjective 

judgments and uncertainties into the forecasting process, 

enhancing the model's adaptability to changing environmental 

and market conditions. The integration of these approaches is 

anticipated to create a comprehensive tool that enhances 

decision-making processes for fishery managers by yielding 

more reliable forecasts of buffer stock levels under various 

scenarios [13]. 

The second research objective is to assess the effectiveness 

of the integrated forecasting model in accurately predicting 

fish stock levels and improving management outcomes. 

Evaluating the model's performance involves comparing its 

forecasts against actual fish landings and stock assessments 

over a specified timeframe. This assessment will be conducted 

using statistical metrics such as Mean Absolute Percentage 
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Error (MAPE) and Root Mean Square Error (RMSE) to gauge 

the accuracy and reliability of the predictions [20]. By 

conducting these assessments, the study seeks not only to 

validate the model's efficacy but also to explore its 

applicability across different fishing contexts and ecological 

settings. A successful model will provide stakeholders within 

the fishing industry with a tool to enhance adaptive 

management strategies, improve resource allocation, and 

ultimately contribute to the sustainability of fish stocks [21]. 

Furthermore, this research will also emphasize the 

importance of real-time data integration and environmental 

monitoring in enhancing the forecasting capabilities of the 

proposed model. By incorporating environmental variables 

and socio-economic factors, the forecasting model is expected 

to provide a more holistic view of the factors affecting fish 

stock dynamics [21]. This comprehensive approach ensures 

that forecasts are not only statistically sound but also 

contextually relevant, allowing fishery managers to respond 

effectively to real-world challenges faced by the industry. 

Overall, the primary goals of this research are to innovate in 

forecasting methodologies specific to the fishing industry and 

to create actionable, data-driven insights that bolster 

sustainable fishing practices. 

The significance of this study lies in its relevance to 

sustainable fisheries management and the practical 

applications of the developed forecasting model using 

ARIMA and fuzzy time series Markov-Chain methods. With 

the increasing pressures of climate change and overfishing, 

effective management strategies must be rooted in robust 

scientific forecasting to ensure the long-term viability of fish 

stocks [10]. By integrating ARIMA and fuzzy time series 

Markov-Chain approaches, this study aims to provide refined 

predictions that consider the inherent uncertainties and 

complexities of fishery dynamics, thereby supporting efforts 

to maintain sustainable catches and prevent overexploitation 

[22]. The practical implementation of this predictive model 

holds substantial potential for informing policy development 

and enhancing resource management within the fisheries 

sector.  

 

 

2. METHOD 

 

The research design for this study centers around a 

modeling approach that aims to forecast buffer stock levels in 

the fishing industry using ARIMA and fuzzy time series 

Markov-Chain methods. This approach effectively merges 

statistical rigor with adaptability to fisheries management 

uncertainties, supporting the goal of delivering precise, 

practical insights for sustainability. The conceptual framework 

underpinning this study draws from dynamic system theory, 

where the interactions between ecological variables (such as 

fish populations and environmental changes) and socio-

economic factors (such as market demands and regulatory 

policies) are modeled to capture the complexity of fisheries 

dynamics [23, 24]. By applying this approach, the study seeks 

to contribute to policy-making and resource management in 

the fishing industry, facilitating the development of strategies 

that optimize both ecological resilience and economic viability 

for communities reliant on fisheries [10, 25]. 

This study was conducted in the fishing industry of 

Makassar City, South Sulawesi, from 2021 to 2025. The 

location was selected as it represents one of the largest fishing 

hubs in Eastern Indonesia, playing a strategic role in the 

seafood supply chain, and exhibiting ecosystem characteristics 

and fishing dynamics representative of tropical coastal 

fisheries. Secondary data were obtained from fishing 

companies using a purposive non-probability sampling 

approach to ensure that the selected sample captured specific 

characteristics relevant to the research objectives, including 

commodity types and the availability of historical raw material 

inventory data. 

Sample selection followed the inclusion criteria of: (1) 

fishing companies operating within Makassar City; (2) 

possessing continuous historical records of at least 70 

observations for the primary variables during 2021–2025; and 

(3) providing key observational variables, including inventory 

data and observation dates. The ≥70 observation threshold was 

adopted following [26], which recommends a minimum of 50-

70 observations in time series analysis to ensure parameter 

stability and predictive accuracy. This requirement is also 

supported by fisheries-related forecasting studies, such as the 

studies [9, 19], which emphasize that sufficient sample sizes 

are critical to improve robustness and reduce forecasting errors 

in ecological and fisheries applications. 

The analytical framework of this study is grounded in a 

statistical modeling approach combined with machine learning 

techniques, selected for their capability to capture temporal 

patterns and non-linear relationships in fisheries raw material 

inventory data. Model development was informed by 

theoretical concepts drawn from the literature on time-series 

analysis and predictive modeling, under assumptions 

including data stationarity, residual independence, and 

consistency of input variables throughout the observation 

period. Data analysis was conducted using Minitab Statistical 

Software 22 and RStudio with the R programming language 

(version 4.4.2), employing methods such as ARIMA and fuzzy 

time series based on the Markov Chain. Model performance 

was evaluated using the Mean Absolute Percentage Error 

(MAPE) and Root Mean Square Error (RMSE) to assess 

predictive accuracy. Statistical significance was assessed 

using 95% confidence intervals and a significance threshold of 

p < 0.05. 

Historical time series data relevant to the analysis were 

compiled, including variables such as raw material inventory 

levels and measurement times. The ARIMA method was then 

applied to analyze the data, following the structured sequence 

of steps outlined below. 

1. Exploratory data analysis: An initial exploratory data 

analysis was conducted to characterize the underlying 

structure of the time series. This involved visualizing 

the data through line plots and examining the presence 

of trends and seasonality. 

2. Stationarity testing: ARIMA modeling requires 

stationarity, so the Augmented Dickey-Fuller (ADF) 

test was used to check it. To stabilize variance, a Box-

Cox transformation was applied before differencing. 

The series was differenced repeatedly until stationarity 

was achieved, meeting model assumptions [27, 28]. 

3. Model identification: After confirming stationarity, the 

model parameters autoregressive order 𝑝, differencing 

order 𝑑, and moving average order 𝑞 were identified. 

The differencing order 𝑑  indicates how many 

differencing operations were applied to achieve 

stationarity. The values of 𝑝 and 𝑞 were determined by 

analyzing ACF and PACF plots, using the cut-off 

points in these plots to select appropriate parameters 

[29, 30]. 
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4. Model estimation: The ARIMA model is characterized 

by three parameters 𝑝, 𝑑, and 𝑞, which correspond to 

the autoregressive (AR), integrated (I), and moving 

average (MA) components, respectively. These 

parameters collectively determine the performance of 

the model [31]. 

The AR component models the current value of a time series 

as a weighted sum of its previous values plus a stochastic error 

term. The general form of an AR(p) model is (Eq. (1)): 

 

𝑦𝑡 = 𝑐 + 𝜙1𝑦𝑡−1 + 𝜙2𝑦𝑡−2 + ⋯ + 𝜙𝑝𝑦𝑡−𝑝 + 𝑒𝑡 (1) 

 

where, c is a constant, 𝑒𝑡 is the error term, and 𝑦𝑡−1, 𝑦𝑡−2, …, 

𝑦𝑡−𝑝 are past observations.  

The I component addresses non-stationarity in the data by 

differencing the series 𝑑  times, removing trends and 

stabilizing the mean. 

The MA component captures the linear dependence 

between the current observation and a finite number of past 

forecast errors. An MA(𝑞) process is expressed as Eq. (2): 

 

𝑥𝑡 = 𝜇 + 𝜙1𝑤𝑡−1 + 𝜙2𝑤𝑡−2 + ⋯ + 𝜙𝑝𝑤𝑡−𝑝 + 𝑤𝑡 (2) 

 

where, μ is the mean of the series and 𝑤𝑡  is the white noise. 

The complete ARIMA model combines these elements into 

(Eq. (3)): 

 

𝑦 = 𝑐 + 𝜙1𝑦𝑡−1 + ⋯ + 𝜙𝑝𝑦𝑡−𝑝 + 𝜇 − 𝜙1𝑤𝑡−1 − ⋯

− 𝜙𝑝𝑤𝑡−𝑞 + 𝑤𝑡  
(3) 

 

with p indicating the AR order, d the differencing order, and 

𝑞 the MA order. 

5. Model diagnostics: After fitting the model, perform 

diagnostic checks to validate its effectiveness. This 

includes examining the residuals of the model to ensure 

they resemble white noise (i.e., they should have a 

mean of zero and no autocorrelation). Use residual 

plots, ACF plots of residuals, and statistical tests (e.g., 

Ljung-Box test) to confirm the adequacy of the model 

[32, 33]. 

6. Forecasting: Use the fitted model to make forecasts. 

This involves predicting future values based on the 

model parameters derived from the historical data. 

Generate confidence intervals to provide a range of 

future values and quantify the uncertainty associated 

with the forecasts [20]. 

Fuzzy Time Series Markov Chain (FTS-MC) integrates the 

Fuzzy Time Series approach with the Markov Chain 

framework, utilizing a transition matrix to determine the 

highest probability and thereby achieve greater accuracy 

compared to the conventional Fuzzy Time Series method. The 

FTS-MC method employs the following algorithm, as 

described by studies [34, 35]. 

1. The universe set 𝑈 = [𝐷𝑚𝑖𝑛 − 𝐷1, 𝐷𝑚𝑎𝑥 + 𝐷2]  is 

defined by first determining the minimum 𝐷𝑚𝑖𝑛  and 

maximum 𝐷𝑚𝑎𝑥 values of the historical data. Then, 𝐷1 

and 𝐷2 are assigned as positive real numbers to extend 

the range, ensuring that the intervals fully encompass 

the data variation. Sturges formula: 𝑛 = 1 + 3,3 log 𝑁 

(where N denotes the total count of historical data 

points) is applied to calculate the optimal number of 

intervals within 𝑈, and the interval length is determined 

using 𝑙 =
(𝐷𝑚𝑎𝑥+𝐷2)−(𝐷𝑚𝑖𝑛−𝐷1)

𝑛
, where 𝑛 denotes the 

number of intervals. Each interval boundary is 

calculated as 𝑢𝑛 = [𝐵 + (𝑛 − 1)𝑙; 𝐵 + 𝑛𝑙], with 𝐵 =
𝐷𝑚𝑖𝑛 − 𝐷1 . This systematic partitioning provides a 

structured foundation for the subsequent fuzzy time 

series analysis. 

2. Construct fuzzy sets by assigning membership degrees 

to each element in the universe of discourse based on 

its position relative to the historical data. For a fuzzy 

set 𝐴𝑖, the membership degree 𝜇𝑖𝑗 toward 𝑢𝑗 is defined 

as (Eq. (4)): 

 

𝜇𝑖𝑗 = {
1,

0.5,
0,

       

𝑖 = 1
𝑗 = 𝑖 − 1 𝑜𝑟 𝑗 = 𝑖 + 1

𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 (4) 

 

Each fuzzy set is expressed as (Eq. (5)): 

 

𝐴𝑖 = (
𝜇𝑖1

𝑢1

,
𝜇𝑖2

𝑢2

, … ,
𝜇𝑖𝑛

𝑢𝑛

) ,    𝑖 = 1,2, … , 𝑛 (5) 

 

This approach assigns a full membership value of 1 to the 

central element, a partial membership value of 0.5 to its 

neighboring elements, and zero to all others, thereby 

preserving local relationships among data points and ensuring 

a structured, consistent representation for forecasting models. 

3. The historical data is fuzzified into a fuzzy set 𝐴𝑖 if it 

belongs to the interval 𝑢𝑖. 

4. The Fuzzy Logical Relationship (FLR) is defined to 

capture the causal connection between consecutive 

fuzzy observations. Specifically, if the fuzzy state 

𝐹(𝑡 − 1) = 𝐴𝑗  precedes and causes the fuzzy state 

𝐹(𝑡) = 𝐴𝑖 , this is defined as an FLR represented by 

𝐴𝑗 → 𝐴𝑖 . Following the FLRs, the next step is to 

determine the Fuzzy Logical Relationship Group 

(FLRG). This process groups together all FLRs that 

share the same left-hand side (LHS).  

5. Construct a transition probability matrix 𝑃𝑖𝑗 = (𝑝𝑖𝑗), 

𝑝𝑖𝑗  is the probability of a one-step transition between 

state 𝑖  and state 𝑗. The matrix 𝑃𝑖𝑗  which contains the 

transition probabilities for the state space, is shown as 

Eq. (6): 

 

𝑃𝑖𝑗 = [

𝑝11 𝑝12 ⋯ 𝑝1𝑛

𝑝21 𝑝22 ⋯ 𝑝2𝑛

⋮ ⋮ ⋱ ⋮
𝑝𝑛1 𝑝𝑛2 ⋯ 𝑝𝑛𝑛

] (6) 

 

6. Forecasting procedure based on FTS-MC 

The forecasting process using the FTS-MC model consists 

of three main stages: 

a. Initial forecast calculation 

At time 𝑡 , when the data belong to state 𝐴𝑖 , the initial 

forecast is determined as follows: 

Rule 1. If 𝐴𝑖 → ∅, then the forecast equals the midpoint of 

interval 𝑢𝑖: 𝐹(𝑡) = 𝑚𝑖 

Rule 2. If 𝐴𝑖 → 𝐴𝑘  with a unique transition, the forecast 

equals the midpoint of 𝑢𝑘: 𝐹(𝑡) = 𝑚𝑘 

Rule 3. If 𝐴𝑖 → 𝐴1, 𝐴2, … , 𝐴𝑛 , then the forecast is a 

weighted sum of the midpoints based on transition 

probabilities: 𝐹(𝑡) = 𝑚1𝑝𝑖1 + 𝑚2𝑝𝑖2 + ⋯ + 𝑚𝑗−1𝑝𝑖,𝑗−1 +

𝑌(𝑡 − 1)𝑝𝑖,𝑗 + 𝑚𝑗+1𝑝𝑖,𝑗+1 + ⋯ + 𝑚𝑛  where 𝑚𝑗  is the 

midpoint of interval 𝑢𝑗 , and 𝑝𝑖,𝑗  denotes the transition 

probability from state 𝑖 to state 𝑗. 
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b. Adjustment value calculation 

To improve accuracy, adjustment values are introduced 

according to the direction and step size of the transition: 

Rule 1. Upward transition (𝑖 < 𝑗): 𝐷𝑡1 =
𝐿

2
 

Rule 2. Downward transition (𝑖 > 𝑗): 𝐷𝑡1 = −
𝐿

2
 

Rule 3. Forward shift by 𝑠 states (𝑖 → 𝑖 + 𝑠): 𝐷𝑡2 = (
𝐿

2
) 𝑠 

Rule 4. Backward shift by v states (𝑖 → 𝑖 − 𝑣): 𝐷𝑡2 =

− (
𝐿

2
) 𝑣 

where, L is the interval length.  

c. Final forecast 

The final forecast value is obtained by correcting the initial 

forecast with the adjustment values (Eq. (7)): 

 

𝐹∗(𝑡) = 𝐹(𝑡) ± 𝐷𝑡1 ± 𝐷𝑡2 (7) 

 

Model validation is conducted to evaluate the predictive 

performance of the ARIMA and FTS-MC model by 

comparing its forecasts against a hold-out sample of historical 

data excluded from the model fitting process. This approach 

ensures that the assessment reflects the model’s ability to 

generalize beyond the training dataset. A commonly used 

performance metric is the MAPE, defined as Eq. (8): 

 

𝑀𝐴𝑃𝐸 =
100%

𝑛
∑ |

𝑦𝑡 − 𝑦̂𝑡

𝑦𝑡

|

𝑛

𝑡=1

 (8) 

 

where, 𝑦𝑡  denotes the actual observed value at time 𝑡, 𝑦̂𝑡 is the 

forecasted value, and 𝑛 represents the number of observations 

in the validation set. Lower MAPE values indicate better 

forecasting accuracy, with values below 10% generally 

considered highly accurate in many practical applications [36]. 

In addition to using the MAPE, the performance of a model 

can also be evaluated through the RMSE. RMSE provides 

information about the average magnitude of prediction errors 

in the same units as the measured variable, thereby facilitating 

the interpretation of model performance. A smaller RMSE 

value indicates better model accuracy and is mathematically 

expressed as Eq. (9): 

 

𝑅𝑀𝑆𝐸 = √
1

𝑛
∑(𝑦𝑡 − 𝑦̂𝑡)2

𝑛

𝑡=1

 (9) 

 

 

3. RESULT  

 

The following time series data illustrate weekly 

observations collected from early 2022 to 2024. To better 

understand the characteristics of the dataset, descriptive 

statistical analysis was conducted to examine measures of 

central tendency and data dispersion. The overall data pattern 

is visualized in Figure 1. 

Figure 1 illustrates the time series data from 2022 onward, 

consisting of 101 weekly observations. The series has a mean 

of approximately 1,836, which is close to the median of 1,843, 

indicating a relatively balanced distribution. The values range 

between 1,050 and 2,900, reflecting considerable variability, 

with a standard deviation of 388.685. The skewness value of 

0.036 suggests an almost symmetric distribution, with no 

pronounced deviation to either side. However, symmetry in 

distribution does not necessarily imply linearity in the time 

series behavior. The dataset may still exhibit non-linear 

dynamics, underscoring the need for forecasting methods 

capable of addressing both linear and non-linear patterns. 

Several upward peaks above 2,500 and downward troughs 

below 1,500 further highlight the pronounced fluctuations 

over time. Prior to ARIMA modeling, the data were tested for 

stationarity to ensure the appropriateness of the model 

specification. 

 

 
 

Figure 1. Time series plot 

 

 
 

Figure 2. Box-Cox transformation 

 

Figure 2 illustrates the Box-Cox transformation, where (a) 

shows the distribution before transformation and (b) after 

transformation. Prior to transformation, the rounded value of 

lambda (λ) was approximately −0.50, indicating the need for 

variance stabilization. After applying the Box-Cox 

transformation, the λ = 1, suggesting that the variance of the 

series had been stabilized and achieved stationarity. 

Subsequently, the stationarity of the mean was examined using 

the ADF test to further validate the adequacy of the 

transformation for time series modeling. The result showed a 

p = 0.169, indicating that the series was not yet stationary with 

respect to the mean. Therefore, first-order differencing was 

applied, after which the ADF test yielded a p = 0.000. This 

confirmed that the differenced series had achieved stationarity 

in the mean. Following this, model identification was 

conducted through the inspection of the ACF and PACF plots. 

Based on Figure 3, the ACF plot exhibits a cut-off at lag 1, 

while the PACF plot shows a cut-off at lags 1 and 2. This 

indicates potential autoregressive parameters 𝑝 = 1,2  and a 

moving average parameter 𝑞 = 1 . Consequently, tentative 

models were constructed with differencing order 𝑑 = 1, 

resulting in the following ARIMA specifications: 

ARIMA(0,1,1), ARIMA(1,1,0), ARIMA(1,1,1), 

ARIMA(2,1,0), and ARIMA(2,1,1). 
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Figure 3. ACF and PACF plot 

 

Following the estimation of tentative models, diagnostic 

checking was performed to validate model adequacy. This 

involved examining the residuals to ensure they exhibited 

white noise characteristics, namely a mean close to zero and 

the absence of significant autocorrelation. The Ljung–Box test 

confirmed the independence of residuals, indicating that the 

ARIMA(2,1,0) model satisfied the diagnostic criteria with p > 

0.05. Consequently, ARIMA(2,1,0) was selected as the most 

suitable model for the series. The model was then applied to 

the time series data for forecasting to evaluate its performance 

and predictive accuracy, with the results presented in Figure 4. 

 

 
 

Figure 4. Comparison between actual and forecast values 

using the ARIMA(2,1,0) model 

 

The ARIMA(2,1,0) model achieved an RMSE of 314.79 

and a MAPE of 13.67%, corresponding to an accuracy of 

86.33%. As illustrated in Figure 4, the forecasted values 

closely followed the actual series, capturing both trend and 

fluctuations. Although the MAPE is slightly above the <10% 

threshold typically regarded as highly accurate, the results still 

demonstrate that the model provides a reliable level of 

forecasting accuracy. These results were then compared with 

the FTS-MC model to determine the most suitable model for 

time series forecasting. 

The first step in FTS-MC modeling involves defining the 

universe of discourse based on the available data. In this study, 

the number of intervals (𝑘) was set to 7, with a minimum value 

of 1,050, a maximum value of 2,900, and an interval width of 

264.29. The corresponding fuzzy intervals are summarized in 

Table 1. 

  

Table 1. Fuzzy intervals 

 
Interval Lower Upper Midpoint 

[1,050 – 1,314.29] 1,050 1,314.29 1,182.14 

[1,314.29 – 1,578.57] 1,314.29 1,578.57 1,446.43 

[1,578.57 – 1,842.86] 1,578.57 1,842.86 1,710.71 

[1,842.86 – 2,107.14] 1,842.86 2,107.14 1975 

[2,107.14 – 2,371.43] 2,107.14 2,371.43 2,239.29 

[2,371.43 – 2,635.71] 2,371.43 2,635.71 2,503.57 

[2,635.71 – 2,900] 2,635.71 2,900 2,767.86 

 

Next, the fuzzification process was performed to transform 

the actual data into fuzzy sets. This step allowed the 

identification of FLR between consecutive observations. The 

resulting FLRs are presented in Table 2. 

 

Table 2. FLR result 

 

𝒕 𝒚𝒕 𝒔𝒕𝒂𝒕𝒆𝒕 𝒚𝒕+𝟏 𝒔𝒕𝒂𝒕𝒆𝒕+𝟏 FLR 

1 1,602.637 3 1,661.886 3 𝐴3 → 𝐴3 

2 1,661.886 3 1,692.556 3 𝐴3 → 𝐴3 

3 1,692.556 3 1,757.069 3 𝐴3 → 𝐴3 

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ 
98 2424.743 6 1750.970 3 𝐴6 → 𝐴3 

99 1750.970 3 2900 7 𝐴3 → 𝐴7 

100 2900 7 1943,849 4 𝐴7 → 𝐴4 

 

Table 2 shows the Fuzzy Logical Relationship (FLR) results, 

which illustrate the transitions between fuzzy states over time 

based on historical data. These transitions form the basis for 

constructing the FLRG, which are summarized in Table 3. 

 

Table 3. FLRG result 

 
Current 

State 
Next State 

Total 

State 

𝐴1 7(𝐴1), 3(𝐴4), 2(𝐴2), 1(𝐴3) 13 

𝐴2 4(𝐴4), 4(𝐴3), 3(𝐴2), 3(𝐴6), 1(𝐴1) 15 

𝐴3 6(𝐴3), 5(𝐴4), 4(𝐴2), 3(𝐴5), 2(𝐴1), 1(𝐴6), 

1(𝐴7) 

22 

𝐴4 8(𝐴4), 5(𝐴5), 3(𝐴2), 2(𝐴6), 2(𝐴3), 1(𝐴1), 

1(𝐴7), 1(𝐴4) 

23 

𝐴5 7(𝐴5), 4(𝐴4), 4(𝐴2), 2(𝐴3), 1(𝐴6), 1(𝐴7) 19 

𝐴6 3(𝐴3), 2(𝐴5), 1(𝐴4) 6 

𝐴7 1(𝐴6), 1(𝐴4) 2 

 

The FLRG shown above represents the transition patterns 

from each current state (𝐴𝑖) to one or more next states (𝐴𝑗) 

based on the frequency of occurrences in historical data. These 

groups summarize how often a system in one state moves to 

other states, providing insights into the system's behavioral 

trends over time. The FLRG serves as the foundation for 
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constructing the Transition Probability Matrix, which 

expresses these transitions in terms of probabilities. Each 

probability is calculated by dividing the frequency of a specific 

transition by the total number of transitions from the current 

state. This matrix provides a numerical representation of the 

FLRG and is essential for forecasting in fuzzy time series 

models. The transition probability matrix derived from Eq. (6) 

is shown below: 

 

𝑃𝑖𝑗 = [

0.692 0.154 ⋯ 0
0.133 0.333 ⋯ 0

⋮ ⋮ ⋱ ⋮
0 0 ⋯ 0

] 

 

The values in the transition probability matrix 𝑃𝑖𝑗  indicate 

the probability of moving from the current state 𝑖 to the next 

state 𝑗. For example, a value of 0.692 means there is a 69.2% 

chance the system remains in the same state, while 0.154 

represents a 15.4% chance of transitioning to the next state. 

Each row sums to 1, representing the total probability 

distribution of all possible transitions from a given state. Based 

on the transition probabilities shown in the matrix, the next 

step involves forecasting the future states of the system. The 

forecasting results, along with their corresponding defuzzified 

values, are summarized in Table 4. 

 

Table 4. Forecasting and defuzzification result 

 

𝒕 
Actual 

Value 

Initial 

Value 

Adjustment 

Value 

Final 

Forecast 

2 1,661.886 1,902.92 0 1,902.92 

3 1,692.556 1,902.92 0 1,902.92 

4 1,757.069 1,902.92 0 1,902.92 

⋮ ⋮ ⋮ ⋮ ⋮ 
99 1,750.970 1,886.90 792.86 1,094.05 

100 2,900 1,902.92 -1,057.14 2,960.06 

101 1,943.849 2,239.29 792.86 1,446.43 

 

Table 4 shows the forecasting process, including the actual 

values, initial forecast values, adjustment values, and the final 

forecast results for each time period. The adjustment values 

represent corrections applied to improve the accuracy of the 

initial forecasts. Figure 5 below illustrates the comparison 

between the actual values and the final forecast values. 

 

 
 

Figure 5. Comparison between actual and forecast values 

using the FTS-MC model 

 

Figure 5 presents the comparison between the actual and 

forecast values generated by the FTS-MC model. The model 

evaluation results show a MAPE of 10.91% and an RMSE of 

246.94, indicating a relatively high forecasting accuracy. 

Compared to the ARIMA(2,1,0) model, which achieved a 

MAPE of 13.67%, the FTS-MC model yielded lower 

forecasting errors, with a MAPE of 10.91% and an RMSE of 

246.94, thereby confirming its superior performance. This 

advantage arises from the ability of FTS-MC to capture non-

linear dynamics and manage uncertainty in fisheries data, 

which are often affected by environmental variability, 

seasonal fluctuations, and market-driven shocks. Unlike 

ARIMA, which is constrained by linearity and stationarity 

assumptions, FTS-MC incorporates fuzzy logic and 

probabilistic state transitions, enabling it to more effectively 

represent irregularities and abrupt changes in the series. 

Consequently, the FTS-MC model can be regarded as the most 

appropriate approach for forecasting buffer stock requirements 

in this context. Based on the forecasting results, the estimated 

buffer stock requirement for the next period using FTS-MC is 

1,975 kg. 

 

 

4. CONCLUSIONS 

 

This study demonstrates that the ARIMA(2,1,0) model 

achieved acceptable forecasting performance with a MAPE of 

13.67%. Nevertheless, the FTS-MC model produced superior 

outcomes, with lower forecasting errors (MAPE 10.91% and 

RMSE 246.94), thereby confirming its greater capability in 

capturing variability and uncertainty in fisheries data. These 

findings highlight the critical role of advanced forecasting 

approaches in supporting sustainable fisheries management, 

stabilizing supply chains, and improving evidence-based 

decision-making. 

In addition, the conclusion provides practical 

recommendations for fisheries managers and policymakers. 

Specifically, fisheries managers are encouraged to implement 

adaptive buffer stock planning to anticipate seasonal supply 

shortages, while policymakers can use the forecasting results 

to improve market stability and protect small-scale fishers 

from income volatility. These strategies will help strengthen 

resilience and ensure the long-term sustainability of the 

fisheries supply chain. 

Future research should build upon this work by 

incorporating broader datasets, real-time monitoring, and 

environmental variables to further enhance predictive 

precision across diverse fisheries contexts. 
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