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This paper proposes a lightweight and robust approach for detecting spoofed ID card images
by integrating convolutional neural networks (CNNs) with frequency-domain analysis. The
model adopts a dual-branch design: one branch processes the original RGB image, while
the other takes a frequency-enhanced version produced using a high-pass Fast Fourier
Transform (FFT) filter. Both branches use the same architecture: the first seven
convolutional layers of the VGG16 backbone but each branch has its own parameters. The
two streams are merged by a multi-head cross-attention fusion module, which aligns and
integrates the complementary cues from both branches more effectively, followed by a
classification module for “genuine” vs. “spoof”. The method is evaluated on the "or" and
"re" subsets of the Document Liveness Challenge 2021 dataset (DLC-2021). On these
subsets, the model attains precision of 93.64%, recall of 88.90% and accuracy of 91.68%,
significantly outperforming baseline models. The implementation remains computationally
efficient, requiring about 0.120 s per image on an Intel Xeon 2.20 GHz (x86-64) CPU. The
approach achieves a favorable trade-off by combining high detection accuracy with a
compact model size. These results highlight the benefit of exploiting both spatial and

frequency features to enhance the reliability of electronic identity verification systems.

1. INTRODUCTION

The use of identity documents for electronic identity
verification has expanded rapidly in recent years. Electronic
Know Your Customer (eKYC) systems are now widely
deployed in digital banking, e-wallets, e-commerce, and
public online services. By 2023, approximately 11.9 million
bank accounts in Vietnam had been opened through electronic
identification, with most banks already adopting eKYC
procedures [1, 2]. Compared to traditional face-to-face
verification, eKYC offers a faster, more convenient, and cost-
effective alternative.

Figure 1. Example of the electronic identity verification
process with a genuine ID card (left) and a spoofed ID card

(right)

However, this rapid adoption has also introduced new
security risks. In 2023 alone, Vietnamese citizens lost an
estimated VND 8,000-10,000 billion (USD 300-400 million)
to cyber scams, with financial fraud accounting for 91% of
these cases [3, 4]. Among these threats, identity spoofing has
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emerged as a critical challenge. A common technique involves
indirect image presentation, where an attacker displays an ID
card image on a digital device (e.g., smartphone or tablet) and
presents it to the camera during live capture. As illustrated in
Figure 1, such attacks can deceive eKYC systems into
accepting spoofed inputs as genuine documents. These
vulnerabilities not only lead to substantial financial losses but
also weaken public trust in digital services.

To address this problem, advanced image analysis
techniques are required. Recent progress in deep learning,
particularly convolutional neural networks (CNNs), has
shown strong potential in image classification, while Fourier-
based methods have long been effective in revealing
frequency-domain characteristics [5, 6]. Combining these
approaches offer a promising path toward more accurate and
reliable spoof detection.

In this study, we propose a dual-branch CNN model that
integrates a VGG16 backbone with Fast Fourier Transform
(FFT) processing [7]. The first branch captures spatial features
from RGB images, while the second emphasizes frequency-
enhanced characteristics that are often indicative of spoofing
artifacts. The fused features are then classified into either
“genuine” or “spoof.” Unlike prior approaches that primarily
focus on speed or lightweight design, our method prioritizes
accuracy and parameter efficiency, demonstrating that higher
detection performance can be achieved even when additional
frequency-domain processing increases computational load.

The remainder of this paper is organized as follows: Section
2 reviews related work on document spoofing detection.
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Section 3 presents the proposed model architecture. Section 4
describes the training and evaluation methodology. Section 5
reports and discusses experimental results, and Section 6
concludes with future directions.

2. RELATED WORK

Polevoy et al. [8] released the benchmark dataset called
DLC-2021 for document liveness, with subsets “or” (original
captures) and “re” (screen-recaptures), along with fixed train
and test lists and standard metrics for fair comparison. In
addition, the authors provided a ResNet-50 baseline [9, 10] to
distinguish between genuine and spoofed images. The model
used pre-trained weights from the ImageNet dataset [11], with
49 out of 50 layers frozen. The final softmax layer was
replaced with a binary output layer. The binary cross-entropy
loss function was applied, and the Adam optimizer was used
with a learning rate of 0.1. For both training and evaluation,
the baseline operated on a fixed 224 x 224 crop centered at the
annotated card centroid. The model was trained and evaluated
on the DLC-2021 and MIDV-2020 [12] datasets. Specifically,
the training set included 19,543 spoofed images and 25,980
genuine images, while the evaluation set comprised 11,009
spoofed and 16,264 genuine images. The results showed
strong performance, with a precision of 85.89%, recall of
89.03%, and accuracy of 89.67%.

Kunina et al. [13] introduced a boundary-focused screen-
recapture detector that enhances narrow strips along the
document edge and applies a fast Hough transform to expose
stripe-like moiré leaking across the border - treated as a replay
artifact rather than background texture. On DLC-2021, the
reported precision is 93.5%, recall is 90.2%, and accuracy is
92.1% baseline test split, while running 1.5-2 times faster than
the DLC-2021 baseline.

Markham et al. [14] used four generative models to
synthesize spoofed identity card images, which were then used
to train a MobileNetV2 network [15] for genuine-vs-spoof
classification. The test dataset was created by aggregating
public datasets such as MIDV-2020 [12] and DLC-2021 [8].
On the combined test set including both genuine and screen-
recapture spoofed images, the model achieved an Equal Error
Rate (EER) of 5.8%. Precision, recall, and accuracy were not
reported.

Al-Ghadi et al. [16] introduced IDTrust - a deep learning
framework for ID card liveness that separates originals from
scanned and printed copies without requiring a reference
template. Two proposed variants are DeepQD, which uses a
CNN encoder plus a binary head, and GuidedDeepQD, which
prepends an FFT-based band-pass filtering step to emphasize
background and guilloche patterns degraded by scanning
before feeding the CNN. The proposed model reached near-
ceiling accuracy on MIDV-2020 [12].

Research on synthetic datasets for identity and travel
documents has been conducted by Boned et al. [17] and Guan
et al. [18], who created large-scale, privacy-preserving
resources that capture diverse document types to support
training and evaluation of fraud detection systems.

Zhang et al. [19] provided a systematic review of Al-based
methods for identity fraud detection, summarizing 43 studies,
categorizing existing approaches, and outlining their
advantages, limitations, and open challenges.

In a broader context of face spoofing detection, Zeng et al.
[20] proposed a dual-branch CNN model based on
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EfficientFormerV2 [21, 22]. One branch processed the
original face image, while the other received a version
preprocessed with a high-pass filter (Gaussian) and the Fourier
Transform. A multi-head cross-attention module was then
used to fuse features from both branches. On the Face Anti-
Spoofing Challenge@CVPR2023 dataset, this model achieved
an Average Classification Error Rate (ACER) of 6.22% and
ranked fourth in the competition. Yu et al. [23] approached
face spoofing detection by replacing conventional
convolutional layers with Central Difference Convolution,
combining both intensity and gradient information at each
pixel. This architecture performed well, achieving a low
ACER of 0.2% on the OULU-NPU dataset under Protocol-1
[24] and an HTER of 6.5% in cross-dataset evaluation on
CASIA-MFSD [25]. Shinde and Raundale [26] propose a two-
stage face-spoofing detection framework: (i) CNN-based
presentation attack classifier, which discriminates between
bona fide faces and various spoofing media (printed
photographs, posters, ..) and (ii) liveness verification,
combining an eye - blink detection module with a lip -
motion analysis module to ensure that the presented face
originates from a live subject rather than a static image or
screen.

These spoofing detection methods tend to focus on using
cutting-edge deep learning architectures, which are often large
in scale and complex in structure. However, they have not
placed much emphasis on exploring simpler, more stable CNN
architectures that are easier to deploy and fine-tune -
particularly for systems with real-time processing constraints
and limited hardware resources. Therefore, in this study, we
focus on utilizing the basic VGG16 CNN model, and
enhancing its effectiveness by introducing a novel architecture
incorporating the Fourier Transform. We also design an
efficient training strategy and apply additional image
processing techniques to improve the accuracy of identity card
spoofing detection.

3. PROPOSED SYSTEM ARCHITECTURE
3.1 Overview

In the frequency-domain analysis of images, the spectrum
is typically divided into low-frequency and high-frequency
components, each carrying different information. The low-
frequency component represents areas with slowly varying,
relatively uniform intensity such as the walls of a room or a
cloudless sky in an outdoor scene. These values concentrate
around the center of the image’s frequency spectrum. In
contrast, the high-frequency component appears near the
edges of the spectrum due to abrupt intensity changes. High
frequencies usually correspond to sharp edges, textural details,
or noise [5, 27].

Spoofed identity document images often exhibit distinct
characteristics compared to genuine ones. First, such images
frequently contain hard edges, such as the borders of a phone
screen or the frame of a computer monitor. These features can
be effectively captured and classified using the VGG16 model.
Second, spoofed images often include visual artifacts like
horizontal stripes or noise patterns originating from LCD or
LED screens. These subtle details can be amplified using a
high-pass frequency filter via the Fourier Transform (as
illustrated in Figure 2). Third, indirect image capture through
an intermediary screen typically results in blurrier images



compared to direct captures. This blur is another key feature
that can be distinguished using high-frequency filtering.
Based on these observations, we propose a dual-branch
architecture named VGG16 + FFT. The first branch processes
the original image (referred to as the main branch), while the
second branch processes the image after applying the Fourier
Transform (referred to as the FFT branch). The outputs from
both branches are fused using a multi-head cross-attention
module to effectively integrate information. Finally, a
classification module produces the binary output (Figure 3).

R
Module CNN backborn
7 > VGG16
for main branch
e i
(B, 3,224, 224) Preprocessing Module

Fast Fourier Transform
with High-Pass Filtering

Module CNN backborn
VGG16
for FFT branch

(B, 3, 224, 224)

Figure 2. Screen stripe patterns enhanced using a high-pass
frequency filter with a mask radius of 8

(B, 256, 28, 28)

Multi-heads Classification .
Cross-Attention Module| (B, 512) Module (B,2)

(B, 256, 28, 28)

Figure 3. Proposed architecture of the VGG16 + FFT model

The network input is a batch of B images (in RGB format
with 3 color channels), where pixel values are normalized
from the range [0,255] to [0,1]. For the main branch, the input
is further normalized using ImageNet standards, resized to
shape (B,3,224,224) and converted into tensor format. This
tensor is then passed through the VGG16 backbone, retaining
only the first four convolutional blocks which is equivalent to
the first 7 layers of the model to reduce overall network
complexity. The output of this branch is a feature tensor of
shape (B,256,28,28). In the FFT branch, the input undergoes a
preprocessing module that applies the Fast Fourier Transform
(FFT) combined with a high-pass filtering mechanism. This
highlights high-frequency components in the image, resulting
in a tensor of shape (B,3,224,224). This process enhances
features useful for distinguishing genuine images from
spoofed ones. The processed images are then passed through a
VGGI16-based backbone identical to that used in the main
branch. The output of this branch is also a feature tensor of
shape (B,256,28,28). Once the two feature tensors are
obtained, they are fed into a multi-head cross-attention
module, which enables the model to learn interactions and
correlations between spatial-domain features (from the main
branch) and high-frequency enhanced features (from the FFT
branch). The output is a fused tensor of shape (B,512)
integrating information from both branches and ready to be
passed into a fully connected classification head. The binary
classification module takes the 512-dimensional fused feature
tensor as input. It is processed through three fully connected
layers (optionally including batch normalization), followed by
a softmax activation function to produce a probability
distribution over the two output classes: “genuine” and
“spoof™.

3.2 Preprocessing module: FFT with high-pass filtering

To support the FFT branch, we design a preprocessing
module consisting of the following steps:

Step 1: Cropping and normalizing the region of interest

Instead of processing the full frame, the pipeline first
extracts two square crops centered at the annotated card
centroid: a large crop L; = 1120 X 1120 and a smaller crop
L, = 448 X 448. Both crops are resized to 224 X 224. The
image cropped with L; is routed to the spatial branch
(VGG16), while the image cropped with L, is fed to the
frequency branch (FFT). The choice of L; and L, follows the
protocol: L, provides broader contextual content for robust
spatial cues, whereas L, concentrates on micro structures
(e.g., moir¢é), thereby, helping the model learn more distinctive
features to differentiate between genuine and spoofed ID
images.

Step 2: FFT, frequency shift and filtering

L, cropped image is converted to grayscale and formatted
as a tensor Xgyq, € REX1X224%224 Apply FFT and center DC
with FFTShift.

X = FFT(Xgray) (1)
Xs = FFTShift(X) ©)
A coordinate grid (U, Vinn) is generated with its origin at

the image center. Create an ideal high-pass mask with radius
r=8:

1 2 2 > 2
mask2d(m,n) = { ’ Urznn + Vnzm > rz o)
0Upn+ Viin < 7
Finally use mask2d to keep high frequencies:
Xip = Xs © mask2d @

Step 3: Inverse shift and inverse transform
After multiplying the shifted spectrum by the high-pass
mask, apply the inverse frequency shift (IFFTShift), followed



by the inverse Fourier Transform (IFFT) to reconstruct the
high-frequency image:

Xnp = IFFT(IFFTShift(X5,)) 5)

Next, compute the magnitude of this complex tensor using
the formula:

mag(xhp) = |Re(xhp) + iIM(xhp)| (6)

Finally, compress the dynamic range with a logarithmic
transform:

hpig = In (1 + mag(xhp)) @)

Step 4: Normalization
Normalize the log-domain high-frequency image to [0,1]
using the formula:

hpgray = MPiog ~ Mmin ;=108 (3)
Mgy — Mpin + €

Replicate hpg,q, € RE*1X224X224 3 times. Each channel is
then applied the per-channel ImageNet normalization. The
final result is a tensor xgp, € RE*3X224X22% ready to be fed
into the FFT branch.

3.3 CNN backbone with VGG16

In this module, we employ the VGG16 architecture with
weights pre-trained on the ImageNet dataset [11] and retain
only the first seven convolutional layers. Truncating the
network helps reduce model size and computational cost while
still achieving good performance, as confirmed by
experimental results. Both branches are initialized from the
same ImageNet [11] checkpoint but maintain independent
weights (transfer learning), reducing parameters and compute
relative to the full model while retaining good accuracy. The
output of this module is a feature tensor of shape (B, C =
256, H = 28, W = 28).

3.4 Multi-head cross-attention module

To enable the network to learn the mutual relationships

between features from the original image and high-frequency
information, we construct a multi-head cross-attention
module. This module allows each unit in the RGB image to
"attend" to corresponding or related positions in the high-
frequency filtered image, and vice versa, thereby establishing
semantic connections and fusing information from both
sources. For compatibility with the cross-attention
mechanism, feature tensors from each branch are flattened and
permuted from shape B X C X H X W to (HW) X B X C. The
number of attention heads is set to: Npeqqs = 16 and dy, =

c L S
d, = . Cross-attention is performed bidirectionally,
Nheads

meaning:
(i). RGB « FFT:

KT
Attentionggg prr = SOftmax (%) Vepr 9)
K
(ii). FFT « RGB:
KT
Attentionppr g = Softmax (QFL\/(TRGB) Veee  (10)
K

where:

Attentionggpgppr, Attentiongprpep
€ R(HW)xBxd,,

The outputs from each attention direction are combined
through a linear layer to obtain tensors Zggp, Zprr €
RUWIXBXC T reduce the risk of losing important features
during training, a residual connection is applied:

lat N lat
Zree = Zrep + FRng +vaZppr = Zppr + Fp];lTl (11
Next, the tensors are permuted back to the format

B x C x (HW), and global average pooling is applied to
produce a tensor of shape B X C for each branch. Finally, the

two tensors are concatenated to obtain a unified
representation:
7= COnCat(ZRGB, ZFFT) € RBXZC (12)

.|| Flatten )

(256, 28, 28)

num_heads = 16

Attention

num_heads = 16

Q
| Flatten K Multi-head —>
- > Attention
\Y) L

(256, 28, 28)

Multi-head "

+ -

H Y global average
pooling
Ond | (e

I yy

+ — (512, 784) (512,

|

Figure 4. Proposed architecture of the VGG16 + FFT model
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This module enables the model to effectively learn the
relationship  between spatial and frequency-domain
information, enhancing its discriminative capability for the
classification task. The overall process is illustrated in Figure
4.

3.5 Classification module

After fusing the features from the main and FFT branches,
the resulting tensor Z with shape (B, 2C), where C = 256,
represents the feature dimension from each branch. This tensor
is then passed into a classification module consisting of three
fully connected layers, which are responsible for further
filtering and separating the fused features to support the final
classification task. The module outputs one of two predicted
labels: “genuine” or “spoof”.

4. MODEL TRAINING AND EVALUATION RESULTS
4.1 Dataset

The DLC-2021 [8] dataset provides a collection of genuine
and spoofed images of identity documents, including national
ID cards and passports from various countries. It is designed
to support research and development of spoofing detection
methods for these types of documents. In this study, two
subsets are used: (i) genuine images classified as “or”, and (ii)
spoofed images captured from digital screens entitled “re”.
These are referred to as “genuine” and “spoof”, respectively,
samples for training and evaluation purposes in this paper.

The dataset follows the DLC-2021 [8] protocol and is split
into train/validation/test. Training and validation use 16,264
genuine images from “MIDV-2020/clips” folder and spoofed
images from “DLC-2021/re” limited to Spanish IDs, Latvian
passports, and Russian internal passports; an 80/20 split is
applied. The test set contains 11,006 spoof (positive) and
16,264 genuine (negative) images drawn from the remaining
DLC-2021 [8] document types, fixed by the official lists
“screen_positive_test.Ist” and “screen_negative test.Ist”.
This setup enforces cross-type generalization and ensures
reproducible, baseline-comparable evaluation. Representative
examples from the dataset are shown in Figure 5 and Figure 6
respectively.

>

Figure 6. Sample images labeled as “spoof™
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4.2 Loss function and optimization process

After passing through the classification module, the model
outputs a tensor with two elements corresponding to the
predicted probabilities for the classes “genuine” and “spoof”,
denoted as z = (3, 3,) and the true label y € {0,1}. The loss
function used is binary cross-entropy, defined as:

B
1
L = EZ CELOSS(Zn;Yn) = _log (pyn) (13)

n=1

The loss is minimized using the Adam optimizer, which
combines the advantages of RMSProp and SGD. This allows
the model to effectively learn complex features from both
branches, ensuring fast convergence without overfitting the
training data. The learning rate is set to @ = 107%.

4.3 Model training

During training, the batch size was set to B = 128. In each
epoch, the data was loaded in parallel using 7 worker threads
to speed up reading and preprocessing. A random shuffle was
also applied before batching to ensure variety in the sample
distribution. The training was performed on Google Colab
using an L4 GPU (24 GB GDDR6 memory, fully supporting
CUDA 11.x+, cuDNN, and TensorRT) [28]. With CUDA
drivers and PyTorch Lightning integration, the GPU was
accessed directly through the torch.cuda API during training.
The model, which combines VGG16 and a frequency-
processing branch (FFT Branch), was configured to run for a
maximum of 10 epochs and early stopping -callback,
monitoring validation loss with mode = min, patience = 3
epochs, and min_delta = 10~*. Early stopping was triggered
after 7 epochs, as the validation loss no longer improved
significantly, with validation loss 0.2565. Training
consumed ~20.5 GB VRAM.

4.4 Model evaluation

To ensure a fair and accurate assessment, the evaluation
protocol mirrors the DLC-2021 [8] baseline: the same datasets,
split definitions (official “screen_positive_test.Ist” and
“screen_negative_test.Ist”), label convention (positive
spoof, negative = genuine). Results are reported on the fixed
test split to guarantee reproducibility and comparability with
prior work. Three standard metrics are reported: precision,
recall, and accuracy. Precision is the proportion of predicted
spoofs that are truly spoof. Recall is the proportion of actual
spoofs correctly detected. Accuracy is overall rate of correct
decisions. Let TP, FP, TN, FN denote true positives, false
positives, true negatives, and false negatives (with “positive”
= spoof). Then:

TP

precision — TP ”
recision TP T FP (14)
Recall i (15)
= TP ¥ FN
TP + TN
_ 16
Accuracy = 4o P T TN + FN (16)



To assess the model’s accuracy, common spoof detection
metrics used in this study are: Attack Presentation
Classification Error Rate (APCER) [29] is the percentage of
spoofed samples that are incorrectly classified as genuine. And
Bona Fide Presentation Classification Error Rate (BPCER)
[29] is the percentage of genuine samples that are incorrectly
classified as spoofed. Half Total Error Rate (HTER) [30, 31]
is calculated as the average of the False Acceptance Rate
(FAR) and the False Rejection Rate (FRR). In spoof detection
problems, it is typically assumed that: FAR =
APCER; FRR = BPCER. Therefore, HTER can be obtained
as shown in Eq. (17):

PCER + BPCER

HTER =
2

(17)

These three metrics provide a balanced evaluation between
the ability to detect attacks and the ability to correctly
recognize genuine samples. They follow ISO standards for
electronic identification and biometrics [29]. To measure
performance, the model is evaluated from several aspects,
including computational complexity (FLOPs), number of
parameters (Params), average inference speed (measured in
seconds per image).

For comparison, two reference models were evaluated
alongside the proposed model:

(i) DLC-2021 baseline [8]

(i1) Boundary moiré detector [13]

The evaluation results of all models are summarized in
Table 1.

Table 1. Evaluation results of accuracy of DLC-2021
baseline, Boundary moiré detector and VGG16+FFT

Precision  Recall Accuracy
Model %) (%) (%)
DLC-2021 baseline 85.89 89.03 89.67
Boundary moiré detector 93.5 90.2 92.1
VGGI16+FFT 93.64 88.90 91.68

Regarding spoof detection accuracy, with the DLC-2021
protocol and identical test lists, the Boundary moiré detector
attains the highest accuracy (92.1%) with precision 93.5% and
recall 90.2%. The proposed VGG16+FFT is close behind
(accuracy 91.68%, precision 93.64%, recall 88.90%), while
the DLC-2021 baseline yields accuracy 89.67% with precision
85.89% and recall 89.03% (Table 1).

Table 2. Evaluation results of average inference speed on
Intel Xeon @ 2.20 GHz (x86-64), 6-core / 12-thread

Folder name: Folder name:

Model grc_passport/0l.or  grc_passport/01.
0004 re0001
DLC-2021 baseline 0.147 0.151
Boundary moiré
detector ) )
VGGI16+FFT 0.120 0.120

Regarding Inference Speed, on an Intel Xeon @ 2.20 GHz
(x86-64), 6-core/12-thread CPU, VGGI16+FFT processes
representative samples in 0.120 s/image for both original and
recaptured cases, outperforming the DLC-2021 baseline
(0.147-0.151 s/image on the same files). Runtime for the
Boundary moiré detector is not available under this setup
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(Table 2).

VGG16 + FFT has a complexity of about 40.95 GFLOPs,
mainly because of its two-branch design combined with the
cross-attention module that requires intensive numerical
transformations. About the number of parameters (Params):
VGGI16+FFT uses only about 4.29 million parameters, which
is much fewer than the original VGG16. VGG16 + FFT
achieves a low BPCER (genuine samples misclassified as
spoofed) of just 5.33% and APCER (spoofed samples
misclassified as genuine) at 14.15%, indicating high
sensitivity to spoofed cues. The overall HTER is 9.74%.

Summary, within the same evaluation protocol, the
Boundary moiré detector delivers the top accuracy, while
VGGI16+FFT offers a favorable accuracy-speed trade-off and
is faster than the DLC-2021 baseline on the measured samples.
These results indicate that the proposed model is suitable for
deployment scenarios that require both reliability and efficient
CPU-side inference.

4.5 Ablation study

All ablations follow the same DLC-2021 [8] protocol
(positive = spoof), fixed test lists, and 224 X 224 center-crop
preprocessing. Metrics are precision, recall, and accuracy.

Let VGG16+FFT (proposed) with precision 93.64%, recall
88.90%, accuracy 91.68% serve as the reference.

The following investigations have been carried out:

*Replace CrossAttentionFusion with ConcatGAP: A simple
concatenation followed by global average pooling is used to
merge the spatial and FFT streams.

*Replace VGG16+FFT with two channels of VGG16: The
FFT branch is removed; two spatial (VGG16) streams are
provided instead.

*Use VGG16-only (single branch): The VGG16+FFT and
the CrossAttentionFusion module are removed, leaving a
single VGG16 spatial branch followed by the same
classification head as in the full model. All training and
evaluation settings are kept identical. Cross-attention is not
applicable in the single-branch setting.

Table 3. Evaluation results of ablation studies

Precision Recall Accuracy
Model %) (%) (%)
Replace
CrossAttentionFusion with 91.29 83.44 88.10
ConcatGAP
Replace VGG16+FFT with
two channels of VGG16 91.38 84.80 88.73
Use VGG16-only (single 3767 36.35 37 48
branch)

Simple GAP reduces precision to 91.29%, recall to 83.44%,
and accuracy to 88.10%. The loss of cross-modal alignment
increases missed spoofs (FN), indicating that cross-attention is
important for merging complementary spatial-frequency cues.

Duplicating the spatial stream (no FFT) yields 91.38%
precision, 84.80% recall, and 88.73% accuracy. Without
frequency-domain evidence, the model under-detects moiré
artifacts, confirming that FFT features are not redundant with
spatial features (Table 3).

Removing the VGG16+FFT and cross attention fusion
entirely lowers recall and overall accuracy relative to the
reference, as complementary frequency cues and any
alignment mechanism are absent. Cross-attention is invalid in



the single-branch architecture, so this comparison isolates the
contribution of the FFT pathway and highlights the cost of
discarding it.

5. DISCUSSION

The experimental results demonstrate that integrating a
VGG16-based CNN with Fourier-domain analysis effectively
achieves the study’s primary goal: building a spoof detection
model that is both accurate and parameter-efficient. The
proposed dual-branch design, with one branch extracting
spatial characteristics and the other highlighting frequency-
enhanced features, reached an accuracy of 91.68%. This
represents a clear improvement over baseline VGG16 and
other benchmark models, confirming that frequency
information provides critical advantages in detecting subtle
spoofing artifacts often missed in spatial-only analysis. This
design with cross-attention fusion allowed the system to
exploit complementary spatial-frequency interactions and
achieve state-of-the-art accuracy.

At the same time, the findings highlight an important trade-
off: although the FFT branch adds computational overhead, its
contribution to accuracy makes the extra cost worthwhile.
Model sensitivity to design choices, such as the FFT mask
radius (set to r = 8 in this study) and the cross-attention
configuration, also indicates the need for systematic parameter
optimization. Future research should therefore focus on
detailed parametric studies and broader experimentation to
refine these components and further balance the trade-off
between accuracy, efficiency, and computational cost.

6. CONCLUSIONS

This paper introduced a dual-branch CNN architecture for
ID-card spoof detection that integrates spatial and frequency-
domain analysis within a parameter-efficient design. The main
branch employed a truncated VGG16 backbone to reduce
redundancy, while the FFT branch captured high-frequency
artifacts characteristic of spoofing. By fusing these
complementary features through a multi-head cross-attention
mechanism, the model achieved an accuracy of 91.68%,
outperforming baselines and demonstrating that frequency
characteristics significantly enhance the detection of subtle
spoofing traces.

Under the DLC-2021 protocol, the proposed VGG16+FFT
achieves nearly the same performance as the Boundary moiré
detector (91.68% vs. 92.1% accuracy), while clearly
outperforming the DLC-2021 baseline model (89.67%
accuracy). This approach offers faster inference (0.120
s/image) than the DLC-2021 baseline (0.147-0.151 s/image).
The ablation analysis confirms the complementary roles of the
dual-branch design for robust spoof detection.

A key contribution of this study is showing that high
accuracy can be achieved without relying on a heavy network.
The design maintains a compact model size while still
benefiting from the FFT branch. Although this branch
increases computational complexity, the substantial accuracy
gain highlights a meaningful trade-off—making the approach
highly relevant for security-critical applications such as eKYC
systems.

Performance may degrade on high-resolution or high-
refresh-rate displays (e.g., OLED/120 Hz) whose moiré

2083

patterns differ from the training distribution; the FFT emphasis
on high frequencies can amplify such device-specific
signatures. Complex or cluttered backgrounds and imperfect
ID localization may also confound the frequency branch,
especially when background textures contain periodic
structures similar to screen artifacts. Our evaluation is limited
to DLC-2021; cross-database generalization remains untested.
Finally, although the model is compact on a desktop-class
GPU/CPU, embedded devices face tighter budgets for
compute, memory, and energy; real-time throughput and
latency can drop without additional optimization.

Future work should focus on systematic parameter
optimization, particularly refining FFT configurations and
attention mechanisms, as well as testing lightweight
backbones beyond VGG16 to further improve efficiency.
Expanding the dataset to include more diverse forgery types
(e.g., printed, laminated, or digitally altered IDs) and using
other datasets for evaluation. Together, these directions offer
a clear pathway toward building more accurate, efficient, and
resilient identity verification systems.
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