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This paper proposes a lightweight and robust approach for detecting spoofed ID card images 

by integrating convolutional neural networks (CNNs) with frequency-domain analysis. The 

model adopts a dual-branch design: one branch processes the original RGB image, while 

the other takes a frequency-enhanced version produced using a high-pass Fast Fourier 

Transform (FFT) filter. Both branches use the same architecture: the first seven 

convolutional layers of the VGG16 backbone but each branch has its own parameters. The 

two streams are merged by a multi-head cross-attention fusion module, which aligns and 

integrates the complementary cues from both branches more effectively, followed by a 

classification module for “genuine” vs. “spoof”. The method is evaluated on the "or" and 

"re" subsets of the Document Liveness Challenge 2021 dataset (DLC-2021). On these 

subsets, the model attains precision of 93.64%, recall of 88.90% and accuracy of 91.68%, 

significantly outperforming baseline models. The implementation remains computationally 

efficient, requiring about 0.120 s per image on an Intel Xeon 2.20 GHz (x86-64) CPU. The 

approach achieves a favorable trade-off by combining high detection accuracy with a 

compact model size. These results highlight the benefit of exploiting both spatial and 

frequency features to enhance the reliability of electronic identity verification systems. 
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1. INTRODUCTION

The use of identity documents for electronic identity 

verification has expanded rapidly in recent years. Electronic 

Know Your Customer (eKYC) systems are now widely 

deployed in digital banking, e-wallets, e-commerce, and 

public online services. By 2023, approximately 11.9 million 

bank accounts in Vietnam had been opened through electronic 

identification, with most banks already adopting eKYC 

procedures [1, 2]. Compared to traditional face-to-face 

verification, eKYC offers a faster, more convenient, and cost-

effective alternative. 

Figure 1. Example of the electronic identity verification 

process with a genuine ID card (left) and a spoofed ID card 

(right) 

However, this rapid adoption has also introduced new 

security risks. In 2023 alone, Vietnamese citizens lost an 

estimated VND 8,000-10,000 billion (USD 300-400 million) 

to cyber scams, with financial fraud accounting for 91% of 

these cases [3, 4]. Among these threats, identity spoofing has 

emerged as a critical challenge. A common technique involves 

indirect image presentation, where an attacker displays an ID 

card image on a digital device (e.g., smartphone or tablet) and 

presents it to the camera during live capture. As illustrated in 

Figure 1, such attacks can deceive eKYC systems into 

accepting spoofed inputs as genuine documents. These 

vulnerabilities not only lead to substantial financial losses but 

also weaken public trust in digital services. 

To address this problem, advanced image analysis 

techniques are required. Recent progress in deep learning, 

particularly convolutional neural networks (CNNs), has 

shown strong potential in image classification, while Fourier-

based methods have long been effective in revealing 

frequency-domain characteristics [5, 6]. Combining these 

approaches offer a promising path toward more accurate and 

reliable spoof detection. 

In this study, we propose a dual-branch CNN model that 

integrates a VGG16 backbone with Fast Fourier Transform 

(FFT) processing [7]. The first branch captures spatial features 

from RGB images, while the second emphasizes frequency-

enhanced characteristics that are often indicative of spoofing 

artifacts. The fused features are then classified into either 

“genuine” or “spoof.” Unlike prior approaches that primarily 

focus on speed or lightweight design, our method prioritizes 

accuracy and parameter efficiency, demonstrating that higher 

detection performance can be achieved even when additional 

frequency-domain processing increases computational load. 

The remainder of this paper is organized as follows: Section 

2 reviews related work on document spoofing detection. 
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Section 3 presents the proposed model architecture. Section 4 

describes the training and evaluation methodology. Section 5 

reports and discusses experimental results, and Section 6 

concludes with future directions. 

 

 

2. RELATED WORK 

 

Polevoy et al. [8] released the benchmark dataset called 

DLC-2021 for document liveness, with subsets “or” (original 

captures) and “re” (screen-recaptures), along with fixed train 

and test lists and standard metrics for fair comparison. In 

addition, the authors provided a ResNet-50 baseline [9, 10] to 

distinguish between genuine and spoofed images. The model 

used pre-trained weights from the ImageNet dataset [11], with 

49 out of 50 layers frozen. The final softmax layer was 

replaced with a binary output layer. The binary cross-entropy 

loss function was applied, and the Adam optimizer was used 

with a learning rate of 0.1. For both training and evaluation, 

the baseline operated on a fixed 224 × 224 crop centered at the 

annotated card centroid. The model was trained and evaluated 

on the DLC-2021 and MIDV-2020 [12] datasets. Specifically, 

the training set included 19,543 spoofed images and 25,980 

genuine images, while the evaluation set comprised 11,009 

spoofed and 16,264 genuine images. The results showed 

strong performance, with a precision of 85.89%, recall of 

89.03%, and accuracy of 89.67%. 

Kunina et al. [13] introduced a boundary-focused screen-

recapture detector that enhances narrow strips along the 

document edge and applies a fast Hough transform to expose 

stripe-like moiré leaking across the border - treated as a replay 

artifact rather than background texture. On DLC-2021, the 

reported precision is 93.5%, recall is 90.2%, and accuracy is 

92.1% baseline test split, while running 1.5-2 times faster than 

the DLC-2021 baseline. 

Markham et al. [14] used four generative models to 

synthesize spoofed identity card images, which were then used 

to train a MobileNetV2 network [15] for genuine-vs-spoof 

classification. The test dataset was created by aggregating 

public datasets such as MIDV-2020 [12] and DLC-2021 [8]. 

On the combined test set including both genuine and screen-

recapture spoofed images, the model achieved an Equal Error 

Rate (EER) of 5.8%. Precision, recall, and accuracy were not 

reported. 

Al-Ghadi et al. [16] introduced IDTrust - a deep learning 

framework for ID card liveness that separates originals from 

scanned and printed copies without requiring a reference 

template. Two proposed variants are DeepQD, which uses a 

CNN encoder plus a binary head, and GuidedDeepQD, which 

prepends an FFT-based band-pass filtering step to emphasize 

background and guilloche patterns degraded by scanning 

before feeding the CNN. The proposed model reached near-

ceiling accuracy on MIDV-2020 [12]. 

Research on synthetic datasets for identity and travel 

documents has been conducted by Boned et al. [17] and Guan 

et al. [18], who created large-scale, privacy-preserving 

resources that capture diverse document types to support 

training and evaluation of fraud detection systems. 

Zhang et al. [19] provided a systematic review of AI-based 

methods for identity fraud detection, summarizing 43 studies, 

categorizing existing approaches, and outlining their 

advantages, limitations, and open challenges. 

In a broader context of face spoofing detection, Zeng et al. 

[20] proposed a dual-branch CNN model based on 

EfficientFormerV2 [21, 22]. One branch processed the 

original face image, while the other received a version 

preprocessed with a high-pass filter (Gaussian) and the Fourier 

Transform. A multi-head cross-attention module was then 

used to fuse features from both branches. On the Face Anti-

Spoofing Challenge@CVPR2023 dataset, this model achieved 

an Average Classification Error Rate (ACER) of 6.22% and 

ranked fourth in the competition. Yu et al. [23] approached 

face spoofing detection by replacing conventional 

convolutional layers with Central Difference Convolution, 

combining both intensity and gradient information at each 

pixel. This architecture performed well, achieving a low 

ACER of 0.2% on the OULU-NPU dataset under Protocol-1 

[24] and an HTER of 6.5% in cross-dataset evaluation on 

CASIA-MFSD [25]. Shinde and Raundale [26] propose a two-

stage face-spoofing detection framework: (i) CNN-based 

presentation attack classifier, which discriminates between 

bona fide faces and various spoofing media (printed 

photographs, posters, ...) and (ii) liveness verification, 

combining an eye‐ blink detection module with a lip‐
motion analysis module to ensure that the presented face 

originates from a live subject rather than a static image or 

screen. 

These spoofing detection methods tend to focus on using 

cutting-edge deep learning architectures, which are often large 

in scale and complex in structure. However, they have not 

placed much emphasis on exploring simpler, more stable CNN 

architectures that are easier to deploy and fine-tune - 

particularly for systems with real-time processing constraints 

and limited hardware resources. Therefore, in this study, we 

focus on utilizing the basic VGG16 CNN model, and 

enhancing its effectiveness by introducing a novel architecture 

incorporating the Fourier Transform. We also design an 

efficient training strategy and apply additional image 

processing techniques to improve the accuracy of identity card 

spoofing detection. 

 

 

3. PROPOSED SYSTEM ARCHITECTURE  

 

3.1 Overview 

 

In the frequency-domain analysis of images, the spectrum 

is typically divided into low-frequency and high-frequency 

components, each carrying different information. The low-

frequency component represents areas with slowly varying, 

relatively uniform intensity such as the walls of a room or a 

cloudless sky in an outdoor scene. These values concentrate 

around the center of the image’s frequency spectrum. In 

contrast, the high-frequency component appears near the 

edges of the spectrum due to abrupt intensity changes. High 

frequencies usually correspond to sharp edges, textural details, 

or noise [5, 27]. 

Spoofed identity document images often exhibit distinct 

characteristics compared to genuine ones. First, such images 

frequently contain hard edges, such as the borders of a phone 

screen or the frame of a computer monitor. These features can 

be effectively captured and classified using the VGG16 model. 

Second, spoofed images often include visual artifacts like 

horizontal stripes or noise patterns originating from LCD or 

LED screens. These subtle details can be amplified using a 

high-pass frequency filter via the Fourier Transform (as 

illustrated in Figure 2). Third, indirect image capture through 

an intermediary screen typically results in blurrier images 
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compared to direct captures. This blur is another key feature 

that can be distinguished using high-frequency filtering. 

Based on these observations, we propose a dual-branch 

architecture named VGG16 + FFT. The first branch processes 

the original image (referred to as the main branch), while the 

second branch processes the image after applying the Fourier 

Transform (referred to as the FFT branch). The outputs from 

both branches are fused using a multi-head cross-attention 

module to effectively integrate information. Finally, a 

classification module produces the binary output (Figure 3).  

 

 
 

Figure 2. Screen stripe patterns enhanced using a high-pass 

frequency filter with a mask radius of 8 

 

 
 

Figure 3. Proposed architecture of the VGG16 + FFT model 

 

The network input is a batch of B images (in RGB format 

with 3 color channels), where pixel values are normalized 

from the range [0,255] to [0,1]. For the main branch, the input 

is further normalized using ImageNet standards, resized to 

shape (B,3,224,224) and converted into tensor format. This 

tensor is then passed through the VGG16 backbone, retaining 

only the first four convolutional blocks which is equivalent to 

the first 7 layers of the model to reduce overall network 

complexity. The output of this branch is a feature tensor of 

shape (B,256,28,28). In the FFT branch, the input undergoes a 

preprocessing module that applies the Fast Fourier Transform 

(FFT) combined with a high-pass filtering mechanism. This 

highlights high-frequency components in the image, resulting 

in a tensor of shape (B,3,224,224). This process enhances 

features useful for distinguishing genuine images from 

spoofed ones. The processed images are then passed through a 

VGG16-based backbone identical to that used in the main 

branch. The output of this branch is also a feature tensor of 

shape (B,256,28,28). Once the two feature tensors are 

obtained, they are fed into a multi-head cross-attention 

module, which enables the model to learn interactions and 

correlations between spatial-domain features (from the main 

branch) and high-frequency enhanced features (from the FFT 

branch). The output is a fused tensor of shape (B,512) 

integrating information from both branches and ready to be 

passed into a fully connected classification head. The binary 

classification module takes the 512-dimensional fused feature 

tensor as input. It is processed through three fully connected 

layers (optionally including batch normalization), followed by 

a softmax activation function to produce a probability 

distribution over the two output classes: “genuine” and 

“spoof”. 

 

3.2 Preprocessing module: FFT with high-pass filtering 

 

To support the FFT branch, we design a preprocessing 

module consisting of the following steps: 

Step 1: Cropping and normalizing the region of interest 

Instead of processing the full frame, the pipeline first 

extracts two square crops centered at the annotated card 

centroid: a large crop 𝐿1 = 1120 × 1120 and a smaller crop 

𝐿2 = 448 × 448. Both crops are resized to 224 × 224. The 

image cropped with 𝐿1  is routed to the spatial branch 

(VGG16), while the image cropped with 𝐿2  is fed to the 

frequency branch (FFT). The choice of 𝐿1 and 𝐿2 follows the 

protocol: 𝐿1  provides broader contextual content for robust 

spatial cues, whereas 𝐿2  concentrates on micro structures 

(e.g., moiré), thereby, helping the model learn more distinctive 

features to differentiate between genuine and spoofed ID 

images. 

Step 2: FFT, frequency shift and filtering 

𝐿2 cropped image is converted to grayscale and formatted 

as a tensor 𝑥𝑔𝑟𝑎𝑦 ∈ ℝ𝐵×1×224×224. Apply FFT and center DC 

with 𝐹𝐹𝑇𝑆ℎ𝑖𝑓𝑡.  

 

𝑋 = 𝐹𝐹𝑇(𝑥𝑔𝑟𝑎𝑦) (1) 

 

𝑋𝑠 = 𝐹𝐹𝑇𝑆ℎ𝑖𝑓𝑡(𝑋) (2) 

 

A coordinate grid (𝑈𝑚𝑛 , 𝑉𝑚𝑛) is generated with its origin at 

the image center. Create an ideal high-pass mask with radius 

𝑟 = 8: 

 

𝑚𝑎𝑠𝑘2𝑑(𝑚, 𝑛) = {
1, 𝑈𝑚𝑛

2 + 𝑉𝑚𝑛
2 ≥  𝑟2

0, 𝑈𝑚𝑛
2 + 𝑉𝑚𝑛

2 <  𝑟2 (3) 

 

Finally use 𝑚𝑎𝑠𝑘2𝑑 to keep high frequencies: 

 

𝑋ℎ𝑝
𝑠 = 𝑋𝑠 ⊙ 𝑚𝑎𝑠𝑘2𝑑 (4) 

 

Step 3: Inverse shift and inverse transform 

After multiplying the shifted spectrum by the high-pass 

mask, apply the inverse frequency shift (IFFTShift), followed 
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by the inverse Fourier Transform (IFFT) to reconstruct the 

high-frequency image: 

 

𝑥ℎ𝑝 = 𝐼𝐹𝐹𝑇(𝐼𝐹𝐹𝑇𝑆ℎ𝑖𝑓𝑡(𝑋ℎ𝑝
𝑠 )) (5) 

 

Next, compute the magnitude of this complex tensor using 

the formula: 

 

𝑚𝑎𝑔(𝑥ℎ𝑝) = |𝑅𝑒(𝑥ℎ𝑝) + 𝑖𝐼𝑀(𝑥ℎ𝑝)| (6) 

 

Finally, compress the dynamic range with a logarithmic 

transform: 

 

ℎ𝑝𝑙𝑜𝑔 = ln (1 + 𝑚𝑎𝑔(𝑥ℎ𝑝)) (7) 

 

Step 4: Normalization 

Normalize the log-domain high-frequency image to [0,1] 
using the formula: 

 

ℎ𝑝𝑔𝑟𝑎𝑦 =
ℎ𝑝𝑙𝑜𝑔 − 𝑚𝑚𝑖𝑛

𝑚𝑚𝑎𝑥 − 𝑚𝑚𝑖𝑛 + 𝜀
; 𝜀 = 10−8 (8) 

 

Replicate ℎ𝑝𝑔𝑟𝑎𝑦 ∈ ℝ𝐵×1×224×224 3 times. Each channel is 

then applied the per-channel ImageNet normalization. The 

final result is a tensor 𝑥𝑓𝑓𝑡 ∈ ℝ𝐵×3×224×224 ready to be fed 

into the FFT branch. 

 

3.3 CNN backbone with VGG16 

 

In this module, we employ the VGG16 architecture with 

weights pre-trained on the ImageNet dataset [11] and retain 

only the first seven convolutional layers. Truncating the 

network helps reduce model size and computational cost while 

still achieving good performance, as confirmed by 

experimental results. Both branches are initialized from the 

same ImageNet [11] checkpoint but maintain independent 

weights (transfer learning), reducing parameters and compute 

relative to the full model while retaining good accuracy. The 

output of this module is a feature tensor of shape (𝐵,  𝐶 =
256,  𝐻 = 28,  𝑊 = 28). 

 

3.4 Multi-head cross-attention module 

 

To enable the network to learn the mutual relationships 

between features from the original image and high-frequency 

information, we construct a multi-head cross-attention 

module. This module allows each unit in the RGB image to 

"attend" to corresponding or related positions in the high-

frequency filtered image, and vice versa, thereby establishing 

semantic connections and fusing information from both 

sources. For compatibility with the cross-attention 

mechanism, feature tensors from each branch are flattened and 

permuted from shape 𝐵 × 𝐶 × 𝐻 × 𝑊 to (𝐻𝑊) × 𝐵 × 𝐶. The 

number of attention heads is set to: 𝑛ℎ𝑒𝑎𝑑𝑠 = 16  and 𝑑𝑘 =

 𝑑𝑣 =
𝐶

𝑛ℎ𝑒𝑎𝑑𝑠
. Cross-attention is performed bidirectionally, 

meaning: 

(i). 𝑅𝐺𝐵 ← 𝐹𝐹𝑇:  

 

𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛𝑅𝐺𝐵←𝐹𝐹𝑇 =  𝑠𝑜𝑓𝑡𝑚𝑎𝑥 (
𝑄𝑅𝐺𝐵𝐾𝐹𝐹𝑇

𝑇

√𝑑𝑘

) 𝑉𝐹𝐹𝑇  (9) 

 

(ii). 𝐹𝐹𝑇 ← 𝑅𝐺𝐵:  

 

𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛𝐹𝐹𝑇←𝑅𝐺𝐵 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥 (
𝑄𝐹𝐹𝑇𝐾𝑅𝐺𝐵

𝑇

√𝑑𝑘

) 𝑉𝑅𝐺𝐵 (10) 

 

where: 

 

𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛𝑅𝐺𝐵←𝐹𝐹𝑇 , 𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛𝐹𝐹𝑇←𝑅𝐺𝐵

∈ ℝ(𝐻𝑊)×𝐵×𝑑𝑣  

 

The outputs from each attention direction are combined 

through a linear layer to obtain tensors 𝑍𝑅𝐺𝐵 , 𝑍𝐹𝐹𝑇 ∈

ℝ(𝐻𝑊)×𝐵×𝐶 . To reduce the risk of losing important features 

during training, a residual connection is applied: 

 

𝑍𝑅𝐺𝐵 = 𝑍𝑅𝐺𝐵 + 𝐹𝑅𝐺𝐵
𝑓𝑙𝑎𝑡

+ và 𝑍𝐹𝐹𝑇 = 𝑍𝐹𝐹𝑇 + 𝐹𝐹𝐹𝑇
𝑓𝑙𝑎𝑡

 (11) 

 

Next, the tensors are permuted back to the format 

𝐵 × 𝐶 × (𝐻𝑊) , and global average pooling is applied to 

produce a tensor of shape 𝐵 × 𝐶 for each branch. Finally, the 

two tensors are concatenated to obtain a unified 

representation:  

 

Z = Concat(𝑍𝑅𝐺𝐵 , 𝑍𝐹𝐹𝑇) ∈ ℝ𝐵×2𝐶 (12) 

 

 

 
 

Figure 4. Proposed architecture of the VGG16 + FFT model 
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This module enables the model to effectively learn the 

relationship between spatial and frequency-domain 

information, enhancing its discriminative capability for the 

classification task. The overall process is illustrated in Figure 

4. 

 

3.5 Classification module 

 

After fusing the features from the main and FFT branches, 

the resulting tensor 𝑍  with shape (𝐵, 2𝐶) , where 𝐶 = 256 , 

represents the feature dimension from each branch. This tensor 

is then passed into a classification module consisting of three 

fully connected layers, which are responsible for further 

filtering and separating the fused features to support the final 

classification task. The module outputs one of two predicted 

labels: “genuine” or “spoof”. 

 

 

4. MODEL TRAINING AND EVALUATION RESULTS 

 

4.1 Dataset 

 

The DLC-2021 [8] dataset provides a collection of genuine 

and spoofed images of identity documents, including national 

ID cards and passports from various countries. It is designed 

to support research and development of spoofing detection 

methods for these types of documents. In this study, two 

subsets are used: (i) genuine images classified as “or”, and (ii) 

spoofed images captured from digital screens entitled “re”. 

These are referred to as “genuine” and “spoof”, respectively, 

samples for training and evaluation purposes in this paper.  

The dataset follows the DLC-2021 [8] protocol and is split 

into train/validation/test. Training and validation use 16,264 

genuine images from “MIDV-2020/clips” folder and spoofed 

images from “DLC-2021/re” limited to Spanish IDs, Latvian 

passports, and Russian internal passports; an 80/20 split is 

applied. The test set contains 11,006 spoof (positive) and 

16,264 genuine (negative) images drawn from the remaining 

DLC-2021 [8] document types, fixed by the official lists 

“screen_positive_test.lst” and “screen_negative_test.lst”. 

This setup enforces cross-type generalization and ensures 

reproducible, baseline-comparable evaluation. Representative 

examples from the dataset are shown in Figure 5 and Figure 6 

respectively. 

 

 
 

Figure 5. Sample images labeled as “genuine” 

 

 
 

Figure 6. Sample images labeled as “spoof” 

4.2 Loss function and optimization process 

 

After passing through the classification module, the model 

outputs a tensor with two elements corresponding to the 

predicted probabilities for the classes “genuine” and “spoof”, 

denoted as 𝑧 = (𝓏0, 𝓏1) and the true label 𝑦 ∈ {0,1}. The loss 

function used is binary cross-entropy, defined as: 

 

𝐿 =
1

𝐵
∑ 𝐶𝐸𝐿𝑜𝑠𝑠(𝑧𝑛 , 𝑦𝑛) = −log (𝑝𝑦𝑛

)

𝐵

𝑛=1

 (13) 

 

The loss is minimized using the Adam optimizer, which 

combines the advantages of RMSProp and SGD. This allows 

the model to effectively learn complex features from both 

branches, ensuring fast convergence without overfitting the 

training data. The learning rate is set to 𝛼 = 10−4. 

 

4.3 Model training 

 

During training, the batch size was set to 𝐵 = 128. In each 

epoch, the data was loaded in parallel using 7 worker threads 

to speed up reading and preprocessing. A random shuffle was 

also applied before batching to ensure variety in the sample 

distribution. The training was performed on Google Colab 

using an L4 GPU (24 GB GDDR6 memory, fully supporting 

CUDA 11.x+, cuDNN, and TensorRT) [28]. With CUDA 

drivers and PyTorch Lightning integration, the GPU was 

accessed directly through the torch.cuda API during training. 

The model, which combines VGG16 and a frequency-

processing branch (FFT Branch), was configured to run for a 

maximum of 10 epochs and early stopping callback, 

monitoring validation loss with mode = min, patience = 3 

epochs, and min_delta = 10−4. Early stopping was triggered 

after 7 epochs, as the validation loss no longer improved 

significantly, with validation loss = 0.2565. Training 

consumed ~20.5 GB VRAM.  

 

4.4 Model evaluation 

 

To ensure a fair and accurate assessment, the evaluation 

protocol mirrors the DLC-2021 [8] baseline: the same datasets, 

split definitions (official “screen_positive_test.lst” and 

“screen_negative_test.lst”), label convention (positive = 

spoof, negative = genuine). Results are reported on the fixed 

test split to guarantee reproducibility and comparability with 

prior work. Three standard metrics are reported: precision, 

recall, and accuracy. Precision is the proportion of predicted 

spoofs that are truly spoof. Recall is the proportion of actual 

spoofs correctly detected. Accuracy is overall rate of correct 

decisions. Let TP, FP, TN, FN denote true positives, false 

positives, true negatives, and false negatives (with “positive” 

= spoof). Then: 

 

 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 (14) 

 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 (15) 

 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝐹𝑃 + 𝑇𝑁 + 𝐹𝑁
 (16) 
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To assess the model’s accuracy, common spoof detection 

metrics used in this study are: Attack Presentation 

Classification Error Rate (APCER) [29] is the percentage of 

spoofed samples that are incorrectly classified as genuine. And 

Bona Fide Presentation Classification Error Rate (BPCER) 

[29] is the percentage of genuine samples that are incorrectly 

classified as spoofed. Half Total Error Rate (HTER) [30, 31] 

is calculated as the average of the False Acceptance Rate 

(FAR) and the False Rejection Rate (FRR). In spoof detection 

problems, it is typically assumed that: 𝐹𝐴𝑅 =
𝐴𝑃𝐶𝐸𝑅;  𝐹𝑅𝑅 = 𝐵𝑃𝐶𝐸𝑅. Therefore, HTER can be obtained 

as shown in Eq. (17): 

 

𝐻𝑇𝐸𝑅 =
𝑃𝐶𝐸𝑅 + 𝐵𝑃𝐶𝐸𝑅

2
 (17) 

 

These three metrics provide a balanced evaluation between 

the ability to detect attacks and the ability to correctly 

recognize genuine samples. They follow ISO standards for 

electronic identification and biometrics [29]. To measure 

performance, the model is evaluated from several aspects, 

including computational complexity (FLOPs), number of 

parameters (Params), average inference speed (measured in 

seconds per image). 

For comparison, two reference models were evaluated 

alongside the proposed model:  

(i) DLC-2021 baseline [8] 

(ii) Boundary moiré detector [13] 

The evaluation results of all models are summarized in 

Table 1. 

 

Table 1. Evaluation results of accuracy of DLC-2021 

baseline, Boundary moiré detector and VGG16+FFT 

 

Model 
Precision 

(%) 

Recall 

(%) 

Accuracy 

(%) 

DLC-2021 baseline 85.89 89.03 89.67 

Boundary moiré detector 93.5 90.2 92.1 

VGG16+FFT 93.64 88.90 91.68 

 

Regarding spoof detection accuracy, with the DLC-2021 

protocol and identical test lists, the Boundary moiré detector 

attains the highest accuracy (92.1%) with precision 93.5% and 

recall 90.2%. The proposed VGG16+FFT is close behind 

(accuracy 91.68%, precision 93.64%, recall 88.90%), while 

the DLC-2021 baseline yields accuracy 89.67% with precision 

85.89% and recall 89.03% (Table 1). 

 

Table 2. Evaluation results of average inference speed on 

Intel Xeon @ 2.20 GHz (x86-64), 6-core / 12-thread 

 

Model 

Folder name: 

grc_passport/01.or

0004 

Folder name: 

grc_passport/01.

re0001 

DLC-2021 baseline 0.147 0.151 

Boundary moiré 

detector 
- - 

VGG16+FFT 0.120 0.120 

 

Regarding Inference Speed, on an Intel Xeon @ 2.20 GHz 

(x86-64), 6-core/12-thread CPU, VGG16+FFT processes 

representative samples in 0.120 s/image for both original and 

recaptured cases, outperforming the DLC-2021 baseline 

(0.147-0.151 s/image on the same files). Runtime for the 

Boundary moiré detector is not available under this setup 

(Table 2). 

VGG16 + FFT has a complexity of about 40.95 GFLOPs, 

mainly because of its two-branch design combined with the 

cross-attention module that requires intensive numerical 

transformations. About the number of parameters (Params): 

VGG16+FFT uses only about 4.29 million parameters, which 

is much fewer than the original VGG16. VGG16 + FFT 

achieves a low BPCER (genuine samples misclassified as 

spoofed) of just 5.33% and APCER (spoofed samples 

misclassified as genuine) at 14.15%, indicating high 

sensitivity to spoofed cues. The overall HTER is 9.74%. 

Summary, within the same evaluation protocol, the 

Boundary moiré detector delivers the top accuracy, while 

VGG16+FFT offers a favorable accuracy-speed trade-off and 

is faster than the DLC-2021 baseline on the measured samples. 

These results indicate that the proposed model is suitable for 

deployment scenarios that require both reliability and efficient 

CPU-side inference. 

 

4.5 Ablation study 

 

All ablations follow the same DLC-2021 [8] protocol 

(positive = spoof), fixed test lists, and 224 × 224 center-crop 

preprocessing. Metrics are precision, recall, and accuracy. 

Let VGG16+FFT (proposed) with precision 93.64%, recall 

88.90%, accuracy 91.68% serve as the reference.  

The following investigations have been carried out: 

•Replace CrossAttentionFusion with ConcatGAP: A simple 

concatenation followed by global average pooling is used to 

merge the spatial and FFT streams.  

•Replace VGG16+FFT with two channels of VGG16: The 

FFT branch is removed; two spatial (VGG16) streams are 

provided instead. 

•Use VGG16-only (single branch): The VGG16+FFT and 

the CrossAttentionFusion module are removed, leaving a 

single VGG16 spatial branch followed by the same 

classification head as in the full model. All training and 

evaluation settings are kept identical. Cross-attention is not 

applicable in the single-branch setting. 

 

Table 3. Evaluation results of ablation studies 

 

Model 
Precision 

(%) 

Recall 

(%) 

Accuracy 

(%) 

Replace 

CrossAttentionFusion with 

ConcatGAP 

91.29 83.44 88.10 

Replace VGG16+FFT with 

two channels of VGG16 
91.38 84.80 88.73 

Use VGG16-only (single 

branch) 
87.67 86.35 87.48 

 

Simple GAP reduces precision to 91.29%, recall to 83.44%, 

and accuracy to 88.10%. The loss of cross-modal alignment 

increases missed spoofs (FN), indicating that cross-attention is 

important for merging complementary spatial-frequency cues. 

Duplicating the spatial stream (no FFT) yields 91.38% 

precision, 84.80% recall, and 88.73% accuracy. Without 

frequency-domain evidence, the model under-detects moiré 

artifacts, confirming that FFT features are not redundant with 

spatial features (Table 3). 

Removing the VGG16+FFT and cross attention fusion 

entirely lowers recall and overall accuracy relative to the 

reference, as complementary frequency cues and any 

alignment mechanism are absent. Cross-attention is invalid in 
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the single-branch architecture, so this comparison isolates the 

contribution of the FFT pathway and highlights the cost of 

discarding it.  

 

 

5. DISCUSSION  

 

The experimental results demonstrate that integrating a 

VGG16-based CNN with Fourier-domain analysis effectively 

achieves the study’s primary goal: building a spoof detection 

model that is both accurate and parameter-efficient. The 

proposed dual-branch design, with one branch extracting 

spatial characteristics and the other highlighting frequency-

enhanced features, reached an accuracy of 91.68%. This 

represents a clear improvement over baseline VGG16 and 

other benchmark models, confirming that frequency 

information provides critical advantages in detecting subtle 

spoofing artifacts often missed in spatial-only analysis. This 

design with cross-attention fusion allowed the system to 

exploit complementary spatial-frequency interactions and 

achieve state-of-the-art accuracy. 

At the same time, the findings highlight an important trade-

off: although the FFT branch adds computational overhead, its 

contribution to accuracy makes the extra cost worthwhile. 

Model sensitivity to design choices, such as the FFT mask 

radius (set to 𝑟 = 8  in this study) and the cross-attention 

configuration, also indicates the need for systematic parameter 

optimization. Future research should therefore focus on 

detailed parametric studies and broader experimentation to 

refine these components and further balance the trade-off 

between accuracy, efficiency, and computational cost. 

 

 

6. CONCLUSIONS 

 

This paper introduced a dual-branch CNN architecture for 

ID-card spoof detection that integrates spatial and frequency-

domain analysis within a parameter-efficient design. The main 

branch employed a truncated VGG16 backbone to reduce 

redundancy, while the FFT branch captured high-frequency 

artifacts characteristic of spoofing. By fusing these 

complementary features through a multi-head cross-attention 

mechanism, the model achieved an accuracy of 91.68%, 

outperforming baselines and demonstrating that frequency 

characteristics significantly enhance the detection of subtle 

spoofing traces. 

Under the DLC-2021 protocol, the proposed VGG16+FFT 

achieves nearly the same performance as the Boundary moiré 

detector (91.68% vs. 92.1% accuracy), while clearly 

outperforming the DLC-2021 baseline model (89.67% 

accuracy). This approach offers faster inference (0.120 

s/image) than the DLC-2021 baseline (0.147-0.151 s/image). 

The ablation analysis confirms the complementary roles of the 

dual-branch design for robust spoof detection. 

A key contribution of this study is showing that high 

accuracy can be achieved without relying on a heavy network. 

The design maintains a compact model size while still 

benefiting from the FFT branch. Although this branch 

increases computational complexity, the substantial accuracy 

gain highlights a meaningful trade-off—making the approach 

highly relevant for security-critical applications such as eKYC 

systems. 

Performance may degrade on high-resolution or high-

refresh-rate displays (e.g., OLED/120 Hz) whose moiré 

patterns differ from the training distribution; the FFT emphasis 

on high frequencies can amplify such device-specific 

signatures. Complex or cluttered backgrounds and imperfect 

ID localization may also confound the frequency branch, 

especially when background textures contain periodic 

structures similar to screen artifacts. Our evaluation is limited 

to DLC-2021; cross-database generalization remains untested. 

Finally, although the model is compact on a desktop-class 

GPU/CPU, embedded devices face tighter budgets for 

compute, memory, and energy; real-time throughput and 

latency can drop without additional optimization. 

Future work should focus on systematic parameter 

optimization, particularly refining FFT configurations and 

attention mechanisms, as well as testing lightweight 

backbones beyond VGG16 to further improve efficiency. 

Expanding the dataset to include more diverse forgery types 

(e.g., printed, laminated, or digitally altered IDs) and using 

other datasets for evaluation. Together, these directions offer 

a clear pathway toward building more accurate, efficient, and 

resilient identity verification systems. 
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