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The increasing availability of financial data has accelerated the use of machine learning for 

classification tasks in finance. However, financial datasets are often high-dimensional and 

noisy, which can degrade model performance and increase computational costs. Feature 

selection serves as a critical pre-processing step to reduce dimensionality and improve 

efficiency. This study compares three feature selection methods—Random Forest, Boruta, 

and Recursive Feature Elimination (RFE)—in the context of financial data classification. 

The analysis is conducted using three publicly available datasets: Adult Income, Marketing 

Campaign, and Taiwanese Bankruptcy. A variety of machine learning classifiers are applied 

to evaluate the impact of feature selection on classification accuracy. Experimental results 

show that Random Forest Classifier (RFC), particularly with hyperparameter tuning, 

consistently achieves strong performance across datasets. The combination of RFE and 

RFC yields the highest accuracy on the Taiwanese Bankruptcy dataset. These findings 

highlight the importance of selecting relevant features to optimize classification models in 

finance. The study offers practical insights for enhancing predictive accuracy in financial 

applications such as credit risk assessment, fraud detection, and customer profiling, thereby 

contributing to the development of more robust and interpretable machine learning models 

in the financial sector.  
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1. INTRODUCTION

Financial data classification has become a critical area of 

study due to the increasing demand for accurate and efficient 

predictive models in finance [1, 2]. Feature selection is an 

essential process in financial data categorization due to 

financial datasets' high-dimensional, noisy, and duplicated 

nature. Choosing the most pertinent features improves the 

efficacy and precision of machine learning models in financial 

applications. This field encompasses predicting categorical 

outcomes such as market movements, credit risks, or 

fraudulent activities based on diverse financial indicators [3-

5]. These indicators may include stock prices, trading 

volumes, interest rates, and macroeconomic metrics, each 

contributing unique insights into the behavior of financial 

systems [3].  

Some examples of applications in the financial sector that 

make use of feature selection are as follows: (1) It is possible 

to increase the accuracy of the model and limit the amount of 

noise caused by extraneous financial indicators by selecting 

crucial technical indicators, such as moving averages, relative 

strength index (RSI), and moving average convergence 

divergence (MACD). (2) Credit Risk Assessment: Selecting 

the most significant characteristics (such as a person's credit 

score, income level, and debt-to-income ratio, for example) 

aids in making better decisions regarding loan acceptance 

while simultaneously minimizing the amount of 

computational cost [4]. (3) Fraud Detection in Financial 

Transactions: The effectiveness of fraud detection can be 

improved by removing transaction features that are redundant 

while maintaining those that are highly informative (for 

example, transaction amount, frequency, and location) [5]. (4) 

Bankruptcy Prediction: The capacity of the model to classify 

enterprises that are at risk of filing for bankruptcy is improved 

by selecting appropriate financial ratios, such as return on 

assets and debt-to-equity ratio from the available options [6]. 

Machine learning algorithms have proven to be powerful 

tools in tackling classification problems in finance. Their 

ability to learn complex, non-linear patterns in large datasets 

makes them invaluable for deriving actionable insights and 
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making precise predictions [7-9]. However, financial data 

often presents unique challenges, such as high dimensionality 

and noise, which can hinder the performance of machine 

learning models. High-dimensional datasets frequently 

contain irrelevant or redundant features that not only 

complicate the modeling process but also inflate 

computational costs, reducing the efficiency of the algorithms 

[10-12]. To address these challenges, feature selection 

techniques have emerged as an essential pre-processing step in 

financial data classification. By identifying and retaining the 

most relevant features, these techniques simplify the dataset, 

enhance model performance, and reduce computation time 

[13-16]. Among the popular feature selection methods, 

Random Forest, Boruta, and Recursive Feature Elimination 

(RFE) are widely recognized for their effectiveness in various 

domains, including finance [17-19]. 

While prior studies have employed these methods, many of 

them focus on single datasets or do not systematically compare 

the combined impact of multiple feature selection techniques 

across different financial contexts. 

This study addresses this gap by conducting a comparative 

evaluation of Random Forest, Boruta, and RFE across three 

publicly available financial datasets: Adult Income, Marketing 

Campaign, and Taiwanese Bankruptcy. The novelty of this 

research lies in its multi-dataset framework, consistent 

evaluation metrics, and focus on how each feature selection 

method influences model performance when combined with 

hyperparameter tuning.  

2. RELATED WORK

2.1 Random Forest 

Random Forest (RF) is a machine learning method that 

enhances the performance of a single decision tree classifier 

by combining multiple decision trees through bootstrap 

aggregating (bagging) and introducing randomness in the 

selection of data nodes for partitioning during decision tree 

construction [20]. An RF classifier operates as an ensemble 

model, merging a collection of independent decision tree 

classifiers to produce a more robust prediction [18, 21]. A 

decision tree with M leaves divides the feature space into M 

regions, denoted as 𝑅𝑚, where 1 ≤ 𝑚 ≤ 𝑀. For each tree, the

prediction function f(x) is defined in Eq. (1). 

𝑓(𝑥) =  ∑ ⬚

𝑀

𝑚=1

𝑐𝑚 𝛱(𝑥, 𝑅𝑚 ) (1) 

𝑀 denotes the total number of regions within the feature 

space, where 𝑅𝑚 represents the region associated with the 𝑚
partition, and 𝑐𝑚 is the corresponding constant for that region.

Additionally, the indicator function is denoted by 1, signifying 

whether a particular data point belongs to the specified region 

defined in Eq. (2): 

𝛱(𝑥, 𝑅𝑚 ) = {0,   𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
1,   𝑖𝑓 𝑥 𝜖 𝑅𝑚 (2) 

The final classification decision in RF is determined by 

majority voting across all decision trees in the ensemble. 

2.2 Feature selection method 

The Boruta algorithm is a feature selection method rooted 

in the Random Forest classification framework. It operates by 

generating shadow features—randomly permuted duplicates 

of the original features—and integrating them into the dataset. 

A Random Forest Classifier (RFC) is subsequently trained on 

this augmented dataset [22, 23]. Through iterative evaluation, 

Boruta assesses the importance of each original feature 

relative to its shadow counterpart. Features demonstrating 

statistically higher importance scores than their shadow 

equivalents are retained as relevant, while those with lower 

significance are systematically discarded. This process 

ensures the identification of variables that meaningfully 

contribute to predictive performance [17, 24]. In contrast, 

RFE, a wrapper-based feature selection approach, employs an 

iterative strategy to progressively eliminate less influential 

features [25]. Initially, the model is trained using the complete 

set of features, after which the importance of each variable is 

quantified. The least significant feature is removed, and the 

model is retrained on the reduced subset. This cycle of 

ranking, elimination, and retraining continues until a 

predefined number of features remains [26]. Performance 

metrics such as accuracy and precision guide the selection 

process in classification tasks. This approach enables the 

identification of critical features while maintaining model 

efficacy. 

2.3 Experiment evaluation 

The study employed standard performance metrics to 

evaluate the efficacy of the model on financial datasets, 

focusing specifically on accuracy as the primary metric. 

Accuracy is defined in Eq. (3): 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 𝑠𝑐𝑜𝑟𝑒 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
(3) 

Here, True Positive (TP) represents the number of reviews 

correctly classified into the appropriate sentiment category, 

True Negative (TN) refers to the number of reviews accurately 

identified as not belonging to a given sentiment category, 

False Positive (FP) denotes the reviews incorrectly assigned to 

a sentiment category, and False Negative (FN) refers to the 

reviews misclassified as not belonging to a category to which 

they belong [27]. The accuracy score provides a 

straightforward yet effective measure of the overall 

correctness of the model's predictions. This allows for a 

comprehensive assessment of the model's strengths and 

weaknesses, paving the way for potential improvements in 

classification performance [28]. 

3. METHODOLOGY

3.1 Research design 

This section outlines the overall design of the research 

process, as depicted in Figure 1. The study leverages three 

distinct datasets representing different financial domains: 

fraud detection, stock market analysis, and credit scoring. 

These datasets are systematically imported and processed to 

ensure the generation of meaningful insights. The initial phase 

of the research process involves comprehensive data 
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preprocessing, a critical step aimed at eliminating noise, 

managing missing values, and structuring the data 

appropriately for subsequent analysis. Missing data is handled 

using imputation techniques or by discarding incomplete 

entries, ensuring dataset integrity. Additionally, numerical 

features are standardized to maintain consistency across 

datasets, while categorical variables are transformed into 

numerical representations through methods such as one-hot 

encoding. The processed data is then partitioned into training 

and testing subsets to facilitate effective model evaluation.  

Following the preprocessing phase, two feature selection 

strategies are employed to assess their impact on classification 

performance. The first strategy retains all available features, 

ensuring no information loss, while the second strategy 

involves eliminating the five least significant features to 

examine their influence on model accuracy. These approaches 

provide insights into the role of different features in predictive 

modelling and enable the evaluation of their contribution to 

classification performance. 

Figure 1. The research workflow 

Once feature selection is performed, various techniques are 

utilized for feature importance analysis and model 

optimization. A baseline model employing the RFC is initially 

trained using the full-feature dataset. The Boruta algorithm is 

then applied to identify the most relevant features, which are 

subsequently used to retrain the RFC model with additional 

fine-tuning. In parallel, the RFE method is implemented to 

iteratively remove less significant features before training the 

RFC model with further optimization.  

The fine-tuning of the RFC model was conducted using a 

grid search approach with five-fold cross-validation. The 

optimization process explored various combinations of key 

hyperparameters, including the number of trees (n_estimators: 

50, 100, 150, 200, 250, 500), the minimum number of samples 

required to split an internal node (min_samples_split: 2, 5, 10), 

the minimum number of samples required to be at a leaf node 

(min_samples_leaf: 1, 2, 4), and the bootstrap sampling 

strategy (bootstrap: True, False). This systematic tuning aimed 

to maximize model performance by selecting the most 

effective parameter configuration. 

In terms of feature selection, the decision to eliminate only 

the five least important features was made to simulate a 

minimal yet meaningful dimensionality reduction. This 

approach preserves model interpretability while still allowing 

for an analysis of the impact of feature removal on 

classification performance. It also ensures consistency across 

datasets and facilitates a fair comparison between different 

feature selection methods. 

The primary objective of this study is to investigate the 

influence of feature selection techniques on classification 

models. By integrating systematic data preprocessing, diverse 

feature selection strategies, and rigorous model evaluation, 

this research aspires to develop an efficient and robust 

framework for enhancing the performance of machine learning 

models in financial data analysis. 

3.2 Datasets 

This study utilizes three distinct datasets, each representing 

a unique financial domain, to evaluate the performance of 

feature selection techniques: Adult Income, Marketing 

Campaign, and Taiwanese Bankruptcy Prediction datasets. 

These datasets are obtained from the UCI Machine Learning 

Repository (https://archive.ics.uci.edu/dataset/2/adult, 

https://archive.ics.uci.edu/dataset/222/bank+marketing, and 

https://archive.ics.uci.edu/dataset/572/taiwanese+bankruptcy

+prediction) and provide rich information relevant to various

classification problems in finance. The datasets are selected

due to their diversity in structure, size, and classification

objectives, enabling a comprehensive analysis of feature

selection techniques.

The Adult Income dataset is designed to predict whether 

an individual's income exceeds $50,000 annually based on 

census data. This dataset contains 48,842 entries with 14 

attributes, including demographic and employment-related 

variables such as age, education, marital status, occupation, 

and work hours per week. The classification target is binary, 

indicating whether income is greater or less than $50,000. The 

dataset contains both continuous and categorical features, 

presenting challenges such as class imbalance and missing 

data. By applying feature selection techniques, the study aims 

to identify the most influential attributes contributing to 

income prediction. Insights derived from this analysis can help 

policymakers and social workers allocate resources more 

effectively to address income inequality and socioeconomic 

disparities [29].  

The Marketing Campaign dataset is sourced from a 

Portuguese banking institution and is aimed at predicting the 

success of direct marketing campaigns. It contains 45,211 

records with 17 attributes, including features like age, job, 

education, balance, and contact information, as well as 

campaign-specific details such as the number of contacts 

performed and the outcome of previous campaigns. The target 

variable is binary, representing whether a customer subscribed 

to a term deposit. The dataset poses challenges such as high 

dimensionality, class imbalance, and a mix of categorical and 

numerical features. Feature selection in this context seeks to 

identify the most critical attributes influencing customer 

decisions, helping businesses optimize their marketing 

strategies and maximize return on investment. By focusing on 

the most relevant features, companies can streamline their 

marketing efforts and design more targeted campaigns, 

potentially saving costs and improving customer engagement 

[30].  

The Taiwanese Bankruptcy Prediction dataset is aimed 

at predicting the bankruptcy of companies based on financial 

indicators. It consists of 6,835 records with 96 features, 

primarily representing financial ratios, such as profitability, 

liquidity, and leverage. The binary target variable indicates 

whether a company is bankrupt or not. This dataset is 
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particularly challenging due to its high dimensionality and 

potential multicollinearity among financial indicators. Feature 

selection plays a crucial role in identifying the most significant 

predictors of bankruptcy, reducing the complexity of the 

model, and improving interpretability. Insights gained from 

this analysis can aid financial institutions in assessing credit 

risk more accurately, enabling better-informed lending 

decisions and effective risk management strategies [31].  

Each dataset requires preprocessing steps to ensure data 

quality and consistency. Missing values are handled using 

imputation techniques, and categorical variables are encoded 

into numerical formats using methods such as one-hot 

encoding or label encoding. Additionally, numerical features 

are scaled to standardize their ranges, facilitating model 

training. The application of feature selection techniques, such 

as Random Forest, Boruta, and Recursive Feature Elimination, 

aims to reduce the dimensionality of these datasets while 

preserving the most informative features. This not only 

improves model performance but also reduces computational 

complexity, making the models more efficient and 

interpretable. 

 

 

4. EXPERIMENT RESULTS AND DISCUSSIONS  

 

4.1 Feature selection result 

 

In the feature selection process for the Adult Income 

dataset, we utilized the Random Forest algorithm to determine 

the most influential features in predicting income levels. 

Before feature selection, the dataset underwent several 

preprocessing steps. First, duplicate records were removed to 

eliminate redundant data, ensuring that the model was trained 

on unique observations. Missing values in the occupation and 

native_country columns, initially marked as '?', were imputed 

using the most frequent value from the training set. 

Categorical variables, including workclass, education, 

marital_status, occupation, relationship, race, sex, and native 

country, were then transformed using one-hot encoding to 

convert categorical values into numerical representations. To 

further enhance model performance, MinMax scaling was 

applied to normalize all feature values within the range of 0 to 

1. Following the preprocessing steps, feature importance 

analysis was conducted using a RFC, identifying key 

predictors of income. As illustrated in Figure 2, the most 

influential features included fnlwgt, which corresponds to an 

estimate of the number of individuals in the population with 

the same demographics as this individual, age, capital gain, 

hours per week, and marital status 2, which significantly 

contributed to income classification. Conversely, some 

features exhibited minimal impact on the model’s 

performance. As shown in Figure 3, variables such as native 

country 11, occupation 14, native country 36, workclass 9, and 

native country 41 categories were found to have the lowest 

importance scores. Based on these findings, less significant 

features were removed to optimize the model, reducing 

dimensionality and computational cost while preserving 

predictive accuracy. This feature selection approach ensures 

that the model is both efficient and interpretable, focusing on 

attributes that genuinely influence income classification. 

Moving to the next dataset, we still employed the Random 

Forest algorithm to identify the most influential features in 

predicting income levels. Before feature selection, several pre-

processing steps were applied to the dataset. Initially, 

duplicate records were removed to eliminate redundancy, 

ensuring that the model was trained on unique observations. 

Following pre-processing, feature importance analysis was 

conducted using a RFC to determine the key predictors of 

income. As illustrated in Figure 4, the 5 most influential 

features included duration, Euribor 3 Month rate. Age, 

nr.employed, and campaign, which played a crucial role in 

income classification. Conversely, some features contributed 

minimally to the model’s performance. As shown in Figure 5, 

features such as unknown job, month-dec, marital-unknown, 

education-illiterate, and default yes were found to have the 

lowest importance scores. 

 

 
 

Figure 2. Ranked importance feature adult income dataset 
 

 
 

Figure 3. Deleted five least importance feature adult income 

dataset with Random Forest 
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Figure 4. Ranked importance feature marketing campaign dataset 

 

 
 

Figure 5. Deleted five least importance feature marketing campaign 

dataset with Random Forest 

 

Based on these insights, less significant features were 

removed to optimize the model, reducing dimensionality and 

computational cost while preserving predictive accuracy. This 

feature selection approach ensures that the model remains both 

efficient and interpretable, focusing on attributes that 

genuinely impact income classification. Moving to the 

Taiwanese bankruptcy prediction dataset, contained a variety 

of numerical and categorical features. After conducting a 

correlation analysis, the features were ranked based on their 

relationship with the target variable, "Bankrupt?". This step 

helped to identify the most important features, which were 

visualized through bar plots in Figure 6 to show their 

importance scores. 

 

 
 

Figure 6. Ranked importance feature Taiwanese bankruptcy 

dataset 

 

The initial step in feature selection was calculating the 

correlation between the features and the target variable. This 

allowed for identifying both positive and negative 

correlations. Positive correlations indicated features that were 

strongly associated with bankruptcy, while negative 

correlations highlighted features that were inversely related. 

Following this analysis features with weak correlations were 

flagged for removal. Specifically, five features with the lowest 

importance scores were identified in Figure 7 and removed 

from the dataset. These removed features were: Net income 
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flag, Quick Assets, Net Values Growth Rate, Liability-Assets 

Flag, and Interest-Bearing Debt interest rate. 

 

 
 

Figure 7. Deleted Five least importance feature adult income 

dataset with Random Forest Taiwanese bankruptcy dataset 

 

After eliminating the least important features, the dataset’s 

dimensionality was reduced, and the remaining features were 

used for model training. The five most important features 

retained were: Net Income to Stockholders’ Equity, Net Profit 

Before Tax/Paid-in Capital, Persistent Eps in the last Four 

Quarters, Borrowing Dependency, and PerShare Net Profit 

Before Tax. This selection process played a crucial role in 

improving the model's performance by removing irrelevant 

features, thereby reducing noise and focusing on the most 

predictive attributes. Visualizations of feature importance 

before and after the selection process were used to clearly 

demonstrate the impact of feature removal on model accuracy. 

 

4.2 Experiment result 

 

The results of the performance analysis of the adult income 

dataset classification before the deletion of the five least 

important features are presented in Table 1. In the first phase, 

which utilizes all features, the baseline RFC achieved an 

accuracy of 85.32% ± 0.66. Upon applying hyperparameter 

tuning using grid search, the performance improved to 86.28% 

± 0.77, indicating the effectiveness of fine-tuning in enhancing 

model performance. The Boruta method, when used prior to 

training the RFC, yielded an accuracy of 81.90% ± 0.40%, 

which improved to 84.38% ± 0.34% after fine-tuning. 

Likewise, the RFE + RFC combination reached 82.15% ± 

0.35%, and improved to 84.39% ± 0.39% with fine-tuning. 

These results demonstrate that although feature selection 

initially reduces model performance due to dimensionality 

reduction, fine-tuning can effectively recover and in some 

cases surpass the original performance. 

In the second phase, after eliminating the five least 

important features, the baseline RFC accuracy dropped 

slightly to 83.05% ± 0.35%, and even with fine-tuning, it only 

reached 83.65% ± 0.41%, which is lower than in the original 

setting, as shown in Table 2. The Boruta method exhibited a 

similar trend, with post-removal accuracy decreasing to 

82.91% ± 0.41% and 82.93% ± 0.40% after fine-tuning. This 

suggests that Boruta-selected features may overlap with the 

removed ones, reducing its effectiveness. Conversely, RFE 

displayed more resilience, maintaining a comparable accuracy 

of 82.13% ± 0.43%, and improving to 83.72% ± 0.40% after 

fine-tuning—outperforming Boruta-based methods in this 

setting. 

The visual comparison in Figure 8 highlights these trends 

clearly. RFC with fine-tuning consistently produced the 

highest accuracy in both phases. Boruta-based methods 

showed sensitivity to feature removal, while RFE-based 

methods exhibited more stable and robust behaviour. These 

findings suggest that although fine-tuning plays a crucial role 

in improving classification performance across all approaches, 

RFE is more robust in scenarios involving feature elimination, 

making it a suitable choice for real-world applications where 

feature reduction is desired or required. 

 

Table 1. Performance result of adult income dataset 

classification with all features 

 
Method Acc 

Random Forest Classifiers (RFC) 85.32% ± 0.66% 

RFC + Fine Tuning 86.28% ± 0.77% 

Boruta + RFC 81.90% ± 0.40% 

Boruta + RFC + Fine Tuning 84.38% ± 0.34% 

RFE + RFC 82.15% ± 0.35% 

RFE + RFC + Fine Tuning 84.38% ± 0.39% 

 

Table 2. Performance result of adult income dataset 

classification with all features 

 
Method Acc 

Random Forest Classifiers (RFC) 83.05%  ± 0.35% 

RFC + Fine Tuning 83.65%  ± 0.41% 

Boruta + RFC 82.91%  ± 0.41% 

Boruta + RFC + Fine Tuning 82.93%  ± 0.40% 

RFE + RFC 82.13%  ± 0.43% 

RFE + RFC + Fine Tuning 83.72%  ± 0.40% 

 

 
 

Figure 8. Adult income dataset comprehensive comparison 

 

The classification performance of the Marketing Campaign 

dataset was performed using a 5-fold cross-validation strategy, 

and the detailed performance results are summarized in Table 

3 (before deletion) and Table 4 (after deletion). An overall 

comparison is visually represented in Figure 9. 

Before feature elimination, the baseline RFC achieved a 

high accuracy of 90.99% ± 0.48, which was slightly improved 

to 91.14% ± 0.32 after hyperparameter fine-tuning. The Boruta 

+ RFC configuration achieved 89.97% ± 0.22, and further 

improved to 90.60% ± 0.33 with fine-tuning, suggesting that 

the model can still benefit from optimization even after feature 

selection. Interestingly, the RFE + RFC approach produced a 

notably lower baseline accuracy of 85.91% ± 0.25, but fine-

tuning the model significantly enhanced performance to 

90.63% ± 0.33, closing the gap with other methods. These 

results emphasize the role of fine-tuning in boosting model 

accuracy, particularly when initial performance is suboptimal. 

After eliminating the five least important features, the RFC 

maintained competitive performance with an accuracy of 

2170



90.65% ± 0.32, while fine-tuning increased this slightly to 

91.01% ± 0.33. Notably, the Boruta + RFC method saw a 

slight drop to 89.63% ± 0.33, yet fine-tuning produced a 

substantial gain, pushing the accuracy to 91.32% ± 0.40—

surpassing even the tuned RFC model. Meanwhile, RFE + 

RFC achieved 89.51% ± 0.25, and reached 90.67% ± 0.30 after 

fine-tuning. These results indicate that Boruta's performance 

is highly dependent on fine-tuning and may benefit the most 

when optimized post-feature reduction, whereas RFE 

demonstrates more consistent performance before and after 

deletion, albeit starting from a lower baseline. 

Overall, the elimination of the five least important features 

did not significantly harm model performance across the 

board. In fact, in several configurations—especially those 

involving fine-tuning—performance either remained stable or 

improved. Among all methods, the RFC with fine-tuning 

remained the most robust and reliable, while Boruta + RFC 

with fine-tuning emerged as a top performer after feature 

pruning. These findings reinforce the value of model 

optimization and the potential of hybrid feature selection 

techniques, particularly when accompanied by 

hyperparameter tuning. 

Table 3. Performance result of marketing campaign dataset 

classification with all features 

Method Acc 

Random Forest Classifiers 

(RFC) 
90.99% ± 0.48% 

RFC + Fine Tuning 91.14% ± 0.32% 

Boruta + RFC 89.97% ± 0.22% 

Boruta + RFC + Fine Tuning 90.60% ± 0.33% 

RFE + RFC 85.91% ± 0.25% 

RFE + RFC + Fine Tuning 90.63% ± 0.33% 

Table 4. Performance result of marketing campaign dataset 

after delete 5 least important features 

Method Acc 

Random Forest Classifiers (RFC) 90.65% ± 0.32% 

RFC + Fine Tuning 91.01% ± 0.33% 

Boruta + RFC 89.63% ± 0.33% 

Boruta + RFC + Fine Tuning 91.32% ± 0.40% 

RFE + RFC 89.51% ± 0.25% 

RFE + RFC + Fine Tuning 90.67% ± 0.30% 

Figure 9. Marketing Campaign Dataset Comprehensive 

Comparison 

The performance evaluation for the Taiwanese Bankruptcy 

Prediction dataset was conducted using several configurations 

of the RFC, both before and after the removal of the five least 

important features. The results are summarized in Table 5 

(before deletion) and Table 6 (after deletion), with a visual 

comparison provided in Figure 10. 

Table 5. Performance result of Taiwanese bankruptcy 

Method Acc 

Random Forest Classifiers (RFC) 96.90% ± 0.43% 

RFC + Fine Tuning 97%  ± 0.33% 

Boruta + RFC 96.88% ± 0.42% 

Boruta + RFC + Fine Tuning 97% ± 0.27% 

RFE + RFC 96.92% ± 0.37% 

RFE + RFC + Fine Tuning 96.69% ± 0.45% 

Table 6. Performance result of Taiwanese bankruptcy prediction 

dataset after delete 5 least important features 

Method Acc 

Random Forest Classifiers (RFC) 97.07% ± 0.44% 

RFC + Fine Tuning 97.05% ± 0.41% 

Boruta + RFC 96.9% ± 0.44% 

Boruta + RFC + Fine Tuning 97.17% ± 0.31% 

RFE + RFC 97.17% ± 0.41% 

RFE + RFC + Fine Tuning 97.21% ± 0.32% 

Figure 10. Taiwanese bankruptcy dataset comprehensive 

comparison 

Before feature elimination, the baseline RFC achieved an 

accuracy of 96.90% ± 0.43, which improved slightly to 

97.00% ± 0.33 after fine-tuning. The Boruta + RFC approach 

yielded 96.88% ± 0.42, and fine-tuning marginally increased 

it to 97.00% ± 0.27. The RFE + RFC configuration performed 

slightly better with 96.92% ± 0.37, although fine-tuning 

unexpectedly led to a small drop in performance to 96.69% ± 

0.45, possibly due to overfitting or loss of useful features in 

the pruning process. 

Following the removal of the five least important features, 

RFC retained its strong performance, achieving 97.07% ± 

0.44, and slightly decreasing to 97.05% ± 0.41 with fine-

tuning. Interestingly, the Boruta + RFC model also maintained 

robustness with 96.90% ± 0.44, and after fine-tuning, 

surpassed its previous result to reach 97.17% ± 0.31, the 

highest score achieved across all methods. The RFE + RFC 

method also benefited from feature pruning, improving to 

97.17% ± 0.41, and further increasing to 97.21% ± 0.32 after 

fine-tuning. 

These results confirm that eliminating the least important 

features does not degrade model performance on the 

Taiwanese Bankruptcy dataset. In fact, most configurations 

either maintained or slightly improved their predictive 

accuracy. Fine-tuning consistently enhanced results across all 
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methods. Notably, both RFE + RFC and Boruta + RFC, when 

fine-tuned, produced the highest accuracies after feature 

elimination. This suggests that RFE and Boruta are not only 

effective at selecting meaningful features but also robust when 

combined with model optimization. 

Overall, the RFC proved to be a highly reliable baseline 

model, while hybrid approaches with feature selection and 

fine-tuning offered marginal yet meaningful performance 

gains. These findings underscore the importance of combining 

feature selection with hyperparameter tuning to achieve 

optimal predictive performance, especially for high-stakes 

datasets like bankruptcy prediction, where small accuracy 

differences can be significant in real-world applications. 

5. CONCLUSIONS

The comparative analysis of feature selection methods 

across the three datasets reveals noteworthy differences 

between Boruta and RFE, particularly in scenarios involving 

feature removal. Although Boruta is a robust, all-relevant 

feature selection algorithm that relies on Random Forest 

importance scores and shadow features, it tended to 

underperform compared to RFE in multiple instances—

especially in the Adult Income dataset after the five least 

important features were eliminated. 

One potential explanation lies in Boruta's reliance on 

randomness and redundancy sensitivity. Since Boruta selects 

features based on whether their importance scores are 

consistently higher than those of permuted shadow features, it 

may inadvertently retain redundant or correlated variables. 

When those redundant features overlap with the five 

eliminated ones, Boruta loses predictive value, leading to 

reduced performance. In contrast, RFE systematically ranks 

features by recursively removing the least important ones and 

re-evaluating model performance, which tends to produce a 

more compact and discriminative subset, especially after 

aggressive feature pruning. 

Furthermore, Boruta’s strategy often retains a larger number 

of features compared to RFE. While this can be advantageous 

in exploratory analyses where preserving potentially relevant 

variables is desirable, it may introduce challenges in 

applications where model simplicity and computational 

efficiency are critical—such as in financial domains. 

Retaining excess features can increase the risk of noise, 

overfitting, and diminishing marginal returns. In contrast, RFE 

enforces stricter feature elimination, which can lead to a more 

favorable bias–variance trade-off under such conditions. 

From a financial perspective, the implications are 

significant. In applications such as credit risk assessment, 

bankruptcy prediction, or fraud detection, model 

interpretability, robustness, and efficiency are paramount. 

Redundant or noisy features can obscure the relationship 

between input variables and outcomes, reducing stakeholder 

trust and increasing regulatory scrutiny. The results of this 

study suggest that RFE may be better suited for high-stakes 

financial scenarios, particularly when dimensionality 

reduction is necessary or when resources are constrained. 

Moreover, the consistent performance gains observed 

through hyperparameter tuning across all methods underscore 

the critical role of model optimization in practical applications. 

Even in cases where feature selection may be suboptimal, fine-

tuning can compensate for reduced accuracy, reinforcing its 

importance as an integral component of any machine learning 

pipeline, particularly in financial contexts. The ability to 

achieve reliable performance from compact feature sets is 

especially valuable in environments where explainability, 

regulatory compliance, and computational efficiency are 

essential. 

In summary, while both Boruta and RFE offer distinct 

strengths, RFE’s adaptability to feature elimination and its 

stable performance make it a more reliable choice in financial 

machine learning tasks. Future work should explore hybrid 

feature selection approaches that combine the global relevance 

perspective of Boruta with the iterative refinement of RFE, 

potentially improving robustness and interpretability in 

dynamic financial domains. 
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