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Keratoconus is a degenerative eye disorder that affects the cornea. It is a progressive eye
disorder that leads to irregular astigmatism and decrease in visual acuity as the cornea
deforms and protrudes outward assuming a cone shape. The early diagnosis can be
challenging as the disease can be asymptomatic. This study proposes a machine learning
pipeline for the classification of the keratoconus using multi-scale feature extraction from
Pentacam derived corneal topographic maps. A labeled dataset comprising 2961 images,
categorized into Keratoconus, Normal and Suspect classes, is used in this study. Multi scale
image representations are generated using Gaussian and Laplacian pyramids, alongside a
patch-based pyramid. Gradient-based features are extracted from multi-scaled images using
Histogram of Oriented Gradients (HOG) and L1-regularised Logistic Regression is used for
feature selection. An optimized Light Gradient Boosting Machine (LightGBM) classifier is
employed for classification. Experimental results show that Gaussian pyramid based multi-
scale HOG features consistently outperformed Laplacian and patch-based approaches with
an overall accuracy of 85.62%, F1-score of 0.85 and AUC score of 0.95, confirming the
effectiveness of multi-scale analysis in corneal disease classification.

1. INTRODUCTION

Keratoconus is a progressive, bilateral disorder [1] of the
cornea characterized by thinning and bulging of the corneal
tissue, resulting in conical shape of the cornea [2]. This change
in the corneal shape leads to irregular astigmatism and vision
impairment [3]. The disease usually manifests during
adolescence and progresses until the fourth decade of life [4].
Unlike the early stages of the disease, moderate to advanced
stages are easily diagnosed due to the presence of classic signs
observable via slit-lamp and clinical examination [5]. The
early detection of the disease is crucial as progression can be
halted using medical intervention [6]. However, the detection
of the disease in its incipient stage is often challenging as the
early signs are often subtle and not easily detectable through
conventional methods [7].

In recent years, Machine Learning (ML) approaches have
shown promise as an automated diagnostic tool in healthcare
[8]. These techniques offer objective, data-driven
classification by identifying subtle patterns and abnormalities,
potentially enhancing diagnostic accuracy and aiding
healthcare professionals when integrated into automated
screening systems [9].

In this paper, multi-scale representation of corneal maps
using image pyramids is proposed. Histogram of Oriented
Gradients (HOG) is then applied to extract features across
these scales of corneal maps in L*a*b* colour space. Gradient
based features like HOG measure the rate and direction of
change in an image [10]. Since, Keratoconus is defined by a
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change in corneal shape, HOG descriptors are well suited to
detect these changes in cornea. At the fine scale, HOG
captures localized structural changes such as steepening and
surface irregularities, which are often indicative of early-stage
Keratoconus. At the coarse level, it highlights broader
deformation patterns, including generalized thinning and
changes in corneal curvature that are characteristics of the
advanced disease [11]. L1-penalized Logistic Regression is
used for feature selection and hyperparameter tuned LGB
classifier is used to evaluate the classification performance of
the model.

The main aim of this study is to develop an automated
multiscale image analysis framework for keratoconus
detection from corneal topographic maps using multiscale
image representation and feature extraction via image
pyramids and Histogram of Oriented Gradient (HOG)
Descriptors and LightGBM for classification.

The structure of this paper is outlined as follows. section 2
reviews previous studies on the detection of Keratoconus,
focusing on applications of machine learning techniques as
well as image analysis approaches based on pyramid structures
and HOG in medical imaging. Section 3 describes the
proposed methodology in detail, covering aspects such as
dataset collection and pre-processing, imbalance handling,
multi scale representation of images using Gaussian,
Laplacian and Patch-based pyramids, feature extraction using
HOG Descriptors in L*a*b* color space, classification
strategy using LightGBM classification framework and
statistical analysis. Section 4 discusses experimental setup,
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performance evaluation methods and results. A thorough
analysis and interpretation of the findings are provided in
section 5. Finally, section 6 summarizes the main conclusions
of this study and offers suggestions for future research
directions.

2. LITERATURE SURVEY

In a study done by Anwar and Ozbilge [12] YOLOVS is
implemented to capture the ROI from the 1000 eye images,
and the extracted region is used to train pre-trained CNN
models. In their study, Xception and InceptionResNetV2
outperformed with accuracies of 93.80% and 94.23% when
combined with ROI, and 91.43% and 91.45% without ROI in
classifying Normal, mild and advanced keratoconus stages.
Hashim and Mazinani [13] in their study have utilized
histogram equalization and PCA based feature extraction to
train ML and CNN models for keratoconus detection based on
400 images and achieved varied accuracies ranging from
70.9% to 99% for a binary classification of the disease.
Awwad et al. [14] proposed a study for keratoconus detection
which included 349 eyes and six parameters from corneal
thickness progression maps. They have trained over 7 ML
algorithms and have achieved varied accuracies of 87%, 91%
and 100% for four, three and two-class classification
respectively. Li et al. [15] employed 11 predictors including
age, gender and ocular biometrics derived from 1523 eyes to
train ML regression models to predict first applanation (SP-
Al) and corvis biomechanical index for Chinese populations
(cCBI) for keratoconus detection. They have achieved AUCs
0f0.939 and 0.881 for predicted SP-A1 and cCBI, respectively
between keratoconus and normal classes. In a study done by
Lu et al. [16] multiple imaging modalities such as air puff
tonometry, Scheimpflug tomography and spectral domain
optical coherence tomography (SD-OCT) are analyzed with
Random Forest and neural networks. They have included 599
eyes to train models and have reported the highest AUC of
0.902 when Random Forest algorithm was used to select
features from SD-OCT and air puff tonometry. Al-Timemy et
al. [17] proposed a hybrid deep learning model for keratoconus
detection by training 7 efficient-netb0) models and extracted
7000 deep features to train SVM classifier and achieved an
accuracy of 81.6% for classification of normal, suspect and
keratoconus classes. Ahmed et al. [18] compared different
deep learning models on an augmented corneal map dataset of
16016 samples and achieved an accuracy of 98% with
MobileNet-v2. However, it should be noted that all the train
validation and test sets have been augmented with data
augmentation techniques which could have contributed to
inflated classification accuracy. In a study done by Gandhi et
al. [19] 3962 corneal topographic maps based on 10-class
Amsler Krumeich classification with augmentation are used to
train deep learning models, they have reported a performance
accuracy of 77.43% with VGG19.

Jawad et al. [20] in their work suggested a retinal image
enhancement by segmenting the retinal image regions from
RGB to L*a*b* space and wused adaptive histogram
equalization on L channel for image enhancement. In a
comparative study [21] of L1-regularised logistic regression
methods, the performance of IRLs and Glmnet is evaluated
across high dimensional scenarios with varying sample sizes
and predictor correlations. The results indicated that both
methods effectively selected the informative features in low to
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moderately correlated settings. Ozyurt et al. [22] employed an
exemplar pyramid-based feature extraction for covid-19
detection using deep learning algorithms.

Most of the research done on keratoconus detection based
on corneal imaging or raw data is based on region-specific or
institution-specific data which limits the generalizability of the
model [23].

3. METHODOLOGY
3.1 Data collection and pre-processing

In this work, a total of 2961 corneal images obtained from
542 eyes using the Oculus Pentacam imaging system is
utilized. This dataset, which had been previously compiled and
made publicly accessible through earlier publications [17],
includes three categories: Keratoconus, Normal and Suspect.
Image labeling was performed by three experienced corneal
specialists following established guidelines as reported in
prior studies [17].

(a) Keratoconus

S
S
S

(c) Suspect

Figure 1. Corneal topography images

Specifically, the dataset comprises of 1050 images of each
Keratoconus and Normal categories, while the Suspect group
contains 861 images. For model development and evaluation,
the entire dataset is partitioned into stratified split of 70% for
training and 15% each for validation and testing. This resulted
in 2072 images in the train set, 444 images in the validation
set and 445 images in the test set. The size of each corneal map
is 224>224>3. Figure 1. shows the corneal topographic maps
of keratoconic, normal and suspect eyes derived from
Pentacam device.

To address the issue of class imbalance within the dataset,
class weights are computed using a balanced weighting
strategy. This technique assigns proportionally higher weights
to classes with fewer samples, thereby promoting fairer
learning during the model training. The weight for each class
w; is determined using the formula:



(1)

where,

w; represents the weight assigned to class j,

Nirain 1S the total number of images in the train set,

C is the total number of categories, and

N; is the number of training images belonging to class j.

Besides class weighting, Synthetic Minority Over-
Sampling Technique (SMOTE) is also employed to handle
data imbalances. SMOTE [24] is used to equalize the number
of samples in the suspect class to that of normal and
keratoconus classes in the training set. Validation and test sets
are left untouched. An extra of 133 synthetic samples from
suspect class are generated to balance the dataset.

To enhance the discriminative quality of the corneal maps,
all images are converted from RGB to L*a*b* color space
prior to feature extraction. This conversion is inspired by prior
work [20].

3.2 Multi-scale representation using Image pyramids

To capture multi-scale features from corneal topography,
three distinct pyramid-based image representations were
constructed. Gaussian pyramids, Laplacian pyramids [25] and
patch-based pyramid [22]. Each image was first converted to
the L*a*b* colour space to enhance the corneal maps. The
Gaussian pyramid is constructed by iteratively applying
Gaussian smoothing followed by a downsampling with factor
of 2 at each level. A total of 3 Gaussian levels is generated
beyond the original image. A Laplacian pyramid is derived by
subtracting the upsampled lower-level Gaussian image from
its corresponding higher-level image, emphasizing localized
edge and texture details at each size. Three Laplacian levels
corresponding to the three Gaussian levels are computed.
Additionally, a patch-based image pyramid is constructed by
directly resizing image with downsampling factor of 2 per
level, without applying any smoothing operation. At each
resolution, the downscaled image is partitioned into non-
overlapping 28>28 patches.

3.3 Histogram of Oriented Gradients

The Histogram of Oriented Gradients (HOG) is a feature
descriptor in computer vision and image analysis tasks [26].
HOG features are independently extracted from each pyramid
type to capture texture and edge information. For both the
Gaussian and the Laplacian pyramid, HOG features are
computed from each image level independently across all
scales. In the case of the patch-based pyramid, each
downscaled image is subdivided into non-overlapping patches
of size 28>28 pixels, and HOG features are extracted
individually from each patch. A stride of 28 pixels is used to
ensure complete spatial coverage without overlapping patches.

Table 1 presents the HOG descriptor parameters used for
feature extraction at each pyramid level.

The parameters in Table 1 in are chosen in a way to strike a
balance between capturing discriminative features and
maintaining computational efficiency. 7 orientation bins were
chosen to capture major edge directions while keeping
computational cost to a minimum. 4x4 pixels per cell is chosen
to capture finer details when compared to the default of 8>8
pixels per cell. A 2>2 cells per block was found to be the most
effective in capturing local variations and small enough to not
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average out the important detail. L2-norm with hysteresis is
chosen as it prevents few high contrast gradients from
dominating the entire feature vector [10].

Table 1. HOG descriptor parameters

Parameter Description Value
Orientations Number of'gradlent orientation 7
bins per cell
Pixels Per Cell Slze_of eac_:h cell over which the 454
gradient histogram is computed
Cells per Block Number of cells in gach_ block 250
for local normalization
Block Normalization applied to improve L2-
Normalization invariance Hys

3.4 Feature selection

To reduce the feature dimensionality and retain only the
most discriminative features, a coordinate descent based L1-
regularized Logistic Regression is employed for feature
selection with solver set to ‘liblinear’, max iterations are set to
10000 and the parameter ‘C’ is set to 1.0. L1 penalty
encourages sparsity by driving the coefficients of less
informative features to zero effectively selecting a subset of
relevant features for classification [21]. The model is trained
on scaled HOG feature vectors extracted from each pyramid
representation, and the selected features are subsequently used
as input to the final LightGBM classifier. This approach
improved computational efficiency and reduced the risk of
overfitting in high dimensional feature spaces.

3.5 LightGBM classifier

LightGBM [27] is an efficient gradient boosting framework
designed for machine learning applications. Unlike
conventional gradient boosting models that use a level-wise
approach, LightGBM adopts a leaf-wise tree growth strategy.
In this approach, the leaf with the highest potential gain is
selected and split at each iteration, enabling the model to focus
on the most informative regions of the feature space. The
selected features by the L1-Logistic Regression are used as
input to the LightGBM classifier. To identify the optimal
hyperparameters for the LightGBM classifier, a random search
cross-validation ~ (RandomizedSearchCV)  strategy s
employed. This approach samples a predefined number of
random combinations from specified hyperparameter
distributions, offering a more computationally efficient
alternative. In this study, 30 randomly selected
hyperparameter configurations are evaluated for each feature
extraction pipeline.

Table 2 presents description of the hyperparameters
employed in the model training process along with their
respective search ranges utilized during optimization.

To maintain data integrity and prevent overlap between
training and validation subsets, a PredefinedSplit (ps) is
utilized during cross-validation. The model selects the best
performing hyperparameter set after training on the train set
based on the validation accuracy, evaluated on a reserved
validation set containing 444 samples. Once the best
configuration of the hyperparameter set is found, the model’s
classification performance is evaluated finally on the test set
containing 445 samples. The workflow for proposed machine
learning framework for keratoconus classification is depicted
in Figure 2.



Table 2. Hyperparameters and search ranges for model

optimization
. Search
Hyperparameter Description Range
Subsample ratio of columns
colsample_bytree when constructing each tree 051010
. Step size shrinkage used in 0.01to
learning_rate updates 0.2
max_depth Maximum depth of each tree 3to0 10
n_estimators Numl?er Of. boosting 50 to 500
iterations
num_leaves Number of leaves in full trees 20 to 150
Subsample ratio of training
subsample instances 0.5t01.0

T

| Data Collection {Pentacam Mapr-}‘
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Train-Validation-Test Split

!

‘ Preprocessing (RGB o L*a*b*)

'

Multi-Scale Representation (Ciaussian, Laplacian, Patch-hased Pyramid)

:

| HOG Featane thra::lim‘

!

Standard Scaling

I

L1-Regularized Logistic Regression (Feamre Selection)

1

Hyperparameter Tuning on Validation Set (LightGBM)

l
Combine Train+Validation Scts
i
Final Model Training (LightGBM) |
l

Muodel Evalnation on Test Set

!

—_—

End
.

Figure 2. Workflow of the proposed machine learning

framework for keratoconus detection

(a) Gaussian pyramid constructed using 3 downsampling
steps resulting in 4 levels with resolutions: 2243024,
112112, 56>66 and 28>28
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(b) Laplacian pyramid constructed using 3 downsampling
steps resulting in 3 levels with resolutions: 224324,
112112, and 56>66

(c) Patch-based pyramid constructed using 3 downsampling
steps without smoothing resulting in 4 levels with
resolutions: 224>224, 112x112, 56>56 and 28>28

Figure 3. The Gaussian, Laplacian and Patch-based
pyramids

Furthermore, bootstrapping with n = 1000 resamples is
employed to account for variability. For each resample,
models are trained and evaluated. The results of each iteration
are recorded and stored in .csv files. A one-way Analysis of
Variance (ANOVA) is performed across the three pyramid-
HOG pipelines to test whether the mean performance metrics
differed significantly. Tukey’s Honestly Significant
Difference (HSD) post-hoc test is used for pairwise
comparison between the three pyramid-HOG pipelines that are
statistically significant. Pairwise t-tests are conducted on
bootstrap derived distributions to compare class weighting and
SMOTE imbalance handling. These statistical methods are
used in machine learning research to compare model
performance [28]. Figure 3 shows the corneal maps
represented at different scales using Gaussian, Laplacian and
Patch-based pyramid.

4. PERFORMANCE EVALUATION AND RESULTS

To evaluate the performance of the proposed automated
machine learning framework for classification of
Keratoconus, the metrics like accuracy, sensitivity, specificity,
fl-score and AUC score along with confusion matrix plots and
AUROC are considered.

A TP+ TN @)
U = TP X TN + FP + FN
TP
o 3
Sensitivity TP+ FN (3)
Specifici N @)
pecificity = TN T FP



TP Table 3 presents the optimal hyperparameter configurations

Precision = TP + FP ®) determined for the LightGBM classifier associated with the
multi-scale image representation and feature extraction
Precision X Recall pipelines.

_ =2x 6
F1=score =2 Precision + Recall ©

Table 3. Best LightGBM hyperparameters obtained for each pyramid-HOG pipeline (Randomized Search)

Hyperparameter Gaussian Pyramid - HOG  Laplacian Pyramid - HOG  Patch-based Pyramid - HOG

colsample_bytree 0.5103 0.8737 0.8926
learning_rate 0.2040 0.1179 0.0499
max_depth 6 4 9
n_estimators 463 266 293
num_leaves 57 143 83
subsample 0.5004 0.6380 0.7334

Table 4. Class-wise performance metrics for each pyramid type with HOG features

Method Class Precision  Recall (Sensitivity) Specificity F1 Score AUC (OVR)
Keratoconus  0.9536 0.9114 0.9756 0.9320 0.9907
Gaussian Pyramid-HOG Normal 0.8776 0.8165 0.9373 0.8459 0.9617
Suspect 0.7347 0.8372 0.8766 0.7826 0.9450
Keratoconus ~ 0.8931 0.8987 0.9408 0.8959 0.9830
Laplacian Pyramid-HOG Normal 0.8947 0.7532 0.9512 0.8179 0.9512
Suspect 0.6863 0.8140 0.8481 0.7447 0.9296
Keratoconus  0.9363 0.9304 0.9652 0.9333 0.9858
Patch-based Pyramid-HOG Normal 0.8487 0.8165 0.9199 0.8323 0.9563
Suspect 0.7426 0.7829 0.8892 0.7623 0.9348
Table 4 Summarizes the performance metrics for each class, Tukey’s Honestly Significant Difference (HSD) post-hoc test.
Keratoconus, Normal and Suspect across the three pyramid-
HOG pipelines. This comparative evaluation highlights the Table 6. Statistical analysis of each pyramid-HOG pipeline
strengths and limitations of each pyramid-HOG technique in
classification of Keratoconus. Metric F- Methods Mean
statistic Compared difference
Table 5. Overall and averaged performance metrics for each Gaussian vs. 20,0336
pyramid type with HOG features LightGBM Laplacian ’
hyperparameters obtained for each pyramid-HOG pipeline Accuracy 9595 Gaussian vs. -0.0090
Patch-based
Gaussian Laplacian Patch-based |§lp|&|\fl§ﬂ vg. 0.0246
Metric Pyramid - Pyramid - Pyramid - atc ~base
HOG HOG HOG Gaussian vs. -0.0340
Weighted Laplacian
Gaussian vs.
Avg 0.8632 0.8337 0.8491 F1-Macro 941.79 -0.0110
Precisi Patch-based
recision Laplacian vs
Weighted 0.8562 0.8225 0.8472 Patch-based 0.0230
Avg Recall Gaussian vs
Weighted 0.8581 0.8244 0.8479 Laplacian -0.0305
Avg F1 Score Precision- Gaussian vs
Macro Avg 0.8553 0.8247 0.8425 Macro 789.09 Patch-based -0.0128
Laplacian vs.
Macro V0 0.8550 0.8220 0.8433 Patch-based 0.0177
Gaussian vs.
N'Falcrsocg‘ég 0.8535 0.8195 0.8426 Laplacian 10.0330
Recall- Gaussian vs.
Overall 0.9298 0.9134 0.9248 Macro 874.52 Patch-based 00118
Specificity Laplacian vs
Weighted 0.9671 0.9562 0.9606 Patch-based 0.0212
Avg AUC Gaussian vs
Macro 2v0 0.9658 0.9546 0.9590 Laplacian 0.0112
AUC-Macro  739.04 Gaussian vs. 10.0069
Table 5 provides an overall comparative assessment of Laplacian vs.
classification performance of all three pipelines. It reports Patch-based 0.0043
weighted and macro-averaged values for precision, Sensitivity Note: All p-values for the one-way ANOVA and adjusted p-values for
(Reca”), F1-score, AUC score and overall specificity. Tukey’s HSD post-hoc test are < 0.001, indican:ng a statistically significant
Table 6 presents the statistical comparison of all three difference for all comparisons.

pyramid-HOG pipelines based on one-way ANOVA and
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Table 7. Comparison of class weighting and SMOTE

Table 8. Summary of related studies and their classification

performance performance
Mean . Accurac
) score Mean Mean Study Classe Dataset Technique y
Method Metric score . S Used
(Class (SMOTE) difference (%)
Weighting) Ahmed 16,016
Accuracy 0.8564 0.8631 0.0067 etal. 3-class  augmented MobileNet v2 98.00
F1-Macro 0.8533 0.8601 0.0068 [18] images
Precision- Al- Decision Tree/
. Macro 0.8555 0.8616 0.0061 Sharify 4.'91 Nearest 65.7/62.
Gaussian Recall- etal 5-class  subjects/8 Neighbour 6
Macro 0.8553 0.8620 0.0067 [29] parameters Analysis
AUC- 0.9659 09638  -0.0021 Gandhi 3962 maps
Macro etal 10- with VGG19 77.43
Accuracy 0.8228 0.8230 0.0002 [19]' class  augmentatio '
F1-Macro 0.8193 0.8168 -0.0025 n
Precision- Al-
. Macro 0.8250 0.8186 -0.0064 Timem 542 eyes/7 EfficientNet-
Laplacian Recall- yetal 3-class maps b0+SVM 81.60
Macro 0.8223 0.8183 -0.0040 [17]
AUC- ) . Image pyramid+
Macro 0.9547 0.9515 0.0032 STtL‘éS 3-class es%‘ﬁq aps HOG*LightGB 8562
Accuracy  0.8474 08266  -0.0208 y Y P M
F1-Macro 0.8423 0.8214 -0.0209
Precision- g g/57 0.8219 -0.0208 Table 7 provides statistical analysis of all three pyramid-
I;atcfé- F':"acﬁ’ HOG pipelines using class weighting and SMOTE techniques.
ase l\jggr(; 0.8435 0.8225 -0.0210 Table 8 gives a comparison of recent studies on keratoconus
AUC- detection based on the number of classes, dataset
Macro 0.9590 0.9537 -0.0053 characteristics, techniques employed and achieved accuracy.

Note: All p-values for the paired t-test are < 0.001, indicating a statistically
significant difference between SMOTE and Class Weighting technique
except for the accuracy metric in the Laplacian method where p > 0.05.

Table 9 gives the classification accuracies achieved on the
validation and independent test sets across the three multi-
scale feature extraction pipelines.

Table 9. Validation and test accuracies (%) with pyramid levels for each multi-scale feature extraction pipeline

Pyramid Downsampling Gaussian Levels (incl. Laplacian Validation Accuracy Test Accuracy
Type Steps Original) Levels (%0) (*0)
Gaussian 3 4 N/A 82.21 85.62
Pyramid

Laplam_an 3 4 3 80.63 82.25
Pyramid

Patch-ba_sed 3 N/A N/A 80.63 84.72
Pyramid

5. DISCUSSION which captured the relevant discriminative features in the

In this study, an automated machine learning framework for
classification of Keratoconus using image pyramids, HOG and
LightGBM classifier is proposed. A stratified split of 70%-
15%-15% of train validation and test split is employed on a
dataset of 2961 pentacam derived corneal maps containing
keratoconus, normal and suspect classes. The dataset is
imbalanced with the “suspect” class having relatively fewer
instances. To address this, class weighting based on inverse
class frequency is applied during training, ensuring that
minority class errors are penalized more heavily during
optimization. RGB to L*a*b* conversion is used as the
preprocessing step.

Three distinct multi-scale feature extraction approaches are
investigated: Gaussian pyramid-HOG Laplacian Pyramid and
a Patch-based Pyramid, with 3 levels each and downsampling
factor of 2 per each level. Each technique aims to enhance
feature representation by decomposing spatial information at
multiple levels for detecting keratoconus. These
decompositions are followed by HOG feature extraction,
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image. These extracted features are scaled using
‘StandardScaler’ and LightGBM classifier is trained with
hyperparameter optimization via randomized search. From
Table 3. It is evident that Gaussian Pyramid and HOG required
a relatively higher learning rate and fewer leaves suggesting
its multi-scale smoothed features resulted in a simple decision
boundary. In contrast, the patch-based method required a
‘max_depth’ of 9 with a lower learning rate. All simulations
are performed on Pop! OS 22.04 (Ubuntu based Linux
distribution) with 32GB of RAM and Ryzen 5600H Hexacore
CPU. Model evaluation metrics in Table 4. revealed that all
three pyramid strategies achieved strong classification
performance, particularly for the keratoconus class, where
precision and recall scores are consistently high. For instance,
the patch-based pyramid model achieved a recall of 0.9304 for
keratoconus class. However, suspect class detection remained
challenging across all pipelines with precision ranging from
0.6863 to 0.7426. This underperformance is likely due to the
intermediate morphological characteristics of suspect cases,
which share traits with both normal and keratoconus corneas.



Nevertheless, the patch-based pyramid exhibited slightly

improved performance for suspect class classification, likely One vé flact ROC Curves
due to its ability to focus on localized regions where early L
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Figure 6. The confusion matrix plot and AUROC for patch-
based pyramid and HOG feature extraction pipeline

Table 5 provides the macro and weighted average metrics
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for each model. The Gaussian Pyramid and HOG pipeline
delivered the best overall performance with a weighted
average F1 score 0of 0.8581 and macro average AUC of 0.9568.
Although, patch-based method trailed slightly in macro and
weighted averages, it maintained a balanced performance
across all classes, suggesting improving robustness in
handling class imbalance. These results emphasize the
effectiveness of image pyramids in enhancing class

separability in corneal maps and validate the suitability of
HOG descriptors in keratoconus classification. Figures 4, 5
and 6 show the confusion matrix plot and AUROC plot for all
the three pipelines.

Figure 7 provides feature maps of corneal images across
different scales and color channels. These feature maps
confirm that model’s decisions are based on gradient-based
information extracted by HOG.

SHOEIE

<SHOHN ﬂi.l
OE"
;| -l h' -|

<R

Figure 7. The feature maps of the corneal image at multi scales

Table 6 provides statistical evidence for the performance
differences observed in Tables 4 and 5. The F-statistic shown
for each metric is very high (all are over 739). The high F-
statistic shows that the probability of average performance of
the three pyramid-HOG pipelines being the same is very low.
The high F-statistic coupled with p-value <0.001 indicates that
the differences are significant. Tukey’s HSD post-hoc test
confirms that the difference between each pair of pipelines
(Gaussian-HOG vs. Laplacian-HOG, Gaussian-HOG vs.
Laplacian-HOG and Laplacian vs. Patch-based-HOG) is also
statistically significant with adjusted p-values < 0.001. The
positive mean difference indicates patch-based-HOG
outperformed Laplacian-HOG in Laplacian vs. Patch-based
HOG. The negative mean difference in Gaussian-HOG vs.
Laplacian-HOG and Gaussian-HOG vs. Patch-based-HOG
indicates that Gaussian-HOG has outperformed both the other
methods.

Table 7 presents the results of a pairwise t-test comparing
the performance of Class-Weighting and SMOTE within each
of the three pyramid-HOG pipelines. This analysis statistically
validates the effectiveness of each imbalance handling
technique. The negative mean difference between Class
Weighting and SMOTE indicates that Class Weighting has
performed significantly better than SMOTE. The positive
mean difference indicates that SMOTE has outperformed
Class Weighting technique. For the Gaussian pyramid-HOG
SMOTE slightly outperforms Class Weighting across most
metrics with a positive mean difference with the exception of
AUC-Macro. The p-values are less than 0.001, showing that
the small differences are significant. In the Laplacian pyramid-
HOG the difference between the two methods is very little.
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The p-value for accuracy metric is > 0.05 indicates that mean
difference in accuracy is not significant. For all other metrics,
the p-values are < 0.001. For the patch-based pyramid-HOG
Class Weighting significantly outperforms the SMOTE in all
metrics with mean differences being negative and substantial
and corresponding p-values < 0.001. This indicates that the
Class Weighting is the superior technique for handling class
imbalance when using patch-based pyramid-HOG pipeline.

Compared to existing studies in Table 8. The proposed
approach achieved a classification accuracy of 85.62%,
outperforming the classification models applied to corneal
imaging, such as the study by Al-Timemy et al. [17] and the
study by Gandhi [19]. While Ahmed et al. [18] reported a
higher accuracy of 98% using MobileNet-v2, their model was
trained on over 16,000 augmented images, whereas the current
study is done on a non-augmented dataset. This suggests that
hand crafted features, when combined with optimized models,
could match deep learning models in data-limited scenarios.

As shown in Table 9, all models maintained high
generalization capability, with test accuracy above 82%. The
Gaussian pyramid-HOG has achieved a test accuracy of
85.62%. To assess the reliability of this result, bootstrap
resampling method is employed with 1000 samples, which
yielded a mean accuracy of 85.64% (95% CI: 82.25%-
88.76%) and a standard deviation of 0.0170. The relatively
lower performance of Laplacian pyramid in both validation
and test sets may stem from its emphasis on high-frequency
details which, while important, may introduce noise.

Despite promising results, the proposed pipeline has
limitations. First, the lower sensitivity in suspect class across
all models indicates the inherent difficulty of detecting suspect



classes. This challenge is consistent with clinical findings,
where subclinical keratoconus often overlaps morphologically
with normal corneas, Second, while the use of HOG feature
enables interpretability, they may lack the expressiveness of
learned deep features. For early diagnosis of the disease, the
detection of suspect class from normal is crucial. Instead of
relying solely on HOG features, attention networks like
wavelet guided attention nets, multi-scale attention layers
within CNN or a hybrid of CNN models and handcrafted
features can be employed to detect the subtle variations in the
corneal topography map of a suspect class. In addition,
explainable Al, Grad cam visualization might help the model
focus on the regions of the corneal maps that are highly
discriminative in classifying suspect versus normal cases.

6. CONCLUSION

In this study, a comparative evaluation of three multi-scale
representation techniques, Gaussian Pyramid, Laplacian
Pyramid and Patch-based Pyramid, is conducted for the task
of Keratoconus classification using Pentacam derived corneal
topographic maps. Each multi scale representation is coupled
with Histogram of Oriented Gradients feature extraction and
classification is performed using optimized LightGBM
classifier.

The experimental results show that Gaussian Pyramid-
HOG consistently achieved better performance with an
accuracy of 85.62%, F1 score of 0.85 and AUC score of 0.96.
The patch-based pyramid showed competitive results, while
Laplacian  pyramid exhibited comparatively lower
classification performance. The bootstrap CIs, ANOVA and
Tukey’s post-hoc tests proved that choice of pyramid-HOG
pipeline has a statistically significant impact on performance.

This study also performed pairwise t-tests on two imbalance
handling techniques. The results showed that, while SMOTE
is more effective with Gaussian-HOG pipeline, Class
Weighting performed significantly better with patch-based
pyramid-HOG pipeline.

Overall, the findings confirm the importance of multi-scale
texture analysis in medical image classification tasks and
highlight the effectiveness of combining HOG descriptors
with image pyramids for robust and efficient feature extraction
in Keratoconus classification. Future work will explore the
integration of LSTM, wavelet guided attention networks and
meta-heuristic algorithms to enhance classification accuracy
and generalizability in clinical applications.
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