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Keratoconus is a degenerative eye disorder that affects the cornea. It is a progressive eye 

disorder that leads to irregular astigmatism and decrease in visual acuity as the cornea 

deforms and protrudes outward assuming a cone shape. The early diagnosis can be 

challenging as the disease can be asymptomatic. This study proposes a machine learning 

pipeline for the classification of the keratoconus using multi-scale feature extraction from 

Pentacam derived corneal topographic maps. A labeled dataset comprising 2961 images, 

categorized into Keratoconus, Normal and Suspect classes, is used in this study. Multi scale 

image representations are generated using Gaussian and Laplacian pyramids, alongside a 

patch-based pyramid. Gradient-based features are extracted from multi-scaled images using 

Histogram of Oriented Gradients (HOG) and L1-regularised Logistic Regression is used for 

feature selection. An optimized Light Gradient Boosting Machine (LightGBM) classifier is 

employed for classification. Experimental results show that Gaussian pyramid based multi-

scale HOG features consistently outperformed Laplacian and patch-based approaches with 

an overall accuracy of 85.62%, F1-score of 0.85 and AUC score of 0.95, confirming the 

effectiveness of multi-scale analysis in corneal disease classification.  
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1. INTRODUCTION

Keratoconus is a progressive, bilateral disorder [1] of the 

cornea characterized by thinning and bulging of the corneal 

tissue, resulting in conical shape of the cornea [2]. This change 

in the corneal shape leads to irregular astigmatism and vision 

impairment [3]. The disease usually manifests during 

adolescence and progresses until the fourth decade of life [4]. 

Unlike the early stages of the disease, moderate to advanced 

stages are easily diagnosed due to the presence of classic signs 

observable via slit-lamp and clinical examination [5]. The 

early detection of the disease is crucial as progression can be 

halted using medical intervention [6]. However, the detection 

of the disease in its incipient stage is often challenging as the 

early signs are often subtle and not easily detectable through 

conventional methods [7]. 

In recent years, Machine Learning (ML) approaches have 

shown promise as an automated diagnostic tool in healthcare 

[8]. These techniques offer objective, data-driven 

classification by identifying subtle patterns and abnormalities, 

potentially enhancing diagnostic accuracy and aiding 

healthcare professionals when integrated into automated 

screening systems [9]. 

In this paper, multi-scale representation of corneal maps 

using image pyramids is proposed. Histogram of Oriented 

Gradients (HOG) is then applied to extract features across 

these scales of corneal maps in L*a*b* colour space. Gradient 

based features like HOG measure the rate and direction of 

change in an image [10]. Since, Keratoconus is defined by a 

change in corneal shape, HOG descriptors are well suited to 

detect these changes in cornea. At the fine scale, HOG 

captures localized structural changes such as steepening and 

surface irregularities, which are often indicative of early-stage 

Keratoconus. At the coarse level, it highlights broader 

deformation patterns, including generalized thinning and 

changes in corneal curvature that are characteristics of the 

advanced disease [11]. L1-penalized Logistic Regression is 

used for feature selection and hyperparameter tuned LGB 

classifier is used to evaluate the classification performance of 

the model.  

The main aim of this study is to develop an automated 

multiscale image analysis framework for keratoconus 

detection from corneal topographic maps using multiscale 

image representation and feature extraction via image 

pyramids and Histogram of Oriented Gradient (HOG) 

Descriptors and LightGBM for classification.  

The structure of this paper is outlined as follows. section 2 

reviews previous studies on the detection of Keratoconus, 

focusing on applications of machine learning techniques as 

well as image analysis approaches based on pyramid structures 

and HOG in medical imaging. Section 3 describes the 

proposed methodology in detail, covering aspects such as 

dataset collection and pre-processing, imbalance handling, 

multi scale representation of images using Gaussian, 

Laplacian and Patch-based pyramids, feature extraction using 

HOG Descriptors in L*a*b* color space, classification 

strategy using LightGBM classification framework and 

statistical analysis. Section 4 discusses experimental setup, 
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performance evaluation methods and results. A thorough 

analysis and interpretation of the findings are provided in 

section 5. Finally, section 6 summarizes the main conclusions 

of this study and offers suggestions for future research 

directions. 

 

 

2. LITERATURE SURVEY 

 

In a study done by Anwar and Özbilge [12] YOLOv8 is 

implemented to capture the ROI from the 1000 eye images, 

and the extracted region is used to train pre-trained CNN 

models. In their study, Xception and InceptionResNetV2 

outperformed with accuracies of 93.80% and 94.23% when 

combined with ROI, and 91.43% and 91.45% without ROI in 

classifying Normal, mild and advanced keratoconus stages. 

Hashim and Mazinani [13] in their study have utilized 

histogram equalization and PCA based feature extraction to 

train ML and CNN models for keratoconus detection based on 

400 images and achieved varied accuracies ranging from 

70.9% to 99% for a binary classification of the disease. 

Awwad et al. [14] proposed a study for keratoconus detection 

which included 349 eyes and six parameters from corneal 

thickness progression maps. They have trained over 7 ML 

algorithms and have achieved varied accuracies of 87%, 91% 

and 100% for four, three and two-class classification 

respectively. Li et al. [15] employed 11 predictors including 

age, gender and ocular biometrics derived from 1523 eyes to 

train ML regression models to predict first applanation (SP-

A1) and corvis biomechanical index for Chinese populations 

(cCBI) for keratoconus detection. They have achieved AUCs 

of 0.939 and 0.881 for predicted SP-A1 and cCBI, respectively 

between keratoconus and normal classes. In a study done by 

Lu et al. [16] multiple imaging modalities such as air puff 

tonometry, Scheimpflug tomography and spectral domain 

optical coherence tomography (SD-OCT) are analyzed with 

Random Forest and neural networks. They have included 599 

eyes to train models and have reported the highest AUC of 

0.902 when Random Forest algorithm was used to select 

features from SD-OCT and air puff tonometry. Al-Timemy et 

al. [17] proposed a hybrid deep learning model for keratoconus 

detection by training 7 efficient-netb0 models and extracted 

7000 deep features to train SVM classifier and achieved an 

accuracy of 81.6% for classification of normal, suspect and 

keratoconus classes. Ahmed et al. [18] compared different 

deep learning models on an augmented corneal map dataset of 

16016 samples and achieved an accuracy of 98% with 

MobileNet-v2. However, it should be noted that all the train 

validation and test sets have been augmented with data 

augmentation techniques which could have contributed to 

inflated classification accuracy. In a study done by Gandhi et 

al. [19] 3962 corneal topographic maps based on 10-class 

Amsler Krumeich classification with augmentation are used to 

train deep learning models, they have reported a performance 

accuracy of 77.43% with VGG19. 

Jawad et al. [20] in their work suggested a retinal image 

enhancement by segmenting the retinal image regions from 

RGB to L*a*b* space and used adaptive histogram 

equalization on L channel for image enhancement. In a 

comparative study [21] of L1-regularised logistic regression 

methods, the performance of IRLs and Glmnet is evaluated 

across high dimensional scenarios with varying sample sizes 

and predictor correlations. The results indicated that both 

methods effectively selected the informative features in low to 

moderately correlated settings. Ozyurt et al. [22] employed an 

exemplar pyramid-based feature extraction for covid-19 

detection using deep learning algorithms. 

Most of the research done on keratoconus detection based 

on corneal imaging or raw data is based on region-specific or 

institution-specific data which limits the generalizability of the 

model [23]. 

 

 

3. METHODOLOGY 

 

3.1 Data collection and pre-processing 

 

In this work, a total of 2961 corneal images obtained from 

542 eyes using the Oculus Pentacam imaging system is 

utilized. This dataset, which had been previously compiled and 

made publicly accessible through earlier publications [17], 

includes three categories: Keratoconus, Normal and Suspect. 

Image labeling was performed by three experienced corneal 

specialists following established guidelines as reported in 

prior studies [17]. 

 

  

(a) Keratoconus (b) Normal 

 
(c) Suspect 

 

Figure 1. Corneal topography images 

 

Specifically, the dataset comprises of 1050 images of each 

Keratoconus and Normal categories, while the Suspect group 

contains 861 images. For model development and evaluation, 

the entire dataset is partitioned into stratified split of 70% for 

training and 15% each for validation and testing. This resulted 

in 2072 images in the train set, 444 images in the validation 

set and 445 images in the test set. The size of each corneal map 

is 224×224×3. Figure 1. shows the corneal topographic maps 

of keratoconic, normal and suspect eyes derived from 

Pentacam device. 

To address the issue of class imbalance within the dataset, 

class weights are computed using a balanced weighting 

strategy. This technique assigns proportionally higher weights 

to classes with fewer samples, thereby promoting fairer 

learning during the model training. The weight for each class 

𝑤𝑗  is determined using the formula: 
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𝑤𝑗 =
𝑁train

𝐶 × 𝑁𝑗

 (1) 

 

where, 

𝑤𝑗  represents the weight assigned to class 𝑗, 

𝑁train is the total number of images in the train set, 

𝐶 is the total number of categories, and 

𝑁𝑗 is the number of training images belonging to class 𝑗. 

Besides class weighting, Synthetic Minority Over-

Sampling Technique (SMOTE) is also employed to handle 

data imbalances. SMOTE [24] is used to equalize the number 

of samples in the suspect class to that of normal and 

keratoconus classes in the training set. Validation and test sets 

are left untouched. An extra of 133 synthetic samples from 

suspect class are generated to balance the dataset. 

To enhance the discriminative quality of the corneal maps, 

all images are converted from RGB to L*a*b* color space 

prior to feature extraction. This conversion is inspired by prior 

work [20]. 

 

3.2 Multi-scale representation using Image pyramids 

 

To capture multi-scale features from corneal topography, 

three distinct pyramid-based image representations were 

constructed. Gaussian pyramids, Laplacian pyramids [25] and 

patch-based pyramid [22]. Each image was first converted to 

the L*a*b* colour space to enhance the corneal maps. The 

Gaussian pyramid is constructed by iteratively applying 

Gaussian smoothing followed by a downsampling with factor 

of 2 at each level. A total of 3 Gaussian levels is generated 

beyond the original image. A Laplacian pyramid is derived by 

subtracting the upsampled lower-level Gaussian image from 

its corresponding higher-level image, emphasizing localized 

edge and texture details at each size. Three Laplacian levels 

corresponding to the three Gaussian levels are computed. 

Additionally, a patch-based image pyramid is constructed by 

directly resizing image with downsampling factor of 2 per 

level, without applying any smoothing operation. At each 

resolution, the downscaled image is partitioned into non-

overlapping 28×28 patches. 

 

3.3 Histogram of Oriented Gradients 

 

The Histogram of Oriented Gradients (HOG) is a feature 

descriptor in computer vision and image analysis tasks [26]. 

HOG features are independently extracted from each pyramid 

type to capture texture and edge information. For both the 

Gaussian and the Laplacian pyramid, HOG features are 

computed from each image level independently across all 

scales. In the case of the patch-based pyramid, each 

downscaled image is subdivided into non-overlapping patches 

of size 28×28 pixels, and HOG features are extracted 

individually from each patch. A stride of 28 pixels is used to 

ensure complete spatial coverage without overlapping patches. 

Table 1 presents the HOG descriptor parameters used for 

feature extraction at each pyramid level. 

The parameters in Table 1 in are chosen in a way to strike a 

balance between capturing discriminative features and 

maintaining computational efficiency. 7 orientation bins were 

chosen to capture major edge directions while keeping 

computational cost to a minimum. 4x4 pixels per cell is chosen 

to capture finer details when compared to the default of 8×8 

pixels per cell. A 2×2 cells per block was found to be the most 

effective in capturing local variations and small enough to not 

average out the important detail. L2-norm with hysteresis is 

chosen as it prevents few high contrast gradients from 

dominating the entire feature vector [10]. 

 

Table 1. HOG descriptor parameters 

 
Parameter Description Value 

Orientations 
Number of gradient orientation 

bins per cell 
7 

Pixels Per Cell 
Size of each cell over which the 

gradient histogram is computed 
4×4 

Cells per Block 
Number of cells in each block 

for local normalization 
2×2 

Block 

Normalization 

Normalization applied to improve 

invariance 

L2-

Hys 
 

3.4 Feature selection 

 

To reduce the feature dimensionality and retain only the 

most discriminative features, a coordinate descent based L1- 

regularized Logistic Regression is employed for feature 

selection with solver set to ‘liblinear’, max iterations are set to 

10000 and the parameter ‘C’ is set to 1.0. L1 penalty 

encourages sparsity by driving the coefficients of less 

informative features to zero effectively selecting a subset of 

relevant features for classification [21]. The model is trained 

on scaled HOG feature vectors extracted from each pyramid 

representation, and the selected features are subsequently used 

as input to the final LightGBM classifier. This approach 

improved computational efficiency and reduced the risk of 

overfitting in high dimensional feature spaces. 

 

3.5 LightGBM classifier 

 

LightGBM [27] is an efficient gradient boosting framework 

designed for machine learning applications. Unlike 

conventional gradient boosting models that use a level-wise 

approach, LightGBM adopts a leaf-wise tree growth strategy. 

In this approach, the leaf with the highest potential gain is 

selected and split at each iteration, enabling the model to focus 

on the most informative regions of the feature space. The 

selected features by the L1-Logistic Regression are used as 

input to the LightGBM classifier. To identify the optimal 

hyperparameters for the LightGBM classifier, a random search 

cross-validation (RandomizedSearchCV) strategy is 

employed. This approach samples a predefined number of 

random combinations from specified hyperparameter 

distributions, offering a more computationally efficient 

alternative. In this study, 30 randomly selected 

hyperparameter configurations are evaluated for each feature 

extraction pipeline.  

Table 2 presents description of the hyperparameters 

employed in the model training process along with their 

respective search ranges utilized during optimization. 

To maintain data integrity and prevent overlap between 

training and validation subsets, a PredefinedSplit (ps) is 

utilized during cross-validation. The model selects the best 

performing hyperparameter set after training on the train set 

based on the validation accuracy, evaluated on a reserved 

validation set containing 444 samples. Once the best 

configuration of the hyperparameter set is found, the model’s 

classification performance is evaluated finally on the test set 

containing 445 samples. The workflow for proposed machine 

learning framework for keratoconus classification is depicted 

in Figure 2. 
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Table 2. Hyperparameters and search ranges for model 

optimization 

 

Hyperparameter Description 
Search 

Range 

colsample_bytree 
Subsample ratio of columns 

when constructing each tree 
0.5 to 1.0 

learning_rate 
Step size shrinkage used in 

updates 

0.01 to 

0.2 

max_depth Maximum depth of each tree 3 to 10 

n_estimators 
Number of boosting 

iterations 
50 to 500 

num_leaves Number of leaves in full trees 20 to 150 

subsample 
Subsample ratio of training 

instances 
0.5 to 1.0 

 

 
 

Figure 2. Workflow of the proposed machine learning 

framework for keratoconus detection  

 

 
(a) Gaussian pyramid constructed using 3 downsampling 

steps resulting in 4 levels with resolutions: 224×224, 

112×112, 56×56 and 28×28 

 
(b) Laplacian pyramid constructed using 3 downsampling 

steps resulting in 3 levels with resolutions: 224×224, 

112×112, and 56×56 

 
 

(c) Patch-based pyramid constructed using 3 downsampling 

steps without smoothing resulting in 4 levels with 

resolutions: 224×224, 112×112, 56×56 and 28×28 

 

Figure 3. The Gaussian, Laplacian and Patch-based 

pyramids 

 

Furthermore, bootstrapping with n = 1000 resamples is 

employed to account for variability. For each resample, 

models are trained and evaluated. The results of each iteration 

are recorded and stored in .csv files. A one-way Analysis of 

Variance (ANOVA) is performed across the three pyramid-

HOG pipelines to test whether the mean performance metrics 

differed significantly. Tukey’s Honestly Significant 

Difference (HSD) post-hoc test is used for pairwise 

comparison between the three pyramid-HOG pipelines that are 

statistically significant. Pairwise t-tests are conducted on 

bootstrap derived distributions to compare class weighting and 

SMOTE imbalance handling. These statistical methods are 

used in machine learning research to compare model 

performance [28]. Figure 3 shows the corneal maps 

represented at different scales using Gaussian, Laplacian and 

Patch-based pyramid. 

 

 

4. PERFORMANCE EVALUATION AND RESULTS  

 

To evaluate the performance of the proposed automated 

machine learning framework for classification of 

Keratoconus, the metrics like accuracy, sensitivity, specificity, 

f1-score and AUC score along with confusion matrix plots and 

AUROC are considered.  

 

Accuracy =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
 (2) 

 

Sensitivity =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 (3) 

 

Specificity =
𝑇𝑁

𝑇𝑁 + 𝐹𝑃
 (4) 
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Precision =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 (5) 

 

𝐹1 − 𝑠𝑐𝑜𝑟𝑒 = 2 ×
Precision × Recall

Precision + Recall
 (6) 

Table 3 presents the optimal hyperparameter configurations 

determined for the LightGBM classifier associated with the 

multi-scale image representation and feature extraction 

pipelines. 

 

Table 3. Best LightGBM hyperparameters obtained for each pyramid-HOG pipeline (Randomized Search) 

 
Hyperparameter Gaussian Pyramid - HOG Laplacian Pyramid - HOG Patch-based Pyramid - HOG 

colsample_bytree 0.5103 0.8737 0.8926 

learning_rate 0.2040 0.1179 0.0499 

max_depth 6 4 9 

n_estimators 463 266 293 

num_leaves 57 143 83 

subsample 0.5004 0.6380 0.7334 

 

Table 4. Class-wise performance metrics for each pyramid type with HOG features  

 
Method Class Precision Recall (Sensitivity) Specificity F1 Score AUC (OVR) 

Gaussian Pyramid-HOG 

Keratoconus 0.9536 0.9114 0.9756 0.9320 0.9907 

Normal 0.8776 0.8165 0.9373 0.8459 0.9617 

Suspect 0.7347 0.8372 0.8766 0.7826 0.9450 

Laplacian Pyramid-HOG 

Keratoconus 0.8931 0.8987 0.9408 0.8959 0.9830 

Normal 0.8947 0.7532 0.9512 0.8179 0.9512 

Suspect 0.6863 0.8140 0.8481 0.7447 0.9296 

Patch-based Pyramid-HOG 

Keratoconus 0.9363 0.9304 0.9652 0.9333 0.9858 

Normal 0.8487 0.8165 0.9199 0.8323 0.9563 

Suspect 0.7426 0.7829 0.8892 0.7623 0.9348 

Table 4 Summarizes the performance metrics for each class, 

Keratoconus, Normal and Suspect across the three pyramid-

HOG pipelines. This comparative evaluation highlights the 

strengths and limitations of each pyramid-HOG technique in 

classification of Keratoconus. 
 

Table 5. Overall and averaged performance metrics for each 

pyramid type with HOG features LightGBM 

hyperparameters obtained for each pyramid-HOG pipeline  

 

Metric 

Gaussian 

Pyramid - 

HOG 

Laplacian 

Pyramid - 

HOG 

Patch-based 

Pyramid - 

HOG 

Weighted 

Avg 

Precision 

0.8632 0.8337 0.8491 

Weighted 

Avg Recall 
0.8562 0.8225 0.8472 

Weighted 

Avg F1 Score 
0.8581 0.8244 0.8479 

Macro Avg 

Precision 
0.8553 0.8247 0.8425 

Macro Avg 

Recall 
0.8550 0.8220 0.8433 

Macro Avg 

F1 Score 
0.8535 0.8195 0.8426 

Overall 

Specificity 
0.9298 0.9134 0.9248 

Weighted 

Avg AUC 
0.9671 0.9562 0.9606 

Macro Avg 

AUC 
0.9658 0.9546 0.9590 

 

Table 5 provides an overall comparative assessment of 

classification performance of all three pipelines. It reports 

weighted and macro-averaged values for precision, Sensitivity 

(Recall), F1-score, AUC score and overall specificity. 

Table 6 presents the statistical comparison of all three 

pyramid-HOG pipelines based on one-way ANOVA and 

Tukey’s Honestly Significant Difference (HSD) post-hoc test. 

 

Table 6. Statistical analysis of each pyramid-HOG pipeline 

 

Metric 
F-

statistic 

Methods 

Compared 

Mean 

difference 

Accuracy 959.5 

Gaussian vs. 

Laplacian 
-0.0336 

Gaussian vs. 

Patch-based 
-0.0090 

Laplacian vs. 

Patch-based 
0.0246 

F1-Macro 941.79 

Gaussian vs. 

Laplacian 
-0.0340 

Gaussian vs. 

Patch-based 
-0.0110 

Laplacian vs. 

Patch-based 
0.0230 

Precision-

Macro 
789.09 

Gaussian vs. 

Laplacian 
-0.0305 

Gaussian vs. 

Patch-based 
-0.0128 

Laplacian vs. 

Patch-based 
0.0177 

Recall-

Macro 
874.52 

Gaussian vs. 

Laplacian 
-0.0330 

Gaussian vs. 

Patch-based 
-0.0118 

Laplacian vs. 

Patch-based 
0.0212 

AUC-Macro 739.04 

Gaussian vs. 

Laplacian 
-0.0112 

Gaussian vs. 

Patch-based 
-0.0069 

Laplacian vs. 

Patch-based 
0.0043 

Note: All p-values for the one-way ANOVA and adjusted p-values for 

Tukey’s HSD post-hoc test are < 0.001, indicating a statistically significant 
difference for all comparisons. 
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Table 7. Comparison of class weighting and SMOTE 

performance 

 

Method Metric 

Mean 

score 

(Class 

Weighting) 

Mean 

score 

(SMOTE) 

Mean 

difference 

Gaussian 

Accuracy 0.8564 0.8631 0.0067 

F1-Macro 0.8533 0.8601 0.0068 

Precision-

Macro 
0.8555 0.8616 0.0061 

Recall-

Macro 
0.8553 0.8620 0.0067 

AUC-

Macro 
0.9659 0.9638 -0.0021 

Laplacian 

Accuracy 0.8228 0.8230 0.0002 

F1-Macro 0.8193 0.8168 -0.0025 

Precision-

Macro 
0.8250 0.8186 -0.0064 

Recall-

Macro 
0.8223 0.8183 -0.0040 

AUC-

Macro 
0.9547 0.9515 -0.0032 

Patch-

based 

Accuracy 0.8474 0.8266 -0.0208 

F1-Macro 0.8423 0.8214 -0.0209 

Precision-

Macro 
0.8427 0.8219 -0.0208 

Recall-

Macro 
0.8435 0.8225 -0.0210 

AUC-

Macro 
0.9590 0.9537 -0.0053 

Note: All p-values for the paired t-test are < 0.001, indicating a statistically 

significant difference between SMOTE and Class Weighting technique 

except for the accuracy metric in the Laplacian method where p > 0.05. 

Table 8. Summary of related studies and their classification 

performance 

 

Study 
Classe

s 
Dataset 

Technique 

Used 

Accurac

y 

(%) 

Ahmed 

et al. 

[18] 

3-class 

16,016 

augmented 

images 

MobileNet v2 98.00 

Al-

Sharify 

et al. 

[29] 

5-class 

491 

subjects/8 

parameters 

Decision Tree/ 

Nearest 

Neighbour 

Analysis 

65.7/62.

6 

Gandhi 

et al. 

[19] 

10-

class 

3962 maps 

with 

augmentatio

n 

VGG19 77.43 

Al-

Timem

y et al. 

[17] 

3-class 
542 eyes/7 

maps 

EfficientNet-

b0+SVM 
81.60 

This 

Study 
3-class 

542 

eyes/7maps 

Image pyramid+ 

HOG+LightGB

M 

85.62 

 

Table 7 provides statistical analysis of all three pyramid-

HOG pipelines using class weighting and SMOTE techniques. 

Table 8 gives a comparison of recent studies on keratoconus 

detection based on the number of classes, dataset 

characteristics, techniques employed and achieved accuracy. 

Table 9 gives the classification accuracies achieved on the 

validation and independent test sets across the three multi-

scale feature extraction pipelines. 

 

Table 9. Validation and test accuracies (%) with pyramid levels for each multi-scale feature extraction pipeline 

 
Pyramid 

Type 

Downsampling 

Steps 

Gaussian Levels (incl. 

Original) 

Laplacian 

Levels 

Validation Accuracy 

(%) 

Test Accuracy 

(%) 

Gaussian  

Pyramid 
3 4 N/A 82.21 85.62 

Laplacian  

Pyramid 
3 4 3 80.63 82.25 

Patch-based 

Pyramid 
3 N/A N/A 80.63 84.72 

 

 

5. DISCUSSION 

 

In this study, an automated machine learning framework for 

classification of Keratoconus using image pyramids, HOG and 

LightGBM classifier is proposed. A stratified split of 70%-

15%-15% of train validation and test split is employed on a 

dataset of 2961 pentacam derived corneal maps containing 

keratoconus, normal and suspect classes. The dataset is 

imbalanced with the “suspect” class having relatively fewer 

instances. To address this, class weighting based on inverse 

class frequency is applied during training, ensuring that 

minority class errors are penalized more heavily during 

optimization. RGB to L*a*b* conversion is used as the 

preprocessing step. 

Three distinct multi-scale feature extraction approaches are 

investigated: Gaussian pyramid-HOG Laplacian Pyramid and 

a Patch-based Pyramid, with 3 levels each and downsampling 

factor of 2 per each level. Each technique aims to enhance 

feature representation by decomposing spatial information at 

multiple levels for detecting keratoconus. These 

decompositions are followed by HOG feature extraction, 

which captured the relevant discriminative features in the 

image. These extracted features are scaled using 

‘StandardScaler’ and LightGBM classifier is trained with 

hyperparameter optimization via randomized search. From 

Table 3. It is evident that Gaussian Pyramid and HOG required 

a relatively higher learning rate and fewer leaves suggesting 

its multi-scale smoothed features resulted in a simple decision 

boundary. In contrast, the patch-based method required a 

‘max_depth’ of 9 with a lower learning rate. All simulations 

are performed on Pop!_OS 22.04 (Ubuntu based Linux 

distribution) with 32GB of RAM and Ryzen 5600H Hexacore 

CPU. Model evaluation metrics in Table 4. revealed that all 

three pyramid strategies achieved strong classification 

performance, particularly for the keratoconus class, where 

precision and recall scores are consistently high. For instance, 

the patch-based pyramid model achieved a recall of 0.9304 for 

keratoconus class. However, suspect class detection remained 

challenging across all pipelines with precision ranging from 

0.6863 to 0.7426. This underperformance is likely due to the 

intermediate morphological characteristics of suspect cases, 

which share traits with both normal and keratoconus corneas. 
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Nevertheless, the patch-based pyramid exhibited slightly 

improved performance for suspect class classification, likely 

due to its ability to focus on localized regions where early 

ectatic changes are or likely to appear. 

 

 
(a) Normalized confusion matrix plot 

 
(b) AUROC plot 

 

Figure 4. The confusion matrix plot and AUROC plot for 

Gaussian pyramid-based HOG feature extraction pipeline 

 

 
(a) Normalized confusion matrix plot 

 

 
(b) AUROC plot 

 

Figure 5. The confusion matrix plot and AUROC for 

Laplacian pyramid-based HOG feature extraction pipeline 

 

 
(a) Normalized confusion matrix plot 

 

 
(b) AUROC plot 

 

Figure 6. The confusion matrix plot and AUROC for patch-

based pyramid and HOG feature extraction pipeline 

 

Table 5 provides the macro and weighted average metrics 
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for each model. The Gaussian Pyramid and HOG pipeline 

delivered the best overall performance with a weighted 

average F1 score of 0.8581 and macro average AUC of 0.9568. 

Although, patch-based method trailed slightly in macro and 

weighted averages, it maintained a balanced performance 

across all classes, suggesting improving robustness in 

handling class imbalance. These results emphasize the 

effectiveness of image pyramids in enhancing class 

separability in corneal maps and validate the suitability of 

HOG descriptors in keratoconus classification. Figures 4, 5 

and 6 show the confusion matrix plot and AUROC plot for all 

the three pipelines. 

Figure 7 provides feature maps of corneal images across 

different scales and color channels. These feature maps 

confirm that model’s decisions are based on gradient-based 

information extracted by HOG. 

 

 
 

Figure 7. The feature maps of the corneal image at multi scales 

 

Table 6 provides statistical evidence for the performance 

differences observed in Tables 4 and 5. The F-statistic shown 

for each metric is very high (all are over 739). The high F-

statistic shows that the probability of average performance of 

the three pyramid-HOG pipelines being the same is very low. 

The high F-statistic coupled with p-value <0.001 indicates that 

the differences are significant. Tukey’s HSD post-hoc test 

confirms that the difference between each pair of pipelines 

(Gaussian-HOG vs. Laplacian-HOG, Gaussian-HOG vs. 

Laplacian-HOG and Laplacian vs. Patch-based-HOG) is also 

statistically significant with adjusted p-values < 0.001. The 

positive mean difference indicates patch-based-HOG 

outperformed Laplacian-HOG in Laplacian vs. Patch-based 

HOG. The negative mean difference in Gaussian-HOG vs. 

Laplacian-HOG and Gaussian-HOG vs. Patch-based-HOG 

indicates that Gaussian-HOG has outperformed both the other 

methods. 

Table 7 presents the results of a pairwise t-test comparing 

the performance of Class-Weighting and SMOTE within each 

of the three pyramid-HOG pipelines. This analysis statistically 

validates the effectiveness of each imbalance handling 

technique. The negative mean difference between Class 

Weighting and SMOTE indicates that Class Weighting has 

performed significantly better than SMOTE. The positive 

mean difference indicates that SMOTE has outperformed 

Class Weighting technique. For the Gaussian pyramid-HOG 

SMOTE slightly outperforms Class Weighting across most 

metrics with a positive mean difference with the exception of 

AUC-Macro. The p-values are less than 0.001, showing that 

the small differences are significant. In the Laplacian pyramid-

HOG the difference between the two methods is very little. 

The p-value for accuracy metric is > 0.05 indicates that mean 

difference in accuracy is not significant. For all other metrics, 

the p-values are < 0.001. For the patch-based pyramid-HOG 

Class Weighting significantly outperforms the SMOTE in all 

metrics with mean differences being negative and substantial 

and corresponding p-values < 0.001. This indicates that the 

Class Weighting is the superior technique for handling class 

imbalance when using patch-based pyramid-HOG pipeline. 

Compared to existing studies in Table 8. The proposed 

approach achieved a classification accuracy of 85.62%, 

outperforming the classification models applied to corneal 

imaging, such as the study by Al-Timemy et al. [17] and the 

study by Gandhi [19]. While Ahmed et al. [18] reported a 

higher accuracy of 98% using MobileNet-v2, their model was 

trained on over 16,000 augmented images, whereas the current 

study is done on a non-augmented dataset. This suggests that 

hand crafted features, when combined with optimized models, 

could match deep learning models in data-limited scenarios. 

As shown in Table 9, all models maintained high 

generalization capability, with test accuracy above 82%. The 

Gaussian pyramid-HOG has achieved a test accuracy of 

85.62%. To assess the reliability of this result, bootstrap 

resampling method is employed with 1000 samples, which 

yielded a mean accuracy of 85.64% (95% CI: 82.25%-

88.76%) and a standard deviation of 0.0170. The relatively 

lower performance of Laplacian pyramid in both validation 

and test sets may stem from its emphasis on high-frequency 

details which, while important, may introduce noise. 

Despite promising results, the proposed pipeline has 

limitations. First, the lower sensitivity in suspect class across 

all models indicates the inherent difficulty of detecting suspect 
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classes. This challenge is consistent with clinical findings, 

where subclinical keratoconus often overlaps morphologically 

with normal corneas, Second, while the use of HOG feature 

enables interpretability, they may lack the expressiveness of 

learned deep features. For early diagnosis of the disease, the 

detection of suspect class from normal is crucial. Instead of 

relying solely on HOG features, attention networks like 

wavelet guided attention nets, multi-scale attention layers 

within CNN or a hybrid of CNN models and handcrafted 

features can be employed to detect the subtle variations in the 

corneal topography map of a suspect class. In addition, 

explainable AI, Grad cam visualization might help the model 

focus on the regions of the corneal maps that are highly 

discriminative in classifying suspect versus normal cases. 

 

 

6. CONCLUSION 

 

In this study, a comparative evaluation of three multi-scale 

representation techniques, Gaussian Pyramid, Laplacian 

Pyramid and Patch-based Pyramid, is conducted for the task 

of Keratoconus classification using Pentacam derived corneal 

topographic maps. Each multi scale representation is coupled 

with Histogram of Oriented Gradients feature extraction and 

classification is performed using optimized LightGBM 

classifier. 

The experimental results show that Gaussian Pyramid- 

HOG consistently achieved better performance with an 

accuracy of 85.62%, F1 score of 0.85 and AUC score of 0.96. 

The patch-based pyramid showed competitive results, while 

Laplacian pyramid exhibited comparatively lower 

classification performance. The bootstrap CIs, ANOVA and 

Tukey’s post-hoc tests proved that choice of pyramid-HOG 

pipeline has a statistically significant impact on performance. 

This study also performed pairwise t-tests on two imbalance 

handling techniques. The results showed that, while SMOTE 

is more effective with Gaussian-HOG pipeline, Class 

Weighting performed significantly better with patch-based 

pyramid-HOG pipeline. 

Overall, the findings confirm the importance of multi-scale 

texture analysis in medical image classification tasks and 

highlight the effectiveness of combining HOG descriptors 

with image pyramids for robust and efficient feature extraction 

in Keratoconus classification. Future work will explore the 

integration of LSTM, wavelet guided attention networks and 

meta-heuristic algorithms to enhance classification accuracy 

and generalizability in clinical applications. 
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