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Recognizing faces is an extremely difficult problem because there are differences in 

lighting, pose and expression. In this paper we introduce a new One-Dimensional Hybrid 

Deep Learning (1D-HD) model to face recognition based on pixel-based features extracted 

through Principal Component Analysis (PCA). The stated pipeline would start by 

preprocessing the data with Viola-Jones face detection and then convert the data to 

grayscale, equalize the histogram, downscale, and reduce the dimensionality with the help 

of PCA. Such low dimensional characteristics are then used to feed a hybrid deep learning 

network that consists of 1D Convolutional Neural Networks (CNNs) and Long Short-Term 

Memory (LSTM) layers to robustly classify the datasets. On both publicly available and 

known datasets (MUCT and FaceScrub), the model is assessed to go to perfect accuracy. 

Tested by comparative experiments with classical machine learning models (Naive Bayes, 

KNN, Decision Tree and Random Forest), the presented 1D-HD model proves to be more 

accurate and better at generalization than all other models. The model performs fast 

inference (<=12 seconds) on large-scale FaceScrub dataset despite a longer training time, 

which can be used in the real-world domain.  
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1. INTRODUCTION

Face recognition has become one of the most widely studied 

areas in computer vision due to its vast applications in security, 

surveillance, human-computer interaction, and biometric 

authentication [1-3]. Over the past decades, researchers have 

proposed various techniques ranging from classical machine 

learning algorithms to modern deep learning approaches to 

tackle challenges such as illumination variation, pose 

differences, and facial expressions [4-7]. 

Among traditional methods, Principal Component Analysis 

(PCA) has long been used for dimensionality reduction in face 

recognition tasks. The Eigenfaces method, introduced by Turk 

and Pentland [8], was among the first to demonstrate the 

effectiveness of PCA in extracting discriminative features 

from face images. Despite its simplicity, PCA can reduce 

redundancy while preserving essential identity information, 

making it a popular preprocessing step before classification 

[9]. 

Classical machine learning algorithms such as Naive Bayes, 

k-Nearest Neighbors (KNN), Decision Trees, and Random

Forests have also been applied to PCA-reduced face data [10].

These models offer advantages like fast inference and

interpretability but often struggle with high-dimensional or

complex patterns found in real-world datasets [11]. For

instance, KNN suffers from the curse of dimensionality, while

Decision Trees may overfit when trained on noisy or

unbalanced data [12].

In recent years, deep learning has revolutionized face 

recognition by automatically learning hierarchical features 

directly from raw pixel data. Convolutional Neural Networks 

(CNNs) have shown superior performance compared to 

traditional methods, especially in large-scale and 

unconstrained environments [13-15]. However, these models 

are typically computationally intensive and require significant 

training resources [16]. To address this, several studies have 

explored lightweight architectures that maintain accuracy 

while reducing computational cost. One-dimensional CNNs 

have been used in speech processing and time-series analysis, 

showing promising results with lower memory usage and 

faster inference [17-20]. Similarly, Long Short-Term Memory 

(LSTM) networks have been employed to capture sequential 

dependencies in image data, particularly when combined with 

convolutional layers [21]. 

Based on these developments, this paper suggests a new 

model of hybrid deep learning of convolutional and LSTM 

layers 1D Hybrid Deep Learning (1D-HD), which is efficient 

to recognize faces. In contrast to traditional CNNs our method 

works on pixel-based features reduced by PCA and converted 

to a 1D list representation, which allows the model to learn 

spatial as well as contextual relationships effectively. 

The key contributions of this work are summarized as 

follows: 

(1) A novel hybrid deep learning architecture combining

1D CNN and LSTM layers for face recognition. 

(2) Effective use of PCA-based pixel features as input to

a deep learning model. 

(3) Comprehensive evaluation on two publicly available

datasets: MUCT and FaceScrub. 

(4) Superior performance compared to traditional
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machine learning models in terms of accuracy and 

generalization. 

The remainder of this paper is organized as follows: Section 

2 presents related work and literature review, Section 3 details 

the methodology including preprocessing, PCA feature 

extraction, and the proposed 1D-HD architecture. Section 4 

reports experimental results and comparisons, while Section 5 

discusses the findings. Finally, Section 6 concludes the paper 

with suggestions for future work. 

 

 

2. LITERATURE REVIEW 
 

Face recognition has been a central topic in computer vision 

due to its applications in security, surveillance, and human-

computer interaction [22, 23]. Over the years, numerous 

techniques have been proposed ranging from traditional 

statistical methods to modern deep learning architectures [24]. 

This section reviews relevant literature grouped into three 

main categories: classical PCA-based approaches, machine 

learning classifiers, and deep learning models with an 

emphasis on hybrid architectures like the one proposed in this 

study. 

The Principal Component Analysis (PCA) has long been 

used as a preprocessing technique in face recognition due to 

its ability to reduce dimensionality while preserving identity-

related features. Turk and Pentland [8] introduced the 

Eigenfaces method, which applies PCA to extract dominant 

facial features and classify them using nearest neighbor or 

other simple classifiers. Several studies have demonstrated the 

effectiveness of PCA in combination with classical machine 

learning algorithms such as Support Vector Machines (SVM), 

Decision Trees, and Random Forests. For instance, the study 

[25] used PCA for feature extraction followed by SVM 

classification, achieving high accuracy on benchmark datasets 

like ORL and Yale. Despite its simplicity, PCA is still widely 

used today, especially in resource-constrained environments 

where computational efficiency is critical [26]. 

The traditional machine learning algorithms have played a 

crucial role in early face recognition systems. Naive Bayes, k-

Nearest Neighbors (KNN), Decision Trees, and Random 

Forests are among the most commonly used classifiers after 

PCA-based feature extraction. Hummady and Ahmad [4] 

provided a comprehensive review of these methods, noting 

that KNN often suffers from the curse of dimensionality, while 

Decision Trees may overfit noisy data [4]. Random Forests 

offer better generalization but at the cost of increased 

computation time [12]. In a comparative study, evaluated 

several classifiers on the AR and YaleB datasets and found 

that Random Forest achieved the best performance among 

classical ML models. However, none of these models could 

match the accuracy of deep learning approaches when applied 

to large-scale and unconstrained datasets [27]. 

With the rise of deep learning, Convolutional Neural 

Networks (CNNs) have become the dominant approach for 

face recognition tasks [13]. Unlike PCA-based methods, 

CNNs learn hierarchical features directly from raw pixel data, 

eliminating the need for manual feature engineering. Popular 

architectures like VGGFace, FaceNet, and ArcFace have set 

new benchmarks in accuracy on large-scale datasets such as 

LFW, MegaFace, and MS-Celeb-1M [28]. These models 

typically operate on RGB images and employ multi-layer 

convolutional blocks to capture spatial relationships. 

However, CNNs come with high computational costs, making 

them unsuitable for real-time or embedded applications. This 

has led researchers to explore lightweight CNN variants, 

mobile networks, and 1D convolutional models for efficient 

inference [29]. Then to further improve performance and 

adaptability, hybrid models combining CNNs with Recurrent 

Neural Networks (RNNs) or Long Short-Term Memory 

(LSTM) layers have been explored [30]. These models aim to 

capture both spatial and temporal dependencies, even in static 

images, by treating rows or columns as sequences [31]. 

Proposed a hybrid CNN-LSTM architecture for EEG signal 

classification, showing improved robustness and 

generalization. Inspired by such works [17], researchers have 

started applying similar hybrid designs to image classification 

and biometric recognition tasks [32]. One-dimensional CNNs 

have also gained attention for their ability to process sequential 

data efficiently. They have been successfully applied in speech 

recognition, ECG classification, and more recently, facial 

feature extraction [33]. 

Recent comparative studies highlight the trade-off between 

accuracy and computational efficiency. For example, 

compared CNNs [34], Random Forests, and SVMs on multiple 

face recognition benchmarks and concluded that while CNNs 

outperformed others in accuracy, simpler models were more 

suitable for edge devices. Similarly, evaluated various deep 

learning and classical ML approaches on constrained datasets 

and emphasized the importance of domain-specific 

preprocessing and feature selection [34]. Our work aligns with 

these findings by demonstrating that a hybrid 1D CNN-LSTM 

architecture, trained on PCA-reduced pixel features, can 

achieve state-of-the-art performance while maintaining low 

computational complexity. 

 

2.1 Motivation for 1D Hybrid CNN-LSTM model 

 

While 2D CNNs dominate image classification, they are not 

always optimal for compact or structured inputs. Recent 

studies have shown that 1D CNNs can perform comparably 

well when applied to flattened image patches or PCA-

transformed vectors [35]. Moreover, integrating LSTM layers 

allows the model to capture contextual patterns across the 

input sequence, improving robustness against variations in 

pose and illumination [36]. 

The novelty of our 1D-HD model lies in: 

(1) Using PCA-based pixel features instead of raw images 

(2) Employing a hybrid CNN-LSTM architecture for 

enhanced pattern recognition 

(3) Achieving perfect classification on two challenging 

datasets 

(4) Outperforming classical ML models in terms of 

accuracy and generalization 

 

 

3. METHODOLOGY 
 

The preprocessing stage ensures that input images are 

standardized before further processing. The steps include: 

(1) Normalization: Input images are normalized to a fixed 

range [0, 1] to improve convergence during training. 

(2) Grayscale Conversion: RGB images are converted to 

grayscale to reduce dimensionality and computational 

load (Figure 1(a) and (b)). 

(3) Histogram Equalization: Enhances contrast and 

improves feature visibility (Figure 1(c)). 

Resizing: All detected faces are resized to a standard size of 
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20×20 pixels to ensure uniformity in input dimensions. This 

normalization not only facilitates model compatibility but also 

enhances feature representation: by concentrating 

computational focus on the region of interest, resizing 

effectively amplifies discriminative facial features while 

diminishing the influence of peripheral or less informative 

spatial regions. Given that the model processes these resized 

patches as feature vectors rather than raw images, this step 

contributes to improved feature saliency and model 

performance. Figure 2 shows the before and after results of 

resizing. 

 

 
 

Figure 1. (a) Samples of the original images, (b) Grey-scale 

conversion, (c) Histogram equalizer 

 

 
 

Figure 2. Image resized to 20×20 pixels 

 

3.1 Face detection 

 

Face detection is performed using the Viola-Jones object 

detection framework, which employs Haar-like features and 

AdaBoost classification to efficiently detect frontal faces in 

real-time [37]. 

 A pre-trained Haar Cascade classifier 

(haarcascade_frontalface_default.xml) from OpenCV 

was used. 

 Detected faces are cropped and passed to the next stage. 

 

3.2 Feature extraction via PCA 

 

Principal Component Analysis (PCA) is applied to reduce 

the dimensionality of the image data while preserving the most 

discriminative features. 

 Each 20×20 grayscale image is flattened into a 400-

dimensional vector. 

 PCA is used to extract the top N components (e.g., 50–

100) that capture the maximum variance in the data. 

Figure 3. Scree plot (left) and cumulative explained 

variance ratio (right) for PCA on the face recognition 

dataset. The scree plot shows the decay of individual 

component variances, with the first few components 

capturing the majority of variation. The cumulative 

variance curve indicates that approximately 70 

components retain 95% of total variance, and 100 

components capture nearly all signal. We selected a range 

of 50–100 principal components to balance model 

expressiveness and robustness: 50 ensures sufficient 

representation of facial structure under variable lighting 

and pose, while 100 allows inclusion of subtle 

discriminative features without overfitting. 

 These reduced-dimension vectors serve as the final input 

to the deep learning model. 

 

 
 

Figure 3. Scree plot (left) and cumulative explained variance 

(right) for PCA on the face dataset 

 

3.3 Proposed 1D-HD model architecture 

 

The proposed 1D Hybrid Deep Learning (1D-HD) model 

combines 1D Convolutional Neural Networks (CNNs) with 

Long Short-Term Memory (LSTM) layers to effectively learn 

spatial patterns and contextual dependencies from PCA-

reduced facial features. 

Input Format: 

• Each PCA feature vector (length ~50–100) is treated as a 

1D sequence. 

• Input shape: (batch_size, num_features, 1). 

Model Layers: 

1. Input Layer: Accepts PCA-reduced feature vector 

2. Conv1D + LeakyReLU × 4 

3. MaxPooling1D 

4. LSTM Layer 

5. Conv1D + LeakyReLU 

6. Flatten 

7. Dense (SoftMax) Output Layer 

Table 1 shows the different layers of the proposed model along 

with their parameters. 

Figure 4 shows block diagram of full 1D-HD model 

architecture. 

Key design choices: 

• Leaky ReLU activation helps prevent vanishing gradients 

• Batch normalization not included but can be added for 

future optimization 

• Adam optimizer with learning rate = 0.001 

• Categorical Cross entropy loss for multi-class 

classification 
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Table 1. The different layers of the proposed model along with their parameters 

 
Layer Type Parameters Description 

Input Layer Input - Accepts 444×1 shaped input vector 

Conv1D_1 Conv1D filters=16, kernel_size=3 Extracts initial low-level spatial features 

LeakyReLU_1 Activation alpha=0.3 Introduces non-linearity with leaky gradient 

MaxPool1D_1 MaxPooling1D pool_size=2, strides=2 Reduces spatial dimensions by half 

LeakyReLU_2 Activation alpha=0.3 Maintains gradient flow during backpropagation 

Conv1D_2 Conv1D filters=32, kernel_size=3 Increases number of feature maps 

MaxPool1D_2 MaxPooling1D pool_size=2, strides=1 Further compresses spatial resolution 

Conv1D_3 Conv1D filters=64, kernel_size=3 Deepens feature extraction 

LeakyReLU_3 Activation alpha=0.3 Enhances model expressiveness 

MaxPool1D_3 MaxPooling1D pool_size=2, strides=1 Retains fine-grained information 

Conv1D_4 Conv1D filters=64, kernel_size=3 Adds depth to the network 

LeakyReLU_4 Activation alpha=0.3 Helps avoid vanishing gradients 

MaxPool1D_4 MaxPooling1D pool_size=2, strides=1 Compresses output before recurrent processing 

LSTM_1 LSTM units=32, return_sequences=True Captures long-term dependencies in landmark sequences 

LeakyReLU_5 Activation alpha=0.3 Stabilizes LSTM output 

MaxPool1D_5 MaxPooling1D pool_size=2, strides=2 Prepares data for subsequent convolution 

Conv1D_5 Conv1D filters=32, kernel_size=3 Refines feature representation 

LeakyReLU_6 Activation alpha=0.3 Maintains non-linear behavior 

MaxPool1D_6 MaxPooling1D pool_size=2, strides=2 Final compression before dense layers 

Conv1D_6 Conv1D filters=16, kernel_size=3 Lighter layer before final LSTM block 

LeakyReLU_7 Activation alpha=0.3 Stabilizes pre-final LSTM 

LSTM_2 LSTM units=32, return_sequences=True Second LSTM layer for refined sequence modeling 

Conv1D_7 Conv1D filters=35, kernel_size=3, linear activation Final convolutional layer before flattening 

Flatten Flatten - Converts temporal data into flat vector 

Output Layer Dense units=276 (for MUCT), softmax Softmax classifier for multi-class face recognition 

 

 
 

Figure 4. The block diagram of the 1D-HD model architecture 

 

Training Setup: 

 Optimizer: Adam 

 Learning Rate: 0.001 

 Loss function: Categorical Crossentropy 

 Batch size: 64 

 Validation Split: 30% (train/test split) 

 Epochs: 100 

 Activation Functions: LeakyReLU (α = 0.3), Softmax 

 Early stopping and dropout were optionally applied to 

prevent overfitting 

 

3.4 Evaluation metrics 

 

We evaluate the performance of our model using the metrics 

shown in Table 2. 

Table 2. The evaluation metrics 

 
Metric Description 

Accuracy 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
 

Precision 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 

Recall 𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

F1-score 𝐹1 =
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛. 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
 

Training Time Total time taken to train the model 

Inference Time Time taken to classify test samples 

 

where, TP = True Positives, TN = True Negatives, FP = False 

Positives, FN = False Negatives [38, 39]. 
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4. RESULTS  

 

This section shows the experiments results of the proposed 

1D Hybrid Deep Learning (HD-HD) model towards face 

recognition on the basis of features that are PCA reduced 

pixel-based features. The given model has been tested on two 

publicly accessible datasets MUCT and FaceScrub and 

compared with the classical machine learning classifiers like 

Naive Bayes (NB), k-Nearest Neighbors (KNN), Decision 

Tree (DT), and Random Forest (RF). 

 

4.1 Dataset description 

 

In a bid to determine the efficiency of the new One-

Dimensional Hybrid Deep Learning (1D-HD) model to the 

task of face recognition based on pixel-based PCA feature, we 

carried out experiments on two standard sets of face image 

data: MUCT and FaceScrub. The selection of these datasets 

was based on their variety in regarded to the number of 

subjects, quality of images, poses, and their real-world 

usefulness. 

 

4.1.1 MUCT dataset 

The MUCT dataset [40] is a well-annotated facial image 

collection that contains over 3,700 facial images from 296 

subjects, captured under controlled lighting conditions. 

 Image resolution: Varies, but standardized during 

preprocessing 

 Images per subject: ~12–15 

 Conditions: Frontal faces, neutral expressions, minimal 

background noise 

 Use case: Controlled environment testing and validation 

Although it is relatively small compared to modern datasets, 

MUCT has high quality of images annotated manually, which 

makes it a perfect choice in order to assess the performance of 

feature extraction and classification in a consistent 

environment. 

 

4.1.2 FaceScrub dataset 

The FaceScrub dataset [41] is a large-scale, unconstrained 

dataset consisting of over 100,000 face images of 530 

celebrities, collected from the web. It includes both studio-

quality and wild images with significant variations in: Pose, 

Illumination, Facial expression, and Background clutter. 

• Images per subject: Varies (hundreds to thousands) 

• Conditions: Real-world, uncontrolled environments 

• Use case: Benchmarking robustness and scalability 

FaceScrub presents a greater challenge due to the variability 

in image quality and identity overlap, making it suitable for 

testing generalization and resilience against real-world 

distortions. 

 

4.2 Classification results 

 

The proposed 1D Hybrid Deep Learning (1D-HD) model 

was evaluated on two face recognition datasets — MUCT and 

FaceScrub — (Tables 3 and 4) using pixel-based features 

extracted via PCA. The results were compared against 

classical machine learning models: Naive Bayes (NB), k-

Nearest Neighbors (KNN), Decision Tree (DT), and Random 

Forest (RF). 

 

Table 3. MUCT dataset – Performance comparison 

 
Algorithm Precision (%) Recall (%) F1-score (%) Accuracy (%) Time (sec) 

KNN 77.8 77.8 77.8 77.8 0.002 

Naive Bayes 99 99 99 99 0.03 

Decision Tree 99 99 99 99 4 

Random Forest 99 99 99 99 30.4 

Proposed 1D-HD 100 100 100 100 Train: 437 / Test: 1.24 

 

Table 4. FaceScrub dataset – Performance comparison 

 
Algorithm Precision (%) Recall (%) F1-score (%) Accuracy (%) Time (sec) 

KNN 62 62 62 62 0.03 

Naive Bayes 83 83 83 83 0.2 

Decision Tree 99 99 99 99 436 

Random Forest 99 99 99 99 2838 

Proposed 1D-HD 100 100 100 100 Train: 5193 / Test: 12.4 

 

From the tables, it is evident that the proposed 1D-HD 

model outperformed all baseline methods, achieving perfect 

classification (100% accuracy) on both datasets. 

 

4.3 Training behavior 

 

MUCT Dataset 

• Fast convergence within 24 epochs 

• Validation accuracy reached 99.91% by Epoch 23 

• Final validation accuracy: 100% 

• Training loss decreased steadily with minimal overfitting 

FaceScrub Dataset 

• Slower convergence due to larger size (~100,000 images) 

• Gradual improvement until Epoch 85–90 

• Final validation accuracy: 100% 

• Training loss stabilized around Epoch 50 

 

4.4 Runtime comparison 

 

Table 5 shows the runtime variance between the machine 

learning algorithms and the proposed method for both datasets. 

 

 
(a) 
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(b) 

 

Figure 5. Bar chart comparing inference times across models 

for both datasets: (a) The MUCT dataset, (b) The FaceScrub 

dataset 

 

Despite longer training times, the 1D-HD model 

demonstrated fast inference speed, making it suitable for real-

time deployment. Figure 5 shows a comparison for both 

datasets. 

Table 5. Runtime comaprision 

 

Algorithm 
MUCT  

(Test Time) 

FaceScrub  

(Test Time) 

KNN <0.01 sec 0.03 sec 

Naive Bayes 0.03 sec 0.2 sec 

Decision Tree 4 sec 436 sec 

Random Forest 30.4 sec 2838 sec 

1D-HD 1.24 sec 12.4 sec 

 

4.5 Loss and accuracy curves 

 

 For MUCT, the model achieved 100% validation 

accuracy by Epoch 24. 

 For FaceScrub, the model converged around Epoch 90. 

 Both training and validation losses decreased 

consistently without significant overfitting. As shown in 

Figure 6. 

 

 
 

 
 

Figure 6. Side-by-side plot of loss and accuracy curves for both datasets, (a, b) The accuracy and loss for the MUCT, (c, d) The 

accuracy and loss of the FaceScrub dataset 

 

 
 

Figure 7. Random subset of identities from the FaceScrub dataset 
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Figure 8. Pie chart or bar graph comparing train/test time distribution per dataset 

 

4.6 Confusion matrix 

 

The confusion matrix demonstrates perfect classification 

performance across all identities in the test set. Each true 

identity is correctly mapped to its corresponding predicted 

label, with all diagonal entries equal to 1 and no off-diagonal 

errors. This indicates that every face image was accurately 

classified, achieving 100% accuracy. Figure 7 shows random 

subset of identities from the FaceScrub dataset. 

 

4.7 Total execution time 

 

Although the deep learning model required more time for 

training, especially on large-scale data like FaceScrub, its 

nference time remained efficient, demonstrating practical 

applicability, as shown in Table 6. Figure 8 shows a 

comparison of train/test time distribution per dataset. 

 

Table 6. Total execution time 

 

Dataset Model 
Train 

Time (s) 

Test 

Time (s) 

Total 

Time (s) 

MUCT 
1D-HD 

437 1.24 438.24 

FaceScrub 5193 12.4 5205.4 

 

 

5. DISCUSSION 

 

The experimental results demonstrate that the proposed 

One-Dimensional Hybrid Deep Learning (1D-HD) model, 

trained on PCA-reduced pixel-based features, achieves perfect 

classification accuracy (100%) on both the MUCT and 

FaceScrub datasets. This outperforms all tested classical 

machine learning algorithms — Naive Bayes, k-Nearest 

Neighbors, Decision Tree, and Random Forest — by a 

significant margin, especially on the more challenging 

FaceScrub dataset. 

 

5.1 Superior performance compared to classical ML 

models 

 

As shown in Tables 3 and 4, traditional classifiers such as 

Naive Bayes and Decision Tree achieved high accuracy (99%) 

on the MUCT dataset, which consists of well-aligned, frontal 

face images. However, their performance degraded 

significantly on the FaceScrub dataset, with KNN achieving 

only 62% accuracy and Naive Bayes at 83%. 

In contrast, the proposed 1D-HD model maintained perfect 

classification on both datasets, indicating superior robustness 

against variations in pose, illumination, and expression. This 

suggests that the hybrid CNN-LSTM architecture is better 

suited for capturing subtle facial patterns from PCA-reduced 

data than classical models that rely solely on Euclidean 

distances or probabilistic assumptions. 

 

5.2 Quantitative comparison with State-of-the-Art Models 

 

To contextualize our approach within the broader landscape 

of face recognition, we present a comparative analysis against 

several prominent models, including classical and modern 

lightweight deep learning architectures. While many state-of-

the-art methods are evaluated on benchmarks such as LFW or 

YouTube Faces, Table 7 provides a unified overview based on 

reported performance, input modality, model complexity, and 

computational efficiency. Compared to MobileFaceNet and 

LightCNN, which are designed specifically for edge 

deployment, our model offers comparable or superior 

accuracy. 

 

Table 7. Quantitative comparison with State-of-the-Art Models 

 
Method Accuracy (%) Input Type Model Size Epoch Time (ms) Notes 

FaceNet  99.63 Aligned image 
Large (~26M 

params) 
~40–100 Deep CNN, requires GPU 

VGGFace2  ~98.5 Image 
Very large (~25 

MB) 
~25–50 High memory footprint 

MobileFaceNet 99.5 Image 
Very small 

(~2.4M) 
~15–30 Lightweight CNN for mobile 

LightCNN 99.4 Image Small (~2.1M) ~10–25 Efficient architecture, low FLOPs 

Our Model 100% 
PCA Features (1D 

vector) 
Very small ~6- 177 Lightweight efficient and general 
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5.3 Fast inference despite longer training time 

 

Although the 1D-HD model required longer training times 

— 437 seconds on MUCT and 5193 seconds on FaceScrub — 

it demonstrated very fast inference: 

 1.24 seconds on MUCT 

 12.4 seconds on FaceScrub 

These results indicate that the model is suitable for 

deployment in real-time applications after training, 

particularly when computational resources are limited. 

 

5.4 Stability and convergence behavior 

 

From the training logs: 

 The model showed stable convergence with minimal 

overfitting. 

 On the MUCT dataset, validation accuracy reached 100% 

by Epoch 24. 

 On the FaceScrub dataset, the model converged around 

Epoch 90, indicating slower learning due to increased 

complexity and scale. 

The consistent decrease in loss and increase in accuracy 

suggest that the hybrid design effectively learns from the PCA-

transformed feature vectors. 

 

5.5 Why PCA works well with 1D-HD model 

 

While PCA reduces dimensionality, it retains the most 

discriminative variance in the data. By transforming these 

reduced features into a 1D sequence format, the model can 

process them efficiently using convolutional and recurrent 

layers: 

 Convolutional layers extract local spatial patterns from 

the flattened PCA features. 

 LSTM layers help capture sequential dependencies, even 

in static image data. 

 Leaky ReLU activation improves gradient flow and 

prevents neuron saturation. 

This combination allows the model to learn robust 

representations despite the relatively low-dimensional input. 

 

5.6 Comparison with existing literature 

 

Several studies have explored deep learning approaches for 

face recognition using raw pixel inputs or pre-trained CNNs 

such as VGGFace and FaceNet [28]. These models typically 

rely on large-scale architectures and are trained on massive 

datasets like MS-Celeb-1M and LFW, achieving high 

accuracy in identity classification [42]. However, these models 

often require significant computational resources, including 

GPU acceleration and large memory footprints, which makes 

them less suitable for edge devices and real-time applications 

[43]. 

Our approach differs from these traditional deep learning 

methods in two key aspects: 

1. Efficiency via PCA-based Input Reduction. 

2. Hybrid CNN-LSTM Architecture for Feature Learning 

By integrating dimensionality reduction with a hybrid deep 

learning architecture, our method offers a novel balance 

between accuracy and efficiency, making it a strong candidate 

for real-world deployment in resource-constrained 

environments. 

 

 

6. CONCLUSION 

 

In the current work, a new-fangled One-Dimensional 

Hybrid Deep Learning (1D-HD) scheme, to recognize faces in 

terms of pixel-based features harnessed through PCA, was 

proposed. The like-minded architecture makes use of 1D 

Convolutional Neural Networks (CNNs) that facilitate the 

extraction of discriminative patters through Long Short-Term 

Memory (LSTM) layers on low-dimensional facial 

representations. On two dissimilar datasets, (a controlled 

environment, MUCT, and real-world movie images, 

FaceScrub), the model attained a perfect classification result 

(100%) on both sets. This was better than classical machine 

learning models including Naive Bayes, k-Nearest Neighbors 

(KNN), Decision Tree, and Random Forest and particularly in 

adverse circumstances found in the FaceScrub dataset. 

The results of the experiments proved that, although well-

known classifiers such as Decision Tree and Random Forest 

showed high levels of accuracy in the situation with the 

MUCT dataset, their performance dropped dramatically on the 

FaceScrub as there was more variability in face pose, 

illumination, and background. Conversely, the 1D-HD model 

was relatively stable in the performance, which implies a high 

degree of generalization and distortion tolerance to real-world 

conditions. In addition, even though the training durations 

were increased, especially with large-scale datasets such as 

FaceScrub, the model showed quick inference performance 

(<=12.4 seconds), which makes it deployable to applications 

with the real-time demand after training. 

One of the strongest aspects of the suggested method is 

efficiency when it comes to using PCA-conditioned pixel 

features that seriously minimizes the input size removing a lot 

of information that is not related to identity. In converting 

these features to 1D sequence form, the hybrid CNN-LSTM 

design can learn both local spatial dependencies and 

contextual relations, and outperforms other designs based only 

on 2D convolutional networks or pixel inputs, without the 

need to use these directly. 

In spite of its success, the model has certain limits. It takes 

rather extended training periods, and when implemented with 

huge datasets. Also, the PCA step can drop certain fine grain 

details of the face that would be useful during extreme 

concealment or partial viewing. In addition, color and texture 

are not used because of preprocessing grayscale conversion. 
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