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Recognizing faces is an extremely difficult problem because there are differences in
lighting, pose and expression. In this paper we introduce a new One-Dimensional Hybrid
Deep Learning (1D-HD) model to face recognition based on pixel-based features extracted
through Principal Component Analysis (PCA). The stated pipeline would start by
preprocessing the data with Viola-Jones face detection and then convert the data to
grayscale, equalize the histogram, downscale, and reduce the dimensionality with the help
of PCA. Such low dimensional characteristics are then used to feed a hybrid deep learning
network that consists of 1D Convolutional Neural Networks (CNNs) and Long Short-Term
Memory (LSTM) layers to robustly classify the datasets. On both publicly available and
known datasets (MUCT and FaceScrub), the model is assessed to go to perfect accuracy.
Tested by comparative experiments with classical machine learning models (Naive Bayes,
KNN, Decision Tree and Random Forest), the presented 1D-HD model proves to be more
accurate and better at generalization than all other models. The model performs fast
inference (<=12 seconds) on large-scale FaceScrub dataset despite a longer training time,

which can be used in the real-world domain.

1. INTRODUCTION

Face recognition has become one of the most widely studied
areas in computer vision due to its vast applications in security,
surveillance, human-computer interaction, and biometric
authentication [1-3]. Over the past decades, researchers have
proposed various techniques ranging from classical machine
learning algorithms to modern deep learning approaches to
tackle challenges such as illumination variation, pose
differences, and facial expressions [4-7].

Among traditional methods, Principal Component Analysis
(PCA) has long been used for dimensionality reduction in face
recognition tasks. The Eigenfaces method, introduced by Turk
and Pentland [8], was among the first to demonstrate the
effectiveness of PCA in extracting discriminative features
from face images. Despite its simplicity, PCA can reduce
redundancy while preserving essential identity information,
making it a popular preprocessing step before classification
[9].

Classical machine learning algorithms such as Naive Bayes,
k-Nearest Neighbors (KNN), Decision Trees, and Random
Forests have also been applied to PCA-reduced face data [10].
These models offer advantages like fast inference and
interpretability but often struggle with high-dimensional or
complex patterns found in real-world datasets [11]. For
instance, KNN suffers from the curse of dimensionality, while
Decision Trees may overfit when trained on noisy or
unbalanced data [12].

In recent years, deep learning has revolutionized face
recognition by automatically learning hierarchical features
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directly from raw pixel data. Convolutional Neural Networks
(CNNs) have shown superior performance compared to
traditional methods, especially in large-scale and
unconstrained environments [13-15]. However, these models
are typically computationally intensive and require significant
training resources [16]. To address this, several studies have
explored lightweight architectures that maintain accuracy
while reducing computational cost. One-dimensional CNNs
have been used in speech processing and time-series analysis,
showing promising results with lower memory usage and
faster inference [17-20]. Similarly, Long Short-Term Memory
(LSTM) networks have been employed to capture sequential
dependencies in image data, particularly when combined with
convolutional layers [21].

Based on these developments, this paper suggests a new
model of hybrid deep learning of convolutional and LSTM
layers 1D Hybrid Deep Learning (1D-HD), which is efficient
to recognize faces. In contrast to traditional CNNs our method
works on pixel-based features reduced by PCA and converted
to a 1D list representation, which allows the model to learn
spatial as well as contextual relationships effectively.

The key contributions of this work are summarized as
follows:

(1) A novel hybrid deep learning architecture combining
1D CNN and LSTM layers for face recognition.

(2)  Effective use of PCA-based pixel features as input to
a deep learning model.

(3) Comprehensive evaluation on two publicly available
datasets: MUCT and FaceScrub.

(4) Superior performance compared to traditional
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machine learning models in terms of accuracy and
generalization.

The remainder of this paper is organized as follows: Section
2 presents related work and literature review, Section 3 details
the methodology including preprocessing, PCA feature
extraction, and the proposed 1D-HD architecture. Section 4
reports experimental results and comparisons, while Section 5
discusses the findings. Finally, Section 6 concludes the paper
with suggestions for future work.

2. LITERATURE REVIEW

Face recognition has been a central topic in computer vision
due to its applications in security, surveillance, and human-
computer interaction [22, 23]. Over the years, numerous
techniques have been proposed ranging from traditional
statistical methods to modern deep learning architectures [24].
This section reviews relevant literature grouped into three
main categories: classical PCA-based approaches, machine
learning classifiers, and deep learning models with an
emphasis on hybrid architectures like the one proposed in this
study.

The Principal Component Analysis (PCA) has long been
used as a preprocessing technique in face recognition due to
its ability to reduce dimensionality while preserving identity-
related features. Turk and Pentland [8] introduced the
Eigenfaces method, which applies PCA to extract dominant
facial features and classify them using nearest neighbor or
other simple classifiers. Several studies have demonstrated the
effectiveness of PCA in combination with classical machine
learning algorithms such as Support Vector Machines (SVM),
Decision Trees, and Random Forests. For instance, the study
[25] used PCA for feature extraction followed by SVM
classification, achieving high accuracy on benchmark datasets
like ORL and Yale. Despite its simplicity, PCA is still widely
used today, especially in resource-constrained environments
where computational efficiency is critical [26].

The traditional machine learning algorithms have played a
crucial role in early face recognition systems. Naive Bayes, k-
Nearest Neighbors (KNN), Decision Trees, and Random
Forests are among the most commonly used classifiers after
PCA-based feature extraction. Hummady and Ahmad [4]
provided a comprehensive review of these methods, noting
that KNN often suffers from the curse of dimensionality, while
Decision Trees may overfit noisy data [4]. Random Forests
offer better generalization but at the cost of increased
computation time [12]. In a comparative study, evaluated
several classifiers on the AR and YaleB datasets and found
that Random Forest achieved the best performance among
classical ML models. However, none of these models could
match the accuracy of deep learning approaches when applied
to large-scale and unconstrained datasets [27].

With the rise of deep learning, Convolutional Neural
Networks (CNNs) have become the dominant approach for
face recognition tasks [13]. Unlike PCA-based methods,
CNNss learn hierarchical features directly from raw pixel data,
eliminating the need for manual feature engineering. Popular
architectures like VGGFace, FaceNet, and ArcFace have set
new benchmarks in accuracy on large-scale datasets such as
LFW, MegaFace, and MS-Celeb-1M [28]. These models
typically operate on RGB images and employ multi-layer
convolutional blocks to capture spatial relationships.
However, CNNs come with high computational costs, making

them unsuitable for real-time or embedded applications. This
has led researchers to explore lightweight CNN variants,
mobile networks, and 1D convolutional models for efficient
inference [29]. Then to further improve performance and
adaptability, hybrid models combining CNNs with Recurrent
Neural Networks (RNNs) or Long Short-Term Memory
(LSTM) layers have been explored [30]. These models aim to
capture both spatial and temporal dependencies, even in static
images, by treating rows or columns as sequences [31].
Proposed a hybrid CNN-LSTM architecture for EEG signal
classification,  showing improved robustness  and
generalization. Inspired by such works [17], researchers have
started applying similar hybrid designs to image classification
and biometric recognition tasks [32]. One-dimensional CNNs
have also gained attention for their ability to process sequential
data efficiently. They have been successfully applied in speech
recognition, ECG classification, and more recently, facial
feature extraction [33].

Recent comparative studies highlight the trade-off between
accuracy and computational efficiency. For example,
compared CNNs [34], Random Forests, and SVMs on multiple
face recognition benchmarks and concluded that while CNNs
outperformed others in accuracy, simpler models were more
suitable for edge devices. Similarly, evaluated various deep
learning and classical ML approaches on constrained datasets
and emphasized the importance of domain-specific
preprocessing and feature selection [34]. Our work aligns with
these findings by demonstrating that a hybrid 1D CNN-LSTM
architecture, trained on PCA-reduced pixel features, can
achieve state-of-the-art performance while maintaining low
computational complexity.

2.1 Motivation for 1D Hybrid CNN-LSTM model

While 2D CNNs dominate image classification, they are not
always optimal for compact or structured inputs. Recent
studies have shown that 1D CNNs can perform comparably
well when applied to flattened image patches or PCA-
transformed vectors [35]. Moreover, integrating LSTM layers
allows the model to capture contextual patterns across the
input sequence, improving robustness against variations in
pose and illumination [36].

The novelty of our 1D-HD model lies in:

(1) Using PCA-based pixel features instead of raw images

(2) Employing a hybrid CNN-LSTM architecture for
enhanced pattern recognition

(3) Achieving perfect classification on two challenging
datasets

(4) Outperforming classical ML models in terms of
accuracy and generalization

3. METHODOLOGY

The preprocessing stage ensures that input images are
standardized before further processing. The steps include:
(1) Normalization: Input images are normalized to a fixed
range [0, 1] to improve convergence during training.
(2) Grayscale Conversion: RGB images are converted to
grayscale to reduce dimensionality and computational
load (Figure 1(a) and (b)).
(3) Histogram Equalization: Enhances contrast and
improves feature visibility (Figure 1(c)).
Resizing: All detected faces are resized to a standard size of



20x%20 pixels to ensure uniformity in input dimensions. This
normalization not only facilitates model compatibility but also
enhances feature  representation: by  concentrating
computational focus on the region of interest, resizing
effectively amplifies discriminative facial features while
diminishing the influence of peripheral or less informative
spatial regions. Given that the model processes these resized
patches as feature vectors rather than raw images, this step
contributes to improved feature saliency and model
performance. Figure 2 shows the before and after results of
resizing.

Figure 1. (a) Samples of the original images, (b) Grey-scale
conversion, (c) Histogram equalizer

&

Resized
Image

Figure 2. Image resized to 20x20 pixels
3.1 Face detection

Face detection is performed using the Viola-Jones object
detection framework, which employs Haar-like features and
AdaBoost classification to efficiently detect frontal faces in
real-time [37].

* A pre-trained Haar Cascade classifier
(haarcascade frontalface default.xml) from OpenCV
was used.

* Detected faces are cropped and passed to the next stage.

3.2 Feature extraction via PCA
Principal Component Analysis (PCA) is applied to reduce

the dimensionality of the image data while preserving the most
discriminative features.
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* Each 20x20 grayscale image is flattened into a 400-
dimensional vector.

PCA is used to extract the top N components (e.g., 50—
100) that capture the maximum variance in the data.
Figure 3. Scree plot (left) and cumulative explained
variance ratio (right) for PCA on the face recognition
dataset. The scree plot shows the decay of individual
component variances, with the first few components
capturing the majority of variation. The cumulative
variance curve indicates that approximately 70
components retain 95% of total variance, and 100
components capture nearly all signal. We selected a range
of 50-100 principal components to balance model
expressiveness and robustness: 50 ensures sufficient
representation of facial structure under variable lighting
and pose, while 100 allows inclusion of subtle
discriminative features without overfitting.

These reduced-dimension vectors serve as the final input
to the deep learning model.
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Figure 3. Scree plot (left) and cumulative explained variance
(right) for PCA on the face dataset

3.3 Proposed 1D-HD model architecture

The proposed 1D Hybrid Deep Learning (1D-HD) model
combines 1D Convolutional Neural Networks (CNNs) with
Long Short-Term Memory (LSTM) layers to effectively learn
spatial patterns and contextual dependencies from PCA-
reduced facial features.

Input Format:

» Each PCA feature vector (Ilength ~50-100) is treated as a

1D sequence.

* Input shape: (batch_size, num_features, 1).

Model Layers:

Input Layer: Accepts PCA-reduced feature vector
ConvlD + LeakyReLU x 4

MaxPooling1 D

LSTM Layer

Conv1D + LeakyReLU

Flatten

7. Dense (SoftMax) Output Layer
Table 1 shows the different layers of the proposed model along
with their parameters.

Figure 4 shows block diagram of full 1D-HD model
architecture.

Key design choices:

» Leaky ReLU activation helps prevent vanishing gradients

* Batch normalization not included but can be added for
future optimization
Adam optimizer with learning rate = 0.001
Categorical Cross entropy loss for
classification

A S

multi-class



Table 1. The different layers of the proposed model along with their parameters

Layer Type Parameters Description
Input Layer Input - Accepts 444x1 shaped input vector
ConvlD 1 ConvlD filters=16, kernel size=3 Extracts initial low-level spatial features
LeakyReLU 1 Activation alpha=0.3 Introduces non-linearity with leaky gradient
MaxPoollD_1  MaxPoolinglD pool_size=2, strides=2 Reduces spatial dimensions by half
LeakyReLU 2 Activation alpha=0.3 Maintains gradient flow during backpropagation
ConvlD 2 ConvlD filters=32, kernel size=3 Increases number of feature maps
MaxPoollD 2  MaxPooling1 D pool_size=2, strides=1 Further compresses spatial resolution
ConvlD 3 ConvlD filters=64, kernel size=3 Deepens feature extraction
LeakyReLU 3 Activation alpha=0.3 Enhances model expressiveness
MaxPoollD 3  MaxPoolingl D pool size=2, strides=1 Retains fine-grained information
ConvlD_4 ConvlD filters=64, kernel_size=3 Adds depth to the network
LeakyReLU_4 Activation alpha=0.3 Helps avoid vanishing gradients
MaxPoollD_4  MaxPoolingl D pool_size=2, strides=1 Compresses output before recurrent processing
LSTM 1 LSTM units=32, return_sequences=True Captures long-term dependencies in landmark sequences
LeakyReLU 5 Activation alpha=0.3 Stabilizes LSTM output
MaxPoollD 5 MaxPoolingl D pool_size=2, strides=2 Prepares data for subsequent convolution
ConvlD 5 ConvlD filters=32, kernel size=3 Refines feature representation
LeakyReLU 6 Activation alpha=0.3 Maintains non-linear behavior
MaxPoollD_6  MaxPoolingl D pool_size=2, strides=2 Final compression before dense layers
ConvlD_6 ConvlD filters=16, kernel_size=3 Lighter layer before final LSTM block
LeakyReLU 7 Activation alpha=0.3 Stabilizes pre-final LSTM
LSTM 2 LST™M units=32, return_sequences=1rue Second LSTM layer for refined sequence modeling
Conv1D 7 ConvlD filters=35, kernel size=3, linear activation Final convolutional layer before flattening
Flatten Flatten - Converts temporal data into flat vector
Output Layer Dense units=276 (for MUCT), softmax Softmax classifier for multi-class face recognition
- r
/ T
£,.05 22§
Ly ¥ pr ts J ﬁ
-
I
- LRLU  F= = LReLU F=3 —16 = ﬁ "
Cin\l'i]) F=32 Cinf"llD c::f-in EMMPnnl cFum-iD c:ml-fDE Cinii]) Flatten Dense
s=1 ConvID 5= s=1 4 8= 8=1 5=1 5=1
K=3 s=1 K=3 K=3 Size=2 K=3 K=3 K=3
LRLU  K=3  LReLU LRelU LRELU LReLU
MaxPool MaxPool MaxPool MaxPool MaxPool
s=2 s=1 s=1 s=1 5=2
Size=2  Size=2  Size=)  Size=2 Size=2

Training Setup:
* Optimizer: Adam
* Learning Rate: 0.001

* Loss function: Categorical Crossentropy

¢ Batch size: 64

* Validation Split: 30% (train/test split)

* Epochs: 100

e Activation Functions: LeakyReLU (a = 0.3), Softmax

* Early stopping and dropout were optionally applied to

prevent overfitting

3.4 Evaluation metrics

We evaluate the performance of our model using the metrics
shown in Table 2.

Figure 4. The block diagram of the 1D-HD model architecture

Table 2. The evaluation metrics

Metric Description
Accurac A = TP+ TN
Y CUTacy = Tp T TN PN
Precisi P L
recision Precision TPP+ 7P
Recall R =
ecall = 75T FN
Precision. Recall
Fl-score

~ Precision + Recall
Total time taken to train the model

Time taken to classify test samples

Training Time
Inference Time

where, TP = True Positives, TN = True Negatives, FP = False
Positives, FN = False Negatives [38, 39].
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4. RESULTS

This section shows the experiments results of the proposed
1D Hybrid Deep Learning (HD-HD) model towards face
recognition on the basis of features that are PCA reduced
pixel-based features. The given model has been tested on two
publicly accessible datasets MUCT and FaceScrub and
compared with the classical machine learning classifiers like
Naive Bayes (NB), k-Nearest Neighbors (KNN), Decision
Tree (DT), and Random Forest (RF).

4.1 Dataset description

In a bid to determine the efficiency of the new One-
Dimensional Hybrid Deep Learning (1D-HD) model to the
task of face recognition based on pixel-based PCA feature, we
carried out experiments on two standard sets of face image
data: MUCT and FaceScrub. The selection of these datasets
was based on their variety in regarded to the number of
subjects, quality of images, poses, and their real-world
usefulness.

4.1.1 MUCT dataset
The MUCT dataset [40] is a well-annotated facial image
collection that contains over 3,700 facial images from 296
subjects, captured under controlled lighting conditions.
* Image resolution: Varies, but standardized during
preprocessing
* Images per subject: ~12—15
* Conditions: Frontal faces, neutral expressions, minimal
background noise

* Use case: Controlled environment testing and validation

Although it is relatively small compared to modern datasets,
MUCT has high quality of images annotated manually, which
makes it a perfect choice in order to assess the performance of
feature extraction and classification in a consistent
environment.

4.1.2 FaceScrub dataset

The FaceScrub dataset [41] is a large-scale, unconstrained
dataset consisting of over 100,000 face images of 530
celebrities, collected from the web. It includes both studio-
quality and wild images with significant variations in: Pose,
Illumination, Facial expression, and Background clutter.

» Images per subject: Varies (hundreds to thousands)

» Conditions: Real-world, uncontrolled environments

» Use case: Benchmarking robustness and scalability

FaceScrub presents a greater challenge due to the variability
in image quality and identity overlap, making it suitable for
testing generalization and resilience against real-world
distortions.

4.2 Classification results

The proposed 1D Hybrid Deep Learning (1D-HD) model
was evaluated on two face recognition datasets — MUCT and
FaceScrub — (Tables 3 and 4) using pixel-based features
extracted via PCA. The results were compared against
classical machine learning models: Naive Bayes (NB), k-
Nearest Neighbors (KNN), Decision Tree (DT), and Random
Forest (RF).

Table 3. MUCT dataset — Performance comparison

Algorithm Precision (%) Recall (%) F1-score (%) Accuracy (%) Time (sec)
KNN 77.8 77.8 77.8 77.8 0.002
Naive Bayes 99 99 99 99 0.03
Decision Tree 99 99 99 99 4
Random Forest 99 99 99 99 30.4
Proposed 1D-HD 100 100 100 100 Train: 437 / Test: 1.24

Table 4. FaceScrub dataset — Performance comparison

Algorithm Precision (%) Recall (%) F1-score (%) Accuracy (%) Time (sec)
KNN 62 62 62 62 0.03
Naive Bayes 83 83 83 83 0.2
Decision Tree 99 99 99 99 436
Random Forest 99 99 99 99 2838
Proposed 1D-HD 100 100 100 100 Train: 5193 / Test: 12.4

From the tables, it is evident that the proposed 1D-HD
model outperformed all baseline methods, achieving perfect
classification (100% accuracy) on both datasets.

4.3 Training behavior

MUCT Dataset

 Fast convergence within 24 epochs

 Validation accuracy reached 99.91% by Epoch 23

* Final validation accuracy: 100%

 Training loss decreased steadily with minimal overfitting
FaceScrub Dataset

* Slower convergence due to larger size (~100,000 images)
* Gradual improvement until Epoch 85-90

* Final validation accuracy: 100%
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* Training loss stabilized around Epoch 50
4.4 Runtime comparison

Table 5 shows the runtime variance between the machine
learning algorithms and the proposed method for both datasets.

MUCT - Inference Time per Mode!

(2)
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Figure 5. Bar chart comparing inference times across models
for both datasets: (a) The MUCT dataset, (b) The FaceScrub
dataset

Despite longer training times, the 1D-HD model
demonstrated fast inference speed, making it suitable for real-
time deployment. Figure 5 shows a comparison for both
datasets.

Deep PCA MUCT - Accuracy

Table 5. Runtime comaprision

Algorithm MUCT FaceScrub
(Test Time) (Test Time)
KNN <0.01 sec 0.03 sec
Naive Bayes 0.03 sec 0.2 sec
Decision Tree 4 sec 436 sec
Random Forest 30.4 sec 2838 sec
1D-HD 1.24 sec 12.4 sec

4.5 Loss and accuracy curves

e For MUCT, the model achieved 100% validation
accuracy by Epoch 24.

* For FaceScrub, the model converged around Epoch 90.

* Both training and validation losses decreased
consistently without significant overfitting. As shown in
Figure 6.

Deep PCA MUCT - Loss
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Figure 6. Side-by-side plot of loss and accuracy curves for both datasets, (a, b) The accuracy and loss for the MUCT, (c, d) The
accuracy and loss of the FaceScrub dataset
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Figure 7. Random subset of identities from the FaceScrub dataset
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Figure 8. Pie chart or bar graph comparing train/test time distribution per dataset

4.6 Confusion matrix

The confusion matrix demonstrates perfect classification
performance across all identities in the test set. Each true
identity is correctly mapped to its corresponding predicted
label, with all diagonal entries equal to 1 and no off-diagonal
errors. This indicates that every face image was accurately
classified, achieving 100% accuracy. Figure 7 shows random
subset of identities from the FaceScrub dataset.

4.7 Total execution time

Although the deep learning model required more time for
training, especially on large-scale data like FaceScrub, its
nference time remained efficient, demonstrating practical
applicability, as shown in Table 6. Figure 8 shows a
comparison of train/test time distribution per dataset.

Table 6. Total execution time

Train Test Total

Dataset Model Time(s) Time(s) Time (s)
MUCT 1D-HD 437 1.24 438.24
FaceScrub 5193 12.4 5205.4

5. DISCUSSION

The experimental results demonstrate that the proposed
One-Dimensional Hybrid Deep Learning (1D-HD) model,
trained on PCA-reduced pixel-based features, achieves perfect
classification accuracy (100%) on both the MUCT and
FaceScrub datasets. This outperforms all tested classical
machine learning algorithms — Naive Bayes, k-Nearest

Neighbors, Decision Tree, and Random Forest — by a
significant margin, especially on the more challenging
FaceScrub dataset.

5.1 Superior performance compared to classical ML
models

As shown in Tables 3 and 4, traditional classifiers such as
Naive Bayes and Decision Tree achieved high accuracy (99%)
on the MUCT dataset, which consists of well-aligned, frontal
face images. However, their performance degraded
significantly on the FaceScrub dataset, with KNN achieving
only 62% accuracy and Naive Bayes at 83%.

In contrast, the proposed 1D-HD model maintained perfect
classification on both datasets, indicating superior robustness
against variations in pose, illumination, and expression. This
suggests that the hybrid CNN-LSTM architecture is better
suited for capturing subtle facial patterns from PCA-reduced
data than classical models that rely solely on Euclidean
distances or probabilistic assumptions.

5.2 Quantitative comparison with State-of-the-Art Models

To contextualize our approach within the broader landscape
of face recognition, we present a comparative analysis against
several prominent models, including classical and modern
lightweight deep learning architectures. While many state-of-
the-art methods are evaluated on benchmarks such as LFW or
YouTube Faces, Table 7 provides a unified overview based on
reported performance, input modality, model complexity, and
computational efficiency. Compared to MobileFaceNet and
LightCNN, which are designed specifically for edge
deployment, our model offers comparable or superior
accuracy.

Table 7. Quantitative comparison with State-of-the-Art Models

Method Accuracy (%) Input Type Model Size Epoch Time (ms) Notes
FaceNet 99.63 Aligned image La;iia(;zs?M ~40-100 Deep CNN, requires GPU
VGGFace2 ~98.5 Image Very ﬁ%‘; (25 ~25-50 High memory footprint
MobileFaceNet 99.5 Image V(ewr%/ Zﬁ;ll ~15-30 Lightweight CNN for mobile
LightCNN 99.4 Image Small (~2.1M) ~10-25 Efficient architecture, low FLOPs
Our Model 100% PCA Szzzﬁs (D Very small ~6- 177 Lightweight efficient and general
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5.3 Fast inference despite longer training time

Although the 1D-HD model required longer training times
— 437 seconds on MUCT and 5193 seconds on FaceScrub —
it demonstrated very fast inference:

* 1.24 seconds on MUCT

* 12.4 seconds on FaceScrub

These results indicate that the model is suitable for
deployment in real-time applications after training,
particularly when computational resources are limited.

5.4 Stability and convergence behavior

From the training logs:

* The model showed stable convergence with minimal
overfitting.

* Onthe MUCT dataset, validation accuracy reached 100%
by Epoch 24.

* On the FaceScrub dataset, the model converged around
Epoch 90, indicating slower learning due to increased
complexity and scale.

The consistent decrease in loss and increase in accuracy

suggest that the hybrid design effectively learns from the PCA-
transformed feature vectors.

5.5 Why PCA works well with 1D-HD model

While PCA reduces dimensionality, it retains the most
discriminative variance in the data. By transforming these
reduced features into a 1D sequence format, the model can
process them efficiently using convolutional and recurrent
layers:

* Convolutional layers extract local spatial patterns from

the flattened PCA features.

e LSTM layers help capture sequential dependencies, even

in static image data.

* Leaky ReLU activation improves gradient flow and

prevents neuron saturation.

This combination allows the model to learn robust
representations despite the relatively low-dimensional input.

5.6 Comparison with existing literature

Several studies have explored deep learning approaches for
face recognition using raw pixel inputs or pre-trained CNNs
such as VGGFace and FaceNet [28]. These models typically
rely on large-scale architectures and are trained on massive
datasets like MS-Celeb-1M and LFW, achieving high
accuracy in identity classification [42]. However, these models
often require significant computational resources, including
GPU acceleration and large memory footprints, which makes
them less suitable for edge devices and real-time applications
[43].

Our approach differs from these traditional deep learning
methods in two key aspects:

1. Efficiency via PCA-based Input Reduction.

2. Hybrid CNN-LSTM Architecture for Feature Learning

By integrating dimensionality reduction with a hybrid deep
learning architecture, our method offers a novel balance
between accuracy and efficiency, making it a strong candidate
for real-world deployment in resource-constrained
environments.
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6. CONCLUSION

In the current work, a new-fangled One-Dimensional
Hybrid Deep Learning (1D-HD) scheme, to recognize faces in
terms of pixel-based features harnessed through PCA, was
proposed. The like-minded architecture makes use of 1D
Convolutional Neural Networks (CNNs) that facilitate the
extraction of discriminative patters through Long Short-Term
Memory (LSTM) layers on low-dimensional facial
representations. On two dissimilar datasets, (a controlled
environment, MUCT, and real-world movie images,
FaceScrub), the model attained a perfect classification result
(100%) on both sets. This was better than classical machine
learning models including Naive Bayes, k-Nearest Neighbors
(KNN), Decision Tree, and Random Forest and particularly in
adverse circumstances found in the FaceScrub dataset.

The results of the experiments proved that, although well-
known classifiers such as Decision Tree and Random Forest
showed high levels of accuracy in the situation with the
MUCT dataset, their performance dropped dramatically on the
FaceScrub as there was more variability in face pose,
illumination, and background. Conversely, the 1D-HD model
was relatively stable in the performance, which implies a high
degree of generalization and distortion tolerance to real-world
conditions. In addition, even though the training durations
were increased, especially with large-scale datasets such as
FaceScrub, the model showed quick inference performance
(<=12.4 seconds), which makes it deployable to applications
with the real-time demand after training.

One of the strongest aspects of the suggested method is
efficiency when it comes to using PCA-conditioned pixel
features that seriously minimizes the input size removing a lot
of information that is not related to identity. In converting
these features to 1D sequence form, the hybrid CNN-LSTM
design can learn both local spatial dependencies and
contextual relations, and outperforms other designs based only
on 2D convolutional networks or pixel inputs, without the
need to use these directly.

In spite of its success, the model has certain limits. It takes
rather extended training periods, and when implemented with
huge datasets. Also, the PCA step can drop certain fine grain
details of the face that would be useful during extreme
concealment or partial viewing. In addition, color and texture
are not used because of preprocessing grayscale conversion.
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