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 In this paper, homotopy analysis method with two auxiliary parameters is used to investigate 

heat and mass transfer flow past a vertical porous medium in the presence of heat source. 

Similarity transformation is adopted to transform the boundary-layer coupled non-linear partial 

differential equation to a system of coupled non-linear ordinary differential equation. The 

resulting equations are then solved analytically. The effect of various flow parameters on 

velocity, temperature and concentration profiles are presented graphically and discussed while 

the local skin-friction, Nusselt number, plate surface temperature and Sherwood number are 

illustrated numerically in tabular form. The results show among all other obtained that the 

cooling problem is guaranteed with the positive values of Grashof number while the higher 

values of heat source energies the random movement of the fluid molecules and pave way for 

the penetration of the thermal effect to the quiescent fluid. 
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1. INTRODUCTION 

 

Analysis of magnetohydrodynamic (MHD) flow with the 

coupled heat and mass transfer over a vertical plate with 

embedded porous medium, in the presence of heat source has 

great importance due to the influence of magnetic field in the 

boundary layer flow such as geothermal energy extraction 

and MHD generator etc. In Lieus of its numerous 

applications in science and engineering, it has been studied in 

the literature  

Thommaandru et al. [1] studied effect of heat source/ sink 

on heat and mass transfer of magneto-nanofluids over a 

nonlinear stretching sheet. Ibrahim et al [2] investigated the 

effect of chemical reaction and radiation absorption on 

unsteady MHD mixed convection flow past a semi infinite 

vertical permeable moving plate with heat source and suction. 

Bakr [3] reported the effect of chemical reaction on MHD 

free convection and mass transfer flow of a micropolar fluid 

with oscillatory plate velocity and constant heat source in a 

rotating frame of reference. The internal heat generation 

effect on thermal boundary layer with a convective surface 

boundary condition was investigated by Olarewaju et al. [4]. 

Crepeau and Clarksean [5] worked on similarity solutions of 

natural convection with internal heat generation. Ashwini and 

Eswara [6] studied MHD Falkner Skan boundary layer flow 

with internal heat generation or absorption. Makinde [7] 

reported the similarity solution for natural convection from a 

moving vertical plate with internal heat generation and a 

convective boundary condition. By virtual of the endless 

impotances of heat generation or heat source with different 

conditions imposed on it, other authors like Azim et al. [8], 

Rashid and Waqar [9], Machireddy [10], Rena and Bhargav 

[11] and Kashmani et al. [12] considered the effect of heat 

source/ heat generation in their investigation. Considering the 

effect or impact of heat source or heat generation on MHD 

flow, the porosity part has not been left out due to its vast 

applications in science and engineering disciplines. Good 

numbers of work have been considered with the porosity 

parameter in the literature by different authors among which 

are; Mohammed et al. [13] investigated the thermal and 

MHD effect on free convective flow of a polar fluid through 

a porous medium in the presence of internal heat generation 

and chemical reaction. Patil and Kulkarini [14] worked on 

effect of chemical reaction on free convective flow of a polar 

fluid through a porous medium in the presence of internal 

heat generation. Ramana et al. [15] investigated mass transfer 

and radiation effects of unsteady MHD free convection fluid 

flow embedded in porous medium with heat generation/ 

absorption. Sharm and singh [16] discussed unsteady MHD 

free convective flow and heat transfer along a vertical porous 

with variable suction and internal heat generation. Mamta 

and Krishna [17] discussed the thermal radiation effect on an 

unsteady MHD free convection chemically reacting viscous 

dissipation fluid flow past an infinite vertical moving porous 

plate with heat source. Other authors like Sharma et al. [18] 

considered heat generation or heat source in their 

investigation. 

The main purpose of this present paper is to investigate 

heat and mass transfer in hydromagnetic flow past a vertical 

porous media in the presence of heat source via homotopy 

analysis method discovered by Liao [19]. The effects of 

different involved parameters are discussed numerically and 

graphically. 

 

 
2. MATHEMATICAL FORMULATION 

 
We consider a steady-state heat and mass transfer flow of a 

stream of cold fluid at temperature 𝑇∞ that takes place in the 

presence of heat source. The left surface is considered to be 

heated by convection from the hot fluid at temperature 𝑇𝑓 that 
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brings about heat transfer coefficient ℎ𝑓 . The cold fluid in 

contact with the surface of the plate produces heat internally 

at volumetric rate 𝑄0. The plate is subjected to a magnetic 

field of strength 𝐵0 which act in a transverse direction to the 

flow and the effect of induced magnetic field is neglected. 

The 𝑥 − 𝑎𝑥𝑖𝑠 is taken parallel to the plate direction and 𝑦 −
𝑎𝑥𝑖𝑠 normal to it. The fluid temperature and concentration 

are respectively taken as T and C, while 𝐶𝑤  is the species 

concentration at the surface of the plate. 

 

 
 

Figure 1. Flow configuration and coordinate system 

 

In line with the assumption stated above and usual 

Boussinesq's approximation, the steady flow is governed by 

the equation slated below 

 
𝜕𝑢

𝜕𝑥
+

𝜕𝑣

𝜕𝑦
= 0                                  (1) 

 

𝑢
𝜕𝑢

𝜕𝑥
+ 𝑣

𝜕𝑢

𝜕𝑦
= ѵ

𝜕2𝑢

𝜕𝑦2 −
𝜎𝐵0𝑢

𝜌
−

ѵ

𝐾
𝑢 + 𝑔 𝛽𝑇(𝑇 − 𝑇∞) +

𝑔 𝛽𝑐(𝐶 − 𝐶∞)                                (2) 

 

𝑢
𝜕𝑇

𝜕𝑥
+ 𝑣

𝜕𝑇

𝜕𝑦
= 𝛼

𝜕2𝑇

𝜕𝑦2 +
𝑄0(𝑇−𝑇∞)

𝜌𝐶𝑝
                   (3) 

 

𝑢
𝜕𝐶

𝜕𝑥
+ 𝑣

𝜕𝐶

𝜕𝑦
= 𝐷

𝜕2𝐶

𝜕𝑦2                             (4) 

 

where, (u, v) are components of the velocity at any point 

(𝑥, 𝑦) , T is the temperature of the fluid, 𝐶  is the 

concentration, 𝑈0 is the plate velocity and 𝐷, 𝛼, 𝑇∞, 𝐶∞, 𝑔, 𝜌, 

𝜎, 𝛽𝑇 , 𝑄0, 𝐶𝑝, ѵ, 𝛽𝑐  and 𝐵0  are the mass diffusivity, thermal 

diffusivity, free stream temperature, free stream 

concentration, acceleration due to gravity, density, fluid 

electrical conductivity, thermal expansion coefficient, 

volumemetric heat generation/absorption rate, specific heat at 

constant pressure, kinematics viscosity, concentration 

expansion coefficient and magnetic field of strength 

respectively. The appropriate boundary conditions at the 

surface of the plate and away into the cold fluid are expressed 

as follows 

 

𝑈(𝑥, 0) =  𝑈0, 𝑉(𝑥, 0) = 0, −𝑘
𝜕𝑇(𝑥,0)

𝜕𝑦
= ℎ𝑓[𝑇𝑓 − 𝑇(𝑥, 0)],  

 

𝐶𝑤(𝑥, 0) = 𝐴𝑥𝜆 + 𝐶∞, 𝑈(𝑥,∞) = 0 

 

𝑇(𝑥,∞) = 𝑇∞, 𝐶(𝑥,∞) = 𝐶∞                   (5) 

 

where, k represents the thermal conductivity coefficient and 𝜆 

denotes the power index of the concentration. The continuity 

Eq. (1) is satisfied automatically by invoking the stream 

function defined by 

 

𝑢 =
𝜕𝜓

𝜕𝑦
     𝑎𝑛𝑑     𝑣 = −

𝜕𝜓

𝜕𝑥
                     (6) 

 

Considering 𝜂 as independent variable and 𝑓 as dependent 

variable interms of stream function, similarity solution of (1-

6) is given as 

 

η = 𝑦√
𝑈0

ѵ𝑥
 ,     𝜓 = √ѵ𝑥𝑈0𝑓(η)                  (7) 

 

where, 𝑈0  represents the velocity of the plate and  

 

𝜃(η) =
𝑇−𝑇∞

𝑇𝑓−𝑇∞
,   ∅(η) =

𝐶−𝐶∞

𝐶𝑤−𝐶∞
                     (8) 

 

respectively denotes the dimensionless temperature and 

concentration. Applying Eqns. (6-8) into Eqns. (1-5) with the 

following quantities 

 

𝐻𝑎 =
𝜎𝐵0

2𝑥

𝜌𝑈0

, 𝐺𝑟 =
𝑔𝛽𝑇(𝑇𝑓 − 𝑇∞)𝑥

𝑈0
2 , 𝐺𝑐 =

𝑔𝛽𝑐(𝐶𝑤 − 𝐶∞)𝑥

𝑈0
2 , 

 

𝐵𝑖 =
ℎ𝑓

𝑘
√

ѵ𝑥

𝑈0
 , 𝑃𝑟 =

ѵ𝜌𝐶𝜌

𝐾∗  ,    𝑆𝑐 =
ѵ

𝐷
 ,               (9) 

 

𝛿 =
𝑥𝑄0ѵ

𝐾∗𝑈0

 ,     𝑃𝑠 =
ѵ𝑥

𝐾𝑈0

  , 𝛼 =
𝐾∗

𝜌𝐶𝜌

 

 

we have 

 
𝑑3𝑓

𝑑η3 +
1

2
𝑓

𝑑2𝑓

𝑑η2 − (𝐻𝑎 + 𝑃𝑠)
𝑑𝑓

𝑑η
+ 𝐺𝑟𝜃(η) + 𝐺𝑐∅(η) = 0 (10) 

 
𝑑2𝜃

𝑑η2 +
1

2
𝑃𝑟𝑓

𝑑𝜃

𝑑η
+ 𝛿𝜃(η) = 0                   (11) 

 
𝑑2∅

𝑑η2 +
1

2
𝑆𝑐𝑓

𝑑∅

𝜕η
= 0                       (12) 

 

Here, Ha is the local magnetic field parameter, 𝐺𝑟 is the 

local thermal Grashof number, 𝐺𝑐  is the Solutal Grashof 

number, 𝐵𝑖  is the local convective heat transfer parameter, 

𝑃𝑟 is the Prandtl number, 𝑆𝑐 is the Schmidt number, 𝛿 is the 

heat source and 𝑃𝑠  is the Porosity parameter. The 

corresponding boundary conditions are as follows 

 

𝑓(0) = 0, 𝑓 ′(0) = 1, 𝜃′(0) = 𝐵𝑖[𝜃(0) − 1], ∅(0) = 1 (13) 

 

𝑓 ′(∞) = 0,   𝜃(∞) = 0,    ∅(∞) = 0             (14) 

 

The local parameters 𝐻𝑎, 𝐵𝑖 , 𝐺𝑟, 𝐺𝑐, 𝛿 and 𝑃𝑠  in (10-12) 

denotes the function of 𝑥. In an attempt to have similarity 

solution, we assume the following parameters 

 

𝜎 =
𝑏

𝑥
 , ℎ𝑓 =

𝑎

√𝑥
 , 𝛽𝑇 =

𝑐

𝑥
 , 𝛽𝑐 =

𝑑

𝑥
 , 𝑄0 =

𝑒

𝑥
 , 𝐾 =

𝑥

𝑞
    (15) 

 

where, 𝑎, 𝑏, 𝑐, 𝑑, 𝑒 and 𝑞  are constant under the appropriate 

dimension. The nonlinear Eqns. (10-12) subject to the 

boundary conditions of Eqns. (13) and (14) are solved 

analytically by Homotopy Analysis Method as shown in (3.0) 

below. The rate of the model, corresponding to the local skin-
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friction, rate of heat transfer corresponding to the Nusselt 

number and rate of mass transfer corresponding to the 

Sherwood number are respectively considered, given by  

 

𝐶𝑓 =
2𝜏𝑤

𝜌𝑈0
2 ,   𝑁𝑢 =

𝑥𝑞𝑤

𝑘(𝑇𝑤−𝑇∞)
,   𝑆ℎ =

𝑥𝑞𝑚

𝐷(𝐶𝑤−𝐶∞)
       (16) 

 

and expressed 

 

𝐶𝑓 = 2𝑅𝑒𝑥

−1
2 𝑓′′(0), 𝑁𝑢 = −𝑅𝑒𝑥

1
2𝜃′(0),  𝑆ℎ = −𝑅𝑒𝑥

1
2∅′(0)  (17) 

 

where, 𝑅𝑒𝑥 = 𝑈0𝑥 ѵ⁄  is the Reynold number, 𝜏𝑤 is the shear 

stress along the plate, 𝑞𝑤  is the surface heat and 𝑞𝑚  is the 

surface mass. Their numerical computation, in addition with 

the plate plate surface temperature which is denoted by 𝜃(0) 

are presented in the Table 2. 

 

 

3. HOMOTOPY ANALYSIS METHOD 

 
Homotopy Analysis Method (HAM), discovered by Liao 

[19-20] is preferred over another method and adopted for this 

work due to its efficiency in solving both Linear and non-

linear differential equations. The non-linear differential 

equations are usually inevitable and have become a culture in 

our daily mathematical modeling. They are solved by 

different methods, among which are; differential transform 

method (DTM), Variation Iteration Method and so on. 

Following Olubode et al. [21] in accordance with the rule of 

solution and boundary conditions (13)-(14), we choose the 

initial guess  

 

𝑓0(η) = 1 − 𝑒𝑥𝑝(−η),   𝜃0(η) =
𝐵𝑖𝑒𝑥𝑝(−η)

(1 + 𝐵𝑖)
, 

∅0(η) = 𝑒𝑥𝑝(−η)                           (18) 

 

as the initial linear approximations of 𝑓(η), 𝜃(η)  and  ∅(η) 

and the auxiliary linear operations 𝐿𝑓 , 𝐿𝜃 , and 𝐿∅ as;  

 

𝐿𝑓[𝑓(η; 𝑟)] =
𝜕3𝑓(η;𝑟)

𝜕η3 −
𝜕𝑓(η;𝑟)

∂η
                  (19) 

 

𝐿𝜃[𝜃(η; 𝑟)] =
𝜕2𝜃(η;𝑟)

𝜕η2 − 𝜃(η; 𝑟)                 (20) 

 

𝐿∅[(η; 𝑟)] =
𝜕2∅(η;𝑟)

𝜕η2 − ∅(η; 𝑟)                   (21) 

 

agreed with the following properties 

 

𝐿𝑓[𝐶1 + 𝐶2 𝑒𝑥𝑝(η) + 𝐶3 𝑒𝑥𝑝(−η)] = 0         (22) 

 

𝐿𝜃[𝐶4 + 𝐶5 𝑒𝑥𝑝(−η)] = 0                   (23) 

 

𝐿∅[𝐶6 + 𝐶7 𝑒𝑥𝑝(−η)] = 0                    (24) 

 

where, 𝐶1, 𝐶2, . . . , 𝐶7 are constants. 

 

3.1 Zero order deformation problem 

 

(1 − 𝑟)𝐿𝑓[𝑓(ղ; 𝑟) − 𝑓0(η)] 

= 𝑟ℏ𝑓𝐻𝑓(η)𝑁𝑓[𝑓(η; 𝑟), 𝜃(η; 𝑟), ∅(η; 𝑟)]         (25) 

 
(1 − 𝑟)𝐿𝜃[𝑓(η; 𝑟) − 𝜃0(η)] 

= 𝑟ℏ𝜃𝐻𝜃(η)𝑁𝜃[𝑓(η; 𝑟), 𝜃(η; 𝑟)]                (26) 

 
(1 − 𝑟)𝐿∅[𝑓(η; 𝑟) − ∅0(η)] 

= 𝑟ℏ∅𝐻∅(η)𝑁∅[𝑓(η; 𝑟), ∅(η; 𝑟)]                (27) 

 

having the following boundary conditions. 

 

  𝑓(η = 0; 𝑟) = 0,   
𝜕𝑓(η; 𝑟)

∂η
│η=0 = 1, 

𝜕𝜃(η;𝑟)

∂η
│η=0 = 𝐵𝑖[𝜃(η = 0; 𝑟) − 1], ∅(η = 0; 𝑟) = 1   (28) 

 

 
𝜕𝑓(η;𝑟)

∂η
│η→∞ = 0,   𝜃(η → ∞; 𝑟) = 0 = ∅(η → ∞; 𝑟)   (29) 

 

where, 𝑁𝑓, 𝑁𝜃 , and 𝑁∅  are nonlinear operator defined as 

 

 𝑁𝑓[𝑓(η; 𝑟), 𝜃(η; 𝑟), ∅(η; 𝑟)] 

      =
𝜕3𝑓(η; 𝑟)

𝜕η3
+

1

2
𝑓(η; 𝑟)

𝜕2𝑓(η; 𝑟)

𝜕η2
− (𝐻𝑎 + 𝑃𝑠)

𝜕𝑓(η; 𝑟)

∂η
 

𝐺𝑟𝜃(η; 𝑟) + 𝐺𝑐∅(η; 𝑟)                         (30) 

 

 𝑁𝜃[𝑓(η; 𝑟), 𝜃(η; 𝑟)] 

=
𝜕2𝜃(η;𝑟)

𝜕η2   +
1

2
𝑃𝑟

𝜕𝜃(η;𝑟)

∂η
𝑓(η; 𝑟) + 𝛿𝜃(η; 𝑟)       (31) 

 

𝑁∅[𝑓(η; 𝑟), ∅(η; 𝑟)] =
𝜕2∅(η;𝑟)

𝜕η2 +
1

2
𝑆𝑐𝑓(η; 𝑟)

𝜕∅(η;𝑟)

∂η
     (32) 

 

where, 𝑟𝜖[0,1] is the embedding parameter and ℏ𝑓 ≠ 0, ℏ𝜃 ≠

0 and ℏ∅  ≠ 0 are the auxiliary parameter 

 

3.2 Mth-order deformation problem 

 

The increase in embedding parameter 𝑟 from Zero to One, 

lead to a variation of the function 𝑓(η; 𝑟), 𝜃(η; 𝑟) and ∅(η; 𝑟) 

from initial guess 𝑓0(η), 𝜃0(η)  𝑎𝑛𝑑  ∅0(η) to the solutions 

𝑓(η; 𝑟), 𝜃(η; 𝑟) and ∅(η; 𝑟). Using Taylor series with respect 

to 𝑟, we have 

 

𝑓(η; 𝑟) = 𝑓0(η) + ∑ 𝑓𝑚(η)𝑟𝑚∞
𝑚=1                 (33) 

 

𝜃(η; 𝑟) = 𝜃0(η) + ∑ 𝜃𝑚(η)𝑟𝑚∞
𝑚=1                 (34) 

 

∅(η; 𝑟) = ∅0(η) + ∑ ∅𝑚(η)𝑟𝑚∞
𝑚=1                (35) 

 

where,  

 

𝑓𝑚(η) =
1

𝑚!

𝜕𝑚𝑓(η; 𝑟)

𝜕η𝑚
,   𝑓𝑚(η) =

1

𝑚!

𝜕𝑚𝜃(η; 𝑟)

𝜕𝜃𝑚
, 

 

𝑓𝑚(η) =
1

𝑚!

𝜕𝑚∅(η; 𝑟)

𝜕∅𝑚
, 

 

Obviously, the convergences of the series (33)-(35) are 

subject to the auxiliary parameter ℏ. Assuming ℏ is chosen 

such that the series (33)-(35) converge at  𝑟 = 1, we have 

 

𝑓(η) = 𝑓0(η) + ∑ 𝑓𝑚(η)

∞

𝑚=1

, 𝜃(η) = 𝜃0(η) + ∑ 𝜃𝑚(η)

∞

𝑚=1

, 

 

∅(η) = ∅0(η) + ∑ ∅𝑚(η)∞
𝑚=1                      (36) 

901



 

For the mth-order deformation, we take the derivative of 

zeroth-order deformation of Eqns. (25)-(27) times with 

respect to 𝑟, dividing by 𝑚! and set 𝑟 = 0, we have 

 

𝐿𝑓[𝑓𝑚(η) − 𝜒𝑚𝑓𝑚−1(η)] = ℏ𝑅𝑚
𝑓 (η)             (37) 

 

𝐿𝜃[𝜃𝑚(η) − 𝜒𝑚𝜃𝑚−1(η)] = ℏ𝑅𝑚
𝜃 (η)              (38) 

 

𝐿∅[∅𝑚(η) − 𝜒𝑚∅𝑚−1(η)] = ℏ𝑅𝑚
∅ (η)          (39) 

 

having the following boundary conditions. 

 

𝑓𝑚(η = 0; 0) = 0,
𝜕𝑓𝑚(η = 0; 0)

∂η
= 0, 

  
𝜕𝜃𝑚(η = 0; 0)

∂η
= 𝐵𝑖[𝜃𝑚(η = 0; 0)], 

∅𝑚(η = 0; 0) = 0                          (40) 

 
𝜕𝑓𝑚(η→∞)

∂η
= 0, 𝜃𝑚(η → ∞) = 0 = ∅𝑚(η → ∞)    (41) 

 

where, 

 

 𝑅𝑚
𝑓 (η) =

𝑑3𝑓𝑚−1(η)

𝑑η3
+

1

2
∑ 𝑓𝑛(η)

𝑚−1

𝑛=0

𝑑2𝑓𝑚−1−𝑛(η)

𝑑η2
 

−(𝐻𝑎 + 𝑃𝑠)
𝑑𝑓𝑚−1(η)

𝑑η
𝐺𝑟𝜃𝑚−1 + 𝐺𝑐∅𝑚−1          (42) 

 

𝑅𝑚
𝜃 (η) =

𝑑2𝜃𝑚−1(η)

𝑑η2
 +

1

2
𝑃𝑟 ∑ 𝑓𝑛(η)

𝑚−1

𝑛=0

𝑑𝜃𝑚−1−𝑛(η)

𝑑η
 

+𝛿𝜃𝑚−1                                   (43) 

 

𝑅𝑚
∅ (η) =

𝑑2∅𝑚−1(η)

𝑑η2 +
1

2
𝑆𝑐 ∑ 𝑓𝑛(η)𝑚−1

𝑛=0
𝑑∅𝑚−1−𝑛(η)

𝑑η
      (44) 

 

and 𝜒𝑚 = 0    𝑓𝑜𝑟  𝑚 ≤ 1;      𝜒𝑚 = 1    𝑓𝑜𝑟  𝑚 > 1 

 

having the following as a general solution 

 

𝑓𝑚(ղ) = 𝑓𝑚
∗ (η) + 𝐶1 + 𝐶2 𝑒𝑥𝑝(−η) + 𝐶3 𝑒𝑥𝑝(η)    (45) 

 

𝜃𝑚(ղ) = 𝜃𝑚
∗ (η) + 𝐶4 + 𝐶5 𝑒𝑥𝑝(η)             (46) 

 

∅𝑚(ղ) = ∅𝑚
∗ (η) + 𝐶6 + 𝐶7 𝑒𝑥𝑝(η)            (47) 

 

where, 𝑓𝑚
∗ (ղ), 𝜃𝑚

∗ (ղ) and ∅𝑚
∗ (ղ)  represent the particular 

solution of equations (40) and (41). In agreement with 

Adhikari [22], we consider the rule of coefficient ergodicity 

and rule of solution existence and choose the auxiliary 

functions as  

 

𝐻𝑓 = 𝐻𝜃 = 𝐻∅ = 1 

 

3.3 Convergence of the HAM solution 

 

The convergence of this present investigation was 

considered in-line with Liao [19]. The series equations (33)-

(35) which consist of non-zero auxiliary ℏ𝑓 , ℏ𝜃  and ℏ∅ play 

important roles in adjusting and control the convergence. 

However, the admissible range values for ℏ𝑓 , ℏ𝜃 and ℏ∅, are 

obtained at the 10𝑡ℎ − 𝑜𝑟𝑑𝑒𝑟 approximation of HAM with 

𝐻𝑎 = 0.1, 𝐺𝑟 = 0.1,  𝐺𝑐 = 0.1,  𝑃𝑟 = 0.72, 𝑆𝑐 = 0.62, 𝐵𝑖 =

0.1, 𝛿 = 0.05,  𝑃𝑠 = 0.1  at the range where ℏ − 𝑐𝑢𝑟𝑣𝑒 

becomes parallel which gives −1.8 ≤ ℏ𝑓 ≤ −0.4 , −2.2 ≤

ℏ𝜃 ≤ −0.2 , and −1.8 ≤ ℏ∅ ≤ −0.5 which respectively 

justify the convergence of 𝑓′′(0), 𝜃′(0) and ∅′(0) as shown 

in Figures (2-4) 

 

 
 

Figure 2. ℏ𝑓-curve of 𝑓′′(0) at 10th order of approximation 

 

 
 
Figure 3. ℏ𝜃-curve of 𝜃′(0)  at 10th order of approximation 

 

 
 
Figure 4. ℏ𝑓-curve of ∅′(0) at 10th order of approximation 

 

 

4. VALIDATION OF THE STUDY 

 

The successful implementation of the numerical results 

was first considered by comparing it with the previous work 

done in the literature. So, these present results are compared 

to those obtained by Makinde [23] for the local skin-friction, 

Nusselt Number, plate surface temperature and Sherwood 

number by setting 𝑷𝒔 = 𝟎  and 𝜹 = 𝟎  The results strongly 

agreed with each other (see Table 1). This shows that there is 

no deficiency with the method. 
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Table 1. Comparison of the present result with Makinde [23] 

 
 Makinde [23] Present result 

𝐻𝑎 𝐺𝑟 𝐺𝑐 𝐵𝑖 𝑃𝑟 𝑆𝑐 𝑓′′(0) −𝜃′(0) 𝜃(0) −∅′(0) 𝑓′′(0) −𝜃′(0) 𝜃(0) −∅′(0) 

0.1 0.1 0.1 0.1 0.72 0.62 −0.402271 0.078635 0.213643 0.3337425 −0.402272 0.078636 0.213644 0.3337425 

1.0 0.1 0.1 0.1 0.72 0.62 −0.352136 0.273153 0.726846 0.3410294 −0.352137 0.273154 0.726845 0.3410295 

10 0.1 0.1 0.1 0.72 0.62 −0.329568 0.365258 0.963474 0.3441377 −0.329568 0.365259 0.963475 0.3441377 

0.1 0.5 0.1 0.1 0.72 0.62 −0.322212 0.079173 0.208264 0.3451301 −0.322213 0.079174 0.208264 0.3451302 

0.1 1.0 0.1 0.1 0.72 0.62 −0.231251 0.079691 0.203088 0.3566654 −0.231252 0.079692 0.203089 0.3566654 

0.1 0.1 0.5 0.1 0.72 0.62 −0.026410 0.080711 0.192889 0.3813954 −0.026411 0.080712 0.192889 0.3813955 

0.1 0.1 1.0 0.1 0.72 0.62 0.3799184 0.082040 0.179592 0.4176697 0.3799185 0.082041 0.179593 0.4176698 

0.1 0.1 0.1 1.0 0.72 0.62 −0.985719 0.074174 0.258252 0.2598499 −0.985720 0.074175 0.258253 0.2598500 

0.1 0.1 0.1 5.0 0.72 0.62 −2.217928 0.066156 0.338435 0.1806634 −2.217929 0.066157 0.338436 0.1806634 

0.1 0.1 0.1 0.1 1.00 0.62 −0.407908 0.081935 0.180640 0.3325180 −0.407909 0.081936 0.180640 0.3325180 

0.1 0.1 0.1 0.1 7.10 0.62 −0.421228 0.093348 0.066513 0.3305618 −0.421229 0.093349 0.066514 0.3305619 

0.1 0.1 0.1 0.1 0.72 0.78 −0.411704 0.078484 0.215159 0.3844559 −0.411705 0.078485 0.215160 0.3844560 

 

 
5. DISCUSSION OF RESULTS 

 

In the light of physical understanding of this present 

problem, the set of coupled nonlinear Eqns. (10)-(12) 

governing the problem with the boundary conditions (13) and 

(14) have been solved by Homotopy Analysis Method (HAM) 

at 20th-order because of the unbounded domain, in order to 

meet the far field boundary conditions.  

The resulting effects of various parameters in the flow 

system such as: Magnetic Parameter (Ha), Thermal Grashof 

Number (Gr), Solutal Grashof Number (Gc), Prandtl Number 

(Pr) , Schmidt Number (Sc), Local Heat transfer parameter 

(Bi), Heat Source Parameter (𝛿) and Porosity parameter (Ps) 

on Velocity profile, Temperature profile, Concentration 

profile and Local Skin-friction, Local Nusselt Number, plate 

surface temperature, Sherwood number were presented 

graphical and tabular form. 

The values of Schmidt number 𝑆𝑐 for diffusing chemical 

species in air were chosen to be 𝑆𝑐 = 0.24 (𝐻2),
0.62 (𝐻2𝑂), 𝑆𝑐 = 0.78 (𝑁𝐻3) and 𝑆𝑐 = 2.62 (𝐶9𝐻12). 

The Prandtl number was taken to be 0.72 which 

correspond to air and it is mostly encountered fluid in nature 

and commonly used in engineering. For the purpose of 

numerical calculation, other parameters were chosen to be 

𝐻𝑎 = 0.1, 𝐺𝑟 = 0.1, 𝐺𝑐 = 0.1, 𝑃𝑠 = 0.1, 𝐵𝑖 = 0.1, 𝛿 =
0.05. 

The effect of magnetic parameter on the velocity, 

temperature and concentration profiles are shown in Figure 

5-7. Obviously from Figure 5, velocity distribution across the 

boundary layer decreases as magnetic parameter increases. 

This quantitatively agrees with the expectation because the 

presence of Ha in an electrically conducting fluid produces a 

drag-like force called Lorentz force which act against the 

flow, thereby resist the motion of fluid flow and enhances the 

heat energy of which its aftermath effect increases the fluid 

temperature and its concentration. This inturns enhances the 

thermal and concentration boundary layers. 

The enhancement in fluid concentration which in turns 

increases its boundary layer thickness is justified by the 

temperature gradient inherent in the viscosity of the fluid. It 

can be seen from Table 2 that the magnitude of the local 

skin-friction improves due to an increase in magnetic 

interaction. This in turns improves the shear stress and 

enhance flow. 

 

 
 

Figure 5. Velocity profiles for different values of Ha 

 

 
 

Figure 6. Temperature profiles for different values of Ha 
 

 
 

Figure 7. Concentration profiles for different values of Ha 
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Table 2. Numerical values of the Skin-friction coefficient, local Nusselt number, local Sherwood number and plate surface 

temperature 

 
Ha Gr Gc Bi δ Pr Sc Ps 𝑓′′(0) −𝜃′(0) θ (0) -∅'(0) 

0.1  0.1  0.1  0.1  0.05  0.72  0.62  0.1  0.480589  0.072495  0.275054  0.321378  

0.5  0.1  0.1  0.1  0.05  0.72  0.62  0.1  0.759608  0.067168  0.328319  0.283825  

1.0  0.1  0.1  0.1  0.05  0.72  0.62  0.1  1.022340  0.062071  0.379290  0.254589  

0.1  0.1  0.1  0.1  0.05  0.72  0.62  0.1  0.480589  0.072495  0.275054  0.321378  

0.1  0.5  0.1  0.1  0.05  0.72  0.62  0.1  0.380176  0.074430  0.255701  0.338241  

0.1  1.0  0.1  0.1  0.05  0.72  0.62  0.1  0.272045  0.075709  0.242913  0.352242  

0.1  0.1  0.1  0.1  0.05  0.72  0.62  0.1  0.480589  0.072495  0.275054  0.321378  

0.1  0.1  0.5  0.1  0.05  0.72  0.62  0.1  0.120729  0.077239  0.227614  0.370425  

0.1  0.1  1.0  0.1  0.05  0.72  0.62  0.1  0.273632  0.079484  0.205156  0.407670  

0.1  0.1  0.1  0.1  0.05  0.72  0.62  0.1  0.480589  0.072495  0.275054  0.321378  

0.1  0.1  0.1  0.5  0.05  0.72  0.62  0.1  0.442361  0.177416  0.645167  0.328121  

0.1  0.1  0.1  1.0  0.05  0.72  0.62  0.1  0.428684  0.218151  0.781848  0.330389  

0.1  0.1  0.1  0.1  0.01  0.72  0.62  0.1  0.487708  0.077149  0.228508  0.319924  

0.1  0.1  0.1  0.1  0.03  0.72  0.62  0.1  0.484739  0.075180  0.248199  0.320545  

0.1  0.1  0.1  0.1  0.05  0.72  0.62  0.1  0.480589  0.072495  0.275054  0.321378  

0.1  0.1  0.1  0.1  0.05  0.72  0.62  0.1  0.480589  0.072495  0.275054  0.321378  

0.1  0.1  0.1  0.1  0.05  1.0  0.62  0.1  0.491311  0.078932  0.210680  0.319005  

0.1  0.1  0.1  0.1  0.05  3.0  0.62  0.1  0.505733  0.089619  0.103808  0.316486  

0.1  0.1  0.1  0.1  0.05  0.72  0.24  0.1  0.451388  0.073547  0.264530  0.187505  

0.1  0.1  0.1  0.1  0.05  0.72  0.62  0.1  0.480589  0.072495  0.275054  0.321378  

0.1  0.1  0.1  0.1  0.05  0.72  0.78  0.1  0.488899  0.072166  0.278343  0.372233  

0.1  0.1  0.1  0.1  0.05  0.72  0.62  0.1  0.480589  0.072495  0.275054  0.321378  

0.1  0.1  0.1  0.1  0.05  0.72  0.62  0.5  0.759608  0.067168  0.328319  0.283825  

0.1  0.1  0.1  0.1  0.05  0.72  0.62  1.0  1.022340  0.062071  0.379290  0.254589  

 

The graphical behaviors of Schmidt number (Sc) as 

illustrated in Figure 8-9, reveals that an increase in Sc which 

happen as a result of low molecular diffusivity leads to a 

reduction in velocity distribution of the fluid and rapidly fall 

its concentration within the boundary layer. This in turns 

reduces the diffusion property of the fluid and the 

concentration boundary layer becomes thinner than the 

velocity boundary layer thickness. It is observed from Table 

2 that the rate of mass transfer improves for higher values of 

Sc as Sherwood number increases. 

 

 
 

Figure 8. Velocity profiles for different values of 𝑆𝑐 
 

 
 

Figure 10. Velocity profiles for different values of 𝑃𝑟 

 

 
 

Figure 9. Concentration profiles for different values of 𝑆𝑐 

 

 
 

Figure 11. Temperature profiles for different values of 𝑃𝑟 
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The Prandtl number 𝑃𝑟  which signifies the ratio of 

momentum diffusivity to thermal diffusivity is presented in 

Figure 10-11. A rise in 𝑃𝑟  slightly decreases the velocity 

distribution and rapidly fall its temperature within the 

boundary layer. This consequently lower the average 

temperature and thermal boundary layer thickness 

experiences a reduction. It is noteworthy that the smaller 

value of 𝑃𝑟 equivalent to increase in the thermal conductivity 

which causes the heat to diffuse away quickly from the 

heated surface than the higher value. Therefore, the smaller 

the Prandtl number, the thicker its thermal boundary layer 

which leads to reduction in heat transfer rate. 

Figure 12-17 depict the effect of buoyancy force (𝐺𝑟, 𝐺𝑐) 

on velocity, temperature and concentration profiles. The 

momentum boundary layer thickness increases due to the 

enhancement in fluid velocity as a result of the buoyancy 

force parameters while thermal and concentration boundary 

layer thickness decrease, owning to the decrease in 

temperature and concentration of the fluid. It is what 

mentioning, that the local skin friction and plate surface 

temperature decrease while the Nusselt and Sherwood 

numbers increase with the increase in (𝐺𝑟, 𝐺𝑐) as shown in 

Table 2. 

The positive values of thermal Grashof number and Solutal 

Grashof number correspond to the greater cooling of the 

surface and shows that the concentration at the plate surface 

is higher than the free stream concentration respectively. 

 

 
 

Figure 12. Velocity profiles for different values of 𝐺𝑟 

 

 
 

Figure 14. Concentration profiles for different values of 𝐺𝑟 

 

 
 

Figure 16. Temperature profiles for different values of 𝐺𝑐 

 

 
 

Figure 13. Temperature profiles for different values of 𝐺𝑟 

 

 
 

Figure 15. Velocity profiles for different values of 𝐺𝑐 

 

 
 

Figure 17. Concentration profiles for different values of 𝐺𝑐 
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The effect of permeability parameter (𝑃𝑠)  on velocity, 

temperature and concentration profiles are shown in Figure 

18-20 respectively. As expected, increase in 𝑃𝑠  increase the 

resistance flow, which in turns causes a reduction in velocity 

distribution within the boundary layer with a reverse 

phenomenon in fluid temperature as well as its concentration. 

However, the magnitude of the local skin-friction and plate 

surface temperature increase with the increase in 𝑃𝑠 while the 

decrease effect is observed in Nusselt and Sherwood numbers 

(see Table 2). Subject to the increasing effect of 𝑃𝑠 , the 

thermal boundary layer thickness increases as well as its 

concentration boundary layer. 
 

 
 

Figure 18. Velocity profiles for different values of 𝑃𝑠 
 

 
 

Figure 19. Temperature profiles for different values of 𝑃𝑠 
 

 
 

Figure 20. Concentration profiles for different values of 𝑃𝑠 

 

The presence of heat source (𝛿)  is to enhance the 

temperature of the fluid. An increase in internal heat source 𝛿 

overshoot the temperature of the fluid at 𝛿 = 0.1 to its peak 

value at the plate surface and decreases to a free stream zero 

value far away from the plate in agreement with the boundary 

conditions which consequently strengthen the thermal 

boundary layer thickness. However, the interaction of 𝛿 

enhances the molecules of the fluid as the plate surface 

temperature increases (see Table 2). 

 

 
 

Figure 21. Temperature profiles for different values of 𝛿 

 

The presence of heat source (𝛿)  is to enhance the 

temperature of the fluid. An increase in internal heat source 𝛿 

overshoot the temperature of the fluid at 𝛿 = 0.1 to its peak 

value at the plate surface and decreases to a free stream zero 

value far away from the plate in agreement with the boundary 

conditions which consequently strengthen the thermal 

boundary layer thickness (See Figure 21). However, the 

interaction of 𝛿  enhances the molecules of the fluid as the 

plate surface temperature increases (see Table 2). 

 

 
 

Figure 22. Temperature profiles for different values of 𝐵𝑖 
 

The interaction of Convective heat transfer parameter as 

shown in Table 2 improves the Nusselt number greatly which 

in turns strengthen the rate of heat transfer. However, similar 

behavior is observed on the plate surface temperature and the 

fluid temperature (See Figure 22) due to the heat exchange 

by the hot fluid which in turns strengthen the thermal 

boundary layer thickness. 

 

 

6. CONCLUSION 

 

A numerical study has been carried out to investigate heat 

and mass transfer flow past a vertical porous plate in 

presence of heat source. The partial differential equations 

which describe the problem were transformed to non-linear 

ordinary differential equations by Similarity transformation 

method with the corresponding dimensionless variables. We 
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then solve the equations by Homotopy Analysis Method and 

the results are discussed through graphs and tables for 

different values of embedding parameters and the following 

conclusion are drawn among others 

(i) Increase in heat source enhance the temperature of 

the greatly, which shows that the operating temperature is 

high whenever heat source occurs 

(ii) The cooling problem is guaranteed with the positive 

values of 𝐺𝑟  which are often encountered in engineering 

application for the cooling of electronic component and 

nuclear reactors. 

(iii) Increase in convective heat parameter which play an 

important role in industry and engineering field for drying of 

materials or components, pioneer great convective heating 

which in turn magnify the thermal boundary layer thickness. 

(iv) smaller value of 𝑃𝑟  equivalent to increase in the 

thermal conductivity which causes the heat to diffuse away 

quickly from the heated surface than the higher value. 

The major language in Science and Technology discipline 

is the understanding of the dynamic flow, cooling of the 

system (cooling of the electronic components) and drying of 

materials. We then hope that the work will serve as basis for 

experimental studies. 
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NOMENCLATURE 

𝐻𝑎   𝑀𝑎𝑔𝑛𝑒𝑡𝑖𝑐 𝑓𝑖𝑒𝑙𝑑 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟  

𝐺𝑟    𝐿𝑜𝑐𝑎𝑙 𝑡ℎ𝑒𝑟𝑚𝑎𝑙 𝐺𝑟𝑎𝑠ℎ𝑜𝑓 𝑛𝑢𝑚𝑏𝑒𝑟 

𝐺𝑐    𝐿𝑜𝑐𝑎𝑙 𝑠𝑜𝑙𝑢𝑡𝑎𝑙 𝐺𝑟𝑎𝑠ℎ𝑜𝑓 𝑛𝑢𝑚𝑏𝑒𝑟  

𝐵𝑖  𝐿𝑜𝑐𝑎𝑙 𝑐𝑜𝑛𝑣𝑒𝑐𝑡𝑖𝑣𝑒 ℎ𝑒𝑎𝑡 𝑡𝑟𝑎𝑛𝑠𝑓𝑒𝑟 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟 

Pr    𝑃𝑟𝑎𝑛𝑑𝑡𝑙 𝑛𝑢𝑚𝑏𝑒𝑟        

𝛿  𝐻𝑒𝑎𝑡 𝑠𝑜𝑢𝑟𝑐𝑒 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟
𝑃𝑠  𝑝𝑜𝑟𝑜𝑠𝑖𝑡𝑦 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟 

𝑄0  𝑣𝑜𝑙𝑢𝑚𝑒𝑚𝑒𝑡𝑟𝑖𝑐 ℎ𝑒𝑎𝑡 𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑖𝑜𝑛/ 
      𝑎𝑏𝑠𝑜𝑟𝑝𝑡𝑖𝑜𝑛 𝑟𝑎𝑡𝑒 

𝑆𝑐    𝑆𝑐ℎ𝑚𝑖𝑑𝑡 𝑛𝑢𝑚𝑏𝑒𝑟    

Greek symbols 

 ղ    𝑆𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒 

𝜓   𝑆𝑡𝑟𝑒𝑎𝑚 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛
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