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In this paper, homotopy analysis method with two auxiliary parameters is used to investigate
heat and mass transfer flow past a vertical porous medium in the presence of heat source.
Similarity transformation is adopted to transform the boundary-layer coupled non-linear partial
differential equation to a system of coupled non-linear ordinary differential equation. The
resulting equations are then solved analytically. The effect of various flow parameters on
velocity, temperature and concentration profiles are presented graphically and discussed while
the local skin-friction, Nusselt number, plate surface temperature and Sherwood number are

illustrated numerically in tabular form. The results show among all other obtained that the
cooling problem is guaranteed with the positive values of Grashof number while the higher
values of heat source energies the random movement of the fluid molecules and pave way for
the penetration of the thermal effect to the quiescent fluid.

1. INTRODUCTION

Analysis of magnetohydrodynamic (MHD) flow with the
coupled heat and mass transfer over a vertical plate with
embedded porous medium, in the presence of heat source has
great importance due to the influence of magnetic field in the
boundary layer flow such as geothermal energy extraction
and MHD generator etc. In Lieus of its numerous
applications in science and engineering, it has been studied in
the literature

Thommaandru et al. [1] studied effect of heat source/ sink
on heat and mass transfer of magneto-nanofluids over a
nonlinear stretching sheet. Ibrahim et al [2] investigated the
effect of chemical reaction and radiation absorption on
unsteady MHD mixed convection flow past a semi infinite

vertical permeable moving plate with heat source and suction.

Bakr [3] reported the effect of chemical reaction on MHD
free convection and mass transfer flow of a micropolar fluid
with oscillatory plate velocity and constant heat source in a
rotating frame of reference. The internal heat generation
effect on thermal boundary layer with a convective surface
boundary condition was investigated by Olarewaju et al. [4].
Crepeau and Clarksean [5] worked on similarity solutions of
natural convection with internal heat generation. Ashwini and
Eswara [6] studied MHD Falkner Skan boundary layer flow
with internal heat generation or absorption. Makinde [7]
reported the similarity solution for natural convection from a
moving vertical plate with internal heat generation and a
convective boundary condition. By virtual of the endless
impotances of heat generation or heat source with different
conditions imposed on it, other authors like Azim et al. [8],
Rashid and Wagar [9], Machireddy [10], Rena and Bhargav
[11] and Kashmani et al. [12] considered the effect of heat
source/ heat generation in their investigation. Considering the
effect or impact of heat source or heat generation on MHD
flow, the porosity part has not been left out due to its vast
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applications in science and engineering disciplines. Good
numbers of work have been considered with the porosity
parameter in the literature by different authors among which
are; Mohammed et al. [13] investigated the thermal and
MHD effect on free convective flow of a polar fluid through
a porous medium in the presence of internal heat generation
and chemical reaction. Patil and Kulkarini [14] worked on
effect of chemical reaction on free convective flow of a polar
fluid through a porous medium in the presence of internal
heat generation. Ramana et al. [15] investigated mass transfer
and radiation effects of unsteady MHD free convection fluid
flow embedded in porous medium with heat generation/
absorption. Sharm and singh [16] discussed unsteady MHD
free convective flow and heat transfer along a vertical porous
with variable suction and internal heat generation. Mamta
and Krishna [17] discussed the thermal radiation effect on an
unsteady MHD free convection chemically reacting viscous
dissipation fluid flow past an infinite vertical moving porous
plate with heat source. Other authors like Sharma et al. [18]
considered heat generation or heat source in their
investigation.

The main purpose of this present paper is to investigate
heat and mass transfer in hydromagnetic flow past a vertical
porous media in the presence of heat source via homotopy
analysis method discovered by Liao [19]. The effects of
different involved parameters are discussed numerically and
graphically.

2. MATHEMATICAL FORMULATION

We consider a steady-state heat and mass transfer flow of a
stream of cold fluid at temperature T, that takes place in the
presence of heat source. The left surface is considered to be
heated by convection from the hot fluid at temperature T that


https://nga.postcodebase.com/zh-hans/taxonomy/term/5390

brings about heat transfer coefficient h;. The cold fluid in
contact with the surface of the plate produces heat internally
at volumetric rate Q,. The plate is subjected to a magnetic
field of strength B, which act in a transverse direction to the
flow and the effect of induced magnetic field is neglected.
The x — axis is taken parallel to the plate direction and y —
axis normal to it. The fluid temperature and concentration
are respectively taken as T and C, while C,, is the species
concentration at the surface of the plate.
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Figure 1. Flow configuration and coordinate system

In line with the assumption stated above and usual
Boussinesq's approximation, the steady flow is governed by
the equation slated below

ou v

ox £=0 1

ug—z+ Z—Z=v(;;u—ﬁjT°u——u+gﬁT(T Te) +
9 B:(C = Co) )
ua—T+vg—T=asz+%j°°) (3)
ug—c+vg—; DZZTS 4)

where, (u, v) are components of the velocity at any point
x,y) , is the temperature of the fluid, C is the
concentration, U, is the plate velocity and D, a, T, Cw, g, P»
g, Br, Qo, Cp, v, B and B, are the mass diffusivity, thermal

diffusivity, free stream temperature, free stream
concentration, acceleration due to gravity, density, fluid
electrical conductivity, thermal expansion coefficient,

volumemetric heat generation/absorption rate, specific heat at
constant pressure, kinematics viscosity, concentration
expansion coefficient and magnetic field of strength
respectively. The appropriate boundary conditions at the
surface of the plate and away into the cold fluid are expressed
as follows

6T(x 0)

U(x,0) = Uy, V(x,0)=0, —k = h[T; = T(x,0)],
Cp(x,0) =Ax*+C,, U(x,0) =0
T(x,0) =T, C(x,0)=C, (5)

where, k represents the thermal conductivity coefficient and 4
denotes the power index of the concentration. The continuity
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Eq. (1) is satisfied automatically by invoking the stream
function defined by

oY

P
u=— and v=-——
ay dx

(6)

Considering n as independent variable and f as dependent
variable interms of stream function, similarity solution of (1-
6) is given as

n= y\/g » P =yvxlUof() O]
where, U, represents the velocity of the plate and
o) = , B ==~ ®)

Cw—Cyp

respectively denotes the dimensionless temperature and
concentration. Applying Eqns. (6-8) into Egns. (1-5) with the
following quantities

_oBgx _ 9B (T — T.)x . 9B:(C,, — C)x
pU, ’ Ug ’ Ug ’
Bi:ﬂ E,Pr:vl)ip, SC:x, 9
k +l Ug K b
5 xQov vx K*
K*UO ’ S KUO ’ pcp
we have
Zn’;+2f — (Ha +P)—+ Gré(m) + Ged(n) = 0 (10)
%9 1 de —
az T3 Prf o+ 60m) =0 (11)
a? o
o f— 12)

Here, Ha is the local magnetic field parameter, Gr is the
local thermal Grashof number, Gc is the Solutal Grashof
number, Bi is the local convective heat transfer parameter,
Pr is the Prandtl number, Sc is the Schmidt number, § is the
heat source and P, is the Porosity parameter. The
corresponding boundary conditions are as follows

£(0)=0,f'(0) =1,0'(0) = Bi[#(0) — 1],0(0) = 1 (13)

f'(©)=0, 8(0) =0, @(0)=0 (14)

The local parameters Ha, Bi, Gr, Gc,§ and P, in (10-12)
denotes the function of x. In an attempt to have similarity
solution, we assume the following parameters

b d
o="2h coBe=3.0=1 K=2 (19

e
X

a
_\/_E'BT_

where, a, b, c,d, e and g are constant under the appropriate
dimension. The nonlinear Eqns. (10-12) subject to the
boundary conditions of Egns. (13) and (14) are solved
analytically by Homotopy Analysis Method as shown in (3.0)
below. The rate of the model, corresponding to the local skin-



friction, rate of heat transfer corresponding to the Nusselt
number and rate of mass transfer corresponding to the
Sherwood number are respectively considered, given by

2Ty

pUg’

Xqw
k(Tw—Teo)’

Xqm

Cr = ~ D(Cw—Ceo)

(16)

Nu =
and expressed

-1 1 1
C; = 2Re? £ (0), Nu = —Re20'(0), Sh = —Re2¢'(0) (17)

where, Re,, = Uyx/v is the Reynold number, t,, is the shear
stress along the plate, q,, is the surface heat and q,, is the
surface mass. Their numerical computation, in addition with
the plate plate surface temperature which is denoted by 6(0)
are presented in the Table 2.

3. HOMOTOPY ANALYSIS METHOD

Homotopy Analysis Method (HAM), discovered by Liao
[19-20] is preferred over another method and adopted for this
work due to its efficiency in solving both Linear and non-
linear differential equations. The non-linear differential
equations are usually inevitable and have become a culture in
our daily mathematical modeling. They are solved by
different methods, among which are; differential transform
method (DTM), Variation Iteration Method and so on.
Following Olubode et al. [21] in accordance with the rule of
solution and boundary conditions (13)-(14), we choose the
initial guess

Bi —
£o() = 1= exp(—n), Go(n) = %ﬁgl;‘)

Do(m) = exp(—m) (18)

as the initial linear approximations of f(n),8(n) and @(n)
and the auxiliary linear operations Lg, Lg, and Ly as;

3fmr) _ af(mir)

Lelf ()] = =33 on (19)
Ll0(ni )] = 297 — o) (20)
Lol(y )] = 2297 — ;) (21)
agreed with the following properties
Le[Cy + Cyexp() + C3exp(—m)] =0 (22)
Lo[Cy + Cs exp(—m)] = (23)
Ly[Cs + Cyexp(—m)] =0 (24)
where, C;, C,, ..., C; are constants.
3.1 Zero order deformation problem
A =7r)Le[f 7)) — fo(m)]
= rhsHr(MNe[f(; 1), 0(n; 1), 0(n; )] (25)

A =7r)Le[f; ) — 6,(M)]
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= rhgHo(M)Np[f (n; ), 6 (n; 7] (26)
A =7r)Lg[f(m;7) = Bo()]
= rhyHy(MNg[f (n; 1), @ (n; )] (@7)
having the following boundary conditions.
Fa=0ry =0, LT
PO | o =Bi[6(n = 0;7) —1,0(n = 0;7) = 1 (28)

af (n;r)

oo =0, 60— 0;7) =0 =0(n — 00;7) (29)
where, N¢, Ng, and Ny are nonlinear operator defined as

Nf[f(n: r),0(m; 1), 8(m; )]

_ofin) o*f(n; 1) of ;1)
I srauin LT - a4y L
Gro(m;r) + Ged(m; 1) (30)
 Nelf ), 60 m)]
= o0 2PN ) + 80(yiT)  (3D)
Nolf (), 81 1)] = 532 + 50 (i) 200 (32)

where, re[0,1] is the embedding parameter and i, # 0, hy #
0 and ayz = 0 are the auxiliary parameter

3.2 Mth-order deformation problem

The increase in embedding parameter r from Zero to One,
lead to a variation of the function f(n;r),8(m; r) and @(n; r)
from initial guess f,(m), 8,(n) and @,(n) to the solutions
f(;r),0(n;r) and @(m; r). Using Taylor series with respect
to r, we have

f;r) = fom) + Xmat f (D™ (33)
O(m;7) = 6,() + Xm=1 O (T™ (34)
P(m; 1) = Bo(M) + Xm=1 B (MT™ (35)
where,
a"‘f(n,r) 190m0(m;7)
fm( ) = an fm( ) m!a@—m’
am
o) = - L OUET)

agm
Obviously, the convergences of the series (33)-(35) are

subject to the auxiliary parameter A. Assuming # is chosen
such that the series (33)-(35) converge at r = 1, we have

FOD = o)+ D fu), 60 = o) + > 6,

Bm) = Bo(M) + Xin=1 Om (M) (36)



For the mth-order deformation, we take the derivative of
zeroth-order deformation of Eqns. (25)-(27) times with
respect to r, dividing by m! and set r = 0, we have

Ly [fin () = Xmfm-1 (] = AR, (D) (37)
Lg[6m(M) = XmOm-1()] = R, (n) (38)
Lo[@mn () = Xm®m-1 ()] = AR, () (39)
having the following boundary conditions.
N fn(n =0;0)
fm(gg— 0;0) 0— g; T =0,
% = Bi[f,,(n = 0;0)],
0 =0;0)=0 (40)

Ul (6, 0) = 0 = Bl = ) (4)
where,
m—1 d m—-1-n
()_f m, ZEU_LTJQ
—(Ha +P)dfm 1(n)G 70, 1+ GcD,. . (42)
dZ m 1(n) dem 1- n(n)
an(n)—T+ =Pr an( )—n
60, (43)
RE,(n) = L0t | Lgoymet p () Wmctzn® ()

dn? dn

andy,, =0 form<1, y,=1 form>1

having the following as a general solution

fm(D) = fm() + C; + Gy exp(—m) + C3 exp(n)  (45)
Om (1) = () + C4 + Cs exp(n) (46)
D (1) = 07,(M) + C6 + C; exp(n) 47)

where, f.. (1), 0, (1) and @5, () represent the particular
solution of equations (40) and (41). In agreement with
Adhikari [22], we consider the rule of coefficient ergodicity
and rule of solution existence and choose the auxiliary
functions as

3.3 Convergence of the HAM solution

The convergence of this present investigation was
considered in-line with Liao [19]. The series equations (33)-
(35) which consist of non-zero auxiliary i, hy and hgy play
important roles in adjusting and control the convergence.
However, the admissible range values for A, iy and fig, are
obtained at the 10th — order approximation of HAM with
Ha =0.1, Gr = 0.1, Gc = 0.1, Pr =0.72, Sc = 0.62,Bi =
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0.1, § =0.05, P,=0.1 at the range where h — curve
becomes parallel which gives —1.8 < A, < —0.4, —2.2 <
hg <—-0.2, and —1.8 < hy < —0.5 which respectively
justify the convergence of f/(0), 6'(0) and @'(0) as shown
in Figures (2-4)

1
-2.0

|
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[=]

Figure 4. hie-curve of @'(0) at 10th order of approximation

4. VALIDATION OF THE STUDY

The successful implementation of the numerical results
was first considered by comparing it with the previous work
done in the literature. So, these present results are compared
to those obtained by Makinde [23] for the local skin-friction,
Nusselt Number, plate surface temperature and Sherwood
number by setting P = 0 and & = 0 The results strongly
agreed with each other (see Table 1). This shows that there is
no deficiency with the method.



Table 1. Comparison of the present result with Makinde [23]

Makinde [23] Present result

Ha| Gr | Gec | Bi | Pr | Sc | f'(0) | —6'(0) | 6(0) —9'(0) £700) | —6'(0) | 6(0) | —0'(0)

01/01]01]0.1]0.72]0.62 | —-0.402271 | 0.078635 | 0.213643 | 0.3337425 | —0.402272 | 0.078636 | 0.213644 | 0.3337425

10)01[01]01]0.72 | 0.62 | —0.352136 | 0.273153 | 0.726846 | 0.3410294 | —0.352137 | 0.273154 | 0.726845 | 0.3410295

10 | 01|01 ]0.1|0.72 | 0.62 | —0.329568 | 0.365258 | 0.963474 | 0.3441377 | —0.329568 | 0.365259 | 0.963475 | 0.3441377

01/05]01]01|0.72] 062 | —0.322212 | 0.079173 | 0.208264 | 0.3451301 | —0.322213 | 0.079174 | 0.208264 | 0.3451302

01/10)01]01]0.72]0.62 | —0.231251 | 0.079691 | 0.203088 | 0.3566654 | —0.231252 | 0.079692 | 0.203089 | 0.3566654

01(01|05]01]0.72| 0.62 | —0.026410 | 0.080711 | 0.192889 | 0.3813954 | —0.026411 | 0.080712 | 0.192889 | 0.3813955

01/01)10]01]0.72]0.62 | 0.3799184 | 0.082040 | 0.179592 | 0.4176697 | 0.3799185 | 0.082041 | 0.179593 | 0.4176698

01/01]01]1.0]0.72 ] 0.62 | —0.985719 | 0.074174 | 0.258252 | 0.2598499 | —0.985720 | 0.074175 | 0.258253 | 0.2598500

01(01]01]|50]|0.72] 062 | —-2217928 | 0.066156 | 0.338435 | 0.1806634 | —2.217929 | 0.066157 | 0.338436 | 0.1806634

01/01)01]01]1.00]0.62 | —0.407908 | 0.081935 | 0.180640 | 0.3325180 | —0.407909 | 0.081936 | 0.180640 | 0.3325180

01/01)01]01]710]0.62 | —0.421228 | 0.093348 | 0.066513 | 0.3305618 | —0.421229 | 0.093349 | 0.066514 | 0.3305619

01]01]0101]0.72]0.78 | —0.411704 | 0.078484 | 0.215159 | 0.3844559 | —0.411705 | 0.078485 | 0.215160 | 0.3844560

5. DISCUSSION OF RESULTS

In the light of physical understanding of this present
problem, the set of coupled nonlinear Egns. (10)-(12)
governing the problem with the boundary conditions (13) and
(14) have been solved by Homotopy Analysis Method (HAM)
at 20th-order because of the unbounded domain, in order to
meet the far field boundary conditions.

The resulting effects of various parameters in the flow
system such as: Magnetic Parameter (Ha), Thermal Grashof
Number (Gr), Solutal Grashof Number (Gc), Prandtl Number
(Pr), Schmidt Number (Sc), Local Heat transfer parameter
(Bi), Heat Source Parameter (§) and Porosity parameter (Ps)
on Velocity profile, Temperature profile, Concentration Figure 5. Velocity profiles for different values of Ha
profile and Local Skin-friction, Local Nusselt Number, plate
surface temperature, Sherwood number were presented
graphical and tabular form. 04p.

The values of Schmidt number Sc for diffusing chemical i
species in air were chosen to be Sc=0.24(H,), 03l
0.62 (H,0), Sc = 0.78 (NH;) and Sc = 2.62 (CoH, ;). ‘

The Prandtl number was taken to be 0.72 which

a(n)

correspond to air and it is mostly encountered fluid in nature 02p
and commonly used in engineering. For the purpose of

numerical calculation, other parameters were chosen to be 0l
Ha=0.1, Gr =01, Gc=0.1, =01, Bi=0.1,§ =

0.05.
The effect of magnetic parameter on the velocity,
temperature and concentration profiles are shown in Figure

0.0

15

5-7. Obviously from Figure 5, velocity distribution across the Figure 6. Temperature profiles for different values of Ha
boundary layer decreases as magnetic parameter increases.
This quantitatively agrees with the expectation because the ()

. . . . 1.0
presence of Ha in an electrically conducting fluid produces a :

drag-like force called Lorentz force which act against the
flow, thereby resist the motion of fluid flow and enhances the
heat energy of which its aftermath effect increases the fluid
temperature and its concentration. This inturns enhances the
thermal and concentration boundary layers.

The enhancement in fluid concentration which in turns
increases its boundary layer thickness is justified by the
temperature gradient inherent in the viscosity of the fluid. It
can be seen from Table 2 that the magnitude of the local
skin-friction improves due to an increase in magnetic
interaction. This in turns improves the shear stress and
enhance flow. Figure 7. Concentration profiles for different values of Ha
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Table 2. Numerical values of the Skin-friction coefficient, local Nusselt number, local Sherwood number and plate surface

temperature

Ha Gr Gc Bi ) Pr Sc Ps £"(0) —0'(0) 4 (0) -0'(0)

0.1 0.1 0.1 0.1 0.05 0.72 0.62 0.1 0.480589 0.072495 0.275054 0.321378
0.5 0.1 0.1 0.1 0.05 0.72 0.62 0.1 0.759608 0.067168 0.328319 0.283825
1.0 0.1 0.1 0.1 0.05 0.72 0.62 0.1 1.022340 0.062071 0.379290 0.254589
0.1 0.1 0.1 0.1 0.05 0.72 0.62 0.1 0.480589 0.072495 0.275054 0.321378
0.1 0.5 0.1 0.1 0.05 0.72 0.62 0.1 0.380176 0.074430 0.255701 0.338241
0.1 1.0 0.1 0.1 0.05 0.72 0.62 0.1 0.272045 0.075709 0.242913 0.352242
0.1 0.1 0.1 0.1 0.05 0.72 0.62 0.1 0.480589 0.072495 0.275054 0.321378
0.1 0.1 0.5 0.1 0.05 0.72 0.62 0.1 0.120729 0.077239 0.227614 0.370425
0.1 0.1 1.0 0.1 0.05 0.72 0.62 0.1 0.273632 0.079484 0.205156 0.407670
0.1 0.1 0.1 0.1 0.05 0.72 0.62 0.1 0.480589 0.072495 0.275054 0.321378
0.1 0.1 0.1 0.5 0.05 0.72 0.62 0.1 0.442361 0.177416 0.645167 0.328121
0.1 0.1 0.1 1.0 0.05 0.72 0.62 0.1 0.428684 0.218151 0.781848 0.330389
0.1 0.1 0.1 0.1 0.01 0.72 0.62 0.1 0.487708 0.077149 0.228508 0.319924
0.1 0.1 0.1 0.1 0.03 0.72 0.62 0.1 0.484739 0.075180 0.248199 0.320545
0.1 0.1 0.1 0.1 0.05 0.72 0.62 0.1 0.480589 0.072495 0.275054 0.321378
0.1 0.1 0.1 0.1 0.05 0.72 0.62 0.1 0.480589 0.072495 0.275054 0.321378
0.1 0.1 0.1 0.1 0.05 1.0 0.62 0.1 0.491311 0.078932 0.210680 0.319005
0.1 0.1 0.1 0.1 0.05 3.0 0.62 0.1 0.505733 0.089619 0.103808 0.316486
0.1 0.1 0.1 0.1 0.05 0.72 0.24 0.1 0.451388 0.073547 0.264530 0.187505
0.1 0.1 0.1 0.1 0.05 0.72 0.62 0.1 0.480589 0.072495 0.275054 0.321378
0.1 0.1 0.1 0.1 0.05 0.72 0.78 0.1 0.488899 0.072166 0.278343 0.372233
0.1 0.1 0.1 0.1 0.05 0.72 0.62 0.1 0.480589 0.072495 0.275054 0.321378
0.1 0.1 0.1 0.1 0.05 0.72 0.62 0.5 0.759608 0.067168 0.328319 0.283825
0.1 0.1 0.1 0.1 0.05 0.72 0.62 1.0 1.022340 0.062071 0.379290 0.254589

The graphical behaviors of Schmidt number (Sc) as
illustrated in Figure 8-9, reveals that an increase in Sc which
happen as a result of low molecular diffusivity leads to a
reduction in velocity distribution of the fluid and rapidly fall
its concentration within the boundary layer. This in turns

T'(n)
1.0

— 8c=0.24

10 12”

Figure 8. Velocity profiles for different values of Sc
1flo'(n1
0.8+
0.6

0.4+

0.2-

0.0
0 n

2 4 6 8

Figure 10. Velocity profiles for different values of Pr
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reduces the diffusion property of the fluid and the
concentration boundary layer becomes thinner than the
velocity boundary layer thickness. It is observed from Table
2 that the rate of mass transfer improves for higher values of
Sc as Sherwood number increases.
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Figure 9. Concentration profiles for different values of Sc
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Figure 11. Temperature profiles for different values of Pr



The Prandtl number Pr which signifies the ratio of
momentum diffusivity to thermal diffusivity is presented in
Figure 10-11. A rise in Pr slightly decreases the velocity
distribution and rapidly fall its temperature within the
boundary layer. This consequently lower the average
temperature and thermal boundary layer thickness
experiences a reduction. It is noteworthy that the smaller
value of Pr equivalent to increase in the thermal conductivity
which causes the heat to diffuse away quickly from the
heated surface than the higher value. Therefore, the smaller
the Prandtl number, the thicker its thermal boundary layer
which leads to reduction in heat transfer rate.

Figure 12-17 depict the effect of buoyancy force (Gr, Gc)
on velocity, temperature and concentration profiles. The

Figure 12. Velocity profiles for different values of Gr

¢(n)
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Figure 16. Temperature profiles for different values of G¢
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momentum boundary layer thickness increases due to the
enhancement in fluid velocity as a result of the buoyancy
force parameters while thermal and concentration boundary
layer thickness decrease, owning to the decrease in
temperature and concentration of the fluid. It is what
mentioning, that the local skin friction and plate surface
temperature decrease while the Nusselt and Sherwood
numbers increase with the increase in (Gr, Gc) as shown in
Table 2.

The positive values of thermal Grashof number and Solutal
Grashof number correspond to the greater cooling of the
surface and shows that the concentration at the plate surface
is higher than the free stream concentration respectively.

12q
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Figure 17. Concentration profiles for different values of Gc



The effect of permeability parameter (P,) on velocity,
temperature and concentration profiles are shown in Figure
18-20 respectively. As expected, increase in P, increase the
resistance flow, which in turns causes a reduction in velocity
distribution within the boundary layer with a reverse
phenomenon in fluid temperature as well as its concentration.
However, the magnitude of the local skin-friction and plate
surface temperature increase with the increase in P; while the
decrease effect is observed in Nusselt and Sherwood numbers
(see Table 2). Subject to the increasing effect of P, the
thermal boundary layer thickness increases as well as its
concentration boundary layer.
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Figure 18. Velocity profiles for different values of P;
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Figure 19. Temperature profiles for different values of P,
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Figure 20. Concentration profiles for different values of P,
The presence of heat source (&) is to enhance the
temperature of the fluid. An increase in internal heat source §

overshoot the temperature of the fluid at § = 0.1 to its peak
value at the plate surface and decreases to a free stream zero
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value far away from the plate in agreement with the boundary
conditions which consequently strengthen the thermal
boundary layer thickness. However, the interaction of §
enhances the molecules of the fluid as the plate surface
temperature increases (see Table 2).
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Figure 21. Temperature profiles for different values of &

The presence of heat source (§) is to enhance the
temperature of the fluid. An increase in internal heat source §
overshoot the temperature of the fluid at § = 0.1 to its peak
value at the plate surface and decreases to a free stream zero
value far away from the plate in agreement with the boundary
conditions which consequently strengthen the thermal
boundary layer thickness (See Figure 21). However, the
interaction of & enhances the molecules of the fluid as the
plate surface temperature increases (see Table 2).

6(n)
10r
r —— Bi= 01
ogl » Bi= 0.5
k Bi=1.0
osfs v e Bi= 10
0.4
0.2
D.D 1 L 3 ]
0 2 4 il 8 1Dq

Figure 22. Temperature profiles for different values of Bi

The interaction of Convective heat transfer parameter as
shown in Table 2 improves the Nusselt number greatly which
in turns strengthen the rate of heat transfer. However, similar
behavior is observed on the plate surface temperature and the
fluid temperature (See Figure 22) due to the heat exchange
by the hot fluid which in turns strengthen the thermal
boundary layer thickness.

6. CONCLUSION

A numerical study has been carried out to investigate heat
and mass transfer flow past a vertical porous plate in
presence of heat source. The partial differential equations
which describe the problem were transformed to non-linear
ordinary differential equations by Similarity transformation
method with the corresponding dimensionless variables. We



then solve the equations by Homotopy Analysis Method and
the results are discussed through graphs and tables for
different values of embedding parameters and the following
conclusion are drawn among others

(i)  Increase in heat source enhance the temperature of
the greatly, which shows that the operating temperature is
high whenever heat source occurs

(i)  The cooling problem is guaranteed with the positive
values of Gr which are often encountered in engineering
application for the cooling of electronic component and
nuclear reactors.

(iii) Increase in convective heat parameter which play an
important role in industry and engineering field for drying of
materials or components, pioneer great convective heating
which in turn magnify the thermal boundary layer thickness.

(iv) smaller value of Pr equivalent to increase in the
thermal conductivity which causes the heat to diffuse away
quickly from the heated surface than the higher value.

The major language in Science and Technology discipline
is the understanding of the dynamic flow, cooling of the
system (cooling of the electronic components) and drying of
materials. We then hope that the work will serve as basis for
experimental studies.
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NOMENCLATURE

Ha
Gr
Gc
Bi
Pr
1)
Py
Qo

Sc

Magnetic field parameter

Local thermal Grashof number

Local solutal Grashof number

Local convective heat transfer parameter
Prandtl number

Heat source parameter

porosity parameter

volumemetric heat generation/
absorption rate

Schmidt number

Greek symbols

n Similarity variable
Y Stream function





