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Accurate quantification of leaf area is essential for ecophysiological, agronomic, and 

conservation studies, especially in threatened species such as Cinchona micrantha and 

Cinchona pubescens. This study evaluated simple, quadratic, and composite linear 

regression models to estimate leaf area non-destructively using morphometric 

measurements (length and width). A sample of n=800 leaves from 32 individuals was 

systematically collected and analyzed using a standardized photographic protocol with 

digital processing in ImageJ. The most robust models were those incorporating composite 

variables such as the product of length and width (L × W) and the sum squared of both 

dimensions ((L + W)²), reaching coefficients of determination higher than 0.97. These 

models consistently outperformed models based on single variables, providing higher 

accuracy and lower prediction error. High correlations were observed between leaf 

dimensions and area, and C. pubescens showed greater morphological variability. These 

findings establish that simple linear models based on L × W are efficient, replicable, and 

low-cost tools for non-destructive estimation of leaf area, which improves ecological 

monitoring and supports sustainable forest management, essential for the conservation of 

these Cinchona species, important from an ecological and medicinal point of view, in 

tropical ecosystems. 
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1. INTRODUCTION

Non-destructive estimation of leaf area is essential for 

ecophysiological and agronomic studies, as it allows 

monitoring plant growth without altering plant integrity [1, 2]. 

The study was conducted in the Peruvian Andes, a critical 

biodiversity hotspot within the Tropical Andes, recognized as 

one of the world’s most diverse ecoregions, harboring unique 

flora and fauna adapted to its altitudinal gradients and 

microclimates [3]. This region plays a vital role in regulating 

water cycles, carbon sequestration, and supporting endemic 

species, making it a priority for conservation and ecological 

research [4]. In species of the genus Cinchona, of medical and 

ecological relevance, this approach acquires special 

importance due to their conservation status and their role in 

tropical ecosystems [5, 6]. The selection of Cinchona 

micrantha and Cinchona pubescens for this study was driven 

by their ecological significance as keystone species in Andean 

forests, contributing to ecosystem stability, and their economic 

value as sources of quinine, a critical antimalarial compound 

historically and culturally significant in Peru [5, 7]. These 

species are also threatened due to overexploitation and habitat 

loss, necessitating non-destructive methods for monitoring to 

support conservation efforts [8]. Traditional measurement 

methods, such as the use of planimeters or destructive 

techniques, are unfeasible for long-term studies or in 

threatened populations [9-12]. 

The relationship between leaf dimensions (length and 

width) and leaf area has been documented in multiple species 

using allometric models [13-17]. For Cinchona, however, 

these models are scarce, despite morphological variability 

between species such as C. micrantha and C. pubescens [6]. 
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The lack of specific equations limits the precision in the 

quantification of biomass and primary productivity, key 

parameters for their sustainable management [6, 18]. 

Advances in non-destructive techniques, such as the use of 

linear regressions based on leaf dimensions, offer a balanced 

solution between accuracy and practicality [19, 20]. Studies in 

tropical tree species show that models with variables such as 

the product length × width (L × W) achieve high coefficients 

of determination [11, 12, 21, 22]. These approaches are 

especially useful in Cinchona, where leaf diversity requires 

models adapted to its morphoanatomical traits [6]. 

The choice of predictors in the models is critical. While 

some species respond best to simple linear relationships (L or 

W), others require composite variables (L², W², or L × W) [10, 

23, 24]. In C. pubescens, for example, the elongated shape of 

its leaves suggests that L × W might be optimal, whereas in C. 

micrantha, with more rounded leaves, the use of L² might be 

more appropriate; this variability underscores the need to 

develop species-specific models [6]. 

In addition to accuracy, field applicability is essential. 

Methods based on digital photographs or handheld scanners 

have gained popularity, but their cost and complexity limit 

their use in rural areas [25, 26]. In contrast, regressions with 

manual measurements of L and W, combined with cross-

validation, offer an affordable alternative without sacrificing 

scientific rigor [18]. 

Climate change adds urgency to these efforts. The ability to 

rapidly monitor leaf area allows assessment of physiological 

responses to water or heat stress in Cinchona; robust models 

would facilitate integration of these data into early warning 

systems for conservation [5, 6]. This study proposes to develop 

and validate non-destructive linear regression models to 

estimate leaf area in C. micrantha and C. pubescens, 

considering their morphological differences. The results will 

provide tools for ecophysiological research, agroforestry 

management, and restoration programs in the tropical Andes. 

 
 

2. METHODOLOGY 
 

2.1 Location of study area 
 

Leaf length and width data of C. micrantha and C. 

pubescens were collected from the jurisdiction of the 

community of La Cascarilla (5°40′21.12″ S and 78°53′55.65″ 

W) located at 1930 meters above sea level, district and 

province of Jaén, department of Cajamarca (Figure 1). 

Sampling was carried out in March 2024, and collections were 

made in the morning (7:00-10:00 a.m.) to avoid the midday 

heat and the effects of dehydration on leaf morphology [27]. 
 

2.2 Leaf collection of Cinchona pubescens and Cinchona 

micrantha 
 

Leaf collection was performed on a total of 32 individuals, 

corresponding to the species Cinchona pubescens and 

Cinchona micrantha, with the purpose of obtaining a 

representative sample of 800 leaves (400 leaves for each 

species) [12]. Individuals were selected using a stratified 

random sampling approach, where trees were grouped by size 

classes (based on diameter at breast height, DBH: small <10 

cm, medium 10–20 cm, large >20 cm) to account for potential 

morphological variation due to tree age and size [28]. Within 

each size class, individuals were randomly chosen from a pre-

identified population to ensure representativeness across the 

study area. To ensure a homogeneous distribution, the crown 

of each tree was segmented into five vertical strata (E1 to E5), 

thus allowing a systematic sampling from the base to the apex 

of the canopy. Five leaves in optimal phytosanitary condition 

were selected from each stratum, giving a total of 25 leaves 

per tree. 

 

 
 

Figure 1. Location of the study area 
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2.3 Photographic montage of the leaves 

 

The capture of leaf images was carried out using a Redmi 

12 Pro mobile device, equipped with a 50 megapixel 

resolution camera. To ensure standardized conditions for 

photographic acquisition, a 40 × 60 cm reference surface was 

used, on which a white background was placed, ensuring 

optimal contrast between the leaves and the background. 

A 2 cm long reference baseline was incorporated next to 

each leaf, which served as a calibration scale during digital 

processing. In order to keep the sheets fully extended and 

minimize curvatures or undulations that could affect the 

accuracy of the measurements, a 3 mm-thick transparent glass 

was placed over the samples, whose dimensions coincided 

with those of the board. The photographs were taken from a 

constant height of 20 cm above the sample, taking strict care 

of the lighting conditions to avoid the generation of shadows 

or reflections that would compromise the visual quality of the 

images. This protocol made it possible to obtain clear and 

detailed photographic records, fundamental for the subsequent 

morphometric analysis. 

 

2.4 Determination of leaf morphometric variables 

 

The morphometric variables, length (L), width (W) (Figure 

2), and leaf area (LA) were obtained using ImageJ software, 

recognized for its precision in the analysis of scientific images. 

ImageJ version 1.53 was used, following this process: File > 

Open > Line Width > Analyze > Scale > Polygonal 

Selections > Analyze > Measure [29]. The images were 

processed in TIFF format to preserve resolution, with contrast 

adjusted to improve differentiation between leaves and 

background. Leaf length was defined as the distance between 

the leaf apex and the base of the petiole, while width was 

measured as the maximum transverse segment, perpendicular 

to the longitudinal axis of the leaf. In order to reduce individual 

bias and improve data reliability, measurements were 

performed independently by three evaluators, thus replicating 

a quality control criterion in morphometric analysis [6, 12]. 

 

 
 

Figure 2. Location of leaf length (L) and width (W) 

measurements. (a) Cinchona pubescens, (b) Cinchona 

micrantha 

 

2.5 Statistical analysis 

 

To characterize and explore the variability of the leaf 

morphometric variables - length (L), width (W), and leaf area 

(LA) - violin plots were used to simultaneously visualize the 

distribution of the data and their density. Subsequently, 

Pearson correlation coefficients were calculated between the 

dependent variable (LA) and the independent variables (L, W, 

L², W², (L + W)², and L × W), in order to identify the most 

significant linear associations. 

Simple linear regression models were fitted using each of 

the aforementioned independent variables as predictors of leaf 

area, following the methodology proposed by Keramatlou et 

al. [30]. To evaluate the performance of the generated models, 

common statistical metrics of fit and prediction, such as root 

mean square error (RMSE) and Akaike's information criterion 

(AIC), were calculated, which allowed comparing the relative 

quality of the fitted models. 

 

2.6 Model validation 

 

To validate the predictive capacity of the developed models, 

the dataset (n = 800 leaves) was randomly divided into two 

subsets: 80% intended for model training and 20% reserved 

for model validation, in accordance with statistical robustness 

criteria [6, 12]. The selection of the optimal model was based 

on the combination of a higher coefficient of determination 

(R²) and the lowest values of MAE, MSE, RMSE, and AIC. 

 

 

3. RESULTS 

 

Figure 3 combines the representation of data density with 

an overlaid boxplot, which allows simultaneous observation of 

the variability, asymmetry, and outliers of the samples 

analyzed. Figure 3(a) shows that C. pubescens has a 

considerably larger leaf area range compared to C. micrantha, 

with a higher median and greater dispersion, evidencing larger 

leaves and greater intraspecific heterogeneity. Figure 3(b) 

shows that leaf length is also significantly greater in C. 

pubescens, which coincides with the trend observed for leaf 

area. Finally, a similar behavior is reported for leaf width, 

where again C. pubescens presents higher values and a wider 

distribution than C. micrantha (Figure 3(c)). 

Figure 4 presents scatterplot matrices with Pearson 

correlation coefficients between leaf area (LA) and six derived 

morphometric variables: length (L), width (W), the square of 

length (L²), the square of width (W²), the square of the sum of 

length and width ((L + W)²), and the product of length and 

width (L × W), corresponding to leaves of Cinchona 

micrantha (Figure 4(a)) and Cinchona pubescens (Figure 

4(b)). Each cell of the matrix shows the bivariate relationship 

between a pair of variables, accompanied by the value of 

Pearson's correlation coefficient and a univariate histogram on 

the main diagonal representing the distribution of each 

variable. Statistically significant correlations (p < 0.001) are 

indicated by three asterisks (***). 

In both species, a high positive correlation is observed 

between leaf area (LA) and the derived variables, particularly 

highlighting the product L × W and the variable (L + W)², 

which reach correlation coefficients higher than 0.98, 

evidencing their strong predictive potential. Likewise, the 

variables L and W show moderately high correlations with LA 

(r > 0.87), although lower than those obtained with their 

quadratic and multiplicative transformations. 

In C. micrantha, correlation coefficients reach values up to 

0.99 between LA and L × W, as well as between LA and (L + 

W)², indicating that both composite variables can serve as 

highly efficient predictors of leaf area. This trend is replicated 
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in C. pubescens, although with slight variations in absolute 

values, also evidencing a strong association between LA and 

the combined variables. 

Figure 5 presents the linear regression models fitted to 

estimate leaf area (cm²) from different leaf morphometric 

variables. In Figures 5(a) and 5(b), leaf area is related to L and 

W, respectively, showing significant linear fits with R² values 

of 0.8953 and 0.9303. Although both models show good 

predictive capacity, width (W) shows a slightly higher 

correlation with leaf area. 

 

 
 

Figure 3. Violin plot illustrating the distribution of three leaf morphometric variables, leaf area (a), length (b), and width (c) for 

Cinchona micrantha and Cinchona pubescens 

 

 

 

    

    

L2 

W2 

(L+W)2 
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Figure 4. Matrix of correlation diagrams by Pearson's test between LA, L, W, L², W², (L + W)², and L × W of leaves of C. 

micrantha (a) and C. pubescens (b) 
*** indicates a p < 0.001 

 

Models based on the quadratic variables L² and W² (Figure 

5(c) and 5(d)) show improved fit, with R² values of 0.921 and 

0.9262, respectively. This suggests that the nonlinear 

transformations better capture the relationship between leaf 

dimension and leaf area. 

The best performances are observed in the models 

constructed with composite variables: (L + W)² (Figure 5(e)) 

and L × W (Figure 5(f)), reaching coefficients of 

determination of 0.9716 and 0.9742, respectively. These two 

expressions simultaneously integrate the longitudinal and 

transverse dimensions of the leaf, reflecting more accurately 

its real area. 

Table 1 summarizes the statistical indicators of fit for six 

linear regression models estimating leaf area (LA) from 

different leaf morphometric variables. It was observed that the 

model based on the product of length by width (L × W) 

presented the highest R² (0.974), followed closely by the 

model (L + W)² (R² = 0.972). These results confirm that 

composite variables that integrate both leaf dimensions, in 

multiplicative or quadratic form, explain leaf area variation 

more accurately. As for the mean absolute error (MAE), the 

differences between models were minimal (range: 150.684-

151.592 cm²), indicating a relatively stable accuracy in the 

predictions. However, the model with the lowest MAE was 

also the (L + W)² model, reinforcing its robust performance. 

The mean squared error (MSE) values and its root (RMSE) 

did not present substantial differences between the models, 

although it is important to note that the lowest values were 

concentrated in the model based on length (L), followed by L², 

which could be due to a lower complexity in the univariate 

relationship, although with lower overall accuracy. 

The Akaike Information Criterion (AIC), used to balance 

model fit and complexity, showed the lowest values for the L-

based model (AIC = 632.644), followed closely by L² (AIC = 

632.972) and W² (AIC = 633.181). However, since the 

differences in AIC between the models are less than 2 units, 

they are considered statistically equivalent [31], which allows 

us to prioritize R² and RMSE as deterministic criteria. 

Overall, the results indicate that, although all models 

present acceptable levels of fit, the model based on the L × W 

product offers the best compromise between predictive ability 

(highest R²) and accuracy (competitive RMSE), which 

positions it as the most suitable for non-destructive estimates 

of leaf area in species of the genus Cinchona. 

Figure 6 presents six simple linear regression models 

describing the relationship between leaf area (dependent 

variable) and various morphometric variables (independent 

variables) of C. pubescens leaves. Each plot represents a 

model fitted using different combinations of linear leaf 

measurements. 

Figures 6(a) and (b) show models using leaf length (L) and 

width (W) as predictors, respectively. Both models present 

relatively high coefficients of determination (R² = 0.8794 and 

R² = 0.8904), indicating a positive and significant association 

between each dimension and leaf area. However, some 

scattering of the data is apparent at high values of L and W, 

suggesting a loss of prediction accuracy when leaf dimensions 

are extreme. 

 

 

    

    

L2 

W2 

(L+W)2 
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Figure 5. Linear regression models predicting leaf weight of C. micrantha as a function of independent variables 

 

Table 1. Summary of the evaluation of the six models for predicting leaf area of C. micrantha according to the training data set 

 
Code Model Variable R2 MAE MSE RMSE AIC 

a y = 17.03x - 162.51 L (cm) 0.895 151.592 28759.450 169.586 632.644 

b y = 24.452x - 132.16 W (cm) 0.930 151.305 29066.830 170.490 633.187 

c y = 0.4342x - 3.9869 L2 (cm) 0.921 150.777 28944.780 170.132 632.972 

d y = 0.9261x + 19.212 W2 (cm) 0.926 150.740 29063.700 170.481 633.181 

e y = 0.1611x - 2.47 (L + W)2 (cm) 0.972 150.684 29283.910 171.125 633.566 

f y = 0.6701x - 0.0171 L × W (cm) 0.974 150.733 29331.140 171.263 633.648 

 

Figures 6(c) and (d) show models based on quadratic 

transformations of the above variables (L² and W²), which 

substantially improve the model fit (R² = 0.8974 for L² and R² 

= 0.9219 for W²). In Figure 6(e), a model using the sum of the 

squared areas (L + W)² is presented, which achieves a 

coefficient of determination of R² = 0.9746. This model 

integrates two key dimensions of the leaf and outperforms the 

previous models in predictive capacity. 

Finally, the model shown in Figure 6(f), which uses the 

product of length and width (L × W), offers the highest 

explanatory power with an R² = 0.9825. This result suggests 

that leaf area can be estimated with high accuracy by a simple 

function of the product of linear dimensions, this model being 

the most robust and efficient for predicting leaf area of C. 

pubescens. 

Figure 7 illustrates the scatter plots comparing observed 

versus estimated leaf area values for Cinchona micrantha (a) 

and Cinchona pubescens (b), based on the predictive model 

incorporating the L × W variable. Each point represents an 

individual observation, and the dotted line denotes the 1:1 line, 

which serves as a reference for perfect agreement between 

observed and predicted values. In panel (a), the data points are 

closely clustered along the 1:1 line, suggesting a high degree 

of concordance between measured and estimated leaf areas. 

The distribution of the residuals appears homoscedastic, with 

minor deviations at higher leaf area values, indicating slight 
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underestimation by the model at the upper end of the range. 

Panel (b) shows the corresponding results for C. pubescens. 

The scatter pattern reveals a similarly strong alignment with 

the 1:1 line, with slightly higher dispersion than C. micrantha, 

particularly at the extremes of the observed range. 

Nevertheless, the model demonstrates a robust predictive 

capacity, with minimal systemic bias and a narrow spread of 

residuals. 

 

 
 

Figure 6. Linear regression models predicting leaf weight of C. pubescens as a function of independent variables 

 

 
 

Figure 7. Scatter plot of observed values vs. estimated values, Cinchona micrantha (a) and Cinchona pubescens (b) 
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Table 2. Summary of the evaluation of the six models for predicting the leaf area of C. pubescens according to the training data 

set 

 
Code Model Variable R2 MAE MSE RMSE AIC 

a y = 23.929x - 294.26 L (cm) 0.879 383.186 190065.000 435.964 728.953 

b y = 39.585x - 306.92 W (cm) 0.890 382.618 190483.400 436.444 729.065 

c y = 0.4007x + 30.784 L2 (cm) 0.897 379.805 191087.900 437.136 729.227 

d y = 1.1114x + 12.995 W2 (cm) 0.922 379.815 192204.200 438.411 729.524 

e y = 0.1686x - 2.631 (L + W)2 (cm) 0.975 379.806 194985.700 441.572 730.256 

f y = 0.7248x - 5.711 L × W (cm) 0.983 379.823 195386.700 442.026 730.361 

 

Table 2 summarizes the comparative evaluation of six linear 

regression models developed to predict the leaf area of C. 

pubescens from different morphometric variables. The 

coefficients of determination (R²), mean absolute error 

(MAE), mean square error (MSE), root mean square error 

(RMSE), and Akaike information criterion (AIC), all 

calculated on the training data set, are presented. 

Models based on individual variables such as length (model 

a) and width (model b) present relatively high R² values (0.879 

and 0.890, respectively); however, they exhibit higher values 

of MSE and RMSE, indicating lower prediction accuracy. 

Models incorporating quadratic transformations of these 

dimensions (models c and d) show a progressive improvement 

in fit (R² = 0.897 and 0.922, respectively), suggesting that 

nonlinear relationships better explain leaf area variability. 

Model e, which uses the sum of the squared areas of L and 

W, achieves an R² of 0.975 with marginal improvements in 

MAE, although with slight increases in MSE and RMSE 

values. However, model f, based on the product between 

length and width (L × W), stands out for presenting the best 

overall performance, with a coefficient of determination of R² 

= 0.983, the highest among all the models evaluated. Although 

the MSE and RMSE values are slightly higher than those of 

some intermediate models, its balance between precision and 

simplicity makes it the optimal model for estimating leaf area. 

This result is also reflected in the AIC value, which, although 

not the lowest, remains competitive considering the substantial 

improvement in R². 

 

 

4. DISCUSSIONS 

 

Non-destructive estimation of leaf area in tropical forest 

species is a crucial tool in ecophysiological and conservation 

studies; therefore, the length, width, and the combination of 

these variables of a leaf have been used in regression as 

predictors of leaf area for non-destructive estimation [6, 32-

37]. In the case of C. micrantha and C. pubescens, species of 

ecological and medicinal value, allometric models based on 

simple morphometric variables have shown high predictive 

efficiency, especially when composite variables such as the 

product of length times width (L × W) or their sum squared 

((L + W)²) are employed. This strategy has been supported by 

similar studies in other species such as Coffea arabica [21], 

Tectona grandis [15] and Jatropha curcas [13], where L × W 

models have explained more than 95% of the variation in leaf 

area, coinciding with the results of the present study for C. 

micrantha and C. pubescens (R² = 0.974 and R² = 0.983). 

Although individual variables such as length (L) or width 

(W) show significant relationships with leaf area, their models 

tend to be less accurate at extreme ranges, as has also been 

observed in Arabidopsis thaliana [14] and Theobroma cacao 

[12]. In this study, models based solely on L or W presented 

lower coefficients of determination, for C. micrantha (R² = 

0.895) and for C. pubescens (R² = 0.879 and 0.890, 

respectively), and higher errors (RMSE > 169 for C. micrantha 

and RMSE > 435 for C. pubescens), reflecting an inherent 

limitation of using univariate variables. This validates the 

hypothesis that models with interaction of dimensions better 

represent the morphological complexity of compound leaves 

or high intraspecific variability. 

The use of quadratic transformations (L², W², (L+W)²) has 

proven to be an effective intermediate strategy between simple 

and composite models. Studies in Vitis vinifera [38], Hazelnut 

[10], and Citrus hystrix [22] report substantial improvements 

in accuracy with this approach. In the present analysis, the 

model with (L + W)² achieved an R² = 0.972 and R² = 0.975 

for C. micrantha and C. pubescens, respectively, just below 

that of L × W, but with the lowest MAE recorded. This 

similarity in performance between models suggests that both 

could be useful depending on the practical objective: (L + W)² 

for greater accuracy, and L × W for field applications due to 

its operational simplicity. 

Despite the high accuracy of the L × W model, there are 

limitations to its applicability at different stages of leaf growth. 

The models were developed using fully expanded mature 

leaves under optimal phytosanitary conditions, which may not 

accurately predict the leaf area of juvenile or senescent leaves 

due to differences in shape and size during ontogeny [39]. For 

example, juvenile leaves of Cinchona species may have more 

rounded shapes, which could reduce the predictive ability of 

the L × W model, as has been observed in other tropical 

species [40]. Future studies should incorporate leaves from 

various stages of development to assess the robustness of the 

model at different ontogenetic phases. 

Climatic factors such as temperature, humidity, and 

precipitation can also influence the applicability of these 

models. The study was conducted during the wet season in the 

Peruvian Andes, where water is available, which may lead to 

larger or differently shaped leaves, potentially affecting the 

accuracy of the L × W model [41]. In addition, climate-

induced stress, such as drought or high temperatures, can alter 

leaf morphology, as has been observed in other tropical trees 

[42]. To improve the robustness of the model, it is 

recommended to perform calibration across seasons and under 

variable climatic conditions. 

From a methodological perspective, the applicability of 

these models in the field depends not only on their accuracy 

but also on the ease of implementation. Unlike methods based 

on digital images [25, 26], linear models such as L × W require 

only manual measurements with basic instruments, which 

facilitates their adoption in rural or hard-to-reach areas. The 

cross-validation of the present study, with training and testing 

splits (80-20%), reinforces the reliability of the selected model 

and follows robust methodological recommendations [6, 30]. 

For practical applications, the L × W model is 

recommended for integration into forest monitoring programs 

in the Peruvian Andes, particularly for Cinchona conservation 
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and management. The model can be used to monitor 

phenological changes, assess responses to abiotic stressors 

(e.g., drought or temperature shifts), and estimate biomass for 

restoration projects [43]. Specifically, forest managers can 

employ this model in long-term ecological monitoring to track 

leaf area dynamics in Cinchona populations, aiding in the 

identification of stress indicators and informing reforestation 

strategies [5]. The model’s simplicity allows its use by local 

communities and non-specialist technicians, promoting 

participatory conservation efforts. Regular calibration of the 

model with data from different seasons and regions is advised 

to ensure accuracy in diverse ecological contexts [44]. 

Finally, the relevance of having accurate tools for non-

destructive estimation of leaf area is amplified under climate 

change scenarios, where phenological and physiological 

monitoring of key species such as C. micrantha and C. 

pubescens allows detecting responses to abiotic stress [18]. 

Integrating models such as L × W in monitoring programs 

would contribute significantly to adaptive conservation 

strategies, ecological restoration, and sustainable management 

in the tropical Andes, where these species fulfill fundamental 

ecological and cultural functions. 

 

 

5. CONCLUSIONS 

 

The present study demonstrates that nondestructive 

estimation of leaf area in Cinchona micrantha and Cinchona 

pubescens can be achieved with high accuracy using linear 

regression models based on simple measurements of leaf 

length and width. In particular, the model using the product L 

× W is positioned as the best alternative because of its high 

coefficient of determination (R² > 0.97) and prediction error 

with root mean square error (RMSE) values of 171.263 for C. 

micrantha and 442.026 for C. pubescens, indicating reliable 

performance across both species. Low error (competitive 

RMSE) and ease of field implementation. Although models 

using quadratic transformations ((L + W)²) offer comparable 

results in terms of accuracy, the simplicity of the L × W model 

makes it a preferred tool for operational applications.  

This methodology is particularly valuable in the context of 

climate change research, where non-destructive leaf area 

estimation enables continuous monitoring of phenological and 

physiological responses to environmental stressors such as 

drought, temperature fluctuations, and altered precipitation 

patterns. By providing a low-cost and replicable tool, the L × 

W model supports the assessment of Cinchona species’ 

adaptive capacity to climate-induced changes, contributing to 

early warning systems and conservation strategies in tropical 

Andean ecosystems. Furthermore, this methodology is 

especially relevant for tropical Andean ecosystems where 

Cinchona plays a significant ecological and cultural role, and 

where monitoring should be non-invasive, inexpensive and 

replicable. Its adoption is recommended in studies of forest 

dynamics, ecological restoration and evaluation of 

physiological responses to abiotic stress. In the context of 

climate change, these non-destructive tools constitute a 

valuable contribution to the adaptive management of native 

species of high strategic value. The model’s integration into 

climate change research can enhance the understanding of how 

these threatened species respond to shifting environmental 

conditions, supporting adaptive management and policy 

development for biodiversity conservation. 
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