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Accurate quantification of leaf area is essential for ecophysiological, agronomic, and
conservation studies, especially in threatened species such as Cinchona micrantha and
Cinchona pubescens. This study evaluated simple, quadratic, and composite linear
regression models to estimate leaf area non-destructively using morphometric
measurements (length and width). A sample of n=800 leaves from 32 individuals was
systematically collected and analyzed using a standardized photographic protocol with
digital processing in ImageJ. The most robust models were those incorporating composite
variables such as the product of length and width (L < W) and the sum squared of both
dimensions ((L + W)3, reaching coefficients of determination higher than 0.97. These

models consistently outperformed models based on single variables, providing higher
accuracy and lower prediction error. High correlations were observed between leaf
dimensions and area, and C. pubescens showed greater morphological variability. These
findings establish that simple linear models based on L <W are efficient, replicable, and
low-cost tools for non-destructive estimation of leaf area, which improves ecological
monitoring and supports sustainable forest management, essential for the conservation of
these Cinchona species, important from an ecological and medicinal point of view, in
tropical ecosystems.

1. INTRODUCTION

Non-destructive estimation of leaf area is essential for
ecophysiological and agronomic studies, as it allows
monitoring plant growth without altering plant integrity [1, 2].
The study was conducted in the Peruvian Andes, a critical
biodiversity hotspot within the Tropical Andes, recognized as
one of the world’s most diverse ecoregions, harboring unique
flora and fauna adapted to its altitudinal gradients and
microclimates [3]. This region plays a vital role in regulating
water cycles, carbon sequestration, and supporting endemic
species, making it a priority for conservation and ecological
research [4]. In species of the genus Cinchona, of medical and
ecological relevance, this approach acquires special
importance due to their conservation status and their role in
tropical ecosystems [5, 6]. The selection of Cinchona
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micrantha and Cinchona pubescens for this study was driven
by their ecological significance as keystone species in Andean
forests, contributing to ecosystem stability, and their economic
value as sources of quinine, a critical antimalarial compound
historically and culturally significant in Peru [5, 7]. These
species are also threatened due to overexploitation and habitat
loss, necessitating non-destructive methods for monitoring to
support conservation efforts [8]. Traditional measurement
methods, such as the use of planimeters or destructive
techniques, are unfeasible for long-term studies or in
threatened populations [9-12].

The relationship between leaf dimensions (length and
width) and leaf area has been documented in multiple species
using allometric models [13-17]. For Cinchona, however,
these models are scarce, despite morphological variability
between species such as C. micrantha and C. pubescens [6].
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The lack of specific equations limits the precision in the
quantification of biomass and primary productivity, key
parameters for their sustainable management [6, 18].

Advances in non-destructive techniques, such as the use of
linear regressions based on leaf dimensions, offer a balanced
solution between accuracy and practicality [19, 20]. Studies in
tropical tree species show that models with variables such as
the product length x width (L x W) achieve high coefficients
of determination [11, 12, 21, 22]. These approaches are
especially useful in Cinchona, where leaf diversity requires
models adapted to its morphoanatomical traits [6].

The choice of predictors in the models is critical. While
some species respond best to simple linear relationships (L or
W), others require composite variables (L% W2, or L x W) [10,
23, 24]. In C. pubescens, for example, the elongated shape of
its leaves suggests that L x W might be optimal, whereas in C.
micrantha, with more rounded leaves, the use of L? might be
more appropriate; this variability underscores the need to
develop species-specific models [6].

In addition to accuracy, field applicability is essential.
Methods based on digital photographs or handheld scanners
have gained popularity, but their cost and complexity limit
their use in rural areas [25, 26]. In contrast, regressions with
manual measurements of L and W, combined with cross-
validation, offer an affordable alternative without sacrificing
scientific rigor [18].

Climate change adds urgency to these efforts. The ability to
rapidly monitor leaf area allows assessment of physiological
responses to water or heat stress in Cinchona; robust models
would facilitate integration of these data into early warning
systems for conservation [5, 6]. This study proposes to develop
and validate non-destructive linear regression models to
estimate leaf area in C. micrantha and C. pubescens,
considering their morphological differences. The results will
provide tools for ecophysiological research, agroforestry
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management, and restoration programs in the tropical Andes.

2. METHODOLOGY

2.1 Location of study area

Leaf length and width data of C. micrantha and C.
pubescens were collected from the jurisdiction of the
community of La Cascarilla (5°40'21.12" S and 78°53'55.65"
W) located at 1930 meters above sea level, district and
province of Jaén, department of Cajamarca (Figure 1).
Sampling was carried out in March 2024, and collections were
made in the morning (7:00-10:00 a.m.) to avoid the midday
heat and the effects of dehydration on leaf morphology [27].

2.2 Leaf collection of Cinchona pubescens and Cinchona
micrantha

Leaf collection was performed on a total of 32 individuals,
corresponding to the species Cinchona pubescens and
Cinchona micrantha, with the purpose of obtaining a
representative sample of 800 leaves (400 leaves for each
species) [12]. Individuals were selected using a stratified
random sampling approach, where trees were grouped by size
classes (based on diameter at breast height, DBH: small <10
cm, medium 10-20 cm, large >20 cm) to account for potential
morphological variation due to tree age and size [28]. Within
each size class, individuals were randomly chosen from a pre-
identified population to ensure representativeness across the
study area. To ensure a homogeneous distribution, the crown
of each tree was segmented into five vertical strata (E1 to E5),
thus allowing a systematic sampling from the base to the apex
of the canopy. Five leaves in optimal phytosanitary condition
were selected from each stratum, giving a total of 25 leaves
per tree.
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Figure 1. Location of the study area
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2.3 Photographic montage of the leaves

The capture of leaf images was carried out using a Redmi
12 Pro mobile device, equipped with a 50 megapixel
resolution camera. To ensure standardized conditions for
photographic acquisition, a 40 x 60 cm reference surface was
used, on which a white background was placed, ensuring
optimal contrast between the leaves and the background.

A 2 cm long reference baseline was incorporated next to
each leaf, which served as a calibration scale during digital
processing. In order to keep the sheets fully extended and
minimize curvatures or undulations that could affect the
accuracy of the measurements, a 3 mm-thick transparent glass
was placed over the samples, whose dimensions coincided
with those of the board. The photographs were taken from a
constant height of 20 cm above the sample, taking strict care
of the lighting conditions to avoid the generation of shadows
or reflections that would compromise the visual quality of the
images. This protocol made it possible to obtain clear and
detailed photographic records, fundamental for the subsequent
morphometric analysis.

2.4 Determination of leaf morphometric variables

The morphometric variables, length (L), width (W) (Figure
2), and leaf area (LA) were obtained using Image] software,
recognized for its precision in the analysis of scientific images.
ImageJ version 1.53 was used, following this process: File >
Open > Line Width > Analyze > Scale > Polygonal
Selections > Analyze > Measure [29]. The images were
processed in TIFF format to preserve resolution, with contrast
adjusted to improve differentiation between leaves and
background. Leaf length was defined as the distance between
the leaf apex and the base of the petiole, while width was
measured as the maximum transverse segment, perpendicular
to the longitudinal axis of the leaf. In order to reduce individual
bias and improve data reliability, measurements were
performed independently by three evaluators, thus replicating
a quality control criterion in morphometric analysis [6, 12].

®)

(a)

Figure 2. Location of leaf length (L) and width (W)
measurements. (a) Cinchona pubescens, (b) Cinchona
micrantha

2.5 Statistical analysis
To characterize and explore the variability of the leaf

morphometric variables - length (L), width (W), and leaf area
(LA) - violin plots were used to simultaneously visualize the
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distribution of the data and their density. Subsequently,
Pearson correlation coefficients were calculated between the
dependent variable (LA) and the independent variables (L, W,
L2, W2, (L + W)?, and L x W), in order to identify the most
significant linear associations.

Simple linear regression models were fitted using each of
the aforementioned independent variables as predictors of leaf
area, following the methodology proposed by Keramatlou et
al. [30]. To evaluate the performance of the generated models,
common statistical metrics of fit and prediction, such as root
mean square error (RMSE) and Akaike's information criterion
(AIC), were calculated, which allowed comparing the relative
quality of the fitted models.

2.6 Model validation

To validate the predictive capacity of the developed models,
the dataset (n = 800 leaves) was randomly divided into two
subsets: 80% intended for model training and 20% reserved
for model validation, in accordance with statistical robustness
criteria [6, 12]. The selection of the optimal model was based
on the combination of a higher coefficient of determination
(R?) and the lowest values of MAE, MSE, RMSE, and AIC.

3. RESULTS

Figure 3 combines the representation of data density with
an overlaid boxplot, which allows simultaneous observation of
the variability, asymmetry, and outliers of the samples
analyzed. Figure 3(a) shows that C. pubescens has a
considerably larger leaf area range compared to C. micrantha,
with a higher median and greater dispersion, evidencing larger
leaves and greater intraspecific heterogeneity. Figure 3(b)
shows that leaf length is also significantly greater in C.
pubescens, which coincides with the trend observed for leaf
area. Finally, a similar behavior is reported for leaf width,
where again C. pubescens presents higher values and a wider
distribution than C. micrantha (Figure 3(c)).

Figure 4 presents scatterplot matrices with Pearson
correlation coefficients between leaf area (LA) and six derived
morphometric variables: length (L), width (W), the square of
length (L?), the square of width (W?), the square of the sum of
length and width ((L + W)?), and the product of length and
width (L x W), corresponding to leaves of Cinchona
micrantha (Figure 4(a)) and Cinchona pubescens (Figure
4(b)). Each cell of the matrix shows the bivariate relationship
between a pair of variables, accompanied by the value of
Pearson's correlation coefficient and a univariate histogram on
the main diagonal representing the distribution of each
variable. Statistically significant correlations (p < 0.001) are
indicated by three asterisks (***).

In both species, a high positive correlation is observed
between leaf area (LA) and the derived variables, particularly
highlighting the product L x W and the variable (L + W),
which reach correlation coefficients higher than 0.98,
evidencing their strong predictive potential. Likewise, the
variables L and W show moderately high correlations with LA
(r > 0.87), although lower than those obtained with their
quadratic and multiplicative transformations.

In C. micrantha, correlation coefficients reach values up to
0.99 between LA and L x W, as well as between LA and (L +
W)?2, indicating that both composite variables can serve as
highly efficient predictors of leaf area. This trend is replicated



in C. pubescens, although with slight variations in absolute
values, also evidencing a strong association between LA and
the combined variables.

Figure 5 presents the linear regression models fitted to
estimate leaf area (cm?) from different leaf morphometric

(a)

variables. In Figures 5(a) and 5(b), leaf area is related to L and
W, respectively, showing significant linear fits with R? values
of 0.8953 and 0.9303. Although both models show good
predictive capacity, width (W) shows a slightly higher
correlation with leaf area.
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Figure 3. Violin plot illustrating the distribution of three leaf morphometric variables, leaf area (a), length (b), and width (c) for
Cinchona micrantha and Cinchona pubescens
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Figure 4. Matrix of correlation diagrams by Pearson's test between LA, L, W, L2, W2 (L + W)?, and L X W of leaves of C.

micrantha (a) and C. pubescens (b)
*** indicates a p < 0.001

Models based on the quadratic variables L* and W2 (Figure
5(c) and 5(d)) show improved fit, with R? values of 0.921 and
0.9262, respectively. This suggests that the nonlinear
transformations better capture the relationship between leaf
dimension and leaf area.

The best performances are observed in the models
constructed with composite variables: (L + W)? (Figure 5(¢))
and L x W (Figure 5(f)), reaching coefficients of
determination of 0.9716 and 0.9742, respectively. These two
expressions simultaneously integrate the longitudinal and
transverse dimensions of the leaf, reflecting more accurately
its real area.

Table 1 summarizes the statistical indicators of fit for six
linear regression models estimating leaf area (LA) from
different leaf morphometric variables. It was observed that the
model based on the product of length by width (L x W)
presented the highest R? (0.974), followed closely by the
model (L + W)? (R? = 0.972). These results confirm that
composite variables that integrate both leaf dimensions, in
multiplicative or quadratic form, explain leaf area variation
more accurately. As for the mean absolute error (MAE), the
differences between models were minimal (range: 150.684-
151.592 cm?), indicating a relatively stable accuracy in the
predictions. However, the model with the lowest MAE was
also the (L + W)? model, reinforcing its robust performance.

The mean squared error (MSE) values and its root (RMSE)
did not present substantial differences between the models,
although it is important to note that the lowest values were
concentrated in the model based on length (L), followed by L2,
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which could be due to a lower complexity in the univariate
relationship, although with lower overall accuracy.

The Akaike Information Criterion (AIC), used to balance
model fit and complexity, showed the lowest values for the L-
based model (AIC = 632.644), followed closely by L? (AIC =
632.972) and W2 (AIC = 633.181). However, since the
differences in AIC between the models are less than 2 units,
they are considered statistically equivalent [31], which allows
us to prioritize R? and RMSE as deterministic criteria.

Overall, the results indicate that, although all models
present acceptable levels of fit, the model based on the L x W
product offers the best compromise between predictive ability
(highest R?) and accuracy (competitive RMSE), which
positions it as the most suitable for non-destructive estimates
of leaf area in species of the genus Cinchona.

Figure 6 presents six simple linear regression models
describing the relationship between leaf area (dependent
variable) and various morphometric variables (independent
variables) of C. pubescens leaves. Each plot represents a
model fitted using different combinations of linear leaf
measurements.

Figures 6(a) and (b) show models using leaf length (L) and
width (W) as predictors, respectively. Both models present
relatively high coefficients of determination (R? = 0.8794 and
R?=0.8904), indicating a positive and significant association
between each dimension and leaf area. However, some
scattering of the data is apparent at high values of L and W,
suggesting a loss of prediction accuracy when leaf dimensions
are extreme.
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Figure 5. Linear regression models predicting leaf weight of C. micrantha as a function of independent variables

Table 1. Summary of the evaluation of the six models for predicting leaf area of C. micrantha according to the training data set

Code Model Variable R? MAE MSE RMSE AIC
a y=17.03x - 162.51 L (cm) 0.895 151.592 28759.450 169.586 632.644
b y =24.452x - 132.16 W (cm) 0.930 151.305 29066.830 170.490 633.187
c y =0.4342x - 3.9869 L? (cm) 0.921 150.777 28944.780 170.132 632.972
d y=0.9261x +19.212 W2 (cm) 0.926 150.740 29063.700 170.481 633.181
e y=0.1611x -2.47 (L +W)? (cm) 0.972 150.684 29283.910 171.125 633.566
f y=0.6701x - 0.0171 L x W (cm) 0.974 150.733 29331.140 171.263 633.648

Figures 6(c) and (d) show models based on quadratic
transformations of the above variables (L? and W?), which
substantially improve the model fit (R*> = 0.8974 for L? and R?
=0.9219 for W?). In Figure 6(¢), a model using the sum of the
squared areas (L + W)? is presented, which achieves a
coefficient of determination of R? = 0.9746. This model
integrates two key dimensions of the leaf and outperforms the
previous models in predictive capacity.

Finally, the model shown in Figure 6(f), which uses the
product of length and width (L x W), offers the highest
explanatory power with an R? = 0.9825. This result suggests
that leaf area can be estimated with high accuracy by a simple
function of the product of linear dimensions, this model being
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the most robust and efficient for predicting leaf area of C.
pubescens.

Figure 7 illustrates the scatter plots comparing observed
versus estimated leaf area values for Cinchona micrantha (a)
and Cinchona pubescens (b), based on the predictive model
incorporating the L x W variable. Each point represents an
individual observation, and the dotted line denotes the 1:1 line,
which serves as a reference for perfect agreement between
observed and predicted values. In panel (a), the data points are
closely clustered along the 1:1 line, suggesting a high degree
of concordance between measured and estimated leaf areas.
The distribution of the residuals appears homoscedastic, with
minor deviations at higher leaf area values, indicating slight



underestimation by the model at the upper end of the range.
Panel (b) shows the corresponding results for C. pubescens.
The scatter pattern reveals a similarly strong alignment with
the 1:1 line, with slightly higher dispersion than C. micrantha,
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of the observed range.
Nevertheless, the model demonstrates a robust predictive
capacity, with minimal systemic bias and a narrow spread of



Table 2. Summary of the evaluation of the six models for predicting the leaf area of C. pubescens according to the training data

set
Code Model Variable R? MAE MSE RMSE AIC
a y =23.929x - 294.26 L (cm) 0.879 383.186 190065.000 435.964 728.953
b y =39.585x - 306.92 W (cm) 0.890 382.618 190483.400 436.444 729.065
c y =0.4007x + 30.784 L? (cm) 0.897 379.805 191087.900 437.136 729.227
d y=1.1114x +12.995 W2 (cm) 0.922 379.815 192204.200 438.411 729.524
e y=0.1686x - 2.631 (L + W)? (cm) 0.975 379.806 194985.700 441.572 730.256
f y=0.7248x - 5.711 L xW (cm) 0.983 379.823 195386.700 442.026 730.361

Table 2 summarizes the comparative evaluation of six linear
regression models developed to predict the leaf area of C.
pubescens from different morphometric variables. The
coefficients of determination (R?), mean absolute error
(MAE), mean square error (MSE), root mean square error
(RMSE), and Akaike information criterion (AIC), all
calculated on the training data set, are presented.

Models based on individual variables such as length (model
a) and width (model b) present relatively high R? values (0.879
and 0.890, respectively); however, they exhibit higher values
of MSE and RMSE, indicating lower prediction accuracy.
Models incorporating quadratic transformations of these
dimensions (models ¢ and d) show a progressive improvement
in fit (R?2 = 0.897 and 0.922, respectively), suggesting that
nonlinear relationships better explain leaf area variability.

Model e, which uses the sum of the squared areas of L and
W, achieves an R? of 0.975 with marginal improvements in
MAE, although with slight increases in MSE and RMSE
values. However, model f, based on the product between
length and width (L x W), stands out for presenting the best
overall performance, with a coefficient of determination of R?
= (.983, the highest among all the models evaluated. Although
the MSE and RMSE values are slightly higher than those of
some intermediate models, its balance between precision and
simplicity makes it the optimal model for estimating leaf area.
This result is also reflected in the AIC value, which, although
not the lowest, remains competitive considering the substantial
improvement in R?.

4. DISCUSSIONS

Non-destructive estimation of leaf area in tropical forest
species is a crucial tool in ecophysiological and conservation
studies; therefore, the length, width, and the combination of
these variables of a leaf have been used in regression as
predictors of leaf area for non-destructive estimation [6, 32-
37]. In the case of C. micrantha and C. pubescens, species of
ecological and medicinal value, allometric models based on
simple morphometric variables have shown high predictive
efficiency, especially when composite variables such as the
product of length times width (L X W) or their sum squared
((L + W)?) are employed. This strategy has been supported by
similar studies in other species such as Coffea arabica [21],
Tectona grandis [15] and Jatropha curcas [13], where L x W
models have explained more than 95% of the variation in leaf
area, coinciding with the results of the present study for C.
micrantha and C. pubescens (R*=0.974 and R? = 0.983).

Although individual variables such as length (L) or width
(W) show significant relationships with leaf area, their models
tend to be less accurate at extreme ranges, as has also been
observed in Arabidopsis thaliana [14] and Theobroma cacao
[12]. In this study, models based solely on L or W presented
lower coefficients of determination, for C. micrantha (R* =
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0.895) and for C. pubescens (R* = 0.879 and 0.890,
respectively), and higher errors (RMSE > 169 for C. micrantha
and RMSE > 435 for C. pubescens), reflecting an inherent
limitation of using univariate variables. This validates the
hypothesis that models with interaction of dimensions better
represent the morphological complexity of compound leaves
or high intraspecific variability.

The use of quadratic transformations (L2, W2, (L+W)?) has
proven to be an effective intermediate strategy between simple
and composite models. Studies in Vitis vinifera [38], Hazelnut
[10], and Citrus hystrix [22] report substantial improvements
in accuracy with this approach. In the present analysis, the
model with (L + W)? achieved an R? = 0.972 and R? = 0.975
for C. micrantha and C. pubescens, respectively, just below
that of L x W, but with the lowest MAE recorded. This
similarity in performance between models suggests that both
could be useful depending on the practical objective: (L + W)?
for greater accuracy, and L x W for field applications due to
its operational simplicity.

Despite the high accuracy of the L x W model, there are
limitations to its applicability at different stages of leaf growth.
The models were developed using fully expanded mature
leaves under optimal phytosanitary conditions, which may not
accurately predict the leaf area of juvenile or senescent leaves
due to differences in shape and size during ontogeny [39]. For
example, juvenile leaves of Cinchona species may have more
rounded shapes, which could reduce the predictive ability of
the L x W model, as has been observed in other tropical
species [40]. Future studies should incorporate leaves from
various stages of development to assess the robustness of the
model at different ontogenetic phases.

Climatic factors such as temperature, humidity, and
precipitation can also influence the applicability of these
models. The study was conducted during the wet season in the
Peruvian Andes, where water is available, which may lead to
larger or differently shaped leaves, potentially affecting the
accuracy of the L x W model [41]. In addition, climate-
induced stress, such as drought or high temperatures, can alter
leaf morphology, as has been observed in other tropical trees
[42]. To improve the robustness of the model, it is
recommended to perform calibration across seasons and under
variable climatic conditions.

From a methodological perspective, the applicability of
these models in the field depends not only on their accuracy
but also on the ease of implementation. Unlike methods based
on digital images [25, 26], linear models such as L x W require
only manual measurements with basic instruments, which
facilitates their adoption in rural or hard-to-reach areas. The
cross-validation of the present study, with training and testing
splits (80-20%), reinforces the reliability of the selected model
and follows robust methodological recommendations [6, 30].

For practical applications, the L x W model is
recommended for integration into forest monitoring programs
in the Peruvian Andes, particularly for Cinchona conservation



and management. The model can be used to monitor
phenological changes, assess responses to abiotic stressors
(e.g., drought or temperature shifts), and estimate biomass for
restoration projects [43]. Specifically, forest managers can
employ this model in long-term ecological monitoring to track
leaf area dynamics in Cinchona populations, aiding in the
identification of stress indicators and informing reforestation
strategies [5]. The model’s simplicity allows its use by local
communities and non-specialist technicians, promoting
participatory conservation efforts. Regular calibration of the
model with data from different seasons and regions is advised
to ensure accuracy in diverse ecological contexts [44].

Finally, the relevance of having accurate tools for non-
destructive estimation of leaf area is amplified under climate
change scenarios, where phenological and physiological
monitoring of key species such as C. micrantha and C.
pubescens allows detecting responses to abiotic stress [18].
Integrating models such as L x W in monitoring programs
would contribute significantly to adaptive conservation
strategies, ecological restoration, and sustainable management
in the tropical Andes, where these species fulfill fundamental
ecological and cultural functions.

5. CONCLUSIONS

The present study demonstrates that nondestructive
estimation of leaf area in Cinchona micrantha and Cinchona
pubescens can be achieved with high accuracy using linear
regression models based on simple measurements of leaf
length and width. In particular, the model using the product L
x W is positioned as the best alternative because of its high
coefficient of determination (R? > 0.97) and prediction error
with root mean square error (RMSE) values of 171.263 for C.
micrantha and 442.026 for C. pubescens, indicating reliable
performance across both species. Low error (competitive
RMSE) and ease of field implementation. Although models
using quadratic transformations ((L + W)?) offer comparable
results in terms of accuracy, the simplicity of the L x W model
makes it a preferred tool for operational applications.

This methodology is particularly valuable in the context of
climate change research, where non-destructive leaf area
estimation enables continuous monitoring of phenological and
physiological responses to environmental stressors such as
drought, temperature fluctuations, and altered precipitation
patterns. By providing a low-cost and replicable tool, the L x
W model supports the assessment of Cinchona species’
adaptive capacity to climate-induced changes, contributing to
early warning systems and conservation strategies in tropical
Andean ecosystems. Furthermore, this methodology is
especially relevant for tropical Andean ecosystems where
Cinchona plays a significant ecological and cultural role, and
where monitoring should be non-invasive, inexpensive and
replicable. Its adoption is recommended in studies of forest
dynamics, ecological restoration and evaluation of
physiological responses to abiotic stress. In the context of
climate change, these non-destructive tools constitute a
valuable contribution to the adaptive management of native
species of high strategic value. The model’s integration into
climate change research can enhance the understanding of how
these threatened species respond to shifting environmental
conditions, supporting adaptive management and policy
development for biodiversity conservation.
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