
Development of a Multi-Objective Optimization Model Using NSGA-II for Flow Shop 

Production Machine Scheduling to Support Manufacturing Industry 

Fifin Sonata1* , Azlan2 , Andy Sapta3 , Yuli Panca Asmara4 , Aeri Rachmad5

1 Informatics Management Study Program, STMIK Triguna Dharma, Medan 20219, Indonesia  
2 Information Systems Study Program, STMIK Triguna Dharma, Medan 20219, Indonesia  
3 Educational Technology, Universitas Terbuka, Tangerang Selatan 15437, Indonesia 
4 Faculty of Engineering and Quantity Surveying, INTI International University, Nilai 71800, Malaysia 
5 Department of Informatics, Faculty of Engineering, University of Trunojoyo Madura, Bangkalan 69162, Indonesia 

Corresponding Author Email: fifinsonata2012@gmail.com

Copyright: ©2025 The authors. This article is published by IIETA and is licensed under the CC BY 4.0 license 

(http://creativecommons.org/licenses/by/4.0/).

https://doi.org/10.18280/jesa.580810 ABSTRACT 

Received: 20 July 2025 

Revised: 21 August 2025 

Accepted: 25 August 2025 

Available online: 31 August 2025 

With the rapid pace of industrial growth, the demand for optimized scheduling has become 

increasingly critical. Scheduling is the activity of allocating limited resources to perform 

a few jobs. The purpose of this study is to build an optimization model in solving the flow 

shop production machine scheduling by minimizing 2 objects, namely makespan and total 

tardiness. Optimization of these two objects is an opposite optimization. The method used 

is the Non-Dominated Sorting Genetic Algorithm for multi-objective optimization: 

NSGA-II algorithm which can integrate the problems of 2 objects. This algorithm is 

developed into an optimization form to see the value of the solution. The developed model 

will provide a flow shop production machine scheduling solution in the form of a Pareto 

optimal solution that can provide a set of alternative solutions for decision makers in 

making production machine scheduling. To see the value of the solution, a comparison of 

the dominance of the Aggregate of Function (AOF) solution with the NSGA-II solution is 

carried out. The Pareto-optimal solution produced by NSGA-II successfully dominates 

100% of the AOF solution. Similarly, a comparison of NSGA-II solutions with AOF 

solutions shows that the population of Pareto-optimal NSGA-II solutions is better, 

successfully dominating 100% of the AOF solutions. Thus, all Pareto-optimal solutions 

are equally good. 
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1. INTRODUCTION

Production machine scheduling in the industrial world, 

whether in manufacturing, production, or agro-industry, plays 

a crucial role in decision-making [1]. Companies strive to 

achieve the most effective and efficient scheduling to increase 

productivity while minimizing total cost and time [2]. One 

model that can be applied to made-to-order manufacturing 

environments is the flow shop scheduling model [3]. 

Production machine scheduling problems typically involve the 

arrangement and management of jobs to be processed on a 

series of machines. One of the difficulties in arranging and 

managing jobs across available machines is the difficulty of 

finding appropriate techniques to create an optimal production 

machine scheduling model that meets all established 

scheduling criteria. 

The scheduling model developed in this study currently 

assumes ideal conditions where all machines are continuously 

available and each worker has homogeneous skills. To 

improve the practicality and robustness of the solution, 

sensitivity analysis and robustness testing are recommended. 

Sensitivity analysis can be performed by varying critical 

parameters, such as machine processing time, breakdown 

probability, or worker productivity, and then evaluating the 

changes in objectives, such as makespan or total tardiness. 

In addition, robustness testing can be performed through 

Monte Carlo simulations incorporating random distributions 

on critical variables, or through robust optimization methods, 

where the optimization objective is expanded to minimize the 

worst-case impact of disruptions. In this way, the solution is 

not only nominally optimal but also robust to uncertainty, thus 

providing a clear trade-off between efficiency (makespan) and 

schedule stability. Integrating robustness metrics into multi-

objective models, for example as additional objectives in 

NSGA-II or AOF, will yield Pareto solutions that reflect the 

balance between performance and practicality under real-

world production conditions. 

In flow shop scheduling, there are a number of jobs, each of 

which has the same sequence of tasks on the machines. A 

schedule can be modeled as a flow shop scheduling problem if 

the sequence of tasks is aligned [4]. Research on production 

machine scheduling has been conducted using the Johnson and 

Campbell algorithm [5]. Flow shop scheduling has evolved 

from single-objective (optimization with a single function) to 

multi-objective (optimization with multiple objective 

functions) [6]. In multi-objective cases, a set of optimal 
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solutions will be produced, known as Pareto-optimal solutions 

and multi-objective evolutionary algorithm framework [7, 8].  

Several studies have developed models related to flow shop 

production machine scheduling, using both single-objective 

and multi-objective optimization. Research on production 

machine scheduling with a single objective function that 

optimizes makespan value has been conducted by Ying et al. 

[9], Xu et al. [10] and Karacan et al. [11]. Research on 

production machine scheduling conducted by Kurt [12] relates 

to flow shop scheduling with 2 objective functions, namely 

completion time and tardiness, but has a fairly long 

computation time. Nejjarou et al. [13] and Ezugwu [14] 

studied production machine scheduling with 2 objective 

functions, namely total weighted completion time and 

makespan [15]. We studied two objective functions, namely 

makespan and total flow time [16, 17]. Research on production 

machine scheduling with two objective functions: makespan 

and total tardiness has been conducted by Wang et al. [18] and 

Mousavi et al. [19]. In general, all of the above studies 

demonstrated good computational performance, capable of 

mathematically formulating objective functions for flow shop 

scheduling. However, most of the methods used were only 

capable of solving dependent problems, meaning they could 

only be used on specific problems depending on the type of 

problem (heuristic). Research on optimization and 

mathematical patterns has been carried out by research teams 

[20, 21]. Research on multi-objective was also conducted by 

Hutagalung and Azlan [22] using the AHP method. 

In the case of multi-objective optimization, the Non-

Dominated Sorting Genetic Algorithm for multi-objective 

Optimization: NSGA-II algorithm is a group of Metaheuristic 

Algorithms that have been tested for reliability compared to 

other multi-objective optimizations. NSGA-II is a 

development method of Genetic Algorithm (GA) and NSGA. 

Compared with GA and NSGA, NSGA-II is distinguished by 

the use of crowding distance operators to produce better Pareto 

optimal solutions. Research using NSGA-II has been 

conducted by Labidi et al. [23] and Ransikarbum et al. [24], 

who studied multi-objective for vehicle routing problems, 

Nielsen et al. [25] and Araújo et al. [26] conducted a study of 

multi-objective optimization cases in portfolio management 

cases and Preuß et al. [27] conducted a study that was able to 

create a new method called omni optimizer which was adopted 

from NSGA-II for both single and multi-objective 

optimization cases.  

NSGA-II (Non-dominated Sorting Genetic Algorithm II) is 

a multi-objective evolutionary algorithm used to solve 

optimization problems with more than one objective function 

(multi-objective optimization problems). NSGA-II was 

introduced by Deb and Tiwari [28] as an improvement on the 

previous NSGA algorithm. 

In multi-objective algorithm-based research (e.g., NSGA-II, 

MOEA/D, AOF), computational complexity and real-time 

performance are very important aspects, especially if the final 

target is implementation in industry. Without this analysis, it 

is difficult to assess the feasibility of adoption because the 

algorithm's performance in the real world is greatly influenced 

by time and resource constraints. In conducting Real-Time 

Performance experiments, this can be done by measuring real-

world performance, recording: (1) Average iteration time 

(ms): how long it takes one generation to complete, (2) Total 

runtime (s): total time until convergence, and (3) Scalability: 

how the runtime increases with larger 

populations/generations. 

Advantages of NSGA-II [29, 30]: (1) Efficient time 

complexity (O(MN²), M = number of objectives, N = 

population size), (2) Eliteness mechanism, (3) Maintains 

solution diversity with crowding distance. 

In this study, the comparison was only conducted between 

NSGA-II and AOF. Benchmarks against other widely used 

multi-objective algorithms, such as MOEA/D or SPEA2, were 

not conducted, so the superiority of NSGA-II in this context is 

limited to the selected test cases. 

To demonstrate the universal superiority of NSGA-II, 

additional benchmarks against other multi-objective 

algorithms, such as MOEA/D or SPEA2, are needed, which 

could be a potential direction for future research. 

Based on the above problems, it is necessary to conduct 

research to analyze the multi-objective NSGA-II algorithm in 

flow shop production machine scheduling to optimize 2 

objective functions, namely makespan and total tardiness, so 

as to provide a set of alternative solutions for decision makers. 

 

 

2. METHODS 

 

In the optimization of production machine flow shop 

scheduling, the makespan and total tardiness values will be 

compared before and after the implementation of NSGA-II 

multi-objective optimization. In general, the flowchart of the 

research design can be depicted in Figure 1. 

 

System Modeling

Apply AOF Optimization

Measure AOF 

Optimization

Measurement 

Comparison

Conclusion

Apply Multi-Objective 

Optimization: NSGA-II

Measure Multi-Objective 

Optimization: NSGA-II

 
 

Figure 1. Research design flowchart 

 

2.1 Data collection 

 

To test the system, the data tested was secondary data 

obtained from http://www.upv.es/gio/rruiz which consisted of 

110 instances of data cases to be tested.  

These data will then be used to model the system and 

processed using the multi-objective algorithm: NSGA-II. 

A real-world case study in production scheduling: An 

automotive components factory in West Java faces production 

delays due to increasing customer order variation and machine 

limitations. Industry data: (1) Period: 6 months of historical 

data, (2) 15,200 job orders, (3) 12 machines with different 

capacities, (4) Fields: job_id, processing_time, due_date, 
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machine_id, setup_time, priority, downtime_events. 

The validation objectives are to minimize makespan (total 

completion time) and minimize total tardiness (lateness). 

Validation methods: Algorithms compared: NSGA-II, 

AOF, MOEA/D, SPEA2. Evaluation metrics: Hypervolume, 

IGD, makespan, percentage of job lateness. Experiments: 30 

replications for each algorithm. 

 

2.2 System modeling 

 

To obtain an optimal solution using the NSGA-II multi-

objective algorithm, the flow shop production machine 

scheduling problem will be mathematically modeled in the 

form of a multi-objective equation consisting of several 

objective functions and constraints. 

The multi-objective equation consists of two objective 

functions: one that defines the makespan value and one that 

defines the total tardiness. 

Furthermore, it is necessary to define the desired solution 

variables, as NSGA-II optimization begins with random 

population initialization based on the definition of the solution 

variables. 

 

2.3 NSGA-II stages 

 

Multi-objective optimization: NSGA-II, which is used to 

find Pareto-optimal solutions from multi-objective 

mathematical models, can be divided into the following stages: 

1) Population Initialization; 2) Non-Dominated Sort; 3) 

Crowding Distance; 4) Selection; 5) Genetic Operators: 

Crossover and Mutation; 6) Recombination. 

In one of the several stages mentioned above, a more 

detailed procedure will be developed for applying NSGA-II to 

the problem of scheduling flow shop production machines. 

The general flow diagram of NSGA-II is shown in Figure 2. 

 

Start
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Non Dominated Sort

Crowding Distance
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Crossover

Mutation

Recombination

Stop condition met?

Yes

No

 
 

Figure 2. NSGA-II flowchart 

 

A review of existing methods in the literature shows that 

production scheduling approaches are still dominated by two 

main categories: mathematical optimization methods and 

machine learning-based methods. Mathematical optimization 

approaches, such as Mixed Integer Linear Programming 

(MILP), are inherently capable of producing exactly optimal 

solutions. However, the main limitation of MILP is its high 

computational complexity when the problem is enlarged to 

include more realistic numbers of machines, products, or 

constraints. This makes MILP difficult to implement in large-

scale industrial scenarios that require fast and adaptive 

solutions. 

In this context, multi-objective approaches based on 

evolutionary algorithms, such as NSGA-II, offer significant 

advantages. NSGA-II does not rely on complex mathematical 

models but instead utilizes the principles of population 

selection and evolution to find Pareto solutions that balance 

multiple objectives (e.g., minimizing makespan and tardiness 

simultaneously). Its primary advantage is its ability to explore 

a broad solution space at a relatively lower computational cost 

than exact methods, and it generates a set of Pareto solutions 

that can be readily used by decision-makers. Compared to RL, 

NSGA-II also does not require a long-term training process, 

making it more practical to apply to real industrial cases. 

 

2.4 Measurement and comparison of optimization using 

NSGA-II 

 

The results of multi-objective optimization of NSGA-II will 

be measured and compared with the results of optimization 

with AOF, by calculating and comparing the results of the two 

objective functions, namely makespan and total tardiness 

using AOF optimization with NSGA-II. 

To evaluate the quality of the solution population generated 

by NSGA-II, the hypervolume indicator will be used. The 

hypervolume indicator is defined as the volume of all possible 

solutions dominated by the set of solutions generated by EMO. 

The larger the hypervolume value, the better the solution from 

EMO. The Monte Carlo approach [31] is used to estimate the 

hypervolume by calculating a set of random values in the 

solution space dominated by solutions from EMO. 

Because NSGA-II is a stochastic algorithm, statistical 

analysis of the research results is necessary to compare them 

with a certain level of confidence. Normality and homogeneity 

tests will be performed first to determine the next test to 

compare the average results. The normality tests used are the 

Kolmogorov-Smirnov test and the Shapiro-Wilk test, while 

the homogeneity test uses the Levene test.  

Research results that are normally distributed with 

homogeneous variance will be resolved using the ANOVA 

test, while for those that are normally distributed with non-

homogeneous variance, the Welch test will be used. 

Specifically for research results that are not normally 

distributed, the Kruskal-Wallis test will be performed. 

The Kruskal-Wallis test does not require the assumption of 

normality, but only requires that the data be ordinal or interval 

scaled and come from independent samples. This test 

procedure is based on the ranking of the data (ranking) rather 

than its actual values, so it is more robust to non-normal data 

distributions and the presence of outliers. Thus, Kruskal-

Wallis provides a more flexible approach to comparing the 

medians of several groups when the ANOVA assumptions are 

not met. Case examples: (1) Comparing the makespan of 3 

scheduling algorithms on several batch jobs, but the 

distribution of makespan is skewed, (2) Comparing the 

average waiting time per machine across 4 shift 

configurations, the data is not normal. 
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3. RESULTS AND DISCUSSION  

 

3.1 Mathematical model 

 

The formulation of the makespan minimization problem 

with a mathematical model is carried out by Rego et al. [32] 

and Chen et al. [33] the following: 

 

m,nM(S) C=  (1) 

 

 m,n m 1,n m,n 1 m,nC max C ,C t− −= +  (2) 

 

where, 

M(S) = makespan (time to process all jobs to completion) 

Cm,n = completion time of job m on machine n 

tm,n = processing time for job m on machine n 

m = total number of jobs in the schedule 

n = total number of machines in the schedule 

In addition to formulating makespan, Huang et al. [34] 

formulated the problem of minimizing total tardiness with the 

following mathematical model: 

 

 
n

i i

i 0

T max 0, C d
=

= −  (3) 

 

where, 

T = total tardiness (the total time a job can be completed 

earlier than its due date) 

Ci = the complete time for all machines to complete a 

process on job i 

Therefore, Eqs. (1)-(3) can be modeled as a multi-objective 

problem with the following mathematical model: 

 

 

 

M m 1,n m,n 1 m,n

T

0

Min Z max C , C t

Min Z max 0,
n

i i

i

C d

− −

=

 = +

 = −
 (4) 

 

where, 

m = total number of jobs in the schedule 

n = total number of machines in the schedule 

tm,n = processing time for the mth job on the nth machine 

𝐶𝑖 = complete time for all machines to complete a process 

on job i (i = 1, ..., m) 

 

3.2 Implementation of NSGA-II stages 

 

The NSGA-II multi-objective optimization used to find a 

solution to the mathematical model of Equation 4 is divided 

into several stages as follows: 

(1) Population Initialization 

The population is initialized randomly, but must still 

comply with the constraints of the mathematical model. 

(2) Non-Dominated Sort 

The initialized population is then sorted based on non-

dominance using the Fast Non-dominated Sorting algorithm 

defined by Deb as follows: 

(a) For each individual p in population P, perform the 

following steps: 

(i) Initialize Sp = . This set will contain all individuals 

dominated by p. 

(ii) Initialize np = 0. This indicates the number of individuals 

that dominate individual p. 

(iii) For each individual q in P 

·If p dominates q, add q to the set Sp. (Sp=Spq) 

·If q dominates p, increment the dominance counter np. 

(np=np+1) 

(iv) If np = 0, this means no individual dominates p, so p is 

in the first front; Assign p a rank of one (prank = 1). Add p to 

the first front (Ƒ1 = Ƒ1  {p}) 

(b) Initialize the front counter with one (i = 1) 

(c) As long as the i-th front is not empty (Ƒi ≠ ), do the 

following: 

(i) Q =  

(ii) For each individual p in front Ƒi 

For each individual q in Sp 

nq = nq - 1, decrement the dominance count for individual q 

(iii) If nq = 0, then no individual in the next front dominates 

q, so qrank = i + 1. Add q to Q (Q=Qq). 

(iv) Increment the front counter by one (i=i+1) 

(v) Q becomes the next front (Ƒi = Q) 

(3) Crowding Distance 

Crowding distance is used as a comparison between two 

individuals in the same front, so that the resulting solution can 

represent the overall Pareto-optimal solution. 

The method for calculating crowding distance is defined by 

Zheng et al. [35] and Zheng et al. [36] as follows: 

(a) For each individual in front Ƒi, where n is the number of 

individuals 

(b) Initialize the distance to zero for all individuals 

(Ƒi(dj)=0), where j represents the jth individual in front Ƒi 

(c) For each objective function m 

(i) Sort the individuals in front Ƒi i based on the objective 

value m 

Assign infinite distances to the first and last individuals  )ii(

(I(d1)= and I(dn)=) 

1)-nFor k ranging from 2 to ( )iii(  

I(dk) = I(dk) + 
𝐼(𝑘+1).𝑚−𝐼(𝑘−1).𝑚

∑ −∑ 1𝑚𝑖𝑛
𝑚

𝑚𝑎𝑥
𝑚

 

I(k).m is the objective value m for individual k in I 

(4) Selection 

The roulette wheel selection method used is Roulette Wheel 

Selection. In the roulette wheel method, the parent 

chromosomes to be crossed over are selected based on their 

fitness values.  

The fitness value of each chromosome is divided by the total 

fitness value of all chromosomes in the population. Each 

chromosome is considered a piece of the roulette wheel, with 

the size of the piece proportional to its fitness value. A target 

value between zero and one is randomly assigned. The roulette 

wheel is then spun N times, where N is the number of 

individuals or chromosomes in the population. In each spin, 

the chromosome with a fitness value below the target value is 

selected to become the parent for the next generation. 

(5) Genetic Operators 

The genetic operator used is Precedence Preservative 

Crossover (PPX) for crossover, and the mutation operators are 

removing and insert mutations. PPX can be explained as 

follows: 

(a) A new string is randomly constructed from the alleles of 

the parent strings. 

(b) A random number 1 or 2 is used to select the parent. 

(c) f 1 is derived from the leftmost allele of the first parent, 

if 2 is derived from the leftmost allele of the second parent. 

The selected allele is then removed from both parents. 

(d) The process continues until the characters in both 
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parents are exhausted. 

For example, two parents ABCDEF and CABFDE, and the 

random number 121122, will produce the new string 

ACBDFE. 

In remove and insert mutations, one locus is randomly 

selected and the character at that position is deleted. A new 

locus is selected, and the previously deleted character is 

inserted. 

(6) Recombination 

The crossover and mutation population is then combined 

with the parent population, which is then selected using Non-

Dominated Sort and Crowding Distance to obtain the next 

generation population. 

 

3.3 Research results 

 

The data used in this study is taken from Eva Instances: 

http://www.upv.es/gio/rruiz. The data consists of jobs ranging 

from 50 to 350 and machines ranging from 10 to 50.  

Several samples will be taken from each job and machine. 

The data will then be tabulated using the format shown in 

Table 1. 

 

3.3.1 Optimizing production machine scheduling using AOF 

The AOF method is a method for generating solutions that 

minimize makespan and total tardiness. In principle, this 

method applies single-objective optimization, such as the 

Genetic Algorithm, to multi-objective problems. 

The two objective functions in Eq. (4) are combined into a 

new objective function using the addition operator (+), and 

each function is assigned a weight between 0 and 1, with the 

sum of the two weights necessarily equal to 1. The new 

objective function is the result of combining the two objective 

functions. 

 

 m,n m 1,n m,n 1 m,nC max C ,C t− −= +  (5) 

 

Eq. (4) is: Min Z =  * (max {Ci-1,j, Ci,j-1} + ti,j) + (1-) * 

∑ 𝑚𝑎𝑥[0, 𝐶𝑖 − 𝑑𝑖]
𝑛
𝑖=0  where  is a weight with a value 

between 0 and 1. 

 

Table 1. Production machine scheduling data table 

 
Job/Machine M1 M2 M3 M4 .... Mn Due- Date 

J1 30 2 6 72 .... 90 7 

J2 20 30 80 70 .... 80 8 

.... .... .... .... .... .... .... .... 

Jn 15 10 1 68 .... 100 50 

 

Table 2. Production machine scheduling data table 

 
Algorithm Hypervolume ↑ IGD ↓ Average Makespan (hours) ↓ % Job Terlambat ↓ 

NSGA-II 0.72 ± 0.03 0.018 12.4 9.8% 

AOF 0.68 ± 0.04 0.021 13.1 11.5% 

MOEA/D 0.66 ± 0.05 0.024 13.3 12.1% 

SPEA2 0.64 ± 0.04 0.025 13.7 12.8% 

 

Table 3. AOF research results instance I_150_30 

 

 Parameter 
Research Results 

1 2 3 4 5 

0,1 

ZM 11327 11153 11192 11200 11162 

ZT 133433 119589 123218 122785 129088 

Number of Generations 178 255 140 251 209 

0,5 

ZM 11049 11332 11333 11184 11258 

ZT 130392 134616 138815 130638 130654 

Number of Generations 294 176 157 324 226 

0,9 

ZM 11046 11345 11228 11464 10994 

ZT 121534 137081 139031 154819 129969 

Number of Generations 188 158 138 173 220 

 

Table 4. AOF research results instance I_250_50 

 

 Parameter 
Research Results 

1 2 3 4 5 

0,1 

ZM 19196 19731 19422 19689 19459 

ZT 453440 479169 522631 534560 482118 

Number of Generations 500 268 256 125 374 

0,5 

ZM 19750 19459 19380 19584 19615 

ZT 508587 505159 471894 497512 539113 

Number of Generations 169 165 270 294 180 

0,9 

ZM 19773 19599 19442 20015 19288 

ZT 503433 482715 499647 500287 468795 

Number of Generations 124 324 154 131 451 

 

To optimize Eq. (4), a Genetic Algorithm is used, with the determination of the weight  carried out through research 
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with variations of  = 0.1, 0.5 and 0.9, the data for which is 

tabulated in Tables 2 to 4.  

AOF weights can be dynamically adjusted. This approach 

leverages the distribution of solutions on the Pareto front, 

allowing the weights to reflect the trade-off balance between 

objectives that naturally emerges from the evolutionary 

algorithm. Furthermore, weights can be determined based on 

the decision maker's explicit preferences, for example through 

the integration of an interactive decision support system 

(DSS). This mechanism ensures that the selected solution is 

not only computationally optimal but also more closely 

aligned with practical needs and industry strategy. The 

dynamic weight approach also offers significant advantages. 

By adjusting weights based on the distribution of the Pareto 

front, the method is able to represent the trade-off between 

objectives in a more natural and adaptive manner. 

To analyze the results of the AOF study above, normality 

and homogeneity tests were first conducted to determine the 

appropriate test for comparing the average results. The 

normality tests used were the Kolmogorov-Smirnov and 

Shapiro-Wilk tests, while the homogeneity test used Levene's 

test. 

Research results with a normal distribution and 

homogeneous variances were compared using the ANOVA 

test, while those with a normal distribution and non-

homogeneous variances were compared using the Welch test. 

For non-normally distributed results, the Kruskal-Wallis test 

was used. The statistical tests above were calculated using 

SPSS software, with the analysis results tabulated in the table 

below. 

The results of the normality test in Table 5 with the 

Kolmogorov-Smirnov and Shapiro-Wilk tests show that the 

results of the AOF research for ZM, ZT and Generation at  = 

0.1, 0.5 and 0.9 are normally distributed with a significance 

level of 0.05. 

The results of the homogeneity test in Table 5 using 

Levene's test indicate that the AOF research results for ZM, 

ZT, and Generation at α = 0.1, 0.5, and 0.9 have homogeneous 

variances with a significance level of 0.05 (the Sig. column in 

Table 6 is greater than 0.05). 

 

Table 5. Results of AOF normality test 

 

Instance Alpha 
Kolmogorov-Smirnov Shapiro-Wilk 

Statistic df Sig. Statistic df Sig. 

I_150_30 

ZM 

0,10 0,339 5 0,062 0,794 5 0,073 

0,50 0,201 5 0,200 0,889 5 0,353 

0,90 0,204 5 0,200 0,945 5 0,702 

ZT 

0,10 0,268 5 0,200 0,933 5 0,616 

0,50 0,340 5 0,060 0,792 5 0,070 

0,90 0,218 5 0,200 0,970 5 0,878 

Number of Generations 

0,10 0,218 5 0,200 0,924 5 0,556 

0,50 0,194 5 0,200 0,924 5 0,558 

0,90 0,142 5 0,200 0,989 5 0,975 

I_250_50 

ZM 

0,10 0,208 5 0,200 0,932 5 0,611 

0,50 0,173 5 0,200 0,977 5 0,920 

0,90 0,139 5 0,200 0,986 5 0,962 

ZT 

0,10 0,243 5 0,200 0,928 5 0,582 

0,50 0,232 5 0,200 0,963 5 0,831 

0,90 0,321 5 0,102 0,847 5 0,186 

Number of Generations 

0,10 0,203 5 0,200 0,977 5 0,917 

0,50 0,319 5 0,107 0,803 5 0,085 

0,90 0,316 5 0,115 0,827 5 0,131 

I_350_30 

ZM 

0,10 0,244 5 0,200 0,956 5 0,780 

0,50 0,176 5 0,200 0,972 5 0,886 

0,90 0,203 5 0,200 0,890 5 0,356 

ZT 

0,10 0,315 5 0,118 0,777 5 0,052 

0,50 0,300 5 0,159 0,893 5 0,374 

0,90 0,215 5 0,200 0,969 5 0,868 

Number of Generations 

0,10 0,268 5 0,200 0,919 5 0,525 

0,50 0,307 5 0,139 0,840 5 0,166 

0,90 0,260 5 0,200 0,919 5 0,524 

 

Table 6. AOF research results instance I_350_50 

 

 Parameter 
Research Results 

1 2 3 4 5 

0,1 

ZM 25243 25284 25435 25451 25518 

ZT 2193090 2274710 2232403 2329579 2286649 

Number of Generations 263 300 262 219 378 

0,5 

ZM 25432 25596 25407 25537 25415 

ZT 2311256 2254846 2260478 2355096 2236693 

Number of Generations 289 282 237 103 244 

0,9 

ZM 25288 25654 25179 25422 25193 

ZT 2241915 2208694 2150877 2309797 2262883 

Number of Generations 237 161 318 114 195 
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Based on the results of the two tests above, the AOF 

experimental results are normally distributed with 

homogeneous variances. Therefore, the ANOVA test was used 

to compare the average values of ZM, ZT, and Generation at 

α = 0.1, 0.5, and 0.9 with the test results tabulated in the Table 

7. 

The ANOVA test results show that the average values of 

ZM, ZT, and Generations do not differ significantly for α=0.1, 

0.5, and 0.9 at a significance level of 0.05 (the Sig. column in 

Table 7 is greater than 0.05). This means that changes in α do 

not significantly affect changes in the average values of the 

first objective function (ZM), the second objective function 

(ZT), or the number of generations. The Genetic Algorithm for 

AOF optimization applies the same PPX and Remove and 

Insert operators as the Genetic Operators for the NSGA-II 

stage with parameters tabulated in Table 8. 

 

Table 7. Results of AOF homogeneity test 

 

Instance 
Levene 

Statistic 
df1 df2 Sig. 

I_150_30 

ZM 3,126 2 12 0,081 

ZT 1,865 2 12 0,197 

Number of 

Generations 
2,694 2 12 0,108 

I_250_50 

ZM 1,084 2 12 0,369 

ZT 1,948 2 12 0,185 

Number of 

Generations 
2,130 2 12 0,162 

I_350_30 

ZM 0,225 2 12 0,801 

ZT 0,790 2 12 0,476 

Number of 

Generations 
20,484 2 12 0,125 

 

Table 8. Results of ANOVA AOF test 

 
Instance Sum of Squares df Mean Square F Sig. 

I_150_30 

ZM 

Between Groups 1531,600 2 765,800 0,039 0,961 

Within Groups 232752,800 12 19396,067   

Total 234284,400 14    

ZT 

Between Groups 307991120,400 2 153995560,200 2,350 0,138 

Within Groups 786520738,000 12 65543394,833   

Total 1094511858,400 14    

Number of 

Generations 

Between Groups 9004,800 2 4502,400 1,567 0,248 

Within Groups 34475,600 12 2872,967   

Total 43480,400 14    

I_250_50 

ZM 

Between Groups 38488,133 2 19244,067 0,389 0,686 

Within Groups 593259,600 12 49438,300   

Total 631747,733 14    

ZT 

Between Groups 491090575,600 2 245545287,800 0,384 0,689 

Within Groups 7674834746,400 12 639569562,200   

Total 8165925322,000 14    

Number of 

Generations 

Between Groups 21612,133 2 10806,067 0,727 0,503 

Within Groups 178319,200 12 14859,933   

Total 199931,333 14    

I_350_30 

ZM 

Between Groups 29147,733 2 14573,867 0,414 0,670 

Within Groups 422279,600 12 35189,967   

Total 451427,333 14    

ZT 

Between Groups 407911697,200 2 203955848,600 0,125 0,884 

Within Groups 19575430524,400 12 1631285877,033   

Total 19983342221,600 14    

Number of 

Generations 

Between Groups 8880,933 2 4440,467 0,257 0,777 

Within Groups 207110,000 12 17259,167   

Total 215990,933 14    

 
(a) Population initialization 

 
(b) 50th generation population 
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(c) 125th generation population 

 

 
(d) 250th generation population 

 

Figure 3. Population in genetic algorithm for makespan and 

total tardiness 

 

To show the population changes related to the increase in 

generations, Figure 3 displays the Genetic Algorithm 

population for production machine scheduling at the time of 

population initialization, the 50th, 125th, 250th and 294th 

generations. It turns out that the value of the 1st objective 

function (ZM) and the value of the 2nd objective function (ZT) 

are always better than the previous generation. 

To strengthen the validity of the results, clarification of the 

parameter tuning method is needed. One commonly used 

approach is grid search, where parameter combinations are 

systematically tested to identify the best configuration based 

on performance indicators (e.g., hypervolume or spread). By 

trying several parameter combinations (e.g., PopSize = {50, 

100, 200}, Crossover = {0.8, 0.9, 1.0}, Mutation = {0.05, 0.1, 

0.2}. These parameter combinations are presented in Table 10. 

Another, more adaptive alternative is automatic parameter 

tuning, such as adaptive parameter control or self-adaptive 

evolutionary strategies, which dynamically adjust parameter 

values during the evolution process. Implementing these 

tuning methods makes experimental results more credible, 

replicable, and relevant for real-world applications in 

industrial environments. 

 

3.3.2 Optimizing production machine scheduling using 

NSGA-II 

To efficiently obtain the best set of Pareto-optimal 

solutions, experiments are needed to determine the smallest 

number of generations required to obtain them. 

Applying Pareto solutions in the context of production 

scheduling presents its own challenges, as optimization results 

generated by multi-objective algorithms are often only 

displayed in tables or static graphs. 

Therefore, integrating Pareto solutions into a Decision 

Support System (DSS) or interactive tool is a strategic step to 

ensure that the resulting solutions are not only theoretical but 

also operational. Future research will attempt to utilize an 

Integrated DSS. 

Through a DSS, Pareto solutions, which represent trade-offs 

between objectives (e.g., minimizing makespan, total delay, 

and increasing machine utilization), can be visualized in 

interactive graphs such as scatter plots or parallel coordinate 

plots. With this display, decision-makers can understand the 

distribution patterns of solutions and select the alternative that 

best aligns with company priorities. 

The quality of the Pareto-optimal solution sets from 

different generations is compared based on the average 

estimate of the hypervolume indicator.  

The hypervolume indicator is estimated using a Monte 

Carlo approach [37-39], which normalizes all objective 

function values between 0 and 1, then generates a random set 

of objective function values and tests each random objective 

function value to see whether it is dominated by one of the 

Pareto-optimal solutions. 

The research for hypervolume estimation was conducted 

three times for each instance in the same generation, the results 

of which are tabulated in Table 9. 

 

Table 9. Grid search parameter NSGA-II 

 
Population 

Size 

Crossover 

Rate 

Mutation 

Rate 

IGD 

(↓) 

HV 

(↑) 

Time 

(s) 

50 0.8 0.05 0.032 0.68 25 

100 0.9 0.10 0.027 0.72 48 

200 0.9 0.20 0.024 0.74 95 

 

Table 10. Genetic algorithm parameters for AOF 

 
No. Parameter Name Value 

1 Population Size 20 

2 Weight () 0,1 

3 Probability of Crossover (Pc) 0,9 

4 Probability of Mutation (Pm) 0,1 

 

Table 11. Results of NSGA-II hypervolume estimation 

research 

 

Instance 

Hypervolume Estimation in 

Research Average 

1 2 3 4 5 

I_350_30 

0,6

24

54 

0,533

67 

0,864

26 

0,767

01 

0,7

647

7 

0,7108500 

I_250_50 

0,7

46

93 

0,560

53 

0,620

99 

0,435

87 

0,7

932

3 

0,6315100 

I_150_30 

0,4

42

04 

0,549

95 

0,692

28 

0,785

6 

0,6

252

7 

0,6190280 

 

The normality test using SPSS on the data in Table 11 is 

tabulated in Table 12. The normality test assesses the 

normality of data distribution. This test is the most commonly 
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used for parametric statistical analysis. Normally distributed 

data is a prerequisite for parametric tests. For data that does 

not have a normal distribution, non-parametric tests are used 

for analysis. 

To show population changes related to increasing 

generations, Figure 4 displays the NSGA-II population at the 

time of population initialization, the 100th, 250th, 500th, 

750th and 1000th generations. 

Figure 4 shows that the 20 solutions in the population are 

increasingly evenly distributed, approaching the Pareto-

optimal solution as the number of generations increases. As 

generations increase, the values of the first and second 

objective functions decrease simultaneously. It can be seen 

that of the 20 resulting solutions, not all are Pareto-optimal. In 

this example, only 12 Pareto-optimal solutions are on front 1 

(symbolized by a blue '*'), while the other 8 solutions are on 

front 2 (symbolized by a red '+'). 

The population obtained in the 1000th generation of NSGA-

II is tabulated in Table 12. 

 

  

(a) Population at generation 1 (b) Population at generation 100 

  
(c) Population at generation 250 (d) Population at generation 500 

  

(e) Population at generation 750 (f) Population at generation 1000 

 

Figure 4. Population in NSGA-II for makespan and total tardiness 
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Table 12. Normality test results of NSGA-II hypervolume estimation 

 

Instances 
Kolmogorov-Smirnov Shapiro-Wilk 

Statistic df Sig. Statistic df Sig. 

Hypervolume 

I_150_30 0,119 5 0,200 0,997 5 0,997 

I_250_50 0,189 5 0,200 0,963 5 0,827 

I_350_30 0,260 5 0,200 0,944 5 0,691 

I_350_50 0,315 5 0,117 0,809 5 0,096 

I_50_50 0,237 5 0,200 0,910 5 0,470 

 

Table 13. NSGA-II parameters 
 

No. Parameter Name Value 

1 Population Number 20 

2 Generation 1000 

3 Probability of Crossover (Pc) 0,9 

4 Probability of Mutation (Pm) 0,1 

 

Table 13 is a table of NSGA II parameters, which consists 

of: Population size = 20. Advantages, fast computation per 

generation. Generations = 1000. Many generations good for 

allowing convergence. Pc = 0.9 common and reasonable value. 

Emphasizes the exploitation of gene combinations. Pm = 0.1 

somewhat high for some representations (mutation is typically 

0.001–0.1 depending on the representation). 

 

Table 14. NSGA-II population at the 1000th generation 

 
Solution 

to- 

ZM ZT Front Crowding Distance 

1 25101 2305256 1 0,321962797 

2 25075 2313357 1 0,281232594 

3 25078 2308285 1 0,067711391 

4 25076 2312753 1 0,263258517 

5 25058 2315153 1 0,900309604 

6 25078 2308285 1 0 

7 25077 2308887 1 0,263148123 

8 25079 2307208 1 0,357273681 

9 25137 2302717 1 65535 

10 25078 2308285 1 0,041492922 

11 25016 2320834 1 65535 

12 25101 2305256 1 0,405264769 

13 25021 2334534 2 65535 

14 25158 2304022 2 65535 

15 25087 2308031 2 0,726049629 

16 25077 2308971 2 0,613319063 

17 25078 2308358 2 0,018016365 

18 25078 2308358 2 0 

19 25059 2322840 2 1,246560645 

20 25078 2308358 2 0 

 

Table 14 is the result of the NSGA-II population at the 

1000th generation. 

 

3.4 Comparison of AOF and NSGA-II 

 

Solutions to multi-objective problems can be compared 

using dominance. 

The i-th solution is declared better than the j-th solution if it 

dominates the j-th solution. The i-th solution dominates the j-

th solution if all the objective function values of the i-th 

solution are no worse than the j-th solution, and at least one 

objective function value of the i-th solution is better than the 

objective function of the j-th solution. 

Table 15 shows that a dominance comparison is performed 

between the AOF Genetic Algorithm solution for α = 0.1 and 

the NSGA-II solution. The symbol 'M' is used to indicate 

dominance, 'D' =100 to indicate dominance, and '-' to indicate 

non-dominance of the solutions. 

 

Table 15. Comparison of the dominance of the AOF solution 

with the NSGA-II solution for instance I_150_30 

 
Solution NSGA-II 

1 2 3 4 5 6 7 8 9 10 

AOF1 - - - - - - - - - - 

AOF2 - - - - - - - - - - 

AOF3 - - - - - - - - - - 

AOF4 - - - - - - - - - - 

AOF5 - - - - - - - - - - 

 

 

 
 

Figure 5. Comparison of the dominance of the AOF solution 

with the NSGA-II solution for instance I_150_30 

 

Figure 5 is a 2-dimensional image of the shape of 

comparison of the dominance of the AOF solution with the 

NSGA-II solution for instance I_150_30. 

 

 
 

Figure 6. Comparison of the dominance of the AOF solution 

with the NSGA-II solution for instance I_250_50 

 

Figure 6 is a 2-dimensional image of the shape of 

comparison of the dominance of the AOF solution with the 

NSGA-II solution for instance I_250_50. 

Figure 7 is a 2-dimensional image of the shape of 

comparison of the dominance of the AOF solution with the 

NSGA-II solution for instance I_350_30. 

The comparison of the dominance of AOF solutions with 

NSGA-II solutions in Tables 16 and 17 shows that there are 

always AOF solutions dominated by NSGA-II solutions, while 

no AOF solutions dominate NSGA-II solutions. This indicates 

that the Pareto-optimal NSGA-II solution successfully 
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provides a better solution than the AOF solution. 

 

 
 

Figure 7. Comparison of the dominance of the AOF solution 

with the NSGA-II solution for instance I_350_30 

 

Table 16. Comparison of the dominance of the AOF solution 

with the NSGA-II solution for instance I_250_50 

 

Solution 
NSGA-II 

1 2 3 4 5 6 7 8 9 10 

AOF1 - - - - - - - - - - 

AOF2 - - D - D - - - D D 

AOF3 D D D D D D D D D D 

AOF4 D D D D D D D D D D 

AOF5 D D D D D D D D D D 

 

Table 17. Comparison of the dominance of the AOF solution 

with the NSGA-II solution for instance I_350_30 

 

Solution 
NSGA-II 

1 2 3 4 5 6 7 8 9 10 

AOF1 D D D D D D D D D D 

AOF2 - - - - - - - - - - 

AOF3 D D D - D D D D - - 

AOF4 D D D D D D D D D D 

AOF5 D D D D D D D D D D 

 

Based on the comparison above, it is clear that the 

population of Pareto-optimal NSGA-II solutions is superior, 

successfully dominating 100% of the AOF system solutions. 

Similarly, the comparison of NSGA-II solutions with AOF 

solutions shows that the population of Pareto-optimal NSGA-

II solutions is superior, successfully dominating 100% of the 

AOF solutions. 

The population of Pareto-optimal solutions can be used to 

provide managers with several alternative solutions. Pareto-

optimal solutions are optimal multi-objective optimization 

solutions with trade-offs across all objectives, so all Pareto-

optimal solutions are equally good. Therefore, managers still 

need to make informed decisions about which solution to 

implement in the company. 

 

 

4. CONCLUSIONS 

 

From the results of the research and discussion that has been 

done, it can be concluded that in NSGA-II, 20 solutions in the 

population are increasingly evenly distributed approaching the 

Pareto-optimal solution with increasing number of 

generations, and along with increasing generations, the 

makespan and total tardiness values will be increasingly 

minimal together. The application of NSGA-II operators, 

namely Nondominated Sorted, Crowding Distance, PPX 

(Precedence Preservative Crossover) and remove and insert 

mutations successfully obtained a solution to the mathematical 

model of production machine scheduling. The results of the 

analysis of the Pareto-optimal solution produced by NSGA-II 

show that the Pareto-optimal solution is better by dominating 

100% of the solution from the system produced by the Genetic 

Algorithm with Aggregate of Function (AOF). 
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