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Wind turbines operate under highly dynamic conditions influenced by unpredictable wind 

profiles and external disturbances. The nonlinear characteristics of their dynamic models 

further complicate their modeling and control. This research focuses on optimizing the 

power output of a Wind Energy Conversion System (WECS) equipped with a Permanent 

Magnet Synchronous Generator (PMSG). To achieve this, a Maximum Power Point 

Tracking (MPPT) strategy is developed, integrating an innovative nonlinear PI controller. 

The parameters of this controller are fine-tuned using advanced meta-heuristic 

optimization techniques, including Particle Swarm Optimization (PSO), Harris Hawks 

Optimization (HHO), and Golden Jackal Optimization (GJO). Simulation results highlight 

the superior performance of the GJO-NLPI controller, demonstrating exceptional accuracy 

and rapid response in regulating mechanical rotation speed, while effectively reducing 

overshoot. The proposed control architecture showcases significant advancements in 

power extraction efficiency and dynamic performance. 

Keywords: 

Wind Energy Conversion System (WECS), 

Permanent Magnet Synchronous Generator 

(PMSG), Maximum Power Point Tracking 

(MPPT), architecture, nonlinear PI 

controller, PSO algorithm, HHO algorithm, 

GJO algorithm 

1. INTRODUCTION

In various industrial and residential sectors. This constant 

rise has accentuated the pressure on traditional energy 

resources, particularly oil and gas, leading to growing 

concerns about their high cost, rapid depletion, and negative 

environmental impacts, particularly the emissions of 

greenhouse gases that lead to climate change [1, 2]. Faced with 

these challenges, renewable energies have emerged as a viable 

and sustainable alternative. They not only offer a response to 

the growing energy demand but also contribute to mitigating 

the environmental impacts associated with electricity 

production [3]. Out of the different sustainable power sources; 

wind energy has captured particular attention due to its 

abundant availability and capacity for rapid development. 

Moreover, technological advances in the have significantly 

increased wind turbine systems' profitability and efficiency [4-

6]. In order to transform wind energy into electrical power, the 

Wind Energy Conversion System (WECS) uses a wind turbine 

in conjunction with an electric generator. This conversion can 

be direct or through a gearbox, followed by an electronic 

power interface that ensures the connection of the generator 

either to autonomous loads or to the electrical grid [6]. Wind 

turbines are designed to operate at either a fixed speed (FSWT) 

or a variable speed (VSWT), depending on wind 

characteristics [7, 8]. FSWTs, although simple, have 

limitations such as a restricted operating range and high 

mechanical constraints requiring complex gearboxes [7]. In 

contrast, VSWTs are designed to optimize energy production 

by adjusting their rotational speed to match wind speed, thus 

minimizing losses and power fluctuations [9-12]. A significant 

challenge in maximizing the efficiency of VSWTs lies in 

enhancing power efficiency throughout a wide range of wind 

velocities. This requires the employment of Maximum Power 

Point Tracking (MPPT) techniques. Notable among them are 

the Tip Speed Ratio (TSR) algorithm [13, 14], Power Signal 

Feedback (PSF) [13-15], Optimal Torque (OT) algorithms [16, 

17], Hill Climb Search (HCS) MPPT algorithms, Incremental 

Conductance (INC), Optimal Relationship-Based (ORB) and 

other traditional techniques have demonstrated their 

effectiveness in enhancing wind turbine performance [13, 17]. 

Several scientific studies have been conducted to optimize 

MPPT results by proposing various advanced control 

strategies [18]. Kaoutar et al. [19] introduced a hybrid MPPT 

control combining P&O (Perturb and Observe) controllers 

with a neural network, demonstrating good precision but 

exhibiting high overshoot and slow response times. Similarly, 

Salma et al. [20] developed an optimal hybridization between 

Proportional-Integral (PI) control and advanced sliding mode 

control based on Particle Swarm Optimization (PSO) that 

unfortunately resulted in a very long response time. Moreover, 

fuzzy optimization strategies for MPPT control architectures 

have been explored by Belkacem et al. [21], who reported high 

overshoot; Mohammad et al. [22] proposed a hybridization of 

fuzzy and sliding mode controllers, which faced issues with 

chattering and overshoot. Finally, Benkada et al. [23] 
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Investigated MPPT control for wind power system conversion 

using a T-S (Takagi-Sugeno) fuzzy approach revealing a 

considerable error margin. Despite these advancements, the 

classic PID controller remains predominant in the industry due 

to its reliability and simplicity of implementation. On the other 

hand, its sensitivity to nonlinear dynamics is well-known. To 

overcome this limitation, new nonlinear PID controllers have 

been developed and successfully applied to complex systems 

such as the Antenna Azimuth Position System [24, 25], robotic 

systems [26], and continuous stirred tank reactors [27], 

thereby offering significantly improved performance [28]. An 

approach to introducing nonlinearity into the PID controller 

involves using nonlinear gains, which can be achieved through 

hyperbolic functions [26, 29-31] and other nonlinear functions 

such as exponentials or sigmoid functions [25, 32, 33]. 

Furthermore, Al-Samarraie and Abbas [33] proposed a method 

to make the integral term nonlinear by incorporating an 

arctangent function, thereby enhancing the controller's 

robustness against varying disturbances.  In the context of 

wind energy systems, several studies have assessed the 

potential of nonlinear PI (NLPI) controllers. Hazzab et al. [34]. 

demonstrated their effectiveness in wind turbine emulators, 

reporting improved robustness and reduced overshoot 

compared with conventional PI controllers. Ren et al. [35] 

highlighted their application to variable pitch control, noting 

enhanced performance but also challenges in maintaining 

stability under rapidly fluctuating wind conditions. Liu et al. 

[36] investigated nonlinear PI/PD pitch controllers, which 

improved power regulation but required meticulous gain 

scheduling and introduced additional implementation 

complexity. Overall, these studies confirm the capability of 

NLPI controllers to improve system performance, while also 

highlighting their main limitation: strong dependence on 

empirically tuned parameters, often lacking systematic 

adaptation or optimization, which can significantly affect 

performance. Charrak's review [37] on computational 

intelligence applications in stability analysis underscores how 

advanced optimization techniques can mitigate such 

limitations in nonlinear systems, particularly under dynamic 

operating conditions. Building on these findings, the present 

work proposes a novel NLPI controller design that integrates 

the aforementioned approaches to enhance robustness. 

Specifically, hyperbolic gains are employed for self-tuning, 

while arctangent terms are incorporated into the integral 

component to improve resilience against variable wind 

disturbances. To address the difficulty of manual parameter 

tuning, optimization is carried out using well-regarded 

algorithms such as Particle Swarm Optimization (PSO) and 

Harris Hawks Optimization (HHO), both recognized for their 

effectiveness in determining PI controller gains [38-39]. 

Recent work [40-41] further validates PSO's capability in 

complex nonlinear systems, successfully estimating 

parameters for chaotic dynamics like the Chua circuit—a 

testament to its adaptability for wind turbine control 

challenges. Furthermore, the recently introduced Golden 

Jackal Optimization (GJO) algorithm [42], inspired by the 

hunting patterns of golden jackals, is also applied. The 

proposed method aims to deliver improved accuracy, 

robustness, and dynamic performance under varying wind 

profiles. The key contributions of this study are summarized 

as follows: 

1. The novel Nonlinear PI (NLPI) controller developed in 

this study optimizes wind turbine speed control, enabling more 

efficient power extraction from varying wind profiles. 

2. By integrating advanced metaheuristic algorithms (PSO, 

HHO, GJO) with the NLPI controller, the study achieves 

superior system performance in terms of accuracy, robustness, 

and response time. The study demonstrates the robustness of 

the NLPI controller under variable and step wind speed 

profiles, ensuring reliable operation under real-world 

conditions. The innovative integration of an arctangent 

function into the controller significantly minimizes static error 

(3.15e-6) and improves response time (0.0322 seconds), 

outperforming conventional PI controllers. The research 

provides valuable insights into the effectiveness of different 

metaheuristic optimization methods, highlighting the superior 

performance of the GJO algorithm in enhancing wind turbine 

system control. A detailed mathematical model developed 

using MATLAB/Simulink validates the proposed methods, 

offering a reliable platform for further advancements in wind 

turbine technology. The advanced NLPI controller and its 

optimization strategies could be applied to other renewable 

energy systems, enhancing control performance across diverse 

applications. The study lays the groundwork for integrating the 

optimized wind turbine model into a broader energy 

conversion system, paving the way for comprehensive 

renewable energy solutions. The remainder of this work is 

organized as follows: Section 2 covers the modeling of the 

wind turbine system, Section 3 presents the wind speed control 

architecture, and Section 4 discusses the three WECS 

optimization algorithms PSO, HHO, and GJO. The simulation 

results are presented in Section 5. Finally, Section 6 provides 

the conclusions and perspectives for future research. 

 

 

2. WIND ENERGY CONVERSION SYSTEM (WECS) 

MODELLING 

 

The methodology of our study is illustrated in the following 

figure (Figure 1): 

 

 
 

Figure 1. Methodology of this study 

 

The grid-connected global Wind Energy Conversion 

System is depicted in Figure 2. The subsequent section 

provides a detailed model of the wind turbine and the 

Permanent Magnet Synchronous Generator (PMSG). 
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Figure 2. Schematic representation of a standard grid-

integrated WECS 

 

2.1 Wind turbine modeling 

 

The mechanical power extracted by the wind turbine 𝑃𝑡𝑢𝑟𝑏 

(KW) can be mathematically represented, as detailed in the 

following Eq. (1) [43]: 

 

𝑃𝑡𝑢𝑟𝑏 = 0.5𝐶𝑝(𝜆, 𝛽)𝜌𝜋𝑅
2𝑉3 (1) 

 

where, ρ represents air density, 𝑉 denotes wind velocity (in 

m/s), 𝑅 symbolizes the wind turbine blades diameter (in m), 

and 𝐶𝑝 (λ, β) represents the power coefficient of wind turbines, 

that describes an approximation to empirical data of a wind 

turbine, as defined in Eq. (2): 

 

𝐶𝑝 = [0.5176 (
116

𝜆′
) − 0.4𝛽 − 5] 𝑒𝑥𝑝 (

−21

𝜆′
) +

0.0068𝜆  
(2) 

 

With: 

 

𝜆′ =
1

𝜆+0.08𝛽
−

0.035

𝛽3+1
  (3) 

 

𝜆 =
𝑤𝑡𝑢𝑟𝑏  𝑅

𝑉
 (4) 

 
Here, λ represents the tip-speed-ratio, β is the blade pitch 

angle, and 𝑤𝑡𝑢𝑟𝑏 denotes the mechanical speed of the turbine 

blades (in rad/s). Figure 3 shows the features of the turbine that 

was used. 

 

 
 

Figure 3. Variation of the aerodynamic power coefficient Cp 

as a function of the tip speed ratio λ and the pitch angle β 

The wind turbine's mechanical torque 𝑇𝑡𝑢𝑟𝑏  (N.m-1) is 

obtained using Eq. (5) as follows. 

 

𝑇𝑡𝑢𝑟𝑏 =
𝑃𝑡𝑢𝑟𝑏
𝑤𝑡𝑢𝑟𝑏

=
0.5𝐶𝑝(𝜆, 𝛽)𝜌𝜋𝑅

2𝑉3

𝑤𝑡𝑢𝑟𝑏
 (5) 

 

The gearbox is necessary to adjust the wind turbine's rotor 

speed and torque to be compatible with the PMSG, as 

described by the following equation: 

 

{

𝑤𝑚 = 𝐺.𝑤𝑡𝑢𝑟𝑏

𝑇𝑚 =
1

𝐺
. 𝑇𝑡𝑢𝑟𝑏  

 (6) 

 

where, 𝑤𝑚 is the PMSG's mechanical rotating speed, 𝐺 is the 

gear ratio coefficient, and 𝑇𝑚 is the wind torque imparted to 

the generator rotor. 

The representation of mechanical transmission is 

demonstrated by the following Eq. (7): 

 

𝑗
𝑑𝑤𝑚
𝑑𝑡

= 𝑇𝑚 − 𝑇𝑒𝑚 −
𝑓

𝑗
𝑤𝑚 (7) 

 

where, 𝑓  signifies friction, 𝑗  represents inertia, and 𝑇𝑒𝑚 is 

electromagnetic torque. 

 

2.2 Permanent magnets synchronous generator 

 

According to Eq. (8), the PMSG generates an 

electromagnetic torque [40]. 

 

𝑇𝑒𝑚 =
3𝑃

2
(𝜆𝑟𝑖𝑞𝑠 − (𝐿𝑑 − 𝐿𝑞)𝑖𝑑𝑠𝑖𝑞𝑠) (8) 

 

The synchronous generator's dq-axis self-inductance is 

represented by 𝐿𝑑  (H) and 𝐿𝑞  (H), 𝑃  is the number of pole 

pairs and 𝜆𝑟  (wb(rms)) is the rotor flux linkages, the stator 

current along the PMSG generator's dq-axis is represented by 

𝑖𝑑𝑠 and 𝑖𝑞𝑠 as shown in Eq. (9): 

 

{
 
 

 
 𝑑𝑖𝑑𝑠

𝑑𝑡
= −

𝑅𝑠
𝐿𝑑 
𝑖𝑑𝑠 +

𝐿𝑞

𝐿𝑑 
𝑤𝑔
 
𝑖𝑞𝑠 −

1

𝐿𝑑 
𝑣𝑑𝑠

𝑑𝑖𝑞𝑠

𝑑𝑡
= −

𝑅𝑠
𝐿𝑞 
𝑖𝑞𝑠 +

𝐿𝑑
𝐿𝑞 
𝑤𝑔 𝑖𝑑𝑠 −

1

𝐿𝑞 
𝑤𝑔 𝜆𝑟 −

1

𝐿𝑞 
𝑣𝑞𝑠

 (9) 

 

where, 𝑤𝑔
 
 is the generator's mechanical rotor speed, which 

can be obtained from 𝑤𝑚 in the manner described below: 

 

𝑤𝑔 = 𝑃 ∗ 𝑤𝑚  (10) 

 

𝑅𝑠 : indicates the resistance of the stator winding in the 

PMSG generator.  

𝑣𝑞𝑠 and 𝑣𝑑𝑠: refer, respectively, to the stator voltages along 

the quadrature and direct axes. 

The following equation provides the modeling of these 

voltage components: 

 

{
𝑣𝑑𝑠 = −𝑅𝑠𝑖𝑑𝑠 + 𝐿𝑞𝑤𝑔 𝑖𝑞𝑠 − 𝐿𝑑 

𝑑𝑖𝑑𝑠

𝑑𝑡

𝑣𝑞𝑠 = −𝑅𝑠𝑖𝑞𝑠 − 𝐿𝑑𝑤𝑔 𝑖𝑑𝑠 + 𝑤𝑔 𝜆𝑟 − 𝐿𝑞 
𝑑𝑖𝑞𝑠

𝑑𝑡

  (11) 

 

 

3. WIND TURBINE SPEED ARCHITECTURE 

CONTROL 

 

3.1 Maximum Power Point Tracking 

 

Algorithm's outstanding effectiveness and fast 
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responsiveness make it one of the most popular MPPT 

techniques. By modifying the generator's rotating speed, the 

TSR control approach increases power extraction while 

preserving the TSR at an ideal value that can be determined 

empirically [13, 18, 44-47]. Both wind and generator speed 

measurements are necessary for the algorithm to obtain the 

best TSR (𝜆𝑜𝑝𝑡) and extract the most power. Eq. (12) is used 

to calculate the ideal rotational speed in the following manner: 

 

𝑤𝑚.𝑜𝑝𝑡 =
𝜆𝑜𝑝𝑡𝑉

𝑅
  (12) 

 

The block diagram in Figure 4 provides a clear depiction of 

a WECS employing TSR control. The ideal rotational speed 

and the real rotational speed are continuously compared, and 

any differences are fed into a controller. To reduce this 

discrepancy, the controller then modifies the generator's speed. 

As a result, the method guarantees that the mechanical power 

output of the generator is in close agreement with the highest 

possible mechanical power [46]. 

 

 
 

Figure 4. TSR MPPT algorithm of WECS 

 

3.2 Controllers design 

 

Classical PI controllers are extensively used in industry 

because of their straightforward architecture, adaptability, and 

accurate control capabilities. These controllers rely on two 

primary parameters: the proportional gain (𝑘𝑝) and the integral 

gain ( 𝑘𝑖 ), which play pivotal roles in shaping system 

performance and require careful selection. The control law of 

a linear PI controller is defined in Eq. (13): 

 

𝑈(𝑡) = 𝑘𝑝𝑒(𝑡) + 𝑘𝑖 (13) 

 

However, linear PI controllers face significant challenges 

when dealing with changes or uncertainties in operational 

conditions and nonlinear system dynamics. Specifically, they 

suffer from balancing rapid response and minimal overshoot. 

High gains can effectively correct large errors but may 

introduce unwanted overshooting and oscillations. In contrast, 

low gains stabilize the system but result in slower response 

times. A dynamic approach to gain adjustment is essential to 

overcome these challenges: higher gains (aggressive) are 

appropriate for addressing significant errors, while lower gains 

(conservative) are preferable for minor errors. Recognizing 

these limitations, nonlinear PI controllers have become a 

viable substitute for improving the performance of systems 

with nonlinear dynamics [31]. The control low of the nonlinear 

PI controller will be as represented in Eq. (14): 

 

𝑈𝑁𝐿(𝑡) = (𝑘𝑝)
̅̅ ̅̅ ̅̅ 𝑒(𝑡) + (𝑘𝑖)̅̅ ̅̅ ̅ ∫ 𝑒(𝑡)𝑑𝑡  (14) 

 

where, (𝑘𝑝)
̅̅ ̅̅ ̅̅  and (𝑘𝑖)̅̅ ̅̅ ̅  represent the NLPI controller's self-

adjusting nonlinear gains.  

Various researchers have explored these, using different 

mathematical functions to improve the performance of control 

systems. Thus: 

Shi et al. [25] proposed nonlinear gains based on the 

hyperbolic function "sech" as indicated in Eq. (15): 

 

𝑈𝑠𝑒𝑐ℎ(𝑡) = (𝑘𝑝1(1 − sech(𝑘𝑝2𝑒(𝑡))) + 𝑘𝑝0)𝑒(𝑡) +

𝑘𝑖1 sech(𝑘𝑖2𝑒(𝑡)) ∫ 𝑒(𝑡)𝑑𝑡  
(15) 

 

where, 

 

Sech(𝑥) =  
2

𝑒𝑥 + 𝑒−𝑥
 (16) 

 

Another hyperbolic function based on the "cosh" function 

was proposed by Ruderman et al. [29], as shown by Eq. (17): 

 

𝑈𝑐𝑜𝑠ℎ(𝑡) = 2 cosh(𝛼1𝑒(𝑡) (𝑘𝑝0𝑒(𝑡)

+ 𝑘𝑖0∫𝑒(𝑡)𝑑𝑡)) 
(17) 

 

where, 

 

cosh 𝑥 =  
𝑒𝑥 + 𝑒−𝑥

2
 (18) 

 

Xu [32] and Tian [24] proposed the use of exponential 

functions as shown in Eqs. (19) and (20), respectively: 

 

𝑈𝑒𝑥𝑝𝑋𝑢(𝑡)

= (
𝑘𝑝1

1 + 𝑘𝑝2𝑒
𝛼1 𝑠𝑖𝑔𝑛(𝑒(𝑡)) + 𝑘𝑝0

) 𝑒(𝑡)

+ (
𝑘𝑖1

1 + 𝑘𝑖2𝑒
𝛼2 𝑠𝑖𝑔𝑛(𝑒(𝑡)) + 𝑘𝑖0

)∫ 𝑒(𝑡)𝑑𝑡 

(19) 

 

𝑈𝑒𝑥𝑝𝑇𝑖𝑎𝑛(𝑡) = (𝑘𝑝0
− (𝑘𝑝0 − 𝑘𝑝1)(1

+ 𝑘𝑝2|𝑒(𝑡)|)𝑒
(−𝑘𝑝2|𝑒(𝑡)|)𝑒(𝑡)

+ (𝑘𝑖0

− (𝑘𝑖0 − 𝑘𝑖1)(1

+ 𝑘𝑖2|𝑒(𝑡)|)𝑒
(−𝑘𝑖2|𝑒(𝑡)|)∫𝑒(𝑡)𝑑𝑡) 

(20) 

 

Seraji proposed using sigmoid functions to dynamically 

alter the controller gains in accordance with errors, with his 

formulations detailed in the equations referenced [30]: 

 

𝑈𝑠𝑖𝑔𝑚𝑖𝑜𝑑(𝑡) = (𝑘𝑝1 (
2 

1 + 𝑒−𝑘𝑝2𝑒(𝑡) − 1
− 1)

+ 𝑘𝑝0) 𝑒(𝑡)

+ (𝑘𝑖1 (
2 

1 + 𝑒−𝑘𝑖2𝑒(𝑡) − 1
− 1)

+ 𝑘𝑖0)∫𝑒(𝑡)𝑑𝑡 

(21) 

 

With: Constants Kp0, Kp1, Kp2, Ki0, Ki1, Ki2, α1, α2, and α3, 

modify the range and the rate of variation for the nonlinear PI 

controller. 

Simulation results presented in Section 5 of integrating the 

NLPI mentioned above controllers demonstrated the superior 
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efficiency of the controller proposed by Shi et al. To further 

enhance its performance against variable disturbances, an 

integral based on the arctangent function of the error is 

employed instead of the error itself. This improvement aims to 

increase the controller's ability to attenuate the effects of 

variable disturbances on system dynamics. Through a 

nonlinear approach, integral control accumulates error 

differently: instead of simply integrating the error, the 

arctangent function of the error is employed. This allows for 

better adaptation to disturbance variations and reduces the 

effects of limit cycles, where the system enters a loop of 

bounded oscillation. This method also adjusts the integral gain 

based on how close the system state is to equilibrium, thereby 

minimizing the risk of control saturation during significant 

deviations from equilibrium. The novel NLPI control law is 

formulated as follows [34]: 

 

𝑈𝑛𝑜𝑣𝑒𝑙 𝑁𝐿(𝑡)

= (𝑘𝑝1(1 − sech(𝑘𝑝2𝑒(𝑡))) +𝑘𝑝0)𝑒(𝑡)

+ 𝑘𝑖1 sech(𝑘𝑖2𝑒(𝑡))∫ tan
−1(α3e(t)) 𝑑𝑡 

(22) 

 

where, α3 is a design parameter. 

Figure 5 displays the NLPI controller's integration into the 

wind turbine's MPPT control architecture.  

 

 
 

Figure 5. TSR MPPT algorithm based Novell NLPI of 

WECS 

 

 

4. OPTIMIZATION ALGORITHMS 

 

Nature-inspired metaheuristic algorithms are considered to 

be the most effective methods for addressing intricate 

optimization challenges. In this study, we are utilizing a 

minimization fitness function that is the integral of the 

absolute error (IAE) and is given as Eq. (23): 

 

𝐼𝐴𝐸 = ∫|𝑒(𝑡)|𝑑𝑡 (23) 

 

The primary purpose of this fitness function is to examine 

the efficacy of the optimization algorithms, as it tells us the 

difference between the desired and actual outputs. Our target 

with the diminution of the IAE is to increase both the accuracy 

and efficiency of the control system in different scenarios, 

thereby ensuring a more substantial and stable operating point. 

Several simulated runs of different fitness functions contribute 

to each algorithm to calculate the optimal parameters of a 

newly designed nonlinear PI controller. This approach ensures 

that the controller is meticulously tuned to enhance system 

performance, tailored to the specific dynamics of the system. 

Figure 6 illustrates the optimization process employed in this 

study, where the Particle Swarm Optimization (PSO), Harris 

Hawks Optimization (HHO), and Golden Jackal Optimization 

(GJO) algorithms are used to fine-tune the controller. 

 

 
 

Figure 6. Metaheuristic algorithm implementation for 

maximum performance in the TSR MPPT control loop-based 

NLPI of the WECS 

 

4.1 Particle swarm optimization algorithm 

 

 
 

Figure 7. PSO algorithm flowchart 

 

Particle Swarm Optimization (PSO) is a computational 

approach that falls under the category of swarm intelligence 

approaches and is inspired by phenomena of nature. PSO, 

which was first presented by Kennedy and Eberhart in 1995 

[48], mimics the collective behavior of swarming organisms, 

such fish or birds, as they move toward a target. The method 

finds the optimal solution, often referred to as the global best, 

by moving across the search space using a collection of 

particles that each represent a possible solution. Particles 

constantly adjust their positions throughout this process by 

taking into account both the aggregate best position of the 

 

1597



 

swarm and their individual best locations. As a result, the 

placements of the particles, which in this case reflect the PI 

gains, are iteratively improved using well-defined 

mathematical Eqs. (24) and (25). 

 

𝑉𝑖,
𝑡+1 = 𝑤𝑉𝑖

𝑡 + 𝑐1𝑅1𝑖
𝑡 (𝑝𝑖,𝑏𝑒𝑠𝑡

𝑡 − 𝑥𝑖
𝑡) + 𝑐2𝑅2𝑖

𝑡 (𝐺𝑏𝑒𝑠𝑡
𝑡 −

𝑋𝑖
𝑡)  

(24) 

 

𝑋𝑖,
𝑡+1 = 𝑤𝑉𝑖,

𝑡+1 + 𝑋𝑖,𝑗
𝑡   (25) 

 

where, 𝑉𝑖,
𝑡+1and Vit denote the velocity of each particle at the 

current and previous iteration, respectively, 𝑋𝑖,
𝑡+1  and 𝑥𝑖

𝑡 

represent the position of particles in the current and previous 

iterations, respectively, 𝑝𝑖,𝑏𝑒𝑠𝑡
𝑡 , and 𝐺𝑏𝑒𝑠𝑡

𝑡 represent the 

personal and global best of each candidate and the hole swarm, 

and 𝑐1,2 and w are the personal and global learning coefficient, 

inertia weight and R1,2 a random number. Figure 7 depicts the 

method's flowchart. 

 

4.2 Haris hawks optimization algorithm 

 

Creation of the Harris Hawks Optimization (HHO) 

algorithm. Three main stages comprise the framework of this 

population-based algorithm: exploration, the transition from 

exploration to exploitation, and exploitation [49, 50]. The 

algorithm's initial step follows the search pattern of Harris's 

hawks as they pursue their prey. This stage of investigation is 

crucial for creating a preliminary database of potential prey 

locations that spans a large search space. In Eq. (26), the 

mathematical model for this phase is explained as follows:  

 

𝑥(𝜏 + 1) =

{

𝑥𝑟(𝜏) − 𝑟1|𝑥𝑟(𝜏) − 2𝑟2𝑥(𝜏)| 𝑓𝑜𝑟 𝑘 ≥ 0.5  

(𝑥𝑝(𝜏) − 𝑥𝑚(𝜏))

−𝑟3(𝐿𝐵 + 𝑟4(𝑢𝐵 − 𝐿𝐵)) 𝑓𝑜𝑟 𝑘 < 0.5

  
(26) 

 

 
 

Figure 8. Flowchart HHO algorithm 

 

As the algorithm progresses, it shifts from exploration to 

exploitation. This shift happens when the hawks concentrate 

on identified prey. The prey's energy, denoted as E0, fluctuates 

between -1 and 1, reflecting the prey's attempts to evade its 

predators. The algorithm then enters the exploitation phase, 

where the hawks attack and capture prey. This phase 

intensively optimizes solutions by focusing on the best 

discoveries. The cooperative behavior of the hawks is modeled 

to maximize capture chances, continually adjusting solution 

positions to converge towards optimal solutions. The 

flowchart that illustrates the HHO algorithm is shown in 

Figure 8. 

 

4.3 Golden Jackal Optimization  

 

GJO is considered a biological optimization algorithm 

inspired and modeled after the behavior of golden jackals. 

These predators first discover their prey, then besiege, 

stimulate, and finally attack them. The following is the 

formulation of the mathematical framework describing this 

behavior [42]: 

 

4.3.1 Search model 

Initially as Eq. (27) illustrates, the prey's random location is 

represented in a matrix: 

 

[

𝛶1,1𝛶1,𝑗 ⋯ 𝛶1,𝑛
⋮                 ⋮ ⋱ ⋮
𝛶𝑁,1𝛶𝑁,𝑗 ⋯ 𝛶𝑁,𝑛 

] (27) 

 

The number of dimensions is denoted by 𝑛, and the total 

number of prey populations by 𝑁. 

 

4.3.2 Exploration stage 

Golden jackals have a strong ability to track their prey; 

however, capturing them is not always easy. Therefore, they 

often wait for another opportunity to hunt. This hunting 

behavior can be defined as follows (|E|>1): 

 

𝛶1(𝑡) = 𝛶𝑀(𝑡) − 𝐸. |𝛶𝑀(𝑡) − 𝑟𝑙. 𝑃𝑟𝑒𝑦(𝑡)| (28) 

 

𝛶2(𝑡) = 𝛶𝐹𝑀(𝑡) − 𝐸. |𝛶𝐹𝑀(𝑡) − 𝑟𝑙. 𝑃𝑟𝑒𝑦(𝑡)| (29) 

 

Here, t represents the current iteration of the algorithm, 

𝛶𝑀(𝑡)  and 𝛶𝐹𝑀(𝑡)  identify the positions of the male and 

female jackals, Prey(t) represents the hunting position vector, 

and 𝛶1(𝑡) and 𝛶2(𝑡)determine the updated jackal locations. 

Eq. (30) is used to determine the prey's escape energy (E): 

 

𝐸 = 𝐸1. 𝐸0 (30) 

 

where: 

 

𝐸0 = 2. 𝑟 − 1 (31) 

 

And 

 

𝐸1 = 𝑐1. (1 −
𝑡

𝑇
) (32) 

 

E0 is a randomly generated value ranging from -1 to 1, T is 

the maximum number of repeats, c1 is a 1.5 constant, and E1 

represents the decrease that occurs in the prey's energy. In Eqs. 

(27) and (28) |𝛶𝑀(𝑡) − 𝑟𝑙. 𝑃𝑟𝑒𝑦(𝑡)| is the distance that lies 

from the jackal to its prey, where 𝑟𝑙  is a series of random 

values depending on the Le'vy flight function (LF):  
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𝑟𝑙 = 5.
𝐿𝐹(𝑦)

100
 (33) 

𝐿𝐹(𝑦) = 𝜇.
𝜎

100 . |𝑣
(
1
𝑚
)
|
 

(34) 

 

𝜎 = {
𝛤(𝑚 + 1). sin (

𝜋𝑚
2
)

𝛤 (
𝑚 + 1
2

) .𝑚(2𝑚−1)
}

1
𝑚

 (35) 

 

Here, v takes values randomly within the interval (0, 1);  𝑚 

is a fixed value of 1.5. 

 

𝛶(𝑡 + 1) =
𝛶1(𝑡) − 𝛶2(𝑡)

2
 (36) 

 

𝛶(𝑡 + 1) reflects the prey's current location relative to the 

jackals. 

 

4.3.3 Exploitation (Besieging and Swallowing Prey) 

Golden jackals persistently harass their prey in order to 

reduce their escape energy. This siege and consumption 

behavior is modeled as follows (|E|≤1): 

 

𝛶1(𝑡) = 𝛶𝑀(𝑡) − 𝐸. |𝛶𝑀(𝑡) − 𝑃𝑟𝑒𝑦(𝑡)| (37) 

 

𝛶2(𝑡) = 𝛶𝐹𝑀(𝑡) − 𝐸. |𝛶𝐹𝑀(𝑡) − 𝑃𝑟𝑒𝑦(𝑡)| (38) 

 

4.3.4 Transition from exploration stage to exploitation and 

convergence 

 

 
 

Figure 9. Flowchart of GJO algorithm 

 

The GJO algorithm transitions from exploration to 

exploitation by tracking the prey's energy, which decreases as 

it escapes. Initial energy (E0) varies randomly between -1 and 

1. A decrease from 0 to -1 indicates danger for the prey, while 

an increase from 0 to 1 indicates boosted ability. When |E| > 1, 

jackals explore the search space; when |E| < 1, they exploit the 

prey. The search starts with selected solutions, estimating the 

prey's location using jackal pairs. The algorithm alternates 

between exploration and exploitation as E1 decreases from 1.5 

to 0. The GJO algorithm concludes upon meeting convergence 

conditions. The GJO flowchart is displayed in Figure 9. 

 

 

5. RESULTS AND DISCUSSIONS 

 

The simulation results of the wind turbine are obtained 

using the parameters listed in Table 1 [51]. All simulations 

were performed in MATLAB/Simulink with the solver ode45 

and a relative tolerance of 1e-3. A variable-step configuration 

was adopted, as the model is continuous-time, with the solver 

automatically adjusting the integration step; 

 

Table 1. System parameters 

 
Wind Turbine PMSG 

Parameters Values Parameters Values 

Wind Turbine 

Rotor blades (R) 
2 (m) Rated power (Popt) 10 KW 

Air density (𝜌) 1.225 
Stator resistance 

(Rs) 
0.00829 𝛺 

Pitch angle (𝛽) 0 
Stator direct 

inductance (Ld) 
0.174 mH 

Optimal Tip speed 

ratio (λopt) 
8.1 

Stator quadrature 

inductance (Lq) 
0.174 mH 

Maximum power 

coefficient (𝑐𝑝𝑚𝑎𝑥) 
0.48 

Permanent magnet 

flux (𝜆𝑟) 
0.071 wb 

Number of pole 

pairs (P) 
6 

Inertia (j) 
0.089 

kg/m2 

Friction (f) 0.005 Nm 

 

The results of this study are presented in detail as follows. 

 

5.1 Simulation 1: Comparison between different NLPI 

controllers 

 

This simulation section compares the five previously 

mentioned NLPI controllers with the classic PI controller 

under constant and uncertain wind profiles. The parameters for 

all controllers were determined using the empirical trial and 

error method, and the optimal response was selected based on 

the lowest ultimate angular speed. Different Parameters Used 

for Each Controller are presented in Table 2. 

 

5.1.1 Step wind profile results 

The variable wind speed acting on the turbine blades is 

considered a disturbance. Various operating conditions (wind 

speeds) are proposed to evaluate the resilience and 

performance of the NLPI controllers. Initially, a step wind 

profile ranging from 11 m/s to 14 m/s is applied, as shown in 

Figure 10, while the corresponding rotor speed is illustrated in 

Figure 11. 

 

5.1.2 Variable wind profile results 

The uncertain wind profile and the corresponding rotor 

speed are displayed in the following Figures. 

A comparison study between the results obtained with 

different NLPI controllers under step and variable wind 

profiles is presented in the table below. 
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As shown in Table 3, Figures 11, 12 and 13, the NLPI 

controllers demonstrate significantly higher efficiency and 

robustness than the classic PI controller in terms of error, 

overshoot, and response time. Among the six NLPI controllers 

tested, the NLPI1 controller stands out with markedly better 

results, exhibiting an error of 0.0007994, a response time of 

0.075, and an overshoot of 0.36. This controller offers superior 

performance across all evaluated aspects. An arctangent term 

to the integral function of the error is proposed to improve this 

controller further. The following part presents and analyzes the 

optimization's outcomes. 

 

Table 2. Different parameters used for each controller 

 
Controller Kp0 Kp1 Kp2 Ki0 Ki1 Ki2 α1 α2 α3 

PI 2000 / / 500 / / / / / 

NLPI1 (Eq 14) 175 0.98 5 / 100 0.98 / / / 

NLPI2 (Eq 16) 75 / / 8 / / 0.01 / / 

NLPI3 (Eq 18) 50 5 3 6 5 2 0.98 0.98 / 

NLPI4 (Eq 19) 1500 500 0.9 400 100 0.9 / / / 

NLPI5 (Eq 20) 100 50 0.98 80 10 10 / / / 

 

 
 

Figure 10. The step wind curve 

 

 
 

Figure 11. The curve of rotor speed with NLPI controllers under step wind profile 
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Figure 12. The uncertain wind curve 

 

 
 

Figure 13. The rotor speed with NLPI controllers under variable wind profile 

 

Table 3. Comparison of results obtained with different NLPI controllers 

 
Controller Error Response Time (s) Overshoot (rad/s) 

NLPI1 0.0007994 0.075 0.36 

NLPI2 0.02716 0.8 2.15 

NLPI3 0.02728 0.4 2.27 

NLPI4 0.009418 0.09 8.3 

NLPI5 0.01587 0.13 4 

PI 0.06393 6e-4 0.001 
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Figure 14. The rotor speed the angular speed with N-PI controller and step wind profile 

 
 

Figure 15. The rotor speed with N-PI controller and variable wind profile 

 

5.2 Simulation 2: The improved NLPI controller 

 

To enhance the robustness of NLPI1, an arctangent 

nonlinear function is integrated into its integral term where α3 

takes a value of 2. The simulation results are presented as 

follows: 

 

5.2.1 Step wind profile results 

Figure 14 illustrates the rotor speed response using the 

improved NLPI controller under a step wind profile.  

 

5.2.2 Variable wind profile results 

Figure 15 shows the rotor speed response under a variable 

wind profile using the improved NLPI controller. 

A comparison study between the results obtained with 

NLPI1 and NLPI6 controllers under step and variable wind 

profile is presented in the table below: 

Table 4. Comparison of values between NLPI and NLPI6 

under step wind 

 

Controller Error 
Response Time 

(s) 

Overshoot 

(rad/s) 

NLPI1 0.0007994 0.075 0.36 

NLPI6 (Eq 

21) 
4.315e-6 0.0315 1.1475 

 

The simulation results, presented in Table 4 and Figures 14 

and 15 under variable and step wind profiles, demonstrate the 

effectiveness of the arctan function in reducing the response 

time to 0.075 seconds and the steady-state error to 4.315e-6. 

However, in terms of overshoot, NLPI6 shows reduced 

robustness. The following section proposes optimization to 

address this issue and improve performance using various 

metaheuristic algorithms. These algorithms include the widely 

cited PSO, the HHO, and the new GJO algorithm. 
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5.3 Simulation 3: The NLPI6 controller with optimization 

 

In order to optimize the rotor speed, various metaheuristic 

algorithms, including PSO, HHO, and GJO were employed to 

adjust the NLPI6 controller’s parameters. The population size 

and the number of iterations were set to (100, 100) for PSO, 

(40, 40) for HHO, and (150, 150) for GJO, respectively. These 

configurations were carefully selected to ensure a suitable 

trade-off between computational efficiency and convergence 

reliability. The optimized parameter sets obtained with each 

algorithm are presented in Table 5. 

 

Table 5. Different parameters obtained from each algorithm 

 
Controller Kp0 Kp1 Kp2 Ki0 Ki1 Ki2 α1 α2 α3 

PSO-NLPI6 19.9401 0.01 7.3875 / 25.6607 0.0711 2.5333 / / 

HHO-NLPI6 211.2479 1.7536 0.6116 / 33.5091 0.1028 28.1292 / / 

GJO-NLPI6 247.1343 36.8943 0.0169 / 24.1377 0.0126 33.0993 / / 

 

 
 

Figure 16. The rotor speed with NLPI controller optimized by HHO, PSO, GJO and step wind profile 

 

 
 

Figure 17. (a) The error signal curve of the GJO_NLPI6, (b) The proportional nonlinear gain of the GJO-NLPI6, (c) The integral 

nonlinear gain of the GJO-NLPI6 
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Figure 18. (a) The electromagnetic curve of the GJO-NLPI6, (b) The aerodynamic power curve of the GJO-NLPI6, (c) The 

power coefficient using the GJO-NLPI6, (d) The tip speed ratio using the GJO-NLPI6 

 

 
 

Figure 19. The rotor speed with NLPI controller optimized by HHO, PSO, GJO and variable wind profile 

 

 
 

Figure 20. (a) The error signal curve of the GJO_NLPI6, (b) The proportional nonlinear gain of the GJO-NLPI6, (c) The integral 

nonlinear gain of the GJO-NLPI6 
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Figure 21. (a) The electromagnetic curve of the GJO-NLPI6, (b) The aerodynamic power curve of the GJO-NLPI6, (c) The 

power coefficient using the GJO-NLPI6, (d) The tip speed ratio using the GJO-NLPI6 

 

Table 6. Comparison of values between different NLP6 controllers without and with optimization. 

 
Chapter 1 Controller Chapter 2 Error Chapter 3 Response Time (s) Chapter 4 Overshoot (rad/s) Chapter 5 AIE 

Chapter 6 NLPI6 Chapter 7 4.315e-6 Chapter 8 0.0315 Chapter 9 1.1475 Chapter 10 / 
Chapter 11 PSO-NLPI6 Chapter 12 0.0007026 Chapter 13 0.2 Chapter 14 2.89 Chapter 15 259.4841 

Chapter 16 HHO-NLPI6 Chapter 17 0.0001829 Chapter 18 0.03 Chapter 19 0.75 Chapter 20 229.9707 

Chapter 21 GJO-NLPI6 Chapter 22 3.15e-6 Chapter 23 0.0322 Chapter 24 0.0576 Chapter 25 225.4774 

 

5.3.1 Step wind profile results 

The rotor speed response under a step wind profile using the 

optimized NLPI controller tuned with PSO, HHO, and GJO 

algorithms is shown in Figure 16. 

The following graphic displays the error curve of the 

optimal controller, GJO-NLPI6, which yields the best results 

for angular speed. It also shows the corresponding variations 

in the nonlinear proportional and integral gains required to 

achieve this minimal error under a step wind profile. 

The electromagnetic torque, aerodynamic power, power 

coefficient, and tip speed ratio simulated under a step wind 

profile are presented in the Figure below. 

 

5.3.2 Variable wind profile results 

Figures 15 and 19, using PSO, HHO and GJO algorithms, 

demonstrate high efficiency and robustness. Among these, the 

GJO algorithm stands out with a remarkably low steady-state 

error of 3.15e-6, a fast settling time of 0.0322 s, and a minimal 

overshoot of 0.0576. 

The results achieved with the optimal gains, as presented in 

Figures 17 and 20, are highlighted in green. The optimization 

results presented in Table 6, as well as the error curves of the 

GJO_NLPI6 represented in figures 17 and 20, highlighting the 

variations in the nonlinear proportional and integral gains 

required to achieve minimal error under step and variable wind 

profiles. It is observed that an increase in the Kp gain and a 

decrease in the Ki gain were necessary to reach a minimal error 

of 3.15e-6. Moreover, the fluctuations in the error are 

correlated with variations in the nonlinear Kp and Ki gains, 

emphasizing the importance of these dynamic adjustments in 

improving system performance. 

Figure 18, illustrates the variation in generated 

electromagnetic torque and aerodynamic power for both step 

and variable wind profiles. In these scenarios, the Cp reaches a 

value of 0.4745, while the TSR (λ) is 8.1. The electromagnetic 

torque fluctuates in reaction to the wind's dynamic nature, as 

the control mechanism adjusts to ensure optimal power 

extraction. As the wind profile modifications, so does the 

aerodynamic power, demonstrating the system's efficiency in 

capturing wind energy. Figure 19 illustrates the rotor speed 

response under a variable wind profile using the optimized 

NLPI controller tuned with PSO, HHO, and GJO algorithms. 

Further insights into the performance of the best 

configuration, GJO-NLPI6, are provided in Figures 20 and 21. 

Specifically, Figure 20 presents (a) the error signal curve, (b) 

the proportional nonlinear gain, and (c) the integral nonlinear 

gain, highlighting the controller’s adaptability to dynamic 

operating conditions. Where Figure 21 depicts key 

performance indicators for the GJO-NLPI6 controller: (a) the 

electromagnetic torque, (b) the aerodynamic power, (c) the 

power coefficient, and (d) the tip-speed ratio. Table 6 

summarizes the results obtained with NLPI6 without and with 

optimization controllers under a step and variable wind profile.  

 

 

6. CONCLUSIONS 

 

This study presented a wind turbine mathematical 

representation built with MATLAB/Simulink. Two types of 

wind speed profiles, variable, and step wind profiles, were 

studied to analyze the robustness of the NLPI controller. A 

comparison between different nonlinear PI controllers and the 

classical PI controller was conducted, demonstrating that the 
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NLPI controller offers a more efficient response and 

robustness compared to the traditional PI controller. To 

enhance the robustness of the NLPI, a nonlinear arctan 

function was integrated into the controller's integral term, 

reducing the static error to 3.15e-6 and achieving a settling 

time of 0.0322 seconds. However, a slight overshoot of 0.0576 

rad/s remained. To address this issue and further improve the 

controller's robustness, optimization using various 

metaheuristic algorithms, such as PSO, HHO, and GJO, was 

proposed. The optimization results were remarkable, 

particularly with the GJO algorithm, which demonstrated 

exceptionally robust performance. Its performance was 

significantly superior to the other algorithms tested, making it 

an optimal choice for wind turbine control systems. The 

simulations highlighted the potential of combining advanced 

nonlinear functions with metaheuristic optimization 

algorithms to significantly improve the control system's 

performance in both scenarios studied. The obtained results 

will be validated in future work through an experimental 

prototype of a Wind Energy Conversion System, where 

different robustness tests will be conducted to further assess 

the controller’s performance under realistic operating 

conditions. 
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