
Flatness-Based Fractional-Order PID Control for Constrained Point Tracking in Unicycle 

Mobile Robots 

Tahar Brahimi* , Atallah Benalia , Iyad Ameur

LACoSERE Laboratory, Amar Telidji University, Laghouat 03000, Algeria 

Corresponding Author Email: t.brahimi@lagh-univ.dz 

Copyright: ©2025 The authors. This article is published by IIETA and is licensed under the CC BY 4.0 license 

(http://creativecommons.org/licenses/by/4.0/).

https://doi.org/10.18280/jesa.580815 ABSTRACT 

Received: 29 June 2025 

Revised: 12 August 2025 

Accepted: 22 August 2025 

Available online: 31 August 2025 

This paper presents a robust and computationally efficient trajectory tracking strategy for 

unicycle mobile robots with a forward-constrained tracking point, addressing the 

nonholonomic motion constraints inherent to such systems. The control framework is 

based on differential flatness, which transforms the reference trajectory into a flat output 

and its derivatives, enabling a simplified formulation suited for trajectory generation and 

control. A fractional-order PID (FOPID) controller is employed to regulate tracking errors 

expressed in polar coordinates, using Grünwald–Letnikov fractional calculus for 

implementation. The controller gains and fractional orders are tuned using a Genetic 

Algorithm (GA) to achieve improved smoothness and convergence in the tracking 

performance. Simulation results on a circular trajectory demonstrate the effectiveness of 

the proposed method in achieving stable and accurate tracking with smooth control signals. 

The low computational complexity and model-based structure make this approach suitable 

for real-time deployment in autonomous ground robots. Future work will focus on 

experimental validation and the extension of the method to multi-robot systems. 
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1. INTRODUCTION

Trajectory tracking for unicycle mobile robots with a 

forward-positioned constrained tracking point poses 

significant challenges due to nonholonomic constraints, 

curvature-induced instability, and sensitivity to uncertainties 

such as random noise and actuator limitations. These 

constraints become especially pronounced in applications like 

visual servoing, autonomous warehousing, and tool tracking, 

where precise control of a virtual point located ahead of the 

robot is required. This setup introduces geometric complexity 

and delayed feedback, making traditional control schemes 

insufficient. 

Classical approaches such as PID control and model 

predictive control (MPC) have been widely adopted for 

trajectory tracking tasks. Geometric control strategies, notably 

Samson’s chained form representation [1], and exponential 

tracking formulations [2], flatness-based formulations for 

nonholonomic mobile robots are well established and inform 

our reference construction [3], enable effective motion control 

but often lack robustness to noise and do not exploit memory 

effects or fractional-order dynamics. While PID controllers 

offer simplicity and ease of implementation, they are sensitive 

to tuning and often underperform in uncertain environments. 

MPC, on the other hand, provides constraint handling but is 

computationally intensive for real-time mobile systems [4]. 

Differential flatness provides a powerful theoretical 

foundation for trajectory generation and feedback control by 

expressing all system states and control inputs as algebraic 

functions of flat outputs and their derivatives [5]. In the 

unicycle model, selecting a constrained point 𝑃 ahead of the 

robot as the flat output allows systematic decoupling of the 

nonlinear dynamics and simplifies controller synthesis. 

However, flatness-based controllers can still be vulnerable to 

parameter mismatches and external disturbances [6, 7]. 

To enhance robustness and flexibility, fractional-order 

control (FOC) has emerged as a compelling alternative. The 

fractional-order PID (FOPID) controller, introduced by 

Podlubny, generalizes the classical PID architecture by 

introducing non-integer orders of integration 𝜆 and 

differentiation μ [8]. This added flexibility allows for better 

tuning of transient and frequency-domain responses and 

captures memory effects inherent in physical systems [9]. 

Recent studies confirm that FOPID controllers outperform 

classical PID in terms of noise rejection, robustness, and 

control smoothness, particularly in nonlinear robotic systems 

[10, 11]. However, these approaches rarely address the 

additional complexity introduced by tracking a forward-

constrained point, nor do they leverage the structure of flat 

systems. 

This paper proposes a novel trajectory tracking strategy that 

combines differential flatness with FOPID control for unicycle 

mobile robots constrained by a forward tracking point. The 

constrained point P is defined as the flat output of the system, 

enabling control design in a decoupled and algebraic manner. 

The controller operates in polar coordinates and applies 

Grünwald–Letnikov-based fractional integration and 

differentiation to the tracking error dynamics. The FOPID 

gains, including 𝑘𝑝, 𝑘𝑖, 𝑘𝑑, 𝜆, and 𝜇, are tuned using a Genetic
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Algorithm (GA) to optimize performance metrics such as 

settling time, overshoot, and control effort. 

The resulting controller is validated through simulations in 

MATLAB on a circular trajectory, with actuation saturation 

and bounded memory length taken into account. Results 

confirm that the proposed strategy yields smoother control 

inputs, faster convergence, and more robust tracking under 

finite-memory and discretization constraints, while being 

computationally tractable for embedded applications. 

 

Key Contributions 

A differential flatness-based formulation is proposed for 

trajectory tracking of a unicycle-type robot with a forward-

constrained point, allowing systematic derivation of flat 

outputs and simplified control design. 

• A fractional-order PID control law is developed in polar 

coordinates, where fractional differentiation and 

integration are applied to the error dynamics for 

robustness and flexibility. 

• The controller is numerically implemented using a 

truncated Grünwald–Letnikov approximation to enable 

practical simulation of fractional dynamics with finite 

memory. 

• GA-based tuning of the five FOPID parameters improves 

convergence time and reduces oscillations, while 

respecting velocity saturation constraints. 

 

The proposed scheme is validated through simulation of 

circular trajectory tracking under bounded input conditions, 

demonstrating enhanced performance over conventional PID 

controllers without relying on predictive or model-dependent 

schemes. 

The remainder of this paper is organized as follows: Section 

2 presents the kinematic modeling of the unicycle robot and 

introduces the flatness-based problem formulation. Section 3 

describes the FOPID controller structure and polar error 

dynamics. Section 4 presents simulation setup and results. 

Section 5 concludes the paper and outlines directions for future 

work. 

 

 

2. DYNAMIC MODEL DESCRIPTION 

 

2.1 Kinematic representation of the unicycle-type mobile 

 

The unicycle-type mobile robot is one of the most widely 

studied platforms in the field of nonlinear and nonholonomic 

control systems due to its simple structure and inherent non-

integrable motion constraints. It serves as a standard 

benchmark for evaluating trajectory tracking, formation 

control, and obstacle avoidance strategies in mobile robotics 

research. 

Under the assumption of pure rolling without slipping, the 

unicycle robot's planar motion can be described by the 

following kinematic model (see Figure 1): 

 

[

𝑥̇
𝑦̇

𝜃̇

] = [
cos𝜃 0
sin𝜃 0

0 1
] [

𝑣
𝜔

] (1) 

 

Here, (𝑥, 𝑦) denotes the position coordinates of the robot's 

geometric center in the global frame, 𝜃 represents its 

orientation (heading angle), 𝑣 is the linear velocity, and 𝜔 is 

the angular velocity about the vertical axis. 

This kinematic model, often referred to as the 

nonholonomic unicycle model, encapsulates the fundamental 

constraint that the robot cannot move sideways. Its control 

design is particularly challenging because the system is 

nonlinear and underactuated, meaning it has fewer control 

inputs than state variables. 

This formulation has been extensively employed in the 

control literature, including classical works such as Samson’s 

chained form transformations [1], as well as more recent 

flatness-based methods and geometric control approaches [3, 

6]. 

 

2.2 Constrained forward point modeling 

 

In many real-world scenarios, such as vision-based navi-

gation or tool-centric tracking, the control objective is not to 

guide the robot’s geometric center (𝑥, 𝑦), but rather a forward-

located point 𝑃, situated along the robot’s longitudinal axis at 

a fixed offset 𝑙1. This forward point better represents sensor or 

effector locations in practical applications [7] (see Figure 1). 

 

 
 

Figure 1. Geometric representation of the forward point P 

and the unicycle mobile robot model 

 

The Cartesian coordinates of point P, expressed as a 

function of the robot’s configuration, are given by: 

 

1

cos

sin

P

P

x x
l

y y




= +

     
     

    
 (2) 

 

where, 𝜃  is the robot's orientation and 𝑙1 > 0 is the fixed 

distance from the robot’s center to point 𝑃. 

Differentiating Eq. (2) with respect to time yields the 

kinematics of the point 𝑃: 

 

[
𝑥̇𝑃

𝑦̇𝑃
] = 𝑣 [

cos𝜃
sin𝜃

] + 𝑙1𝜔 [
−sin𝜃
cos𝜃

] (3) 

 

where, 𝑣  and 𝜔  represent the robot’s linear and angular 

velocities, respectively. 

This expression reveals that the forward point’s velocity 

depends nonlinearly on the robot’s configuration and control 

inputs. Crucially, it illustrates how turning motions introduce 

lateral displacements in 𝑃, a factor that complicates control 

and can lead to geometric instability if not properly addressed 

[8]. The formulation thus motivates the use of differential 

flatness, where point 𝑃  can be directly employed as a flat 

output, allowing for trajectory planning and control in the task 

space. 

 

2.3 Differential flatness of the constrained forward point 

 

In the proposed formulation, the Cartesian coordinates of 

the forward tracking point 𝑃 are selected as the flat outputs of 

the system: 
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P

f

P

x

y
=
 
 
 

y  (4) 

 

According to the principles of differential flatness, all 

system states and control inputs can be algebraically expressed 

as functions of the flat outputs and their finite-order time 

derivatives. This enables both trajectory generation and 

controller design to be conducted within the flat output space, 

thus simplifying the treatment of nonlinear dynamics. 

Following the differential flatness framework introduced in 

[3], we examine the forward-point kinematics defined by Eqs. 

(2)-(3). To establish the flatness of the unicycle model with a 

forward-point output, we begin by differentiating the output 

expressions: 

 
.

1

1

1

cos sin
, det( ) 0.

sin cos

v 

  

−
=  = 
   
   

  
y





 (5) 

 

Since the transformation matrix is always invertible for 

ℓ1 ≠ 0, the control inputs 𝑣 and 𝜔 can be explicitly computed 

from the flat output and its derivatives: 

 
𝑣 = 𝑥̇𝑃cos𝜃 + 𝑦̇𝑃sin𝜃

𝜔 =
−𝑥̇𝑃sin𝜃 + 𝑦̇𝑃cos𝜃

ℓ1

 (6) 

 

To reconstruct the full system state, we next compute the 

orientation 𝜃. It is obtained using the flat output’s first and 

second derivatives. We first define the curvature of the output 

trajectory [12]: 

 

𝜅 =
𝑥̇𝑃𝑦̈𝑃 − 𝑦̇𝑃𝑥̈𝑃

(𝑥̇𝑃
2 + 𝑦̇𝑃

2)3 2⁄
 (7) 

 

Then, the orientation is recovered by combining geometric 

and curvature-based expressions. Specifically, the heading 

angle is given by [12]: 
 

𝜃 = atan2(𝑦̇𝑃, 𝑥̇𝑃) − arctan (
1 − √1 − 4ℓ2𝜅2

2ℓ𝜅
) (8) 

 

This expression ensures a smooth and unique recovery of 

orientation even under significant curvature, improving over 

simple kinematic backstepping. 

Finally, the original position of the chassis center (𝑥, 𝑦) is 

recovered algebraically as: 
 

cos

sin

P

P

x x

y y





= −

= −




 (9) 

 

Hence, every state variable (x, y, θ) and input (v, ω)is fully 

determined from the flat output y = [xP   yP]T  and its 

derivatives up to second order. The system is therefore 

differentially flat [3]. 

This differential-flatness formulation underpins the entire 

control strategy, the control laws are expressed directly in the 

flat outputs (xP, yP)  rather than in the full nonlinear state 

vector(x, y, θ), by doing so, the nonlinearities of the unicycle 

kinematics are effectively decoupled, which simplifies the 

synthesis of robust and computationally efficient trajectory-

tracking controllers, such flatness-based design method-logies 

are widely recommended in the nonlinear-systems literature, 

especially for nonholonomic vehicles like unicycle mobile 

robots [3]. 
 

2.4 Tracking error formulation in polar coordinates 
 

To facilitate the synthesis of the fractional-order PID 

controller, the tracking error between the reference point and 

the constrained forward point 𝑃  is transformed into polar 

coordinates, a technique well-established in the control of 

unicycle-type robots [9]. This representation enables a 

decoupled interpretation of the tracking task, separating 

translational and angular dynamics, which simplifies the 

design of two independent control channels. 

The polar errors are defined as follows: 
 

2 2

( ) ( )

atan2( , )

r P r P

r P r P

x x y y

y y x x



 

= − + −

= − − −

 (10) 

 

The use of polar coordinates offers a geometric perspective 

of the control problem and proves particularly effective in 

handling the nonholonomic constraints of unicycle models. 

This representation forms the basis for the control law 

developed in the next section, allowing independent regulation 

of both position and heading errors through fractional-order 

feedback dynamics. 
 

 

3. FOPID CONTROLLER DESIGN BASED ON 

DIFFERENTIAL FLATNESS 
 

3.1 Motivation for fractional-order control 
 

Fractional-order control (FOC) has emerged as a powerful 

paradigm for improving the robustness and precision of 

control systems, particularly in the presence of nonlinearities, 

unmodeled dynamics, and disturbances. Unlike classical PID 

controllers, the FOPID controller introduces two additional 

degrees of freedom, the integral order 𝜆  and the derivative 

order 𝜇 which allows for a richer and more flexible tuning of 

the closed-loop response [4, 5]. 

When applied to trajectory tracking tasks involving 

nonholonomic systems, FOPID controllers have been shown 

to enhance performance by leveraging the memory and 

hereditary characteristics inherent to fractional calculus [10, 

11, 13]. These properties enable smoother control actions and 

improved convergence, especially when dealing with real-

world uncertainties. 

In the context of the differentially flat unicycle system 

established in Section 2, where the flat output is defined as the 

coordinates of the forward tracking point 𝑃 , we adopt a 

fractional-order control approach for regulating the system. 

The control design is based on the tracking errors expressed in 

polar coordinates, as previously defined in Eq. (10), by 

expressing the control problem in these coordinates, the 

translational and rotational dynamics are effectively 

decoupled, thereby simplifying the design of the FOPID 

controller. This transformation forms the basis for the next 

subsection, in which the control law is formally derived using 

fractional-order error dynamics. 

A visual overview of the proposed control architecture is 

provided in Figure 2, highlighting the key components of the 

flatness-based FOPID controller and its interaction with the 

robot model.

 

1715



 

 
 

Figure 2. Block diagram of the flatness-based FOPID control 

architecture 

 

3.2 FOPID control law formulation 

 

Building upon the polar error formulation defined in Eq. 

(10), we develop an FOPID controller to regulate the robot’s 

translational and rotational motion through the control of the 

tracking errors. 𝜌 and 𝛼. The resulting control inputs are given 

by: 

 

( ) ( ) [ ( )] [ ( )]
p i d

v t k t k t k t 
   

  = + +  (11) 

 

( ) ( ) [ ( )] [ ( )]
p i d

t k t k t k t 
   

   = + +  (12) 

 

where, 

•  .
  denotes the fractional integral of order  0,1  , 

•  .
  denotes the fractional derivative of order  0,1  , 

• , ,p i dk k k  
 are the controller gains for the PID actions, 

• The superscripts 𝜌  and 𝛼  refer to the translational and 

angular error channels, respectively. 

 

This FOPID structure generalizes the classical PID 

controller by introducing two additional tuning parameters 𝜆 

and 𝜇 , offering greater flexibility in shaping the frequency 

response and dynamic behavior of the [4, 5]. 

 

Novelty of the Proposed Control Approach 

The originality of our contribution lies in the integration of 

FOPID control within a differentially flat framework for a 

constrained forward-tracking point on a unicycle-type mobile 

robot: 

• Flatness-based decoupling simplifies the nonlinear 

system dynamics by transforming the control problem 

into the space of the flat output (𝑥𝑃 , 𝑦𝑃).  

• We exploit this transformation to express the polar 

tracking errors (𝜌, 𝛼) with respect to the differentially flat 

outputs, enabling direct regulation through a fractional-

order architecture. 

• The fractional terms 
  and 

  are numerically 

implemented using a discretized Grünwald–Letnikov 

approximation, as outlined in Section 3.3. This approach 

ensures a balance between computational tractability and 

accuracy in capturing memory effects [5, 10, 13]. 

• To optimize tracking performance, all FOPID parameters 

including the fractional orders 𝜆, 𝜇, and gains 𝑘𝑝, 𝑘𝑖, 𝑘𝑑 

are tuned using a Genetic Algorithm (GA), which 

searches for an optimal combination that minimizes 

tracking error and control effort under bounded velocity 

constraints. 

Compared to previous studies on classical PID or linear 

feedback designs, our method addresses the dynamic coupling 

and nonlinearity introduced by the constrained point 𝑃, and 

enhances robustness against perturbations through the 

memory effect of fractional calculus. The recent findings in 

[13] support the application of FOPID to nonholonomic robots, 

especially under uncertainties. 

 

3.3 Discrete Grünwald–Letnikov approximation 

 

To implement the FOPID controller in discrete time, we 

adopt the Grünwald–Letnikov (GL) approximation. This 

approach is well-suited for real-time control applications due 

to its recursive structure and ability to approximate fractional 

derivatives and integrals using finite history data. 

The discrete-time approximations of the fractional integral 

and fractional derivative of a signal 𝑒(𝑡) are expressed as: 

 
1

( )

0

[ ]( ) ( ),
N

k j k j

j

e t h e t
  


−

−

=

   (13) 

 
1

( )

0

[ ]( ) ( ),
N

k j k j

j

e t h e t
  


−

−

−

=

   (14) 

 

where, ℎ is the sampling time, 𝑁 is the memory length [14], 

and 𝜔𝑗
(𝑣)

 are the fractional weights computed recursively by: 

 

( ) ( ) ( )

0 1

1
1, 1 , 1

v v v

j j

v
j

j
  

−

+
= = − 

 
 
 

 (15) 

 

In our implementation, the tracking errors 𝜌  and 𝛼  are 

stored in First-In-First-Out (FIFO) queues of fixed length 𝑁 =
500, updated at each sampling instant. This memory length 

corresponds to a 1-second historical window under the 

simulation time step ℎ = 0.01𝑠 . While the general rule-of-

thumb proposed in [14] suggests 𝑁 ≈ 5/ℎ. The buffered error 

history enables the controller to capture the long-memory 

effects characteristic of fractional-order dynamics, leading to 

smoother and more adaptive control responses. 

This discrete approximation method strikes a favorable 

trade-off between numerical accuracy and computational load, 

and has proven effective in recent applications of FOPID 

controllers in both mobile robotic systems and industrial 

processes [5, 14]. 

 

3.4 Fractional Lyapunov stability analysis 

 

Let the polar-error vector be: 

 

( )
( ) , with , (0,1)

( )

t
t

t


 


= 
 
 
 

e  (16) 

 

Using the FOPID control laws defined in Eqs. (11)–(12), 

and applying the small-angle approximations, the error 

dynamics become [1]: 

 

𝜌̇ = −𝑣 + 𝑣𝑟 , 𝛼̇ = 𝜔 − 𝜔𝑟 (17) 

 

This results in the following closed-loop system in the 

Caputo fractional-order sense [15]: 

 
1

0
p i d

D k k D k D
 −

+ + + =e e e e  (18) 
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where, 𝐷𝑣  denotes the fractional derivative of order 𝜈 , and 

𝑘𝑝, 𝑘𝑖 , 𝑘𝑑 > 0 are positive definite diagonal gain matrices. 

We propose the following Lyapunov functional [16]: 

 

1
( ) , with 0 2 min( )

2 2
d

c
V D c k

−
= +  e e e e e


 (19) 

 

Taking the derivative of order 1 − μ of V, we obtain: 

 
1

2

2

1
min( ) 0

2

p d i

p

D V

c
k k D k D

k



 




−

−

= − + − +  −

= 

   
   
   

e e e e e


‖ ‖  
(20) 

 

By invoking the fractional comparison lemma of Li and 

Chen [15], inequality (20) implies the following bound on the 

polar error: 

 
1

1
( ) ( ), 0t CE t t






−

−
 − e‖ ‖  (21) 

 

where, 𝐸1−𝜇(. )  denotes the Mittag–Leffler function. This 

establishes fractional asymptotic stability of the system. Both 

components of the error vector converge to zero over time, and 

the control inputs (𝑣, 𝜔) remain bounded for all admissible 

reference trajectories. 

 

Remark 1. 

Inequality (20) holds because both 𝐷𝜇𝑒 and 𝐷−𝜆𝑒 are 𝐿2-

inner-product positive operators when 0 < 𝜆, 𝜇 < 1 [17]. 

 

Remark 2. 

Due to Brockett’s non-integrability condition [1], global 

exponential stabilization of nonholonomic systems with 

smooth static feedback is impossible. Therefore, Mittag–

Leffler convergence is the strongest achievable result under 

smooth fractional-order control in continuous time. 

 

 

4. SIMULATION RESULTS 

 

4.1 Simulation setup 

 

The simulation environment was implemented in 

MATLAB, modeling a unicycle-type mobile robot using a 

discrete-time FOPID controller. The reference trajectory is a 

circular path of radius R=2 m, centered at the origin, with the 

tracking point P located 𝑙1 = 0.5 𝑚 ahead of the robot center. 

The system was simulated for a duration of T=40 s, with a 

sampling period of h=0.01s, resulting in N=500 memory steps 

used for fractional-order error buffering. The maximum linear 

and angular velocities were bounded as: 𝑣𝑚𝑎𝑥 = 1 𝑚 𝑠⁄ , 

𝜔𝑚𝑎𝑥 = 1.5 𝑟𝑎𝑑 𝑠⁄ . 

 

4.2 Parameter tuning via Genetic Algorithm (GA) 

 

To determine the optimal gains of the FOPID controller, a 

Genetic Algorithm (GA) was used to minimize the following 

objective function: 

 
2 2 2 2

0

( ) ( ) ( ) ( )
T

v
J t t v t t dt


    = + + +    (22) 

where, 

• 𝜌(𝑡) and 𝛼(𝑡) are the polar tracking errors, 

• 𝑣(𝑡) and 𝜔(𝑡) are the control inputs, 

• 𝛽𝑣 , 𝛽𝜔  are penalization weights for smoother control 

effort. 

 

GA Settings: 

 

• Population size: 50 

• Number of generations: 100 

• Selection: Tournament (size = 3) 

• Crossover fraction: 0.8 

• Mutation rate: 0.2 

• Bounds: 𝑘𝑝, 𝑘𝑖 , 𝑘𝑑 ∈ [0,10], 𝜆, 𝜇 ∈ [0.7,1.0] 

 

As a result of the optimization process, the following 

FOPID parameters were selected for simulation: 

 

2.0, 0.4, 0.2,p i dk k k  = = =  

4.5, 0.5, 0.3,
p i d

k k k
  
= = =  

 = 0.9,  = 0.8
 

   

 = 0.9,  = 0.8
 
   

 

Bounds keep the GA well-conditioned and consistent with 

actuator limits and discretization. We set 𝑘𝑝, 𝑘𝑖 , 𝑘𝑑 ∈ [0,10] 

after a coarse sweep indicated diminishing returns beyond ≈ 8-

10 together with more frequent v-saturation and derivative 

noise; negative gains were excluded. Fractional orders were 

limited to λ,μ∈[0.7,1.0] because smaller orders require much 

longer GL memory or yield slower transients at fixed 

(h=0.01 s, N=500). The chosen ranges align with reported 

practice in [5, 13]. The gains were obtained via GA; to check 

sensitivity, we re-ran the GA under several initial pose offsets 

and headings (within the same operating range) on the same 

trajectory family, and the optimizer consistently returned 

similar gain sets. For transparency and reproducibility, we 

therefore adopt the gain set produced for the initial conditions 

used in the reported simulations and use that same set 

throughout, which yields accurate tracking with smooth, 

unsaturated control inputs near sharp curves. 

 

4.3 Trajectory tracking performance 

 

Figure 3 illustrates the trajectory tracking performance of 

the constrained point P. The robot was commanded to follow 

a circular reference path, using the proposed flatness-based 

FOPID controller. 

As shown in Figure 3, the trajectory tracking is highly 

accurate. The robot quickly converges to the reference path 

with no visible overshoot or divergence. The initial deviation 

visible at the start of the motion is rapidly compensated, and 

the constrained point P closely follows the planned circular 

curve. This performance confirms the effectiveness of 

fractional-order control in handling the nonlinear kinematics 

of unicycle-type robots while preserving smoothness in 

tracking behavior. 

The performance is particularly notable given the 

nonholonomic constraints, which typically complicate point 

tracking. Thanks to the differential flatness formulation, the 

controller operates in a transformed space where the tracking 

point dynamics are directly accessible. The result is a clean, 

stable trajectory, validating both the control law and its 
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numerical implementation, Figure 4 illustrates the time 

evolution of the x-coordinate for the constrained point 𝑃 , 

comparing the actual trajectory 𝑥𝑃(𝑡)  with the reference 

trajectory 𝑥𝑟(𝑡). 

 

 
 

Figure 3. Reference trajectory vs actual trajectory using the 

flatness-based FOPID controller 

 

The controller exhibits fast transient convergence during the 

initial phase (first 10 seconds), followed by excellent tracking 

accuracy as the trajectory progresses. The slight initial 

deviation is effectively corrected without overshoot instability, 

demonstrating the memory and adaptive benefits of fractional-

order dynamics. 

 

 
 

Figure 4. Tracking performance of the 𝑥𝑃 position using the 

flatness-based FOPID controller 

 

Once stabilized, the actual 𝑥𝑃 closely follows the sinusoidal 

reference path with negligible phase lag and minimal steady-

state error. This performance confirms the controller’s ability 

to regulate the translational dynamics of the nonholonomic 

system even under complex trajectory profiles. 

The results further validate the appropriateness of using 

fractional orders 𝜆𝜌 = 0.9, 𝜇𝜌 = 0.8, as well as gain values 

tuned via Genetic Algorithm optimization, as outlined in 

Section 4.2. and Figure 5 illustrates the tracking performance 

of the 𝑦 -coordinate of the forward constrained point P, 

comparing the actual output 𝑦𝑃(𝑡) to the reference path 𝑦𝑟(𝑡). 

 

 
 

Figure 5. Time evolution of the 𝑦𝑃position under the 

flatness-based FOPID controller 

 

The trajectory shows a consistent convergence behavior. 

While an initial transient offset is observed, it is rapidly 

attenuated demonstrating the controller’s strong corrective 

dynamics. This early discrepancy is attributable to the inertia 

of the constrained point 𝑃, which lies ahead of the robot body 

and thus magnifies initial heading misalignments. 

Once aligned, the system accurately tracks the sinusoidal 

reference with smooth variations and no observable 

oscillations or overshoot. This result confirms the FOPID 

controller’s effectiveness in handling both the nonlinearities of 

the unicycle model and the memory characteristics of the 

tracking error dynamics. 

The smoothness is also due to the fractional orders 𝜆𝜌 = 0.9, 

𝜇𝜌 = 0.8, which modulate the derivative and integral memory 

windows in the angular error correction channel. Figure 6 

presents the evolution of the linear velocity control input 𝑣(𝑡) 

generated by the FOPID controller during the trajectory 

tracking task. 

 

 
 

Figure 6. Linear velocity command 𝑣(𝑡) over time under 

flatness-based FOPID control 

 

This control signal remains nearly constant at its saturation 

limit 𝑣𝑚𝑎𝑥 = 1.0 𝑚/ during the initial phase, corresponding to 
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the straight-line acceleration toward the trajectory. A sharp yet 

bounded drop occurs around 𝑡 = 40𝑠, which coincides with 

the robot’s curvature adaptation as it aligns itself more 

accurately with the circular path. 

The use of fractional differentiation and integration helps 

smooth abrupt changes and prevent chattering typical in high-

gain integer-order controllers. The memory effect introduced 

by fractional-order dynamics allows the controller to 

anticipate the trajectory curvature based on past error history, 

thus enabling a more adaptive behavior. 

The boundedness of 𝑣(𝑡)  also aligns with the stability 

criteria outlined in Section 3.4, ensuring fractional Lyapunov 

stability and actuator safety. Figure 7 illustrates the time 

evolution of the angular velocity 𝜔(𝑡)  generated by the 

proposed flatness-based FOPID controller. 

 

 
 

Figure 7. Angular velocity 𝜔(𝑡)commanded by the FOPID 

controller 

 

At the beginning of the simulation, the angular velocity 

increases rapidly to accommodate the sharp change in 

trajectory curvature required to enter the circular path. The 

peak value reaches 0.524 rad/s at time t=4.3 seconds. 

Following this peak, the velocity gradually decreases and 

stabilizes to a steady-state level of approximately 0.2 𝑟𝑎𝑑/𝑠, 

which is sufficient to maintain circular motion. 

This response showcases the controller's ability to deliver 

smooth and bounded actuation. The absence of overshoot, 

oscillations, or chattering highlights the damping and memory 

properties introduced by the fractional-order dynamics. 

Compared to classical integer-order PID controllers, the 

FOPID formulation provides better tuning flexibility and 

allows the system to adapt smoothly to trajectory curvature 

without introducing instability or aggressive corrections. 

The results confirm that the angular control input remains 

well within the actuation bounds throughout the 40-second 

maneuver, further supporting the controller’s robustness and 

suitability for real-world applications. 

 

 

5. CONCLUSIONS 

 

This work introduced a flatness-based FOPID controller for 

trajectory tracking of a unicycle mobile robot, applying the 

control law to a forward-located constrained point to respect 

the robot’s nonholonomic kinematics. Fractional terms were 

realized with a discrete Grünwald–Letnikov approximation, 

allowing memory-aware action that yields smoother responses. 

Using GA-tuned gains and fractional orders, simulations on a 

circular path demonstrated high tracking accuracy, smoothly 

bounded control inputs, and rapid convergence without 

oscillation or overshoot. A fractional Lyapunov (Mittag–

Leffler) analysis further established BIBO stability for the 

closed loop, underscoring the benefit of embedding fractional 

dynamics in flatness-based control under realistic actuation 

limits. 

Despite these strengths, several issues remain open. 

Robustness against unmodeled disturbances, sensor noise, and 

parameter uncertainty has yet to be verified experimen-tally. 

Future work will refine the GA procedure into adaptive or 

online evolutionary tuning, carry out disturbance-rejection and 

noise-sensitivity tests, and validate the scheme on physical 

robot platforms. Finally, the method will be exten-ded to 

cooperative multi-robot formations via decentralized flatness-

based coordination laws with integrated collision avoidance. 
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NOMENCLATURE 

 

(𝑥𝑃 , 𝑦𝑃) Cartesian coordinates of the tracking point 

𝑃 [m] 
(𝑥𝑟 , 𝑦𝑟) Reference trajectory coordinates [m] 

𝑣(𝑡) Linear velocity of the robot [m/s] 

ω(t) Angular velocity of the robot [rad/s] 

ρ(t) Distance error between point 𝑃  and the 

reference [m] 

α(t) Heading error angle between robot and 

trajectory tangent [rad] 

l1 Distance from the robot center to point 𝑃 [m] 

𝑇 Total simulation duration [s] 

ℎ Sampling period [s] 

𝑁 Number of memory steps in fractional-order 

buffer 

𝑘𝑝
𝜌

, 𝑘𝑖
𝜌

, 𝑘𝑑
𝜌

 FOPID gains for 𝜌 error 

𝑘𝑝
𝛼 , 𝑘𝑖

𝛼 , 𝑘𝑑
𝛼 FOPID gains for 𝛼 error 

𝜔𝑗
(𝜈)

 Grünwald–Letnikov weights for order 𝜈 

𝑢(𝑡) Control input vector [𝑣(𝑡), 𝜔(𝑡)]𝑇  

𝑃 Tracking point on the robot (constrained point) 

𝑒(𝑡) General control error signal 

 

Greek symbols 

 

𝜃 Orientation (heading angle) of the robot [rad] 

𝜆𝜌, 𝜇𝜌 Fractional integral and derivative orders for 𝜌 

𝜆𝛼 , 𝜇𝛼 Fractional integral and derivative orders for 𝛼 


  Fractional integral of error 𝑒(𝑡) 


  Fractional derivative of error 𝑒(𝑡) 
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