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This paper proposes a robust control strategy to enhance the stability, speed tracking 

accuracy, and disturbance rejection of electric vehicles (EVs) powered by Permanent 

Magnet Synchronous Motors (PMSMs). The strategy aims to design a fuzzy Proportional-

Integral (PI) controller based on Takagi-Sugeno (TS) fuzzy modeling, integrating a Line 

Integral Lyapunov Function (LILF) with an H∞ control approach to ensure both robustness 

and optimal dynamic performance. The controller gains are optimized using Linear Matrix 

Inequality (LMI) technique, enabling adaptability under various operating conditions. 

Simulation results demonstrate the superior performance of the proposed LILF-based 

controller compared to Linear Quadratic Function (LQF) and traditional PI controllers. 

Specifically, it achieves a rise time of 6 ms, zero overshoot, and no steady-state error, 

while effectively eliminating vibrations. In contrast, the PI controller exhibits a 21% 

overshoot and a steady-state error of 0.24. Additionally, the proposed strategy shows 

strong resilience to external disturbances, contributing to smoother and more energy-

efficient EV operation. The suggested controller offers a useful and efficient solution for 

real-world EV propulsion systems requiring high precision and robustness. 
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1. INTRODUCTION

Transport makes a considerable impact on global energy 

demand and greenhouse gas emissions, accounting for one-

third of total energy consumption and approximately 20% of 

global emissions [1-5]. In response to escalating 

environmental concerns, EVs have emerged as a viable and 

sustainable alternative [6-8]. EVs offer several advantages, 

including environmental friendliness, reduced noise levels, 

higher efficiency, and lower energy consumption compared to 

conventional internal combustion engine vehicles [9]. As a 

result, many countries are increasingly adopting EVs to 

mitigate environmental impacts [7, 10]. In fact, according to 

the International Energy Agency (IEA), 2023 witnessed the 

fastest growth on record, with global EV sales increasing by 

35% to nearly 14 million vehicles. Furthermore, the first 

quarter of 2024 recorded a 25% year-on-year increase in sales, 

and projections estimate around 200 million EVs on the road 

worldwide by 2030 [3, 10].  

Despite the technical progress achieved in the EV industry, 

several challenges persist, particularly in terms of safety and 

energy management, which hinder the seamless integration of 

EVs into existing transportation systems [9, 11, 12]. 

Permanent Magnet Synchronous Motors (PMSMs) have 

been widely used in electric vehicles (EVs) propulsion system 

due to their high efficiency, excellent torque performance and 

smaller size [5, 13]. However, new control strategies are 

needed to improve the performance of PMSM drive systems 

in both EVs and hybrid electric vehicles (HEVs) [14]. 

In order to ensure accurate trajectory tracking under 

variable road conditions with parameter uncertainties and 

external load disturbances, robust speed control is essential in 

EVs driven by PMSMs. To achieve this, Proportional-Integral 

(PI) controllers have been widely used in the literature due to 

their balance between simplicity and efficiency. Considerable 

research has been devoted to improving PI tuning techniques 

adapted to different system designs, in order to ensure optimal 

performance under various conditions [14-19]. Nonlinear 

tuning of PI parameters has been explored to achieve fast 

response and low overshoot [15] while Fractional-Order PI 

controllers have shown promising results in PMSM drive 

applications [16]. Furthermore, advanced methodologies, such 

as a Zero-Pole elimination (ZPE) method have enhanced the 

performance of the PMSM drive [17]. Fuzzy logic has also 
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been applied in the study [18] for robust, stable and fast EV 

powertrain control. 

Traditional PI controllers continue to be highly popular due 

to their simplicity, but they frequently perform poorly in the 

presence of non-linearities and external disturbances [14]. To 

overcome these drawbacks, a control method using QLF was 

presented in the study [19]. While it improved stability, it 

required solving complex and sometimes overly conservative 

matrix conditions. To address these issues, this paper proposes 

a novel control approach based on the LILF function, 

combined with Takagi-Sugeno (TS) fuzzy modeling and H∞ 

control, for designing a PI controller for EV speed tracking and 

disturbance rejection. Unlike QLF method, which requires a 

common matrix across all subsystems, the LILF method 

performs local stability analysis for each fuzzy rule and 

integrates them using fuzzy logic. This approach reduces 

conservatism, enhances performance, and provides better 

disturbance handling. 

The rest of this paper is structured as follows: Section 2 

introduces the proposed methodology, starting with the EV 

system description and the PMSM modeling, including its TS 

fuzzy representation. Section 3 focuses on the detailed design 

of the control strategy, including the stability analysis based 

on the LILF. The fuzzy PI controller gains are computed by 

solving a set of constraints formulated as Linear Matrix 

Inequalities (LMIs). Section 4 discusses the simulation results, 

highlighting the controller’s effectiveness in terms of tracking 

precision and robustness. Furthermore, it gives a comparative 

evaluation with existing methods of the state of the art. Finally, 

Section 5 concludes the paper by highlighting the main 

contributions of this work and suggesting perspectives for 

future research.  

2. METHODOLOGY AND EV MODELING

2.1 EV system description 

Figure 1 shows the main components of an EV powertrain, 

including the battery, power electronics, motor, shaft, and 

wheels. 

Figure 1. The powertrain of the electric vehicle 

The complete model of vehicle dynamics is nonlinear and 

highly complex, as it must take into account various factors 

such as road conditions, aerodynamic drag, etc. Since vehicle 

motion results from the interaction between each wheel and 

the road surface, a quarter-vehicle model [20] is selected for 

this study as shown in Figure 2. 

Using the fundamental principles of dynamics, the 

following equations, Eq. (1) and Eq. (2), describe the motion 

of the system: 

Figure 2. Quarter vehicle model description [20] 

𝑚
ⅆVx

ⅆ𝑡
= −𝐹𝑥 (1) 

𝐽
ⅆ𝑊

ⅆ𝑡
= −𝑇𝑏 + 𝑟𝐹𝑥 (2) 

where m, W, and J denote, respectively, the vehicle mass, the 

angular velocity, and the wheel inertia. Vx is the longitudinal 

velocity of the vehicle, Tb is the braking torque, r is the radius 

of the wheel and 𝐹𝑥 denotes the longitudinal friction force. It

is known that the force 𝐹𝑥 is a natural by-product of the torque

generated by the electric motor. According to Coulomb's law, 

𝐹𝑥  can be represented as the product of the adhesion

coefficient of the road μ(λ) and the vertical force 𝐹𝑁 as follows:

𝐹𝑥  =  µ(𝜆)𝐹𝑁 = µ(𝜆) mg (3) 

where g is the gravitational acceleration constant. The wheel 

slip 𝜆 =
𝑉𝑥−𝑟𝑊

𝑉𝑥
 is used to quantify the difference between the 

vehicle speed and the wheel speed during acceleration or 

braking [21]. Burckhardt's model [22] is the most widely used 

to describe the variation of μ(λ) as a function of λ, due to its 

simplicity and acceptable accuracy: 

µ(𝜆) = 𝐶1(1 − 𝑒−𝐶2𝜆) − 𝐶3𝜆 (4) 

where the choice of the parameters (𝐶𝑖; i=1,2,3) characterizes 

the road type. Figure 3 shows the variation of the adhesion 

coefficient μ(λ) for different road conditions. 

It is known that the longitudinal speed of a vehicle, denoted 

as 𝑉𝑥, is a function of the rotational speed of its engine 𝑊𝑟. 
Under certain driving conditions, 𝑉𝑥 can be considered 

proportional to the engine's rotational speed. This proportional 

relationship is valid under specific assumptions, including the 

presence of a direct transmission or a constant gear ratio (as is 

often the case with automatic gearboxes), an engine operating 

steadily within its optimal range of revolutions per minute, and 

negligible mechanical and aerodynamic losses. In such 

conditions, the vehicle’s speed is directly influenced by the 

engine speed, the transmission ratio, and the radius of the 

wheels. The relationship between the vehicle’s longitudinal 

speed and the engine’s rotational speed can then be expressed 

as 𝑉𝑥 = K⋅𝑊𝑟, where K = R⋅k, 𝑅 is the wheel radius, and k is 

the overall gear ratio. This scenario corresponds to a wheel slip 

value μ(λ) ≤ 0.2, as illustrated by the dashed pink box in Figure 

3. 
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Figure 3. Variation of adhesion coefficient µ(𝜆) 

In this context, our main objective is to control the PMSM 

motor to achieve an angular speed 𝑊𝑟
𝑑 , that matches the

desired speed profile 𝑉𝑥
𝑑 commanded by the driver.

2.2 Permanent magnet synchronous motor modeling 

Electric vehicles rely heavily on rotating machines, 

particularly PMSMs, which are preferred for their high 

efficiency [23]. This subsection explains the dynamics of a 

PMSMs. The equations describing the stator voltage 

components in the direct-quadrature (dq) reference frame for 

a PMSM are defined as follows: 

{
𝑉𝑞 = 𝑅𝑠𝑖𝑞 + 𝐿𝑞

ⅆ𝑖𝑞

ⅆ𝑡
+𝑊𝑟  𝐿𝑑  𝑖𝑑  +  𝑊𝑟  𝜙𝑚

𝑉𝑑 = 𝑅𝑠𝑖𝑑   + 𝐿𝑑
ⅆ𝑖𝑑
ⅆ𝑡

−𝑊𝑟  𝐿𝑞 𝑖𝑞

(5) 

where 𝑉𝑞  and 𝑉𝑑  are the voltages in the dq-reference frame,

𝑖𝑞 and 𝑖𝑑  are the corresponding currents, 𝑅𝑠  is the stator

winding resistance, 𝐿𝑞  and 𝐿𝑑  are the inductances in the dq- 

frame, 𝜙𝑚 is the permanent magnet flux linkage, and 𝑊𝑟 is the

electrical rotor speed. Applying the fundamental principle of 

dynamics, the operation of the PMSM can be described as 

follows: 

ⅆ𝑊𝑟
ⅆ𝑡

 =
−𝐵

𝐽
 𝑊𝑟  +

3𝑛𝑝
3𝜙𝑚

8𝐽
 𝑖𝑞 −

𝑛𝑝𝐶𝑟

2𝐽
(6) 

The electromagnetic torque 𝐶𝑒 produced by the PMSM is 

given by: 

𝐶𝑒 =
2𝐽

𝑛𝑝

ⅆ𝑊𝑟
ⅆ𝑡 𝑟

+ 
2𝐵

𝑛𝑝
 𝑊 + 𝐶𝑟 (7) 

where B is the damping coefficient, J is the moment of inertia, 

𝑛𝑝 is the number of magnetic pole pairs, and 𝐶𝑟 is the load

torque. The 𝐶𝑒 can be also expressed as [19]: 

𝐶𝑒 =
3 𝑛𝑝

4
[𝜙𝑚𝑖𝑞 + (𝐿𝑞 − 𝐿𝑑)𝑖𝑞𝑖𝑑] (8) 

For a PMSM with surface-mounted magnets, where Lq≈Ld, 

the system is modeled in the state-space domain as: 

[
𝑊𝑟̇

𝑖𝑞̇
𝑖𝑑̇

] =

[
 
 
 
 
 
 
−𝐵

𝐽

3𝑛𝑝
3𝜙𝑚

8𝐽
0

−𝜙𝑚
𝐿𝑞

−𝑅𝑠
𝐿𝑞

−𝐿𝑑
𝐿𝑞

𝑊𝑟

0
−𝐿𝑞

𝐿𝑑
𝑊𝑟

−𝑅𝑠
𝐿𝑑 ]

[

𝑊𝑟
𝑖𝑞
𝑖𝑑

]

+

[

0  0
1

𝐿𝑞
 0

0 
1

𝐿𝑑]

[
𝑉𝑞
𝑉𝑑
] + [

−𝑛𝑝 𝐶𝑟

2𝐽
0
0

] 

(9) 

This Eq. (9) can be simplified to: 

{
𝑥 ̇ (𝑡) = 𝐴 (𝑥(𝑡)) 𝑥(𝑡) + 𝐵𝑢(𝑡) + 𝜐(𝑡)

𝑦(𝑡) =   𝑊𝑟 = [1 0 0]𝑥(𝑡) = 𝐶 𝑥(𝑡)
(10) 

where 𝜐(𝑡) represents the disturbances of the system that can 

be modeled as follows: 

𝜐(𝑡) = [

−𝑛𝑝

2𝐽
0
0

] =  [

−𝑛𝑝

2𝐽
 0  0

0  0  0 
0  0  0

] [
𝐶𝑟
0
0
] = 𝐷𝛹(𝑡) (11) 

2.2.1 Takagi–Sugeno Fuzzy Model of the PMSM 

The Takagi–Sugeno (T–S) fuzzy model [24] is widely used 

to address the nonlinearities inherent in complex systems, such 

as the PMSM model [25]. Assuming that the scheduling 
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variable 𝑊𝑟 in Eq. (8) is bounded between a minimum and a

maximum value 𝑊𝑟
𝑚𝑖𝑛  ≤ 𝑊𝑟 ≤ 𝑊𝑟

𝑚𝑎𝑥  . In this case, 𝑊𝑟 can be

expressed as a convex combination: 

𝑊𝑟 (𝑡) = ℎ1(𝑊𝑟(𝑡))𝑊𝑟
𝑚𝑖𝑛

+ ℎ2(𝑊𝑟(𝑡))𝑊𝑟
𝑚𝑎𝑥 (12) 

where ℎi(𝑊𝑟(𝑡))  are the weighting functions, defined as

follows: 

{

ℎ1(𝑊𝑟(𝑡))  =  
𝑊𝑟

𝑚𝑎𝑥 −𝑊𝑟

𝑊𝑟
𝑚𝑎𝑥 −𝑊𝑟

𝑚𝑖𝑛

ℎ2(𝑊𝑟(𝑡))  =  
𝑊𝑟 −𝑊𝑟

𝑚𝑖𝑛

𝑊𝑟
𝑚𝑎𝑥 −𝑊𝑟

𝑚𝑖𝑛

(13) 

These weighting functions ℎi(𝑊𝑟(𝑡)), for i=1,2, satisfy the

following convexity conditions: 

∑ℎ𝑖(𝑊𝑟(𝑡) = 1  𝑎𝑛ⅆ   0 ≤ ℎ𝑖(𝑊𝑟(𝑡) ≤ 1,

2

𝑖=1

  𝑖 = 1,2 (14) 

Figure 4 illustrates the convexity of the Eq. (14). 

Figure 4. Convexity validation of ℎ𝑖(𝑊𝑟(𝑡)) functions

T–S fuzzy logic enables us to represent the nonlinear system 

described by Eq. (10) as a convex combination of linear sub-

models as follows: 

{

𝑥 ̇ (𝑡) =∑ℎ𝑖(𝑊𝑟(𝑡))[𝐴𝑖  𝑥(𝑡)  + 𝐵𝑖𝑢(𝑡)  + 𝐷𝑖𝛹(𝑡)]

2

𝑖=1

𝑦(𝑡) =  ∑ℎ𝑖(𝑊𝑟(𝑡))𝐶𝑖  𝑥(𝑡) 

2

𝑖=1

(15) 

where, 

𝐴1 =

[
 
 
 
 
 
 
−𝐵

𝐽

3𝑛𝑝
3𝜙𝑚

8𝐽
0

−𝜙𝑚
𝐿𝑞

−𝑅𝑠
𝐿𝑞

−𝐿𝑑
𝐿𝑞

𝑊𝑟
𝑚𝑖𝑛

0
−𝐿𝑞

𝐿𝑑
𝑊𝑟

𝑚𝑖𝑛 −𝑅𝑠
𝐿𝑑 ]

; 

𝐴2 =

[
 
 
 
 
 
−𝐵

𝐽

3𝑛𝑝
3𝜙𝑚

8𝐽
0

−𝜙𝑚

𝐿𝑞

−𝑅𝑠

𝐿𝑞

−𝐿𝑑

𝐿𝑞
𝑊𝑟

𝑚𝑎𝑥

0
−𝐿𝑞

𝐿𝑑
𝑊𝑟

𝑚𝑎𝑥 −𝑅𝑠

𝐿𝑑 ]

; 

𝐵𝑖 = 𝐵 𝑎𝑛ⅆ 𝐷𝑖 = 𝐷;  𝑖 = 1,2. 

3. CONTROL STATEGY

The main objective of the proposed control strategy is to 

enhance the stability, ensure accurate tracking of the desired 

speed profile 𝑉𝑥
𝑑  commanded by the driver, and improve

disturbance rejection in the PMSM powered EV. In this 

framework, the control task consists of adjusting the motor's 

angular velocity 𝑊𝑟
𝑑  so that it corresponds to the desired

vehicle speed 𝑉𝑥
𝑑 . To fulfill these objectives, a fuzzy

Proportional-Integral (PI) controller is developed based on 

Takagi–Sugeno (TS) fuzzy modeling. The approach 

incorporates a LILF and an H∞ control framework to 

guarantee both robustness and high dynamic performance 

under varying conditions. The control design problem is 

formulated as an optimization task subject to LMI constraints, 

which yields to the optimal controller gains. 

3.1 Mathematical Lemmas 

Lemma. 1 [26]. Let X and Y be two matrices of appropriate 

dimensions. Then the following inequality holds: 

X𝑇Y + Y𝑇X ≤ ᵧ−1X𝑇X +  ᵧY𝑇Y (16) 

Lemma. 2 [19, 27]. Let 𝑍𝑖𝑠𝑗  be a matrix of appropriate

dimensions, where {i,s,j} =1…r. If 𝑍𝑖𝑠𝑗< 0, then the following

global inequality holds: 

∑∑∑𝑍𝑖𝑠𝑗 <  0

𝑟

𝑗=1

𝑟

𝑠=1

𝑟

𝑖=1

(17) 

Lemma. 3 [28]. Let Q, R, and S be matrices of appropriate 

dimensions, where Q  = Q𝑇 and R  = R𝑇 .  The following

equivalence holds: 

[
𝑄   𝑆

∗   𝑅
] < 0 ⇔  {

𝑅 < 0 
𝑄 −  S𝑇R−1𝑆 < 0 

 (18) 

3.2 Stability analysis using the Line Integral Lyapunov 

Function (LILF) 

Typically, the Quadratic Lyapunov Function (QLF) 

approach, commonly used for stability analysis and 

stabilization of TS fuzzy models, leads to conditions 

formulated as LMIs or BMIs (Bilinear Matrix Inequalities). 

The QLF method involves finding a common matrix 

P = P𝑇 > 0   that satisfies the stability conditions for all

subsystems in the fuzzy model. However, this task can be 

particularly challenging and may lead to conservative and 

computationally intensive solutions [29, 30]. 

To address these limitations, the LILF has been proposed. 

This function is defined as the integral of a scalar function 

along the system’s trajectory [31]. Unlike the QLF, the LILF 

approach performs a local stability analysis for each 

subsystem individually. The global stability function is then 

obtained as a fuzzy intersection of these local functions [32], 

leading to less restrictive and more flexible stability conditions. 

Consider the following Lyapunov candidate function: 

𝑉(𝑥(𝑡)) = 2 ∮ 𝑓(𝜙)ⅆ𝜙
⬚

ᴦ(0;𝑥)

 (19) 
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Rhee et al. [31] have demonstrated that the Eq. (19) is a 

Lyapunov function if the following conditions are satisfied: 

𝜕𝑓𝑚(𝑥)

𝜕𝑥𝑛
=
𝜕𝑓𝑛(𝑥)

𝜕𝑥𝑚
;  𝑓𝑜𝑟 𝑛 ≠ 𝑚 , { 𝑛,𝑚} = { 1,2… 𝑛} (20) 

where 𝑓(𝑥(𝑡)) = ∑ ℎ𝑖(ө)
𝑟
𝑖=1 )𝑃𝑖𝑥(𝑡) > 0, and 𝑃𝑖𝑥(𝑡) = (𝑃0 +

 ∑ ℎ𝑗(ө) 𝑃̂𝑖
𝑟
𝑖=1 )𝑥(𝑡); The diagonal elements change based on 

the fuzzy sets in the premise of the fuzzy rules [31]. 

𝑃0 = P0𝑇 = [

0  ℎ12  ℎ12  … ℎ1𝑛 
∗  0    ℎ23  … ℎ2𝑛
∗     ∗       ⋱          ⁞
∗   ∗      …      0 

] ;  𝑃̂𝑖 =

[

ⅆ11
𝑖    0  0 …  0

∗  ⅆ22
𝑖   0 …  0

∗       ∗       ⋱  ⁞

∗   ∗  …     ⅆ𝑛𝑛
𝑖  ]

The analysis based on the QLF can therefore be regarded as 

a special case of the LILF. The following example 

demonstrates the comparison of the stability regions obtained 

using LILF and those derived from the QLF. 

Example 1. [30] Let us consider the following nonlinear 

model: 

𝑥 ̇ (𝑡) = ∑ℎ𝑖(𝑊𝑟(𝑡))[𝐴𝑖  𝑥(𝑡)  + 𝐵𝑖𝑢(𝑡) ]

4

𝑖=1

(21) 

where, 

𝐴1  = [
−12                            − 4
0.2(7𝑎 − 6) + 6𝑎    − 6

], 

𝐴2  = [
−12                            − 4
0.2(7𝑎 − 1) + 𝑎    − 1

], 

𝐴3  = [
−6                            − 4
0.2(𝑏 − 6) + 6𝑎    − 6

], 

𝐴4  = [
−6                            − 4
0.2(𝑏 − 1) + 𝑎    − 1

], 

𝐵1  = [
0
1
],   𝐵2  = [

0
1
] ,   𝑎 ∊ [0; 50],   𝑏 ∊ [0; 80] 

Figure 5 shows the feasibility comparison via LILF and 

QLF. By analyzing the stability of the system described in Eq. 

(20), we can note that the QLF, represented by blue asterisks 

(*), produces more restrictive results compared to the FILF, 

represented by red diamonds (◊). This result justifies the use 

of LILF in this study. 

Figure 5. Feasibility comparison via (LILF) and (QLF) 

3.3 Structure and design of the proposed controller 

Figure 6 illustrates the structure of the proposed fuzzy PI 

controller, whose control input u(t) is defined as follows: 

𝑢(𝑡) =  −∑ℎ𝑠(𝑊𝑟(𝑡))

2

𝑠=1

[𝐾𝑝𝑠𝑥(𝑡)

+ 𝐾𝐼𝑠∫ (𝑊𝑟 −𝑊𝑟
𝑑)ⅆ𝑡

𝑡

0

] 

(22) 

Figure 6. Structure of the proposed fuzzy controller strategy 

Let us consider the H∞ performance criterion related to the 

tracking error ec(t):

∫ ec
𝑇(t) ec(t)dt ≤ ᵧ2∫ ξ𝑇(t) ξ(t)

∞

0

∞

0

ξ(t)dt (23) 

To ensure the stability of the fuzzy T-S closed-loop system 

given in Eq. (10) and to develop a robust controller, the 

candidate function (LILF) Eq. (19) and the H∞ criterion Eq. 

(23) is employed. The controller gains are computed by

solving the LMI conditions described in the following theorem:

Theorem: If there exist a symmetric positive definite 

matrix 𝑋𝑗, 𝑌𝑠𝑗 , 𝐾𝑠,  and scalars γ> 0, such that the following

inequality holds: 

[
𝛯𝑖𝑠𝑗 𝐷̂ 𝑋𝑁𝑇

∗ −𝛾𝐼 0
∗ ∗ −𝐼

] < 0 (24) 

where N = [1 0 0], and I is the identity matrix with the 

corresponding dimensions and 𝛯𝑖𝑠𝑗 = 𝐴𝑖̂
𝑇
X𝑗 + X𝑗𝐴𝑖̂ − 𝐵̂𝑌𝑠𝑗 −

𝑌𝑠𝑗
𝑇𝐵̂𝑇;  where 𝑌𝑠𝑗 = 𝐾𝑠X𝑗 .

Then the system Eq. (15) is asymptotically stable, and the 

𝐻∞ performance described in Eq. (22) is guaranteed with

attenuation level γ.  

Where 𝑋𝑗  and 𝑌𝑠𝑗  (thus Ks = 𝑌𝑠𝑗  𝑋𝑗
−1 ) can be easily

obtained by solving LMI Eq. (23).  

Proof: Let's denote the tracking error dynamic: 

𝑒𝑐̇ = 𝑊𝑟 −𝑊𝑟
𝑑 (25) 

Substituting Eq. (20) into Eq. (14) the following augmented 

system is obtained: 

[
𝑥
𝑒𝑐̇

̇
] = ∑∑ℎ𝑖ℎ𝑠

2

𝑖=1

2

𝑖=1

[[
𝐴𝑖 − 𝐵𝐾𝑝𝑖 𝐵𝐾𝐼𝑖

𝑀 0
] [
𝑥
𝑒𝑐
]

+ [
𝐴𝑖 𝐷
0 0

] [𝑊𝑟
𝑑

𝛹
]] 

(26) 

which can be written as: 
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𝑥̇̂(𝑡) = ∑∑ℎ𝑖ℎ𝑠

2

𝑠=1

2

𝑖=1

[(𝐴𝑖̂ − 𝐵̂𝐾𝑠)𝑥 + 𝐷̂𝜉(𝑡) ] (27) 

where, 

𝐴𝑖̂ = [
𝐴𝑖 0
M 0

] ;     𝐵̂ = [
B
0
] ; D̂ = [

𝐴𝑖 𝐷
0 0

] ; 

𝑀 = [1 0 0];    𝐾𝑠 = [𝐾𝑝𝑠 𝐾𝐼𝑠];  𝜉(𝑡)  = [𝑊𝑟
𝑑

𝛹
] 

The goal is to design the controller Eq. (20) such that: 

✓ The system Eq. (25) globally asymptotically stable.

✓ 𝐻∞ performances Eq. (21) are satisfied.

To achieve these goals, the 𝐻∞ performance related to the

tracking error 𝑒𝑐  Eq. (21) is combined with Lyapunov

candidate function Eq. (18) such as:  

𝑉̇(𝑥̂(t)) + 𝑥̂𝑡(𝑡) 𝑀𝑇M 𝑥̂(t) − γ2ξ(t)Tξ(t) < 0 (28) 

where M= [10 0]. 

By replacing the time derivative of 𝑉̇(𝑥̂(t))  with its

expression, the inequality Eq. (26) becomes:  

∑∑∑
ℎ𝑖ℎ𝑠ℎ𝑗 𝑥̇̂(t)

𝑇𝑃𝑗𝑥̂(t) + 𝑥̂(t) 𝑃𝑗 𝑥̇̂(t) +

𝑥̂𝑡(𝑡) 𝑀𝑇M 𝑥̂(t) − γ2ξ(t)Tξ(t)  <  0
𝑗=1𝑠=1𝑖=1

(29) 

For simplicity, thereafter we consider the following notation: 

∑∑∑ℎ𝑖ℎ𝑠ℎ𝑗 𝑥̇̂(t)
𝑇 =

𝑗=1𝑠=1𝑖=1

∑ ℎ𝑖𝑠𝑗
𝑖,𝑠,𝑗=1

(30) 

Replacing the time derivative of 𝑥̇̂(𝑡) in Eq. (26) with its

expression, the inequality Eq. (19) becomes: 

∑ ℎ𝑖𝑠𝑗[(𝐴𝑖̂ − 𝐵̂𝐾𝑠) + 𝐷̂𝜉(𝑡)]
𝑇

𝑖,𝑠,𝑗=1

𝑃𝑗 𝑥̂(t) +

𝑥̂(t) 𝑃𝑗[(𝐴𝑖̂ − 𝐵̂𝐾𝑠)𝑥 + 𝐷̂𝜉(𝑡) ] + 𝑥̂
𝑡(𝑡) 𝑀𝑇M 𝑥̂(t)

− γ2ξ(t)Tξ(t)  <  0

(31) 

By applying Lemma. 1 the inequality Eq. (31) can be 

expressed as follows:  

∑ ℎ𝑖𝑠𝑗𝑥̂(t)
𝑇

𝑖,𝑠,𝑗=1

[
𝑃𝑗(𝐴𝑖̂ − 𝐵̂𝐾𝑠)

𝑇
+ (𝐴𝑖̂ − 𝐵̂𝐾𝑠)𝑃𝑗 + 

γ−2𝑃𝑗𝐷̂
T𝐷̂𝑃𝑗 + 𝑀

𝑇M
] 𝑥̂(t) <  0 (31) 

Using Lemma. 2 the system Eq. (26) is globally 

asymptotically stable; therefore, the system Eq. (15) is 

asymptotically stable with 𝐻 ∞ performance given in Eq.  (23), 

provided the following conditions are satisfied: 

𝑃𝑗(𝐴𝑖̂ − 𝐵̂𝐾𝑠)
𝑇
+ (𝐴𝑖̂ − 𝐵̂𝐾𝑠)𝑃𝑗 + γ

−2𝑃𝑗𝐷̂
T𝐷̂𝑃𝑗 +

 𝑀𝑇M < 0 ; {i,s,j}={1,2}
(33) 

Post- and pre-multiply 𝑋𝑗 , (where 𝑋𝑗 = 𝑃𝑗
−1 and 𝑌𝑠𝑗  = Ks

𝑋𝑗), the inequality Eq. (31) can be expressed as:

𝐴𝑖̂
𝑇
𝑃𝑗 + 𝑃𝑗𝐴𝑖̂𝑖 − 𝐵𝑖̂

𝑇
𝑌𝑠𝑗  −  𝑌𝑠𝑗

𝑇 𝐵𝑖̂ + γ
−2𝐷̂T𝐷̂ +

𝑋𝑗𝑀
𝑇M𝑋𝑗 < 0 ; {i,s,j}={1,2}

(34) 

Finally, Schur’s complement (Lemma. 3) is applied to Eq. 

(33) to derive the LMI conditions presented in Eq. (23).

4. RESULTS AND DISCUSSION

To demonstrate the effectiveness of the proposed control 

strategy, simulations were conducted on a PMSM motor, 

whose parameters are listed in Table 1. 

Table 1. PMSM and EV parameters [19] 

Parameters Values 

Stator resistance Rs = 2.875 Ω 

Direct axis inductance Ld = 7.5 mH 

Quadrature axis inductance Lq = 2.5 mH 

Moment of inertia J = 0.0008 Kg 

Coefficient of friction f =10−4 N.m.s/rad

Flux linkage established by the PMSM 𝜙𝑚 = 0.175 Wb

Maximum PMSM rotor speed 𝑊𝑟
𝑚𝑎𝑥 = 1800 rpm

Minimum PMSM rotor speed 𝑊𝑟
𝑚𝑖𝑛 = - 1800 rpm

Number of magnetic poles 𝑛𝑝 = 8

Using the lmiterm function of MATLAB to solve the Linear 

Matrix Inequality (LMI) conditions in Eq. (23) (LMI solving 

time: < 1 s), the control gains for the fuzzy Proportional-

Integral (PI) controller defined in Eq. (21) were obtained as 

follows: 

𝐾𝑃1 = [
5.7780  11.7586  6.4279
1.3747  2.4339  14.3841

], 

𝐾𝐼1 = 103 [
3.8664
1.0239 

] 

𝐾𝑃2 = [
5.7780  11.7586 − 6.4279
−1.3747   − 2.4340   14.3841

], 

𝐾𝐼2 = 103 [
3.8664
1.0239 

] 

These control gains were subsequently implemented in a 

MATLAB/SIMULINK simulation. 

To evaluate the regulation performance of the designed 

controller, a reference speed profile 𝑉𝑥
∗  to be tracked is

proposed in Figure 7. The response of the proposed approach 

is then compared with other methods of the state of the art 

(Figure 7). 

Figure 7. Longitudinal EV speed 𝑉𝑥

The comparison reveals that our proposed FILF controller 
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outperforms both the traditional PI controller [14] and the QLF 

approach-based controller developed in [19], in terms of 

reference speed tracking 𝑉𝑥
∗ rise time, accuracy, and absence

of overshoot. For reference and reuse, the performance metrics 

of the different controllers are summarized in Table 2. 

Table 2. Comparison of PI, QLF and LIFF controllers 

performs 

Performs Type LIFF LQF [19] PI [14] 

Rise time (s) 10−3 6 8 10 

Overshoot % 0 0 21 

Static error 0 0 0.24 

Vibration absent absent exist 

Response to disturbances good fast very fast 

Assuming small slip angle values, the motor must rotate at 

a specific angular speed 𝑊𝑟
∗  corresponding to the reference

longitudinal speed of the vehicle 𝑉𝑥
∗ . Figure 8 shows that

𝑊𝑟 follows the same dynamics as 𝑉𝑥, scaled by a proportional

coefficient. 

Figure 8. Motor angular rotation speed 𝑊𝑟

Referring to the currents shown in Figures 9 and 10, it can 

be observed that the controllers designed using the FILF and 

QLF approaches produce smoother current waveforms with 

fewer high-frequency harmonics compared to the traditional 

PI controller.  

To quantify the high-frequency harmonics of each 

controller, the Total Harmonic Distortion (THD) is used as a 

figure of merit, measuring the number of harmonics present in 

each current relative to its fundamental component. The lower 

the THD, the fewer high-frequency harmonics are present in 

the current. The THD values for different current components 

are illustrated in Table 3. 

Figure 9. Variation of 𝐼𝑑 current components versus time

Figure 10. Variation of 𝐼𝑞  current components versus time

Table 3. THD comparison of 𝐼𝑑 and 𝐼𝑞  currents

THD (%) 

LIFF LQF PI 

𝐼𝑑 6.53 18.8 28.1 

𝐼𝑞 9.45 18.7 33.4 

It can be noted that the FILF approach achieves the lowest 

THD values for both the 𝐼𝑑 and 𝐼𝑞  components, outperforming

both the QLF approach and the conventional PI controller. 

Furthermore, the FILF approach results in lower current 

consumption compared to the QLF method. This improvement 

directly impacts the electromagnetic torque generated by the 

machine as illustrated in Figure 11. The reduction of 

harmonics leads to a smoother torque output and consequently 

less vibration. 
It is well known that external disturbances can degrade system 

performance and may even cause instability. To evaluate the 

robustness of the proposed controller, a disturbance in the form of a 

step load torque (C_r= 10 N.m) shown in Figure 12 is applied to the 

system at a time of (t = 0.25s). Figures 7 and 8 demonstrate that the 

FILF-based controller responds faster than the QLF-based controller, 

while the PI controller exhibits speed oscillations due to this 

disturbance. 

Figure 11. Torque variation 𝐶𝑒 versus time

Figure 12. Load torque profile 𝐶𝑟
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The application of this disturbance forces the motor to 

generate a stronger electromagnetic torque to counteract its 

effect, resulting in an increased current draw. This explains the 

variations observed in the current components in Figures 9 and 

10, as well as the torque fluctuations in Figure 11 at the 

moment the disturbance is applied. 

Robustness against parametric uncertainties, such as 

changes in stator resistance (𝑅𝑠) due to temperature changes 

after the application of load torque disturbances, is particularly 

important in vehicular applications, where sudden load 

changes (for example, caused by passengers entering or 

exiting) can occur. This is a crucial aspect that needs to be 

taken into account in the design of the controller. In particular, 

the control system must quickly compensate for any 

disturbance in order to maintain vehicle speed which is an 

essential condition for ensuring high dynamic performance. 

To evaluate the robustness of our proposed LILF controller 

against stator resistance disturbances, a test is performed under 

resistance variations of (𝑅𝑠 ± 20%). The simulation results 

shown in Figure 13 demonstrate the ability of the controller to 

effectively reject these parametric perturbations while 

maintaining system stability and confirm that, thanks to the 

𝐻∞ control effect, the proposed controller is able to effectively 

handle these parametric uncertainty variations. 

Figure 13. EV speed tracking under Rs variation 

Driving under real road conditions requires the vehicle to 

vary its speed based on factors such as traffic signs or driver 

intent. Therefore, the controller must possess sufficient 

dynamic capability to adjust the reference speed 𝑉𝑥
∗ according

to varying scenarios. Consequently, the PMSM motor must 

produce torque appropriate to each new driving condition. 

From the comparison shown in Figure 14, it is evident that 

the FILF controller tracks the reference speed 𝑉𝑥
∗ with greater

accuracy, particularly during sudden speed changes (t=40 s) 

compared to the other controllers. 

Figure 14. Tracking longitudinal EV speed Vx* 

5. CONCLUSION

This work introduces a fuzzy PI control strategy for electric 

vehicle speed regulation based on a Line Integral Lyapunov 

Function (LILF) combined with an H∞ control framework. 

Unlike traditional PI or QLF-based designs, the proposed 

approach offers enhanced robustness, precise speed tracking, 

and smoother current and torque profiles, without the need for 

frequent gain adjustments. 

Beyond demonstrating technical superiority through 

simulation, this method contributes significantly to advancing 

EV control systems by providing an efficient, low-

maintenance solution that improves both vehicle performance 

and energy efficiency. These features make the controller 

especially well-suited for next-generation electric mobility 

applications, where adaptability and reliability are paramount. 

Future work will focus on real-time validation via 

hardware-in-the-loop (HIL) simulations and experimental 

testing. Furthermore, integration of AI-based control 

techniques and computer vision will be explored to further 

enhance adaptability and vehicle autonomy. 
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