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Thermal overload protection is a fundamental function for ensuring the safety and 

reliability of electrical equipment under sustained overcurrent conditions. This study 

presents experimental validation and predictive modeling of the SEPAM 1000+ T20 

thermal overload relay under cold and hot curve operating conditions defined by IEC 

60255-149. A first-order thermal model was applied to determine alarm (ES1) and trip 

(ES2) thresholds, followed by laboratory testing to measure actual alarm and tripping 

times across multiple overload levels. The results showed strong agreement with 

theoretical predictions, with deviations consistently below 5%. A predictive model based 

on simple linear regression further confirmed this consistency, yielding a slope coefficient 

of 1.0039 and R² exceeding 0.98. These findings validate that the SEPAM 1000+ T20 

relay operates within IEC performance limits, while demonstrating the importance of 

considering both cold and hot curve characteristics when configuring protection systems. 

The proposed predictive model provides a reliable framework for optimizing relay 

settings, minimizing nuisance tripping, and improving the reliability of industrial thermal 

protection schemes. 
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1. INTRODUCTION

Thermal overload protection plays a vital role in 

safeguarding electrical equipment against sustained 

overcurrent conditions that may cause overheating, insulation 

deterioration, and premature equipment failure [1-3]. Such 

protection is commonly implemented using thermal relays or 

electronic trip units, which simulate the thermal response of 

conductors and protected devices. These systems initiate 

alarms or disconnection actions before exceeding permissible 

temperature limits, in compliance with standards such as IEC 

60947-4-1 [4]. In modern power systems, accurate estimation 

of operating times under different thermal and load conditions 

is essential to prevent equipment damage, enhance reliability, 

minimize downtime, and ensure adherence to international 

safety regulations [4, 5]. 

According to IEC 60255-149, thermal overload relays 

exhibit two characteristic responses: the cold curve and the hot 

curve. The cold curve represents the time–current 

characteristic when the relay operates from reference steady-

state conditions with no prior load, typically resulting in longer 

tripping times. Conversely, the hot curve accounts for residual 

heating caused by a steady-state load current prior to overload, 

leading to shorter tripping times [6]. The shape and position of 

these curves are influenced by parameters such as the thermal 

time constant (τ), ambient temperature, and the equivalent 

heating current (Ieq), which considers additional heating 

effects from imbalance currents and harmonics. Accurate 

modeling of these characteristics is critical for configuring 

alarm thresholds (ES1) and trip thresholds (ES2), thereby 

achieving an optimal balance between operational continuity 

and thermal protection [6]. 

Although manufacturers provide standardized time–current 

characteristic data, discrepancies between theoretical 

predictions and actual relay performance remain common due 

to environmental conditions, manufacturing tolerances, and 

dynamic load variations [7-9]. These deviations may result in 

nuisance tripping or insufficient protection under overload 

scenarios, underscoring the need for empirical validation. To 

address this gap, the present study offers a novel contribution 

by experimentally validating the cold- and hot-curve 

performance of the SEPAM 1000+ T20 thermal overload 

relay, which incorporates ANSI 49RMS protection 

functionality and is widely deployed in industrial electrical 

systems. Unlike previous studies that often focus solely on 

cold curve or theoretical models, this study evaluates the 

relay’s performance under both cold and hot curve conditions, 

providing a more comprehensive understanding of the relay's 

behavior under varying thermal conditions. Using controlled 

laboratory conditions, alarm activation times (ES1) and trip 

times (ES2) were recorded for multiple overload levels and 

compared with predictions derived from first-order thermal 

models. 

Furthermore, a regression-based predictive framework was 
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developed, with statistical assumption tests confirming the 

model’s validity [10, 11]. This predictive model enhances the 

ability to optimize protection settings and provides a more 

accurate, reliable approach for configuring thermal protection 

systems in real-world applications. The findings of this 

research provide a refined basis for configuring protection 

settings and enhancing predictive accuracy in industrial 

thermal protection schemes. 

 

 

2. METHOD  

 

The research method employed in this study was designed 

to ensure both theoretical rigor and empirical reliability in 

evaluating the performance of the SEPAM 1000+ T20 thermal 

overload protection relay. The process began with a 

comprehensive literature review that synthesized prior studies 

on thermal overload protection mechanisms, particularly 

focusing on the characteristics of cold and hot curve operations 

as defined in IEC 60255-149. This stage established the 

conceptual framework, identified research gaps, and ensured 

alignment with international standards. Based on these 

foundations, theoretical modeling of overload behavior was 

developed by applying a first-order thermal system approach, 

incorporating key parameters such as the equivalent heating 

current (Ieq), the thermal time constant (τ), and the protection 

thresholds for alarm (ES1) and trip (ES2). The flow of research 

method shown directly in Figure 1. 

 

 
 

Figure 1. Research method 

 

Following the theoretical assessment, the second stage of 

the research consisted of controlled laboratory experiments 

aimed at validating the predictive models. The SEPAM 1000+ 

T20 protection relay was subjected to a series of overload 

scenarios under both cold and hot curve conditions, simulating 

real-world operational environments [11]. Alarm activation 

times and tripping times were recorded for multiple overload 

levels, enabling direct comparison with theoretical 

predictions. The experimental configuration was carefully 

designed to replicate industrial operating conditions, with 

parameter settings for Ib, τ, ES1, and ES2 adjusted according 

to standard requirements. This validation ensured that the 

deviations between theoretical and observed performance 

could be accurately quantified and attributed to identifiable 

factors such as system tolerances, environmental influences, 

or measurement variability. 

The final stage of the research method involved statistical 

analysis to establish the reliability and predictive capability of 

the theoretical models. A simple linear regression framework 

was employed to analyze the relationship between calculated 

and experimental tripping times, supported by classical 

assumption tests including normality, linearity, 

heteroscedasticity, and autocorrelation diagnostics [12, 13]. 

These statistical procedures confirmed the robustness of the 

regression model, demonstrating that theoretical values could 

reliably predict experimental outcomes with minimal 

deviation [14, 15]. The integration of theoretical modeling, 

experimental validation, and statistical verification in this 

structured methodology ensures that the findings are not only 

technically accurate but also reproducible and generalizable, 

thereby contributing to the advancement of reliable protection 

schemes in industrial electrical systems. 

 

 

3. RESULT AND DISCUSSION 

 

This paper demonstrates the percentage deviations between 

theoretical calculations and experimental results were 

analyzed to assess the accuracy of the SEPAM 1000+ T20 

protection relay under both cold and hot curve conditions. 

Deviations between theoretical and practical results are 

common in thermal overload protection systems [11]. For 

example, Wardhana et al. [16] reported 3–7% deviations in 

Overcurrent Relays (OCR), depending on load conditions and 

current injection methods. Similarly, Guo and Huo [17] found 

2–6% deviations in relay protection performance, attributing 

discrepancies to calibration errors, environmental factors, and 

hardware limitations. 

The findings are consistent with those reported in previous 

research, which also attribute deviations to environmental 

factors and system tolerances [18, 19]. Compared to the typical 

3–7% deviations reported in similar research, the deviations in 

this study demonstrate strong alignment between theoretical 

and experimental results. Although the average deviation is 

below 5%, further investigation into the sources of these 

discrepancies is necessary to enhance the reliability of 

predictive models and optimize protection settings for 

industrial applications. 

The block diagram in Figure 2 illustrates the thermal 

overload protection system for electrical equipment, utilizing 

the SEPAM 1000+ T20 protection relay. It starts by measuring 

the RMS values of the current (I1, I2, I3) from different 

phases, with the Max block selecting the highest current value 

to calculate the equivalent heating current (Ieq) [10]. The 

thermal overload model then simulates the temperature rise (θ) 

based on the thermal time constant (τ) and Ieq, determining 

when the system reaches predefined thresholds for alarm 
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(ES1) and trip (ES2). The system adapts to varying conditions 

through switching of thermal settings, which accounts for 

factors like insulation class and ambient temperature. Once the 

temperature exceeds ES1, an alarm is triggered, and if it 

surpasses ES2, the system initiates a trip to prevent damage. 

This diagram directly supports the study’s experimental 

approach, validating the protection relay’s performance under 

both cold and hot curve conditions by comparing theoretical 

and experimental tripping times and alarm activations. 

 

 
 

Figure 2. Control’s system block diagram of thermal overload protection scenario 

 

In the thermal overload model depicted in Figure 2, one 

crucial parameter is the thermal time constant (τ), which 

determines the rate at which the system’s temperature rises in 

response to overload conditions and governs the system's 

thermal behavior. The thermal time constant represents how 

quickly the system approaches thermal equilibrium after a 

change in temperature with the speed of this response is 

modeled by the equation: 

 

θ(t)=𝜃∞ (1-e
-t
τ) (1) 

 

Eq. (1) defines 𝜃(𝑡) as the temperature at time 𝑡, (𝜃∞) as the 

steady-state temperature the system approaches after thermal 

equilibrium is reached. The term (e
-t

τ ) describes the 

exponential approach of the system's temperature to this 

steady-state value, with the speed of this approach determined 

by the thermal time constant (𝜏).  
In this study, the thermal time constant was experimentally 

determined by subjecting the system to controlled overload 

conditions and measuring the temperature rise over time. The 

experimental results were used to estimate τ, ensuring that the 

theoretical model accurately reflects the observed thermal 

response. This allows for precise calculation of when the 

system will exceed the predefined alarm (ES1) and trip (ES2) 

thresholds, optimizing the protection relay's performance. 

The alarm set point (ES1) and trip set point (ES2) for the 

thermal overload protection system are crucial parameters for 

ensuring the protection of electrical equipment. These 

thresholds are calculated based on the relationship between Ib 

and Ieq, with both values playing a critical role in determining 

when the system should trigger an alarm or initiate a trip. The 

ES1 is typically configured to trigger when the system detects 

a thermal rise exceeding 105% of the nominal current. The 

ES2 is set to prevent further damage to the system by 

disconnecting the equipment when the thermal rise reaches a 

higher threshold. This mechanism ensures that the equipment 

is protected from sustained overload conditions [20, 21].  

The SEPAM 1000+ T20 thermal relay, used in this study, 

incorporates these principles by providing configurable time 

constants for heat rise and cooling processes. The thermal time 

constant (T) plays a pivotal role in determining the system’s 

thermal behavior, particularly in its response to overload 

conditions. Two time constants are defined: T1 for heat rise 

during equipment operation and T2 for cooling when the 

equipment is at rest. The t/T ratio, which relates the tripping 

time to the thermal time constant, is a key factor in predicting 

the system’s response. 

The time constants, combined with ES1 and ES2, enable the 

SEPAM 1000+ T20 to offer dynamic, real-time protection that 

adapts to changing load conditions and thermal states. By 

accurately predicting the system’s behavior based on these 

parameters, the relay optimizes protection settings, 

minimizing the risk of nuisance tripping while ensuring the 

equipment’s safety [22]. This approach demonstrates the 

ability of modern thermal protection systems to provide 

reliable, efficient, and responsive protection, especially when 

subjected to real-world operating conditions [23, 24]. 

 

3.1 Analysis of relay performance under cold curve 

conditions 

 

The cold curve analysis for the thermal overload protection 

system is based on the formula for tripping time (t), as derived 

from the first-order thermal system model. The formula for 

calculating t(Ieq) is expressed as Eq. (2) and is defined by the 

IEC 60255-149 standard. This equation characterizes the 

thermal behavior of the system under cold conditions, where 

no thermal pre-load exists [6, 24]. It accounts for the rate of 

temperature rise caused by overload currents, considering both 

the thermal time constant (τ) and the equivalent heating current 

(Ieq). The cold curve operates under steady-state conditions, 

where the relay is initially at reference temperature, with no 

load current flowing prior to the onset of the overload 

condition. 

 

t(Ieq)=
τ.ln(Ieq

2)

Ieq
2-(k.IB)

2
 (2) 

 

This equation serves as the theoretical basis for predicting 

alarm and tripping times, which are then compared to 

experimental results, as presented in Table 1. 

In the cold curve analysis, the alarm threshold (ES1) was 

configured at approximately 105% of the nominal current (Ib), 

serving as an early warning indicator of thermal rise due to 

overload. Based on the theoretical model expressed in Eq. (2), 

the equivalent heating current (Ieq) of 1.1 A was expected to 

trigger an alarm at 242.78 seconds (CAC). Experimental 
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measurements, however, indicated an alarm activation at 

245.67 seconds (CAE), representing a minor deviation of 

1.19% from the theoretical prediction. This close 

correspondence demonstrates the accuracy of the theoretical 

model in predicting early-stage thermal responses. 

 

Table 1. Comparison of theoretical and experimental data based cold curve 

 

Ib 

(A) 

Ieq 

(A) 

Calculated Alarm 

Time (s) (CAC) 

Experimented Alarm 

Time (s) (CAE) 
Deviation 

(%) 

Calculated 

Tripping Time (s) 

(CTC) 

Experimented 

Tripping Time (s) 

(CTE) 

Deviation 

(%) 

1 1.1 242.78 245.67 1.19 287.75 288.13 0.13 

1 1.15 189.56 186.59 1.57 213.88 214.15 0.13 

1 1.2 156.75 158.34 1.01 173.21 172.83 0.22 

1 1.25 133.77 135.95 1.63 146.09 148.18 1.43 

1 1,3 116.52 117.32 0.68 126.28 126.74 0.36 

1 1.35 103.00 101.98 0.99 111.03 110.74 0.26 

1 1.4 92.07 91.76 0.34 98.85 99.06 0.21 

1 1.45 83.04 83.45 0.50 88.88 86.85 2.28 

1 1.5 75.43 72.17 4.33 80.54 80.67 0.16 

1 1.55 68.95 66.94 2.91 73.47 72.14 1.81 

1 1.6 63.35 63.52 0.27 67.39 65.98 2.09 

1 1.65 58.47 57.5 1.66 62.11 63.5 2.24 

1 1.7 54.18 54.6 0.78 57.48 56.27 2.11 

1 1.75 50.38 49.38 1.99 53.40 54.5 2.06 

 

When no corrective action followed the alarm signal, the 

protection relay continued monitoring until the tripping 

threshold (ES2) was reached. The theoretical tripping time at 

the same Ieq level was calculated as 287.75 seconds (CTC), 

whereas the experimental test yielded 288.13 seconds (CTE), 

corresponding to a deviation of only 0.13%. The interval 

between alarm and trip events was therefore 44.95 seconds 

according to the theoretical model, compared to 42.46 seconds 

in the experimental observation. This marginal difference 

highlights the strong agreement between theoretical and 

empirical results, reinforcing the reliability of the protection 

scheme under cold curve conditions. 

However, several factors must be considered to explain the 

minor deviations observed, particularly for higher Ib values, 

such as those at Ib = 1.5 A, where the alarm time deviation was 

4.33%, and at Ieq = 1.45 A, where the tripping time deviation 

was 2.28%. One primary factor is the inherent limitations of 

measurement precision within any experimental setup. Small 

inaccuracies in the timing process, especially over several 

seconds, can contribute to observable discrepancies. These 

deviations, while minor, are within the tolerances typically 

accounted for in laboratory settings and reflect the inevitable 

uncertainties present in practical measurement systems. 

Additionally, the observed discrepancies may arise from the 

thermal transients inherent in the relay system [25]. While the 

theoretical model assumes a steady-state thermal response, the 

actual behavior of the relay is subject to dynamic thermal 

effects, which are not fully captured by the first-order thermal 

model used in this study. Thermal transients, which refer to 

temporary deviations in the rate of temperature rise due to the 

thermal inertia of the system, can lead to faster or slower 

activation times [26, 27]. These transient effects are 

particularly significant at higher overload levels, such as Ieq = 

1.45 A, where the thermal dynamics of the relay become more 

sensitive to changes in internal heat accumulation and the 

thermal time constant (τ). As the system approaches higher 

temperatures, the rate of temperature rise is influenced by 

factors such as internal heating and the relay's ability to 

dissipate heat, leading to slight variances in response times. 

Furthermore, environmental factors, particularly 

fluctuations in ambient temperature, can also contribute to the 

observed deviations [28]. Theoretical models generally 

assume constant ambient conditions, but in real-world testing 

environments, temperature variations can significantly affect 

the thermal response of the relay. These changes impact the 

thermal time constant (τ), which governs the rate of 

temperature change within the system, and consequently, the 

time required to reach the alarm (ES1) and trip (ES2) 

thresholds. Such environmental variations, although difficult 

to control precisely, are a known source of error in thermal 

testing and may explain some of the larger deviations, 

especially at higher current levels. 

 

 
 

Figure 3. Alarm time based-cold curve 

 

 
 

Figure 4. Tripping time based-cold curve 

 

The comparative plots in Figure 3 (CAC vs. CAE) and 

Figure 4 (CTC vs. CTE) further confirm these findings by 
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visually illustrating the near overlap of calculated and 

measured response times. The minimal discrepancies 

observed are consistent with expected tolerances in relay 

operation and can be attributed to measurement precision and 

environmental variability. Overall, the results demonstrate that 

the SEPAM 1000+ T20 relay operates within the prescribed 

performance limits defined by IEC standards, providing 

dependable thermal protection under cold curve conditions. 

 

3.2 Analysis of relay performance under hot curve 

conditions 

 

The hot curve analysis for the thermal overload protection 

system builds upon the same principles as the cold curve, with 

the critical difference being the consideration of the residual 

heating effect from a previous load. This phenomenon 

influences the time-current characteristic by shortening the 

permissible overload duration. The hot curve takes into 

account the thermal state of the equipment, which has already 

been subjected to a steady load after the overload condition 

occurs, as defined in IEC 60255-149. The residual heating 

effect (Ip
2) represents the thermal energy retained by the relay 

from previous overloads, which accelerates the system's 

response to subsequent overloads.  

In estimating Ip
2, it is assumed that the relay retains thermal 

energy from prior overloads, which affects the system’s 

thermal response during a new overload. The model assumes 

a constant thermal time constant (τ) and that the relay reaches 

a stable thermal state after the previous overload, allowing the 

system to respond more quickly to subsequent overloads. The 

theoretical formula for calculating the tripping time (t) in hot 

curve conditions is given by: 

 

t(Ieq)=τ.ln
Ieq

2-Ip
2

Ieq
2-(k.IB)

2
 (3) 

 

Eq. (3) serves as the theoretical basis for predicting alarm 

and tripping times, which are then compared to experimental 

results, as presented in Table 2. 

 

Table 2. Comparison of theoretical and experimental data based hot curve 

 

Ib 

(A) 

Ieq 

(A) 

Calculated Alarm 

Time (s) (HAC) 

Experimented Alarm 

Time (s) (HAE) 
Deviation 

(%) 

Calculated 

Tripping Time (s) 

(HTC) 

Experimented 

Tripping Time (s) 

(HTE) 

Deviation 

(%) 

1 1.1 32.63 32.97 1.04 77.60 76.87 0.93 

1 1.15 20.22 21.02 3.98 44.54 45.12 1.30 

1 1.2 14.48 14.57 0.65 30.94 31.23 0.94 

1 1.25 11.17 10.97 1.80 23.49 24.08 2.51 

1 1,3 9.03 8.79 2.62 18.79 18.1 3.66 

1 1.35 7.53 7.24 3.80 15.56 15.71 0.99 

1 1.4 6.42 6.54 1.89 13.20 12.97 1.74 

1 1.45 5.57 5.32 4.48 11.41 10.95 4.03 

1 1.5 4.90 4.77 2.63 10.01 10.23 2.24 

1 1.55 4.36 4.3 1.29 8.88 9.02 1.62 

1 1.6 3.91 3.81 2.54 7.95 8.09 1.76 

1 1.65 3.53 3.46 2.12 7.18 7.32 1.99 

1 1.7 3.22 3.27 1.64 6.52 6.61 1.33 

1 1.75 2.94 2.84 3.56 5.96 5.78 3.09 

 

The hot curve analysis considers the residual heating effect 

(Ip
2) resulting from prior load conditions, which significantly 

influences the relay’s thermal response. According to the 

theoretical model given in Eq. (3), when the equivalent heating 

current (Ieq) reached 1.1 A, the alarm was expected at 32.63 

seconds (HAC). Experimental testing showed the alarm 

occurring at 32.97 seconds (HAE), representing a deviation of 

only 1.04%. This close alignment confirms that the theoretical 

model adequately captures the early-stage behavior of the 

relay under preheated thermal conditions. 

For the tripping function, the theoretical calculation 

predicted that the system would trip at 77.60 seconds (HTC). 

The corresponding experimental value was 76.87 seconds 

(HTE), resulting in a deviation of 0.93%. The difference 

between the alarm and tripping events was therefore 44.97 

seconds theoretically and 43.90 seconds experimentally. 

demonstrating that the hot curve maintains consistency 

between predicted and observed responses despite the elevated 

initial thermal state. These results underscore the significant 

impact of thermal memory, which accelerates the protection 

response compared to cold curve conditions. The residual 

heating current (Ip
2) is a direct representation of this thermal 

memory, influencing the relay's response time by accounting 

for the preheated state of the system. 

Figures 5 and 6 provide a graphical comparison of 

calculated and measured values for alarm and tripping times, 

respectively. These plots show a strong correspondence 

between theoretical and experimental data, with only minor 

deviations observed. Overall, the results validate that the 

SEPAM 1000+ T20 relay demonstrates reliable performance 

under hot curve conditions, in compliance with IEC standards. 

The findings also emphasize the importance of considering 

thermal history when configuring alarm (ES1) and trip (ES2) 

thresholds, as residual heating significantly impacts the relay’s 

response time. 

 

 
 

Figure 5. Alarm time based-hot curve 
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Figure 6. Tripping time based-hot curve 

 

3.3 Comparative evaluation of cold and hot curve 

characteristics 

 

The comparison between hot and cold curve characteristics 

provides critical insight into the influence of initial thermal 

conditions on relay performance. Under hot curve operation, 

the relay responds from an elevated thermal state due to prior 

steady-state loading, whereas in cold curve operation it begins 

from a reference temperature with no pre-existing thermal 

load. This fundamental difference directly affects the relay’s 

time–current characteristics, resulting in faster alarm and 

tripping responses under hot curve conditions compared to the 

extended operating times observed in cold curve scenarios. To 

further illustrate these differences, Table 3 presents a side-by-

side comparison of theoretical and experimental results for 

both cold and hot curve conditions. The data highlight the 

significant time variations in alarm and tripping responses, 

emphasizing the role of thermal memory in accelerating the 

system’s reaction under hot curve operation. 

A comparative evaluation of cold and hot curve 

performance highlights the substantial influence of initial 

thermal conditions on relay response. As presented in Table 3, 

the cold curve at an equivalent heating current (Ieq) of 1.25 A 

triggered the alarm at 135.95 seconds (CAE), whereas under 

hot curve conditions the alarm occurred significantly earlier at 

10.97 seconds (HAE). Similarly, the tripping times differed 

markedly, with the cold curve recording 148.18 seconds 

(CTE) compared to only 24.08 seconds (HTE) for the hot 

curve. These findings illustrate that the hot curve accelerates 

both alarm and tripping events due to residual heating, thereby 

reducing the permissible overload duration.  

 

 

Table 3. Comparative evaluation of cold and hot curve 

 
Ieq (A) CAE (s) CTE (s) Deviation of Alarm Time (%) HAE (s) HTE (s) Deviation of Tripping Time (%) 

1.1 245.67 288.13 0.13 32.97 76.87 0.93 

1.15 186.59 214.15 0.13 21.02 45.12 1.30 

1.2 158.34 172.83 0.22 14.57 31.23 0.94 

1.25 135.95 148.18 1.43 10.97 24.08 2.51 

1,3 117.32 126.74 0.36 8.79 18.1 3.66 

1.35 101.98 110.74 0.26 7.24 15.71 0.99 

1.4 91.76 99.06 0.21 6.54 12.97 1.74 

1.45 83.45 86.85 2.28 5.32 10.95 4.03 

1.5 72.17 80.67 0.16 4.77 10.23 2.24 

1.55 66.94 72.14 1.81 4.3 9.02 1.62 

1.6 63.52 65.98 2.09 3.81 8.09 1.76 

1.65 57.5 63.5 2.24 3.46 7.32 1.99 

1.7 54.6 56.27 2.11 3.27 6.61 1.33 

1.75 49.38 54.5 2.06 2.84 5.78 3.09 

 

 
 

Figure 7. Comparative behavior of alarm and trip times under cold and hot curve conditions 

 

The time difference between cold and hot curve operations 

becomes increasingly pronounced with higher overload 

multiples. For instance, at Ieq = 1.5 A, the tripping time under 

cold curve conditions exceeded that of the hot curve by 
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approximately 70,44 seconds. This behavior is consistent with 

the concept of thermal memory, in which the preheated state 

of the relay shortens its thermal capacity to absorb additional 

overload before reaching the protection thresholds. The 

comparative trends illustrated in Figure 7 clearly depict the 

divergence between cold and hot curve responses, with the hot 

curve consistently producing faster activation across all 

overload levels. 

These results underscore the necessity of considering both 

cold and hot curve characteristics when configuring thermal 

overload protection systems. Reliance solely on cold curve 

data may overestimate allowable overload durations and 

compromise equipment safety under practical operating 

conditions. Incorporating hot curve behavior into protection 

settings ensures more accurate representation of real-world 

scenarios, thereby minimizing the risks of nuisance trips or 

insufficient protection. This comprehensive consideration 

ultimately enhances the reliability and effectiveness of 

industrial thermal overload protection schemes [29-31].  

 

3.4 Predictive modeling of relay tripping time 

 

A predictive model was developed to estimate the tripping 

times of the SEPAM 1000+ T20 thermal overload protection 

relay under both cold and hot curve conditions. The goal was 

to predict the actual experimental tripping times (HTE and 

CTE) based on theoretical calculations (HTC and CTC), 

essential for ensuring timely and efficient protection of 

electrical equipment.  

The descriptive statistics for the variables used in the 

regression analysis, presented in Table 4, show a close 

alignment between the experimental and theoretical values. 

For example, the mean value of the cold curve alarm set 

calculation (CAC) is 106.30 seconds, while the experimental 

alarm time (CAE) is 106.08 seconds. Similarly, for the hot 

curve, the theoretical alarm time (HAC) and experimental 

alarm time (HAE) both have a mean of approximately 9.28 

seconds, indicating minimal variation between calculated and 

observed results. 

The model is derived from simple linear regression, as 

expressed in the equation: 

 

Y=β
0
+β

1
X+ϵ (4) 

 

where, Y represents the experimental tripping time (either 

HTE for the hot curve or CTE for the cold curve), and denotes 

the theoretical tripping time (HTC for the hot curve or CTC 

for the cold curve). The parameter β0 is the intercept, 

representing the expected experimental tripping time when the 

theoretical tripping time is zero. The coefficient β1, known as 

the slope, quantifies the relationship between theoretical and 

experimental tripping times, reflecting how experimental 

times change in response to variations in theoretical 

predictions. Lastly, ϵ is the error term, accounting for 

deviations between predicted and actual tripping times due to 

factors like measurement errors or unmodeled influences. For 

the hot curve condition, the regression model is expressed as:  

 

Y=β
0
+β

1
X+ϵ 

Y=0,510392+1,003976X+ϵ 
HTE=0,510392+1,003976HTC+ϵ 

(5) 

 

Eq. (5) indicates a near 1-to-1 relationship between the 

theoretical and experimental tripping times. The slope 

coefficient of 1.003976 suggests that the theoretical 

predictions are almost identical to the experimental results, 

validating the model’s accuracy for the hot curve. The 

intercept of 0.510392 reflects a small offset, which is typical 

due to system tolerances and measurement variability. The 

error term accounts for any discrepancies not explained by the 

model. 

 

Table 4. Descriptive statistic of the variables 

 
Variable Code Mean SD Min Max 

Cold curve alarm set calculation CAC 106.30 56.87 50.38 242.78 

Cold curve alarm set experiment CAE 106.08 57.63 49.38 245.67 

Cold curve tripping time calculation CTC 117.17 67.98 53.40 287.75 

Cold cuve tripping time experiment CTE 117.12 68.26 54.50 288.13 

Hot curve alarm set calculation HAC 9.28 8.33 2.94 32.63 

Hot curve alarm set experiment HAE 9.28 8.52 2.84 32.97 

Hot curve tripping time calculation HTC 20.14 19.81 5.96 77.60 

Hot curve tripping time experiment HTE 20.15 19.73 5.78 76.87 

 

Table 5. Results of assumption test 
 

Test Statistic p-Value Conclusion 

Linearity Ramsey 0.15241 Assumption satisfied 

Heteroscedasticity Breusch-Pagan 15.302 Assumption satisfied 

Normality Shapiro-Wilk 0.9656 Assumption satisfied 

Autocorrelation Durbin-Watson 2.5245 Assumption satisfied 

 

According to Table 5, the assumptions of linearity, 

homoscedasticity, normality, and no autocorrelation were all 

confirmed to be satisfied. The Ramsey test for linearity yielded 

a p-value of 0.8606, indicating no violation of linearity. 

Similarly, the Breusch-Pagan test for heteroskedasticity 

returned a p-value of 0.2161, confirming the absence of 

heteroskedasticity. The Shapiro-Wilk test for normality also 

yielded a p-value of 0.8131, supporting the assumption of 

normality. Additionally, the Durbin-Watson test for 

autocorrelation showed a value of 2.5245, confirming the 

absence of autocorrelation in the residuals. 

To visually assess the assumption of normality, a normal Q-

Q plot of the residuals is presented in Figure 8. The plot shows 

the relationship between the theoretical quantiles of a standard 

normal distribution and the sample quantiles of the residuals. 

As observed, the residuals closely follow the diagonal line, 

confirming that the residuals adhere to a normal distribution, 

consistent with the results from the Shapiro-Wilk test for 
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normality. 

 

 
 

Figure 8. Normal Q-Q plot of residuals 

 

These statistical results validate the robustness of the 

predictive model, confirming that the experimental tripping 

times (HTE and CTE) can be reliably predicted using the 

theoretical tripping times (HTC and CTC). The minimal 

deviations observed between the experimental and theoretical 

values further support the model's accuracy. This model 

provides a reliable framework for estimating tripping times in 

thermal overload protection systems, ensuring effective 

protection and minimizing the risk of unnecessary trips. 

 

 

4. CONCLUSION 

 

This study has presented a comprehensive evaluation of the 

SEPAM 1000+ T20 thermal overload protection relay under 

both cold and hot curve operating conditions. Experimental 

validation demonstrated a strong correspondence between 

theoretical calculations and measured performance, with 

deviations consistently remaining below 5%. The results 

confirmed that the relay operates within the tolerance limits 

prescribed by IEC standards, providing dependable protection 

against sustained overloads. 

The comparative analysis revealed that residual heating 

significantly influences protection responses. Under hot curve 

conditions, the relay exhibited substantially shorter alarm and 

tripping times compared to cold curve conditions, highlighting 

the importance of thermal memory in determining operating 

characteristics. These findings underscore the necessity of 

incorporating both cold and hot curve data when configuring 

protection settings to avoid overestimating overload tolerance 

and to ensure accurate representation of real-world operating 

conditions. 

Furthermore, the development of a regression-based 

predictive model provided a robust framework for estimating 

experimental tripping times from theoretical values. The 

model satisfied all classical statistical assumptions, with 

results indicating an almost one-to-one correspondence 

between calculated and observed data. This predictive 

capability offers practical value for optimizing relay 

configuration, minimizing nuisance tripping, and enhancing 

the reliability of thermal protection systems in industrial 

applications. 

However, several limitations should be considered. The 

model presented here is based on the specific characteristics of 

the SEPAM 1000+ T20 relay, and its applicability to other 

relay types with different operational characteristics may 

require further validation. Additionally, environmental factors 

such as temperature fluctuations and humidity, which can 

influence thermal responses, were not fully explored in this 

study. These factors could affect the accuracy of the model in 

real-world conditions. Therefore, future research should 

extend this work by applying the proposed methodology to a 

broader range of protection devices and by exploring advanced 

predictive techniques, such as machine learning, to further 

enhance the accuracy and adaptability of overload protection 

schemes in dynamic industrial environments.  
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