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Despite the promising potential of photovoltaic energy and its wide range of uses, it still 

has shortcomings today, mainly due to its highly sensitive nature to environmental factors, 

resulting in low efficiency and energy loss. Therefore, the implementation of a robust 

control strategy for photovoltaic systems becomes essential in order to efficiently track the 

maximum power point (MPP) and deliver the best possible performance. This study 

proposes the implementation of a non-linear Proportional-Integral (NPI) controller in a PV 

system with a resistive load. The NPI controller is designed by integrating a non-linear 

gain function based on Popov’s stability criterion into the classical PI structure, aligning 

with the nonlinear characteristics of PV systems. Furthermore, intelligent control 

techniques, in particular these metaheuristic algorithms: Particle Swarm Optimization 

(PSO), Genetic Algorithm (GA) and Grey Wolf optimizer (GWO), were utilized to fine-

tune both non-linear PI and classic PI controllers. The performance of the proposed 

approach is assessed using key metrics such as Mean Square Error (MSE), overshoot, 

settling time, and efficiency, demonstrating its effectiveness in enhancing PV system 

operation. 
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1. INTRODUCTION

Photovoltaic energy has received particular attention in 

recent years due to its sustainability and wide range of 

applications, including stand-alone systems, grid-connected 

installations and small-scale uses such as street lighting [1, 2]. 

However, the efficiency of photovoltaic systems is very 

sensitive and highly dependent on environmental factors, 

including irradiation and temperature, which can significantly 

reduce energy production and lead to energy losses [3]. 

In such circumstances, traditional MPPT methods such as 

perturbation and observation (P&O) and incremental 

conductance (InC) often offer limited performance and 

numerous ripples [4]. Consequently, achieving reliable 

performance of photovoltaic systems under these specific 

conditions is still a critical challenge in ongoing research.  

To overcome these limitations in photovoltaic systems, the 

integration of a robust control loop is essential for regulating 

output and enhancing overall system performance. Among the 

most commonly used techniques is the PID controller, widely 

recognized for its effectiveness, simplicity, and ease of 

implementation [5]. 

However, one of the main drawbacks of PID controllers is 

to properly choose a suitable and correct control gains to get 

the best possible performance [6], which is even trickier in 

non-linear systems such as photovoltaics. Various techniques 

are available for this purpose, such as manual tuning, Ziegler 

and Nichols, and more recent ones introducing artificial 

intelligent computing [7]. 

While recent strategies offer notable advantages, they are 

also associated with certain trade-offs. Consequently, there is 

a growing interest on artificial-intelligence-based methods and 

soft computing techniques along with optimization algorithms 

in enhancing solar PV panels and to cope with the system's 

inherent nonlinear behavior. However, despite the 

effectiveness of AI-based techniques such as the Fuzzy Logic 

Controller (FLC) and Artificial Neural Networks (ANN) in 

achieving high tracking performance, they often struggle 

under conditions of strong nonlinearities, particularly during 

partial shading. As a result, these methods are prone to 

stagnation at local power points, exhibit prolonged settling 

times, and suffer from reduced tracking accuracy. 

Moreover, it is worth mentioning that the combination of 

these methods is also considered a go-to solution to mitigate 

the limitations of both strategies, offering very efficient 

tracking of MPP and GMPP in partial shading scenarios. Many 

maximum power point tracking algorithms (MPPT) 

techniques was discussed and summarized in the study [8], 

evaluated under both uniform and partial shading scenarios. 

To meet this challenge, several techniques have been used, 

based on well-known classical techniques and on more recent 

intelligence-based techniques. An intelligent control technique 

combining an SPSOA MPPT algorithm with a non-linear 

NPID controller and compared to a conventional technique 

such as a conventional PID controller was proposed in the 

study [9], the results showed a reduction in power losses and 

an increase in PV system reliability as the proposed control 

outperformed other techniques. In the study [10], an intelligent 

Journal Européen des Systèmes Automatisés 
Vol. 58, No. 8, August, 2025, pp. 1561-1573 

Journal homepage: http://iieta.org/journals/jesa 

1561

https://orcid.org/0009-0005-9507-7450
https://orcid.org/0000-0002-5723-0099
https://orcid.org/0000-0003-3653-8470
https://crossmark.crossref.org/dialog/?doi=10.18280/jesa.580803&domain=pdf


 

self-adaptive MPPT strategy based on the integration of 

Adaptive Neuro-Fuzzy Inference System (ANFIS) with PSO 

optimization to enhance energy extraction efficiency. The 

proposed approach was evaluated under a variety 

environmental condition, demonstrating MPPT efficiencies of 

99.2% under uniform irradiation and 98.7% under 

dynamically changing conditions, outperforming conventional 

MPPT algorithms Notably, the proposed ANFIS-PSO 

technique can avoid the local power maxima under partial 

shading scenarios by accurately identifying the point of 

maximum overall power. Overall, the approach significantly 

improved energy tacking efficiency with minimal grid 

disturbances, and enhanced the robustness of the PV system. 

In addition, for parameter optimization, a hybrid GA-PSO 

algorithm was used for both controllers, resulting in improved 

system stability. In the study conducted by Malarvili and 

Mageshwari [11] a modified nonlinear PID controller was 

formulated in compliance with the Popov criterion, ensuring 

system hyperstability for both MPPT control and the 

regulation of a single-stage single-phase (SSSP) grid-

connected inverter in a photovoltaic system. The proposed 

approach demonstrated enhanced MPPT performance, 

characterized by rapid convergence and reduced oscillations 

around the maximum power point. Furthermore, the nonlinear 

PID controller exhibited improved effectiveness in inverter 

control, achieving a total harmonic distortion (THD) of less 

than 0.5%, minimizing energy losses through accurate MPP 

tracking, and maintaining a unity power factor on the grid side. 

A nonlinear control strategy was proposed in the study [12] for 

regulating current and voltage in a photovoltaic (PV) system 

integrated into a microgrid. The study presented a comparative 

analysis between the nonlinear PI (NPI) controller and a 

conventional PI controller. The proposed method employs a 

variable nonlinear gain function that dynamically adjusts 

according to the system error. when the error is large, the gain 

increases to accelerate the convergence toward the reference, 

while near the desired value, it decreases to ensure smooth 

tracking. This adaptive mechanism effectively suppresses 

high-frequency oscillations and reduces the settling time by 

stabilizing the system more rapidly. Furthermore, simulation 

results demonstrated a notable improvement in performance, 

with a consistent reduction in the Integral of Absolute Error 

(IAE) across all tested scenarios. In the study [13], the PID 

controller gains are optimized using the Particle Swarm 

Optimization (PSO) algorithm and compared to those obtained 

through the Cohen-Coon method. The results demonstrate that 

the PSO-optimized PID controller significantly enhances both 

transient and steady-state performance, achieving a settling 

time of 2.37 s and an overshoot of 0.78%, compared to 6.12 s 

and 20.14% with the Cohen-Coon method. These findings 

underscore the advantages of incorporating artificial 

intelligence techniques in control system design. Overall, 

PSO-tuned controllers were shown to outperform the Cohen-

Coon method in all areas. In the study [6], the Gorilla Troops 

Optimizer (GTO) algorithm was used to fine-tune the PID 

controller gains. Four types of error evaluation indicators were 

used: integral absolute error (IAE), integral time absolute error 

(ITAE), integral square error (ISE) and integral time square 

error (ITSE). The results showed that soft computing tools 

provide better results when tuning the gain of PID controllers 

than more traditional methods such as Z-N tuning. In addition, 

GTO showed promising results in terms of rise time, stability 

and settling time, as well as minimum steady-state error. In the 

study [14], introduced a teaching-learning-based optimization 

TLBO to optimize the parameter of a fractional order PID 

(FOPID) controller in a grid connected PV system, simulation 

results showed the effectiveness of the proposed control 

strategy with better dynamic response and outperforming other 

techniques. Finally, in the study [15] GWO was used to adjust 

the converter duty cycle to maximize output power, resulting 

in greater stability and rapid convergence with less oscillation. 

A 43.6% improvement in output power was observed 

compared to the situation without MPPT. 

Improving the performance of photovoltaic systems 

remains a persistent challenge despite academic research, and 

the various existing conventional strategies have known 

limitations. To fill this persistent gap, nonlinear PID 

controllers comes as a viable answer. As an extended version 

of conventional PID controllers, they are characterized by 

additional non-linear gain cascaded with the conventional 

structure, they offer more flexibility and better alignment with 

the inherently nonlinear nature of PV systems, thereby making 

them ideally suited for such applications. Furthermore, tuning 

the parameters of such controllers is essential to achieve 

maximum system efficiency. Among the many existing 

algorithms, Genetic Algorithm (GA), Particle Swarm 

Optimization (PSO) and Grey Wolf Optimizer (GWO) have 

enjoyed remarkable success in various applications. 

This paper is organized as follows: Section 2 presents the 

description of the photovoltaic system and behavior analysis. 

Section 3 deals with the design of the NPID controller. 

Optimization algorithms and the fitness function used in this 

work are carried out in Sections 4 and 5 respectively. The 

results, along with performance evaluations, are discussed in 

Section 6. The concluding remarks are provided in Section 7. 

 

 

2. PV DESCRIPTION AND ANALYSIS 

 

The complete system is consisted of a PV array for solar 

energy conversion, boost DC/DC converter connected to a 

resistive load and a MPPT algorithm with controller. The 

conception of the PV system is presented in Figure 1. 

 

 
 

Figure 1. PV system control configuration 

 

The array is composed of multiple identical PV modules 

connected in a combination of series and parallel to achieve 

the desired voltage and current levels. For this work, a Solar 

Power Industries SPI-M210-60 PV Panel was utilized in this 

study, PV array is consisted of 10 modules in series and 40 in 

parallel to supply an 83.9 kW output power under standard test 

conditions (STC), i.e., solar radiation of 1000 W/m2, and a 

temperature of 25℃. Details are found in Table 1. 
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Table 1. PV array specifications 

 

Parameter Value 

Rated power per module 209.8 W 

Number of modules in series 10 

Number of modules in parallel 40 

Pv array maximum power 83.9 kW 

Pv array Mpp voltage/current 
289 V / 290.4 

A 

Open circuit voltage/ short circuit 

current 

364 V / 316.4 

A 

 

 
(a) P-V 

 
(b) I-V 

 

Figure 2. Characteristics of PV array under STC 

 

 
(a) P-V 

 
(b) I-V 

 

Figure 3. Characteristics of PV array under various 

irradiance levels 

In order to comprehend the non-linear dynamic of the PV 

system, an analyze of the influence of abrupt variations of 

environmental conditions is conducted. Figure 2 to Figure 4 

present the P-V and I-V characteristics of PV array under 

different conditions.  

 

 
(a) P-V 

 
(b) I-V 

 

Figure 4. Characteristics of PV array under various 

temperature levels 

 

Figure 2 presents the P-V and I-V characteristic under 

Standard Test Conditions (STC) which are 1000 W/m2 of 

irradiance and temperature of 25℃.  

Figure 3 depicts the P-V and I-V characteristic when 

temperature is at 25℃ and different levels of irradiance set at 

200 W/m2 and 1000 W/m2.  

As can be seen, when irradiance increases, delivered current 

increases and so generated power, and voltage varies very 

slightly. Thus, maximum power point varies with important 

amounts.  

In contrast, when irradiance is maintained at 1000 W/m2, 

and temperature varies between 5℃ and 45℃. When 

temperature increases voltage at maximum power point 

decreases leading to a reduction in the overall maximum 

power point. It is worth mention that the increase in irradiance 

and temperature have opposite influence on PV system, as 

depicted in Figure 4. 

Tracking the maximum power point is the role of MPPT 

controllers, different techniques exist in both literature and 

industry. 

 

 

3. CONTROL STRATEGY – NPID CONTROLLER 

 

Despite the widespread use and popularity of PID 

controllers for their robustness, they lack adaptability in non-

linear systems such as photovoltaics due to abrupt changes in 

environmental operating conditions [16]. Non-linear PID 

controllers have been developed to overcome the 

shortcomings of conventional PID controllers. The typical PID 

controller is often expressed in its standard form, as employed 

in references [17, 18], acting on the error by means of three 
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actions: proportional, integral and derivative, each weighted 

by a specific gain, Kp, Ki and Kd respectively, and is defined 

as follows:  

 

𝑈𝑐(𝑡) = (𝐾𝑝𝐸(𝑡) + 𝐾𝑖 ∫𝐸(𝑡)𝑑𝑡 + 𝐾𝑑

𝑑𝐸(𝑡)

𝑑𝑡
) (1) 

 

3.1 Design of non-linear gain – Popov’s hyper stability 

criterion 

 

Non-linear PID controller is derived by introducing a non-

linear hyperbolic cosine gain function in cascade with the 

conventional PID structure [11, 19]. Block diagrams are 

displayed in Figures 5 and 6. 

The non-linear gain is designed based on the hyperstability 

criterion, which guarantees robust and global system stability 

[20]. Consequently, the output of the NPID controller is 

defined as follows: 

 

𝑈_𝑐 (𝑡) = (𝐾(𝑒)) (𝐾𝑝𝐸(𝑡) + 𝐾𝑖 ∫𝐸(𝑡)𝑑𝑡

+ 𝐾𝑑

𝑑𝐸(𝑡)

𝑑𝑡
) 

(2) 

 

𝑈𝑐(𝑡) = (𝜓(𝑒)) (𝐾𝑝 + 𝐾𝑖 ∫𝑑𝑡 + 𝐾𝑑

𝑑

𝑑𝑡
) (3) 

 

 
 

Figure 5. Linear PID control block 

 

 
 

Figure 6. Non-linear PID block diagram 

 

Here, K(e) denotes the nonlinear gain, and ψ(e)  is a 

nonlinear transformation of the error signal, defined as: 

 

𝜓(𝑒) = (𝐾(𝑒) × 𝐸(𝑡)) (4) 

 

 
 

Figure 7. Hyper stable nonlinear PID block diagram 

 

Illustration of a modified hyper stable nonlinear PID 

controller is shown in Figure 7. 

The non-linear gain is designed based on Popov’s criterion, 

which states global asymptotic stability if both of the 

following conditions are satisfied: 

For the nonlinear part: 

 

𝜂(𝑡0, 𝑡1) = ∫ 𝐸(𝑡)𝜓(𝑒) 𝑑𝑡 ≥ −𝛾0
2

𝑡1

𝑡0

  ∀ 𝑡1 ≥ 𝑡0 (5) 

where, 𝛾0
2 is a positive finite constant, and for the linear part:  

The transfer function ( 𝐾𝑝 + 𝐾𝑖 ∫𝑑𝑡 + 𝐾𝑑
𝑑

𝑑𝑡
) (

𝐶(𝑡)

𝑈𝑐(𝑡)
) must 

be strictly positive real by Kalman-Yakubovich-Lemma. 

By inserting (4) in (5), we derive: 

 

𝜂(𝑡0, 𝑡1) = ∫ 𝐸(𝑡)𝐾(𝑒)𝐸(𝑡) 𝑑𝑡 
𝑡1

𝑡0

≥ −𝛾0
2       ∀ 𝑡1 ≥ 𝑡0 

(6) 

 

To satisfy the inequality (6), 𝐾(𝑒) could be in any form of 

nonlinear function of error 𝐸(𝑡) that is bounded in the range 

0 ≤ 𝐾(𝑒) ≤ 𝐾𝑚𝑎𝑥 . 

To efficiently design the nonlinear gain function, it is 

essential to analyze the closed-loop control behavior. During 

the transient phase, the error 𝐸(𝑡) is relatively large; therefore, 

𝐾(𝑒) should also be large to accelerate the system's response. 

Conversely, in the steady-state phase, 𝐸(𝑡)  becomes small, 

and 𝐾(𝑒)  should decrease accordingly to minimize steady-

state oscillations while maintaining accuracy. This adaptive 

adjustment ensures rapid convergence when the system 

experiences disturbances while preserving stability once it 

reaches the desired operating point. 

As a result, the nonlinear gain 𝐾(𝑒) is defined as in (7), 

exhibiting a nonlinear dependence on the error and being 

proportional to an exponential function with base 𝛽. 

 

𝐾(𝑒) = 𝐾0(𝛽)𝑒 where:  𝐾0, 𝛽 ≥ 0 (7) 

 

For 0 < 𝛽 < 1: the error is defined as  

 

𝑒 = {
𝑒,             𝑒 ≥ −𝑒𝑚𝑎𝑥

−𝑒𝑚𝑎𝑥 ,    𝑒 < −𝑒𝑚𝑎𝑥
 

 

For 𝛽 > 1: 
 

𝑒 = {
𝑒,             𝑒 ≤ 𝑒𝑚𝑎𝑥

+𝑒𝑚𝑎𝑥 ,    𝑒 > 𝑒𝑚𝑎𝑥
 

 

𝑒𝑚𝑎𝑥 can be determined according to the dynamics of the 

system. Thus, by substituting Eq. (6) in Eq. (7): 

 

𝜂(𝑡0, 𝑡1)

= ∫ 𝐸(𝑡)[𝐾0(𝛽)𝑒]𝐸(𝑡) 𝑑𝑡
𝑡1

𝑡0

= ∫ 𝐸(𝑡)𝐾0exp (𝑒 ln(𝛽))𝐸(𝑡) 𝑑𝑡 ≥ 0 ≥ 
𝑡1

𝑡0

−𝛾0
2 

(8) 

 

𝐾(𝑒) is defined in [0,∞]. From Eq. (8), we get:  

 

𝐾(𝑒) = 𝐾0exp (𝑒 ln(𝛽)) (9) 

 

Inserting α = ln(𝛽)  in Eq. (9), we obtain: 𝐾(𝑒) =
𝐾0exp (α𝑒), with 𝐾0, 𝛽 and α ≥ 0.  

Hence, the nonlinear gain is specified separately for the two 

regions 𝛽 < 1 and 𝛽 > 1. As follows:  

For 𝛽 = exp (−α) < 1; 𝐾(𝑒) is defined as: 

 

𝐾(𝑒) = 𝐾0 exp(−α𝑒)

=  {

𝐾0                          𝑒 = 0                                     

0                            𝑒 → +∞ ∶ 𝑙𝑜𝑤𝑒𝑟 𝑏𝑜𝑢𝑛𝑑

𝐾0 exp(α𝑒𝑚𝑎𝑥)        𝑒 < −𝑒𝑚𝑎𝑥  ∶ 𝑢𝑝𝑝𝑒𝑟 𝑏𝑜𝑢𝑛𝑑

 

 

1564



For 𝛽 = exp (α) > 1: 
𝐾(𝑒) = 𝐾0 exp(α𝑒)

= {

𝐾0  𝑒 = 0      

0        𝑒 → −∞ ∶ 𝑙𝑜𝑤𝑒𝑟 𝑏𝑜𝑢𝑛𝑑

𝐾0 exp(α𝑒𝑚𝑎𝑥)    𝑒 > +𝑒𝑚𝑎𝑥  ∶ 𝑢𝑝𝑝𝑒𝑟 𝑏𝑜𝑢𝑛𝑑

 

A limitation common to both expressions of 𝐾(𝑒)  for 

regions 𝛽 < 1  and 𝛽 > 1  arises at their lower boundary, 

where the gain becomes inefficient. Specifically, as the error 

approaches large magnitudes (e→±∞) the minimum gain 

reaches 𝐾𝑚𝑖𝑛 = 0 , causing the control action to lose the

desired responsiveness. Therefore, an enhanced nonlinear gain 

formulation can be introduced by combining both of the two 

previous cases giving in hyperbolic cosine function to enhance 

performance while preserving the stability properties of the 

closed-loop system.  

𝐾(𝑒) = 𝐾0

𝑒𝑥𝑝(α𝑒) + 𝑒𝑥𝑝 (−α𝑒)

2
= 𝐾0 𝑐𝑜𝑠ℎ(α𝑒) (10) 

where, 

𝑒 = {
𝑒,  |𝑒| ≤ 𝑒𝑚𝑎𝑥

𝑒𝑚𝑎𝑥𝑠𝑖𝑔𝑛(𝑒), |𝑒| > 𝑒𝑚𝑎𝑥

𝐾(𝑒) = {
𝐾0,        𝑒 = 0

𝐾0 cosh(α𝑒𝑚𝑎𝑥) , |𝑒| > 𝑒𝑚𝑎𝑥

4. METAHEURISTIC ALGORITHMS

Metaheuristic algorithms are one tool among many that are 

being constantly developed in the artificial intelligence field. 

A great answer to real world problems, they are considered an 

effective optimization strategy as they offer great performance 

due to their high flexibility controller parameters tuning [21, 

22]. 

 Metaheuristic algorithms aim to enhance candidate 

solutions through iterative processes, exploring the search 

space using adaptive, nature-inspired strategies [23]. Their 

flexibility and robustness make them particularly suitable for 

solving complex, dynamic, and non-linear optimization 

problems [24]. 

Among the myriads of metaheuristic algorithms available, 

three distinct types stand out for their promising performance 

in this field: the GA [25-28], the particle swarm optimizer 

(PSO) [29-31] and, more recently, the gray wolf optimizer 

(GWO) [32-34]. 

4.1 Genetic Algorithm (GA) 

The Genetic Algorithm (GA) is a stochastic optimization 

method inspired by the principles of natural selection and 

evolution. Renowned for its effectiveness in handling complex 

and nonlinear problems, GA simulates evolutionary processes 

through biologically inspired operators such as selection, 

crossover, and mutation. These mechanisms enable the 

algorithm to explore a wide solution space and progressively 

refine candidate solutions toward high-quality outcomes. Due 

to its robustness and adaptability, GA has been widely adopted 

in control systems engineering applications, extensively for 

optimizing the parameters of PID controllers, where it has 

gained significant interest in recent research. Step by step 

implementation of GA algorithm inspired from the study [35] 

is given as follows:  

(a) Procedure:

•Set count for the number of generations; t=0.

•Create initial population of potential solutions randomly

denoted as P(O). 

•Each individual P(t) undergoes evaluation through a fitness

function, t is the population index. 

(b) If termination criteria are not satisfied do:

•t++

•Next generation is created

•Introduce crossover among a subset of the population t

•Mutation process for a portion of the population t

•Evaluation of the fitness for the next generation

(c) Return best solution

4.2 Particle Swarm Optimization (PSO) 

Kennedy and Eberhart were the first to propose the Particle 

Swarm Optimization (PSO) algorithm in reference [36]. Its 

strategy is modeled after the collective patterns of 

sociobiological animal, such as flocks of birds, shoals of fish, 

and also bees, especially when searching for food, and how 

their unison leads to enhanced outcome [37]. 

In this approach, the search space is explored by particles 

that update their velocities and positions in response to both 

their own prior successes and the performance of their peers. 

The algorithm promotes collaboration among particles, 

allowing them to be influenced by the most successful 

individuals, which helps steer the entire swarm toward 

promising regions of the solution space [38]. These dynamics 

are mathematically governed by update equations (see Eqs. 

(11)-(12)), which balance exploration and exploitation. The 

swarm progressively refines its search, guided by each 

particle’s best-known position and the overall best solution 

found so far. PSO algorithm is given bellow [39]:  

a. Initialize particle positions and velocities randomly

b. Assess the fitness function of every particle

c. Update the current and global best positions

d. Update velocity and position according to equation

e. Repeat until stopping condition is met

The mathematical formulation of the PSO algorithm, as

utilized in reference [40], is governed by the following Eqs. 

(11) and (12):

𝑉_𝑖 = 𝜔𝑉𝑖−1 + 𝑐1𝑟1(𝑃𝑏𝑒𝑠𝑡 − 𝑋𝑖−1)
+ 𝑐2𝑟2(𝐺𝑏𝑒𝑠𝑡 − 𝑋𝑖−1)

(11) 

𝑋𝑖 = 𝑋𝑖−1 + 𝑉𝑖 (12) 

where, 𝑉𝑖 represents the velocity of the particle, 𝑋𝑖 its position, 
𝑃𝑏𝑒𝑠𝑡the best position found by the particle, and 𝐺𝑏𝑒𝑠𝑡 the best 
position found by the entire population. The parameter 𝜔 

denotes the inertia weight, 𝑐1 and 𝑐2 are acceleration 
coefficients, and 𝑟1 , 𝑟2 are random values uniformly

distributed in the range (0, 1). 

4.3 Grey Wolf Optimization (GWO) 

The Grey Wolf Optimizer (GWO) is a nature-inspired, 

population-based optimization technique that draws from the 

social structure and hunting behavior of grey wolves [41]. In 

the wild, these animals live in groups of 5 to 12 members, 

organized by a strict social hierarchy. Each wolf holds a rank 

(alpha, beta, delta, or omega) which determines its role in the 

pack. The alpha wolf, whether male or female, leads the group 

and is responsible for decision-making. GWO models this 
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hierarchy to structure the optimization process, simulating the 

wolves’ natural strategy in hunting prey. This behavior is 

represented in three phases: tracking and chasing the prey, 

surrounding and pressuring it, and finally attacking [42]. 

These actions are mathematically expressed by: 

 

𝐷⃗⃗ = |𝐶.⃗⃗  ⃗ 𝑋𝑝
⃗⃗ ⃗⃗  (𝑡) − 𝑋 (𝑡)| (13) 

 

𝑋 (𝑡 + 1) = 𝑋𝑝
⃗⃗ ⃗⃗  (𝑡) − 𝐴.⃗⃗  ⃗ 𝐷⃗⃗  (14) 

 

𝑋𝑝
⃗⃗ ⃗⃗  (𝑡)  represents the target estimated position, 

corresponding to the current best solution, while 𝑋 ⃗⃗  ⃗(𝑡) denotes 

the position of the search agent – the grey wolf position, The 

coefficient vectors 𝐴 ⃗⃗  ⃗and 𝐶 ⃗⃗  ⃗are defined as follows: 

 

𝐴 = 2𝑎 . 𝑟1⃗⃗⃗  − 𝑎  (15) 

 

𝐶 = 2𝑟2⃗⃗  ⃗ (16) 

 

Here, the coefficient vector 𝑎 ⃗⃗⃗  decreases linearly from 2 to 0 

throughout the iterations, while 𝑟1 ⃗⃗⃗⃗ and 𝑟2⃗⃗  ⃗ are random vectors 

uniformly distributed in the interval [0,1]. The position of each 

search agent is updated according to the influence of the three 

leading solutions, which are alpha, beta, and delta and 

expressed as below: 

 

𝑋 ⃗⃗  ⃗(𝑡 + 1) =
𝑋1
⃗⃗⃗⃗ + 𝑋2

⃗⃗⃗⃗ + 𝑋3
⃗⃗⃗⃗ 

3
 (17) 

 

This mechanism effectively balances global exploration and 

local exploitation, allowing the Grey Wolf Optimizer to 

converge efficiently toward optimal solutions within complex 

and nonlinear search spaces. 

GWO algorithm follows these steps:  

Step 1. Initialize a population of search agents 𝑋𝑖, where i 

=1, 2..., n. 

Step 2. Compute the initial coefficients a, A, and C using 

Eqs. (15) and (16). 

Step 3. Evaluate the fitness of each agent and identify: 

Xα: the best solution (alpha wolf) 

Xβ: the second-best solution (beta wolf) 

Xδ: the third-best solution (delta wolf) 

a. Repeat the following steps until the maximum number of 

iterations tmax is reached: 

(i) For each search agent 

• Randomly generate values for r1 and r2 

• Update the position of the agent using Eq. (17) 

(ii) Update the values of a, A, and C 

(iii) Recalculate the fitness of all agents 

(iv) Update the leader wolves Xα, Xβ, and Xδ 

(v) Increment the iteration counter t ← t +1 

b. Return Xα as the best solution found by the algorithm. 

 

 

5. FITNESS FUNCTION 

 

To evaluate system performance, there are various 

processing criteria, whose aim is to minimize the error 

between the desired setpoint and the system output. They play 

a crucial role in guiding the algorithm towards the best 

solution. In the context of this research, the mean square error 

(MSE) cost function was chosen, along with metrics like: 

Maximum Overshoot (Mp), Steady State Error (ess), and 

Settling Time (ts).  

The MSE calculates the mean square error and is defined as 

follows: 

 

𝑀𝑆𝐸 =
1

𝑛
∑(𝑟(𝑖) − 𝑦(𝑖))

2
𝑛

𝑖=1

 (18) 

 

𝑦(𝑖) is the output voltage of PV array and 𝑟(𝑖) is the desired 

output voltage generated from MPPT algorithm. 

Maximum Overshoot (Mp): maximum peak of the output 

(𝑥𝑝𝑒𝑎𝑘) from the desired setpoint (𝑥𝑠𝑒𝑡𝑝𝑜𝑖𝑛𝑡) during a transient 

response. It is expressed in percentage (%) and calculated as 

follows: 

 

𝑀𝑝 =
𝑥𝑝𝑒𝑎𝑘 − 𝑥𝑠𝑒𝑡𝑝𝑜𝑖𝑛𝑡

𝑥𝑠𝑒𝑡𝑝𝑜𝑖𝑛𝑡

× 100% 

 

Steady State Error (ess): difference between the output and 

the desired output (reference) during steady state.  

Settling Time (ts): Time taken for the system to stay within 

a certain band (±5% in this work) of the setpoint. 

To capture the trade-offs among various dynamic 

performance metrics, a weighted sum objective function is 

employed. This allows simultaneous minimization of error, 

overshoot, steady state error, and settling time: 

 

𝐽 =  𝜔1 × 𝑀𝑆𝐸 + 𝜔2 × 𝑀𝑝 + 𝜔3 × 𝑒𝑠𝑠 + 𝜔4 × 𝑡𝑠 

 

where, 𝜔1, 𝜔2, 𝜔3, 𝜔4 are the weighting coefficients assigned 

to each metric. In this study, the weights are set as follows: 

𝜔1 = 0.4 , 𝜔2 = 0.2 , 𝜔3 = 0.2 , and 𝜔4 = 0.2.  They were 

selected to emphasize tracking accuracy through MSE, and 

balancing out the other metrics. 

 

 

6. EXPERIMENTAL RESULTS  

 

6.1 Response of PV system under standard test condition  

 

In order to identify the most appropriate parameters for 

Genetic Algorithms (GA), Particle Swarm Optimization (PSO) 

and Gray Wolf Optimization (GWO), further analysis was 

carried out, and the outcomes are presented in Tables 2-4. 

 

Table 2. Configuration of GA parameters 

 
Parameter Value 

Population size 30 

Mutation Rate 0.3 

Crossover Rate 0.7 

Lower Bound 0 

Upper Bound 1 

Number of generations 100 

 

The objective function evolution graph is shown in Figure 

8 for the PI controller and in Figure 9 for the NPI controller. 

As can be seen, the non-linear PI controller has the best 

optimal objective function value, 690.6, compared to the 

conventional PI controller, whose best objective fitness value 

is 1001. As far as the best algorithm performance is concerned, 

it is clear that the output of the Gray Wolf optimizer (GWO) 

is superior to that of the GA and the particle swarm optimizer 

in terms of convergence speed, since it could reach the lowest 
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value faster with only 5 iterations for the NPI and 3 iterations 

for the conventional PI. It can therefore be said that the non-

linear PI controller with the Gray Wolf optimizer improves the 

system's stability and time response, and has potentially the 

best overall performance. The tuned parameters are shown in 

the Table 5. 

 

Table 3. Configuration of PSO parameters 

 

Parameter Value 

Swarm Population size 30 

Inertia Weight (𝜔) 0.5 

Cognitive Coefficient (𝑐1) 1 

Social Coefficient (𝑐2) 2 

Lower Bound 0 

Upper Bound 1 

Max Iteration 100 

 

Table 4. Configuration of GWO parameters 

 
Parameter Value 

Number of Search Agents 30 

Lower Bound 0 

Upper Bound 1 

Max Iteration 100 

 

 
 

Figure 8. Convergence graph of PI controller objective 

function 

 

 
 

Figure 9. Convergence graph of NPI controller objective 

function 

 

Table 5. Tuned PI and NPI controller gains 

 
Controller  Kp Ki 𝛂 𝑲𝟎 

PI 

ga 0.6215 0.0108 - - 

pso 0.6309 0.0229 - - 

gwo 0.6153 0.00998 - - 

NPI 

ga 0.4992 0.3872 0.0003 1 

pso 0.6001 0.3158 0.0195 0.8545 

gwo 0.8610 0.63759 0.0001 0.6045 

 
 

Figure 10. Comparison of elapsed optimization times for PI 

and NPI controllers 

 

Figure 10 shows that NPI-based controllers require longer 

optimization times than PI controllers, indicating higher 

computational complexity due to their nonlinear structure and 

additional gains. Among the algorithms, GA exhibits the 

highest elapsed time, while GWO achieves the lowest for PI 

tuning. Nevertheless, this increased computational demand in 

NPI controllers is offset by their superior control performance. 

To demonstrate the importance of implementing a robust 

control loop in PV systems, including the application of 

artificial intelligence-based metaheuristic algorithms for fine 

tuning both PI controller and nonlinear PI controller (NPI), the 

tracking efficiency of each controller was evaluated and first 

tested under standard test condition (STC), i.e., under 

temperature of 25℃ and irradiance of 1000 W/m2. The results 

are shown in figures below. The system efficiency is evaluated 

under steady-state conditions using the following expression: 

 

𝐸𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦 (𝜂) =
𝐸𝑥𝑝𝑒𝑟𝑖𝑚𝑒𝑛𝑡 𝑃𝑜𝑤𝑒𝑟

𝐴𝑐𝑡𝑢𝑎𝑙 𝑃𝑜𝑤𝑒𝑟
× 100  (19) 

 

In the other hand, application of metaheuristic algorithms in 

tuning of PI controller shows significant improvement in terms 

of oscillations, ripple and settling time, details are depicted in 

Table 6. And thus, the system exhibits faster dynamic response 

and overall better tracking efficiency of MPP, which 

highlights the added value of optimization based on 

metaheuristic algorithms. Also, it can be said that Gray Wolf 

Optimization shows slightly better performances comparing it 

to both Genetic Algorithm and Particle Swarm Optimization. 

The Figures 11-14 present the systems response of power, 

voltage, and current of conventional method MPPT P&O and 

PI-GA, PI-PSO and PI-GWO respectively. It can be seen from 

Figure 11 that P&O MPPT control shows significant 

oscillations and persistent ripples, even during steady state 

across all three signals, i.e., Power, voltage and current. In 

addition, settling time is relatively slow. Indicating, an 

unstable tracking near MPP. 

 

Table 6. Results of P&O MPPT and PI-based algorithms 

 

Controller 
MPPT 

P&O 

PI-

GA 

PI-

PSO 

PI-

GWO 

Overshoot (%) 5.37 13.62 12.51 1.57 

Rise time (s) 0.0075 0.0042 0.0042 0.0043 

Settling time 

(s) 
0.012 0.0069 0.0068 0.0066 

Ripple (%) 9.94 3.69 3.65 3.18 

Efficiency (%) 94.91 99.52 99.71 99.92 
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Figure 11. P&O MPPT output 

 

 
 

Figure 12. PI-GA based controller output 

 

 
 

Figure 13. PI-PSO based controller output 

 

 
 

Figure 14. PI-GWO based controller output 
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Figure 15. NPI-GA based controller 

 

 
 

Figure 16. NPI-PSO based controller output 

 

 
 

Figure 17. NPI-GWO based controller output 

 

Figures 15-17 present the systems response of power, 

voltage, and current of the proposed non-linear controller NPI-

GA, NPI-PSO and NPI-GWO respectively. 

 

Table 7. Results of Non-linear NPI-based algorithms 

 
Controller NPI-GA NPI-PSO NPI-GWO 

Overshoot (%) 0.55 0.77 0.06 

Rise time (s) 0.004 0.004 0.004 

Settling time (s) 0.0047 0.0047 0.0048 

Ripple (%) 1.19 1.13 0.16 

Efficiency (%) 99.91 99.83 99.98 

 

The implementation of nonlinear PI (NPI) controller 

showed improved performance compared to the conventional 

P&O MPPT and PI controller as it offers better energy 

efficiency, the nonlinear terms help accelerate convergence 

toward the MPP while reducing overshoot and oscillations. 

Combined with optimization algorithms, they reduced settling 

time, however, rise time remained the same. Analysis results 

are shown in the Table 7. Also, the use of NPI-GWO controller 

reduced the overvoltage and is very close to 289 (V), which is 

the MPP value under STC, whereas the other controllers 

delivered voltage close 295 (V). Finally, NPI-GWO controller 

also delivered the best performance overall and the highest 

efficiency of 99.98%. 

 

6.2 Response of PV system at dynamic operating 

conditions 

 

To evaluate the robustness and adaptability of the proposed 

control strategy, the system is tested under dynamic time 

varying irradiance in order to replicate realistic environmental 

conditions. This allows assessment of the controller’s tracking 

ability of MPP. Irradiance profile is presented in Figure 18, it 

ranges from 800 to 1000 to 400 to 700 W/m2. 

Figure 19 illustrates the dynamic response of the PV system 

under varying irradiance conditions. To provide a more 

detailed analysis, three critical time intervals were selected and 

are shown with zoomed-in insets. These segments highlight 

the system’s behavior during initial transients, steady-state 

operation, and under sudden irradiance changes. 
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It can be shown from the zoom-in of segment (a) that the 

NPI-based controllers converge rapidly to the maximum 

power point with minimal overshoot and oscillations. In 

contrast, P&O MPPT shows more deviations and rise time is 

slow.  

 

 
 

Figure 18. Variation of irradiance 

 

 
 

Figure 19. Power output at varying irradiance 

 

Segment (b): During steady state of the second segment, all 

methods experience some oscillations, but, NPI-GWO 

outperforms the other technique as it remains the closest to the 

MPP and has the lowest ripple amount and steady state error 

and then both NPI-GA and NPI-PSO shows good performance 

comparing it to PI-based MPPT and P&O MPPT. 

Segment (c): Irradiance increase causes a sharp transition, 

yet, it is evident that NPI-GWO is the first to stabilize, quickly 

converging to the MPP with the smallest oscillations. 

Meanwhile, the PI-based controllers also track the MPP, but 

with more significant oscillations. 

 

6.3 Statistically significant test 

 

To perform the statistical significance analysis, controlled 

random noise was added to the irradiance input to evaluate the 

robustness of each controller and verify the reliability of the 

computed performance metrics. Each controller was tested 

over 20 simulation runs with different noise realizations, and 

the mean and standard deviation for each metric were 

calculated. Since the PI–GWO and NPI–GWO variants 

yielded the most competitive results, the statistical 

significance test was conducted on these two methods. 

All p-values are below the 0.05 threshold, indicating that the 

performance differences between the PI–GWO and NPI–

GWO controllers are statistically significant, as summarized 

in Table 8. 

 

Table 8. Statistical significant analysis 

 
Controller PI-GWO NPI-GWO p-Value 

Overshoot (%) 1.22 ± 0.858 0.15±0.1 <0.05 

Rise time (s) 
0.0042± 

0.000037 

0.0042± 

0.000023 
<0.05 

Settling time (s) 
0.0051± 

0.0025 

0.0049± 

0.000031 
<0.05 

Ripple (%) 3.25± 0.15 0.16±0.003 <0.05 

Efficiency (%) 98.8±1.13 99.9±0.03 <0.05 
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7. CONCLUSIONS 

 

In this study, the performance of advanced MPPT control 

strategies for a PV system was evaluated under both Standard 

Test Condition (STC) and dynamic operating conditions, in 

our case, varying irradiance levels. A nonlinear PI controller 

was implemented and optimized using three metaheuristic 

algorithms: PSO, GA, and GWO. Simulation results 

demonstrated that the use of nonlinear control significantly 

improved system performance compared to the conventional 

P&O method, particularly in terms of reduced overshoot, 

faster settling time, and minimized ripple, which is primarily 

due to the non-linear added gain. Among the tested methods, 

the NPI-GWO controller exhibited superior tracking accuracy, 

stability, and robustness. 

These results highlight the need for a more robust control 

technique than conventional methods, as well as the use of 

more modern methods, such as artificial intelligence, to obtain 

more precise and calculated results, in this case optimal 

controller gains. In particular of non-linear PI controllers, 

which have more parameters than conventional PIs, making 

them more complicated to find. Future work could include 

experimental validation on real-time hardware, as well as 

extending the approach to grid-connected systems in partial 

shading. 
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NOMENCLATURE 

 

MPP Maximum Power Point 

MPPT Maximum Power Point Tracking 

P&O Perturb and Observe 

InC Incremental Conductance 

PSO Particle Swarm Optimization 

GA Genetic Algorithm 

GWO Grey Wolf Optimization 

STC Standard Test Condition 

PID Proportional Intergal Derivative 

NPID Non-linear Proportional Integral Derivative 

PV Photovoltaic  
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