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The effective utilization of wind energy strongly relies on accurate power forecasting, in 

which short-term prediction plays a crucial role in grid operation. In practice, measurement 

data are often incomplete due to data loss. Existing studies typically address this issue by 

either focusing on data imputation, developing forecasting models based on deep learning 

or machine learning (DL/ML), or integrating numerical weather prediction (NWP) models 

and data security. However, only a limited number of approaches effectively combine 

robust imputation with powerful time-series forecasting models, while also ensuring 

comprehensive evaluation under various data loss scenarios and maintaining both 

interpretability and practical applicability. Moreover, regional characteristics significantly 

influence forecasting methods and wind power management strategies. To address these 

challenges, this paper proposes a hybrid XGBoost-GRU model for short-term wind power 

forecasting, with a case study in Southern Vietnam. Experimental results demonstrate that 

the proposed model outperforms the baseline GRU model by achieving higher predictive 

accuracy and maintaining stable performance under different data conditions. 
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1. INTRODUCTION

In the context of the global energy transition aimed at 

reducing greenhouse gas emissions and mitigating climate 

change, renewable energy sources, particularly wind power, 

are playing an increasingly critical role [1, 2]. The effective 

utilization of wind energy largely depends on the accuracy of 

power forecasting, with short-term prediction being essential 

for grid regulation, operational optimization, and minimizing 

contingency costs [1]. Nevertheless, the rapidly changing, 

nonlinear, and unstable characteristics of wind make accurate 

forecasting a challenging task [3]. 

In practical operations, measurement data obtained from 

wind turbine SCADA systems or numerical weather 

prediction (NWP) models are often incomplete due to data loss 

[4, 5]. The causes may include sensor malfunctions, 

transmission line disturbances, equipment maintenance, or 

recording errors. Such data loss considerably degrades the 

quality of training and input datasets, thereby reducing 

forecasting accuracy. The challenge becomes even more 

critical when the loss rate is high or occurs over continuous 

periods [6]. 

A common approach to address this issue is to recover 

missing data prior to forecasting, treating data reconstruction 

as an independent preprocessing step. In the study [7], the 

time-series characteristics of wind power data were analyzed, 

and the impact of different data loss scenarios on forecasting 

errors was evaluated, leading to the development of a 

compensation method based on interpolation and multivariate 

correlation analysis. Similarly, in the document [8] employed 

a combination of Gaussian Process Regression and Multiple 

Imputation to restore wind power data, achieving significantly 

higher forecasting accuracy compared to traditional 

interpolation methods. The main advantage of this approach is 

that it enables the direct use of existing forecasting models 

once the input data have been completed. However, its 

limitation lies in the strong dependence of forecasting 

accuracy on the quality of the imputation process, with a 

potential risk of error propagation if the reconstructed data fail 

to accurately reflect reality. 

Instead of separating the recovery and prediction stages, 

some studies have developed hybrid models that 

simultaneously integrate forecasting and missing data 

handling during the training process. According to research 

[9], a hybrid approach combining Empirical Mode 

Decomposition (EMD) and Long Short-Term Memory 

(LSTM) was proposed, where LSTM is trained on signal-

processed data reconstructed from component analysis, 

thereby mitigating the impact of random data loss. The 

Wasserstein GAN with Gradient Penalty was employed to 

generate high-quality synthetic data, which were then 

incorporated into the training set to enhance forecasting 

performance under missing input conditions [10]. The main 

advantage of such hybrid approaches is the reduction of 

cumulative errors while leveraging the feature learning 

capability of deep models. However, these methods generally 

involve more complex training procedures and require higher 

computational resources. 
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Some studies have focused on enhancing the robustness of 

forecasting models against data loss by improving network 

architectures or optimizing input feature selection. In the 

document [11] proposed a short-term wind power forecasting 

method based on multivariate signal decomposition combined 

with input variable selection, enabling the model to rely only 

on highly stable features that are less sensitive to missing data. 

The research results in the study [12] integrated modal 

reconstruction with a CNN–BiLSTM framework to extract 

spatio-temporal features, thereby improving forecasting 

accuracy even in the presence of partial data loss. The main 

advantage of this approach is that it eliminates the need for 

direct data imputation, thus reducing the risk of error 

propagation. However, its effectiveness depends strongly on 

the quality of the feature selection process and the complexity 

of the data. 

In addition to SCADA data, numerical weather prediction 

(NWP) data are also commonly used as inputs for wind power 

forecasting. However, NWP forecasts may also be incomplete 

or missing. Reference [13], a correction strategy based on 

Bidirectional GRU combined with XGBoost was proposed to 

address missing NWP data and improve forecasting accuracy. 

The research results in the study [14] introduced a 

preprocessing framework for NWP data collected from 

multiple sources before feeding it into a hybrid XGBoost 

model, thereby enhancing practical applicability for wind 

farms across different regions. More recent studies have 

extended the problem of data loss to aspects of data security 

and sharing. For example, Reference [15] applied federated 

deep reinforcement learning to train a distributed forecasting 

model across multiple wind farms without sharing raw data, 

while incorporating mechanisms to handle missing data during 

the training process. This approach is particularly suitable in 

scenarios where SCADA data are commercially sensitive. 

Several review studies, such as the studies [16, 17], have 

systematized forecasting models, data sources, and 

performance evaluation metrics for wind power prediction. 

These works emphasized that, despite the availability of 

advanced forecasting methods, the reliability of models 

significantly decreases in the presence of data loss. 

Consequently, handling missing data is considered a strategic 

research direction, particularly as wind power systems 

continue to expand in scale and diversify in data sources. In 

studies [18, 19], the statistical characteristics of missing wind 

data, the impact of data loss on forecasting accuracy, and 

recovery methods such as interpolation and multivariate 

regression were analyzed. The results demonstrated the ability 

of these approaches to reduce noise and enhance the stability 

of forecasting models, especially under interrupted data 

conditions. The authors in references [20, 21] are not directly 

applied to wind power, they proposed efficient data 

completion strategies for time-series data, which can be 

extended to renewable energy forecasting applications. 

In parallel, numerous studies [22-25] have focused on 

developing hybrid models that integrate deep learning 

techniques, such as LSTM, BiLSTM, CNN, and GRU, with 

traditional machine learning algorithms, including XGBoost, 

Random Forest, or SVM–ARIMA. These approaches aim to 

simultaneously improve forecasting accuracy and enhance 

robustness against input data errors, thereby addressing both 

missing data and data security issues. A modular deep learning 

model was proposed for wind power forecasting while 

accounting for wake losses [26]. However, the effectiveness 

of this model depends on the availability of complete 

meteorological and operational data; in cases of missing data, 

samples must either be discarded or approximated through 

simple interpolation. 

It is evident that regional characteristics exert a strong 

influence on the forecasting methods and operational 

strategies of renewable energy systems [27-29]. For example, 

in Sri Lanka and Egypt, extreme climatic conditions and 

power infrastructure significantly affect the demand for 

accurate forecasting to ensure energy security [28, 29]. In 

Taiwan, the forecasting problem is closely associated with 

handling data loss [30], whereas in Europe the main challenge 

lies in optimizing forecasting within a highly integrated power 

system containing numerous distributed energy sources [31]. 

Therefore, analyzing regional characteristics and their 

implications not only contributes to scientific research but also 

provides substantial practical value for developing wind power 

forecasting models that are adaptable to local conditions, 

capable of minimizing risks, and maximizing both the 

economic and technical benefits of this renewable resource. 

From the above overview, it is evident that although 

numerous studies have addressed the challenges of data loss 

and wind power forecasting, a clear research gap remains. 

Most existing works either focus on data recovery 

(imputation), develop forecasting models based on deep 

learning or machine learning (DL/ML), or combine these with 

numerical weather prediction (NWP) or data security. 

However, only a few studies effectively integrate robust 

imputation with advanced time-series forecasting models, 

while simultaneously providing comprehensive evaluation 

mechanisms for data loss scenarios and maintaining both 

explainability and practical applicability. The XGBoost–GRU 

hybrid approach has the potential to overcome these 

limitations by combining nonlinear imputation capability, 

explainable feature extraction, efficient temporal dependency 

learning, and easy extension to residual or stacking 

frameworks. Furthermore, it can be adapted to generate 

probabilistic forecasts and to operate in distributed 

environments. 

The novelty of this study lies in the integration of the 

strengths of two models, GRU and XGBoost, to address the 

challenge of forecasting under missing data conditions. 

Specifically, GRU is effective in handling time series by 

capturing long-term dependencies in wind data, whereas 

XGBoost demonstrates strong performance in learning from 

incomplete datasets through its inherent capability to manage 

missing values and model complex nonlinear relationships. 

The combination of these approaches establishes a framework 

that not only maintains high forecasting accuracy but also 

enhances robustness when observational data are intermittent 

or partially unavailable - an outcome that single models are 

less capable of achieving. 
 
 

2. ANALYSIS OF PROPOSED FORECASTING MODEL  

 

2.1 GRU model 

 

The structure of the GRU model is illustrated in Figure 1 

[32]. 

The gates of the GRU model are defined by [33]. 

 

𝑟𝑡 = 𝜎(𝑊𝑟 . 𝑥𝑡 + 𝑈𝑟 . ℎ𝑡−1 + 𝑏𝑟) (1) 

 

𝑧𝑡 = 𝜎(𝑊𝑧. 𝑥𝑡 + 𝑈𝑧 . ℎ𝑡−1 + 𝑏𝑧) (2) 
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ℎ̃𝑡 = tanh(𝑊ℎ. 𝑥𝑡 + 𝑈ℎ. (𝑟𝑡 ⊙ ℎ𝑡−1) + 𝑏ℎ) (3) 

 

ℎ𝑡 = (1 − 𝑧𝑡) ⊙ ℎ𝑡−1 + 𝑧𝑡⨀ℎ̃𝑡 (4) 

 

where xt - input vector at time step t; ht-1 - hidden state at the 

previous time step; σ - activation function; tanh - hyperbolic 

tangent activation function; Wr, Wz, Wh and Ur, Uz, Uh - weight 

matrices for each gate; br, bz, bh - bias vectors associated with 

each gate. ⊙ - denotes element-wise product. 

 

 
 

Figure 1. Structure of GRU model 

 

2.2 XGBoost model 

 

The XGBoost algorithm can be regarded as an ensemble 

model consisting of M decision trees, expressed as [14]: 

 

Υ𝑖 = ∑ 𝑓𝑚(𝑥𝑖),𝑀
𝑚=1  𝑓𝑚 ∈ 𝐹  (5) 

 

where, f denotes a decision tree and F represents the functional 

space of all decision trees. During regression, the objective 

function of the additive model is expressed as: 

 

𝑏𝑗() = ∑ 𝑙(𝑦𝑖 , Υ𝑖  )𝑛
𝑖=1 + ∑ Ω(𝑓𝑚),𝑀

𝑚=1   = (𝑓𝑖)  (6) 

 

where, l denotes the loss function and  represents the 

regularization term. A vector mapping is employed to enhance 

decision trees for each regularization term (f). The 

regularization term can be expressed as: 

 

Ω(𝑓) = 𝛾𝑇 +
1

2
𝜆 ∑ 𝜔𝑗

2𝑇
𝑗=1   (7) 

 

where, 𝑇 denotes the number of leaf nodes of the decision tree, 

𝜔 represents the weight vector of the leaf nodes, and both 𝛾 

and 𝜆 are penalty coefficients. At the 𝑡 iteration, the predicted 

value of the sample 𝑥𝑖 is given by: 

 

Υ𝑖
𝑡 = Υ𝑖

𝑡−1 + 𝑓𝑡(𝑥𝑖)  (8) 

 

Therefore, the objective function can be expressed as 

follows: 

 

𝑂𝑏𝑗(𝜃)𝑡 = ∑ 𝑙(𝑦𝑖 , Υ𝑖
𝑡)𝑛

𝑖=1 + ∑ Ω(𝑓𝑚)𝑡
𝑚=1   

= ∑ 𝑙(𝑦𝑖 , 𝛶𝑖
𝑡−1 + 𝑓𝑡(𝑥𝑖))𝑛

𝑖=1 + ∑ 𝛺(𝑓𝑚)𝑡
𝑚=1   

(9) 

 

The greedy algorithm is employed in XGBoost to construct 

decision trees iteratively, thereby forming a complete 

XGBoost model. In addition, a randomization technique is 

introduced to mitigate overfitting and accelerate the training 

process. Furthermore, XGBoost incorporates a sparsity-aware 

algorithm to efficiently handle missing values by excluding 

them from the loss gain computation of candidate splits. 

 

2.3 Proposed model for wind power forecasting under data 

loss conditions 

 

To leverage the advantages of fast training time, strong 

generalization capability, and robustness to noisy data of the 

GRU model, together with the ability of XGBoost to capture 

long-term temporal dependencies, this study proposes a hybrid 

forecasting framework that integrates XGBoost with GRU. In 

the context where wind power data may be missing at certain 

time steps, XGBoost is employed to interpolate the missing 

values rather than relying solely on the GRU model to perform 

sequential predictions. This approach is designed to mitigate 

the problem of error accumulation, which is commonly 

encountered in multi-step ahead forecasting with deep learning 

models. Specifically, the operational scheme of the proposed 

XGBoost-GRU model is illustrated as Figure 2. 

 

 
 

Figure 2. XGBoost–GRU model for wind power forecasting 

under missing data conditions 

 

In this study, the GRU model is configured to employ a 

fixed look-back window of 24 hours. This implies that, in 

order to forecast wind power at any given time, the model 

requires a continuous input sequence covering the preceding 

24 hours. In other words, the time series data are restructured 

into pairs of input sequences and output target values. 

Specifically, to forecast the power at time 𝑡, the model utilizes 

an input vector sequence consisting of all data points from 

time 𝑡-𝑘 to 𝑡-1, where 𝑘=24 denotes the look-back window 

length. 

 

2.4 Evaluation and selection of forecasting models 

 

After training, the models are evaluated using three primary 

performance metrics: Root Mean Square Error (RMSE), Mean 

Absolute Percentage Error (MAPE), and Normalized Mean 

Absolute Percentage Error (NMAPE). These error metrics are 

mathematically defined as follows [16, 24]: 

 

RMSE = √
1

n
∑ (ŷi − yi)

2n
i=1   (10) 

 

NRMSE = √
1

n
∑

(ŷi−yi)2

𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦

n
i=1   (11) 

 

MAPE =
100

n
∑

|Pi
db−Pi

tt|

Pi
tt

n
i=1   (12) 
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NMAPE =
100

n
∑

|Pi
db−Pi

tt|

Pdm

n
i=1   (13) 

 

where: ŷi - the predicted power output (kW), yi - the actual 

power output (kW), Pi
db  - the predicted power generation  

(MW), Pi
tt - the actual power generation (MW), Pdm - denotes 

the rated (installed) capacity of the power plant (MW), 

Capacity is the total installed capacity of the plant (kW), n - 

the number of forecasted instances evaluated within the 

considered forecasting period. 

 

 

3. WIND SPEED FORECAST RESULTS WITH 

CHARACTERISTICS OF VIETNAM  

 

The output power 𝑃(W) generated by each wind turbine can 

be expressed as follows [24]: 

 

P =
1

2
. 𝐴. 𝐶𝑝. 𝑁𝑝. 𝑁𝑔. 𝑁𝑏 . 𝑉3  (14) 

 

where, ρ - the air density (kg/m3), A - the rotor swept area (m2), 

Cp - the power coefficient, V - the wind speed (m/s), Ng - the 

generator efficiency, Nb - the gearbox efficiency. 

 

ρ =
353

T+273
𝑒

−ℎ

29.3(𝑇+273)  (15) 

 

In this study, the forecasting dataset was obtained from the 

Supervisory Control and Data Acquisition (SCADA) system 

of the Ninh Thuan Wind Farm. The data collection spanned a 

period of 360 days, from January 1, 2024, to December 31, 

2024. Measurements were continuously recorded at 30-minute 

intervals, 24 hours per day, from turbine WT01 with a rated 

capacity of 4 MW. Accordingly, each day comprised 144 data 

samples. Each sample contained the following input features: 

power output, wind speed, rotor speed, pitch angle, vibration 

level, and internal temperature. The dataset for one year is 

represented in the format month/day/hour:minute, with the 

characteristic parameters summarized in Table 1. Two 

representative days, January 1, 2024, and December 31, 2024, 

are illustrated, while the remaining days follow the same 

structure. 

 

Table 1. Structure of the collected dataset with a 30-minute sampling interval 

 
Date Time Wind Speed Power Output Rotor Speed Pitch Angle Vibration Level Internal Temp 

01/01/2024/0:00 3.84 182.08 5.71 0 0.13 15.38 

01/01/2024/0:30 5.39 650.5 7.33 0 0.13 16.7 

01/01/2024/1:00 4.43 229.3 5.96 0.11 0.11 15.2 

01/01/2024/1:30 5.24 601.67 7.59 0.41 0.07 17.23 

…… …… …… …… …… …… …… 

12/31/2024/22:00 2.96 0 4.32 0 0.07 19.66 

12/31/2024/22:30 2.45 0 3.29 0 0.13 18.12 

12/31/2024/23:00 1.96 0 3.48 0 0.09 15.35 

12/31/2024/23:30 4.73 385.75 6.36 0 0.1 16.96 

The dataset employed for model development was sampled 

at 30-minute intervals and subsequently divided into training 

and testing subsets, with 70% allocated for training and 30% 

reserved for testing. In addition, an independent forecasting 

dataset, covering the period from February 1 to February 3, 

2025, was constructed and excluded from the training phase to 

evaluate the generalization capability of the proposed model. 

After preprocessing, the dataset achieved a fit accuracy of 0.98, 

and its distribution is illustrated in Figure 3. 

 

 
 

Figure 3. Wind data distribution 

 

Experimental results were obtained using the proposed 

XGBoost-GRU hybrid model for the forecasting period from 

March 1 to March 3, 2024. The performance of the ensemble 

model was compared against the standalone GRU model under 

conditions of missing historical input data. The evaluation 

scenarios were designed based on the absolute duration of 

missing data within the 24-hour lookback window, and are 

defined as follows: 

- Baseline scenario: No missing data is introduced. 

- Short interruption scenario: Random data segments with a 

cumulative length of 2 hours and 6 hours are removed. 

- Medium interruption scenario: A continuous data segment 

of 12 hours (equivalent to half of the lookback window) is 

removed. 

- Total interruption scenario: All data within the 24-hour 

lookback window is removed. 

- Extreme outage scenario: A 28-hour data segment-longer 

than the lookback window itself-is removed to assess the 

model’s fault tolerance and its operational failure threshold. 

The mechanism of missing data, as described above, reflects 

practical operating conditions in wind farms, where 

measurement device failures, network errors, or power outages 

may occur. 

In the proposed XGBoost-GRU model, the lookback 

parameter is set to 48 with a data sampling frequency of 30 

minutes. Accordingly, the lookback window corresponds to a 

24-hour period (48 steps × 30 minutes/step). For instance, to 

forecast the power output at 15:00 on March 2, the GRU 

component requires a complete sequence of 48 consecutive 

power values, ranging from 15:00 on March 1 to 14:30 on 

March 2. 

After generating the forecast for 15:00, the lookback 

window is shifted forward by one step. Thus, the subsequent 
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forecast at 15:30 requires the sequence from 15:30 on March 

1 to 15:00 on March 2. This sliding-window mechanism is 

repeated across the entire forecasting horizon. By leveraging 

the lookback window, the model is capable of capturing not 

only instantaneous variations but also temporal dependencies 

such as trends, cyclic patterns (e.g., diurnal cycles), and 

momentum in the time series, which are critical for achieving 

accurate forecasting results. 

Comparison Methods: In each missing-data scenario, the 

forecasting performance of two approaches is compared: 

- Baseline GRU model: Missing data points within the 

lookback window are replaced with zero values. 

- XGBoost-GRU hybrid model: An XGBoost-based 

interpolation module is employed to estimate and impute the 

missing values before the reconstructed sequence is provided 

to the GRU forecaster. 

Hyperparameters of the XGBoost model Number of Trees: 

500 trees Learning Rate: 0.05 Maximum Tree Depth: 5 leaves 

Objective Function: Mean Squared Error for regression. 

Parallel Processing: Uses all available CPU cores 

Hyperparameters of the GRU model First GRU Layer: 

Number of Neurons: 100 First Dropout Layer: Dropout Rate: 

20% Second GRU Layer: Number of Neurons: 100 Second 

Dropout Layer: Dropout Rate: 20% Dense (Output) Layer: 

Number of Neurons: 1 (to predict a single value) Training 

configuration of GRU: Optimizer: adam Loss function: 

mean_squared_error (MSE) Epochs: 50 used with 

EarlyStopping to avoid overfitting batch size: 64. 

The evaluation is conducted on the entire forecast dataset 

using a stepwise validation strategy, which closely mimics 

real-world operational forecasting. Performance is assessed 

using error metrics such as the Root Mean Square Error 

(RMSE) and the Mean Absolute Error (MAE), recorded for 

each scenario. To validate the suitability of the proposed 

XGBoost–GRU model for wind power forecasting under 

missing data conditions, a comparative analysis with the Long 

Short-Term Memory (LSTM) model is conducted under the 

same conditions. The comparative results of the forecasting 

models under missing-data conditions are summarized in 

Table 2. 

 

Table 2. Evaluation results: 1- GRU (No inputation); 2- XGBoost-GRU; 3 - LSTM (No inputation) 

 
Script Case RMSE (kW) MAPE (kW) NRMSE (%) NMAPE (%) 

Full data 

1 671.55 526.6 16.79 13.17 

2 671.55 526.6 16.79 13.17 

3 670.37 525.1 16.76 13.13 

Missing data 2h 

1 708.74 540.52 17.72 13.51 

2 671.68 526.72 16.79 13.17 

3 691.89 533 17.3 13.33 

Missing data 6h 

1 740.86 557.43 18.52 13.94 

2 672.4 527.55 16.81 13.19 

3 726.16 551.99 18.15 13.8 

Missing data 9h 

1 799.31 597.2 19.98 14.93 

2 671.54 526.6 16.79 13.17 

3 771.97 580.39 19.3 14.51 

Missing data 12h 

1 937.3 711.67 23.43 17.79 

2 672.1 527.28 16.8 13.18 

3 874.64 646.27 21.87 16.16 

Missing data 24h 

1 1282.64 1070.12 32.07 26.75 

2 671.92 526.96 16.8 13.17 

3 1112.54 875.85 27.81 21.9 

Missing data 28h 

1 1282.64 1070.12 32.07 26.75 

2 671.92 526.96 16.8 13.17 

3 1112.54 875.85 27.81 21.9 

 

Table 2 highlights the significant performance differences 

between the forecasting models under missing-data conditions. 

The standalone GRU model, when deprived of recent 

historical sequences, exhibits severe performance degradation. 

Specifically, the model reports an RMSE of 1282.64kW, an 

NRMSE of 32.07%, and a MAPE of 26.75% when the 

missing-data period extends beyond 24 hours. 

In contrast, under the ideal scenario with complete historical 

data available from February 15 to February 28, the GRU 

model achieves substantially lower errors, with an RMSE of 

671.55 kW, an NRMSE of 16.79%, and a MAPE of 13.17%. 

The LSTM model outperforms the GRU model, achieving 

an RMSE of 1112.54 kW, an NRMSE of 27.81%, and a MAPE 

of 21.9% when the missing-data period exceeds 24 hours. 

Most notably, when the XGBoost–GRU hybrid approach is 

employed to interpolate missing values before forecasting, the 

model demonstrates robust fault tolerance and stable 

performance. The results show that the hybrid approach 

achieves RMSE = 671.92kW, NRMSE = 16.8%, and MAPE 

= 13.17%, which are very close to the ideal scenario despite 

the missing-data condition. 

To further illustrate the error behavior across different 

scenarios, Figure 4 depicts the comparative error distribution 

of the standalone GRU model versus the XGBoost-GRU 

hybrid model and LSTM model when handling incomplete 

time series inputs. 

The results in Figure 4 indicate a clear contrast in error 

dynamics between the two approaches. For the standalone 

GRU model and LSTM model, the forecasting error increases 

progressively as the duration of missing data extends from 2 

to 24 hours. Beyond this point, however, the error no longer 

grows; instead, it saturates at a consistently high level. In other 

words, when the missing-data window exceeds 24 hours (e.g., 

in the 28-hour scenario), the error indices remain nearly 

constant, reflecting the model’s performance ceiling. 

This phenomenon can be interpreted as the appearance of 

an error saturation threshold for the base GRU, LSTM model. 

Once the missing duration surpasses the look-back horizon, 

the model’s input sequence degenerates into a constant vector 

(filled with zeros). Consequently, the model loses all temporal 
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dependencies and meaningful patterns, producing stationary 

forecasts and yielding stable but high errors. This aligns with 

the “Garbage In, Garbage Out” principle, emphasizing the 

model’s inability to recover useful information when deprived 

of adequate historical data. 

 

 
(a) The RMSE under time missing data conditions 

 
(b) The MAE under time missing data conditions 

 
(c) The NRMSE under time missing data conditions 

 
(d) The NMAPE under time missing data conditions 

 

Figure 4. Error in case of GRU, XGBoost-GRU and LSTM 

 

By contrast, the hybrid XGBoost-GRU approach 

demonstrates strong resilience. Its error values remain stable 

and closely aligned with those of the ideal scenario (no 

missing data), regardless of the duration of the missing interval. 

This highlights the effectiveness of the interpolation step in 

reconstructing informative input sequences and preventing the 

error saturation observed in the baseline GRU, LSTM. 

Figure 5 compares the forecasted power outputs under 

different conditions of missing historical data as defined in the 

proposed scenarios. 

 

 
(a) The output power under full data conditions 

 
(b) The output power under 2-hour missing data conditions 

 
(c) The output power under 6-hour missing data conditions 

 
(d) The output power under 9-hour missing data conditions 

 
(e) The output power under 12-hour missing data conditions 

 
(f) The output power under 24-hour missing data conditions 

 
(g) The output power under 28-hour missing data conditions 

 

Figure 5. Comparison of transmission power forecast of 

XGBoost- GRU, GRU and LSTM models 

 

Figure 5 illustrates that, in the case of complete input data, 

both the GRU, LSTM and XGBoost–GRU models are able to 
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closely follow the actual power output. However, when the 

amount of missing data increases from 2 hours up to 28 hours, 

the standalone GRU, LSTM model gradually loses its ability 

to learn and reproduce the underlying trend, resulting in 

significantly larger forecasting errors. In contrast, the hybrid 

XGBoost–GRU model, by applying a guided interpolation 

process to reconstruct a sufficiently long input sequence 

before feeding it into the GRU, consistently maintains stable 

and accurate tracking of the actual data. These results confirm 

that incorporating XGBoost for missing data reconstruction 

effectively restores the input sequence, thereby preserving the 

learning capability of the GRU deep sequence model. 

 

 

4. CONCLUSIONS 

 

The experimental results demonstrate that the hybrid 

XGBoost-GRU model consistently outperforms the baseline 

GRU model across all missing data scenarios. As the 

proportion of missing data increases, the forecasting error of 

the baseline GRU model grows exponentially, whereas the 

hybrid model maintains relatively stable accuracy. 

A notable finding is the emergence of an error saturation 

threshold for the baseline GRU model. Specifically, when the 

duration of missing data reaches or exceeds 24 hours (e.g., in 

the 28-hour scenario), the error metrics of this model no longer 

increase but instead remain at a very high and nearly constant 

level, indicating that the model has reached its operational 

limit. This error saturation phenomenon can be explained by 

the “Garbage In, Garbage Out” principle. Once the missing 

data exceeds the look-back window, the input to the baseline 

GRU degenerates into a constant vector sequence (all zero 

values). Consequently, the model loses its ability to extract 

meaningful information, and its forecasts become stationary, 

leading to constant errors. This behavior does not imply 

underfitting during training; rather, it represents an inference 

failure caused by meaningless input. 

In contrast, the ability of the XGBoost interpolation model 

to provide a more meaningful input sequence enables the GRU 

model to avoid complete failure, thereby demonstrating the 

robustness and reliability of the hybrid approach. 

This study highlights two key findings: (1) The integration of 

an intelligent interpolation model such as XGBoost is an 

effective strategy that significantly enhances the accuracy and 

resilience of time-series forecasting models under incomplete 

data conditions. (2) The study identifies and explains the 

critical failure threshold of regression-based models when 

confronted with large data gaps, emphasizing the importance 

of properly handling missing data in practical applications. 

This study also highlights the potential for practical 

deployment in wind farms. To ensure feasibility in real-world 

applications, the XGBoost–GRU model must satisfy real-time 

requirements, particularly in updating and processing forecast 

data with low latency. Integration on GPU-based platforms or 

edge servers can further enhance processing speed and 

optimize operational costs. 
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