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 The work presented here gives a novel approach for detecting liver tumours from medical 

images. The proposed approach is the combination of the latest segmentation and 

classification techniques that results in early detection of liver tumours with higher 

accuracy. The methodology applies three phases, the first is the application of anisotropic 

diffusion filtering that enhances the image quality without disturbing the structural 

information. After filtering, the second phase makes use of the U-Net architecture and 

attention-based transformers (U-TransNet) segmentation model for precisely detecting the 

boundary delineation and tumour detection. The results show Intersection over Union 

(IoU) as 98%, and dice scores are 99.01%. The third phase in the proposed method applies 

a support vector machine optimised using a bio-inspired whale optimisation algorithm. 

The results measured using parameters like accuracy, recall, precision, and F1-score are 

close to 99%, considering class imbalance effectively in early stages. Comparative 

analysis in this study validated that the performance of this is better in high-end and 

advanced methods in segmentation as well as classification techniques. The proposed 

system has better performance over existing and therefore has a potential of accurate 

diagnostic of liver tumors for proper treatment of patients. 
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1. INTRODUCTION 

 

The liver is one of the body's largest internal organ, located 

on the right side of the abdomen beneath the ribcage. Growth 

of liver cells in abnormal fashion above or within the liver can 

form a mass known as a liver tumor, signalling an underlying 

liver disease. The liver is susceptible to various diseases, 

including cirrhosis, hepatitis, and liver cancer [1]. Over the 

past two decades, the course of cirrhosis and liver cancer have 

collectively contributed to an estimated total of approximately 

50 million deaths worldwide on an annual basis each year. 

Metastatic liver cancer typically occurs when cancer 

spreads to the liver from other affected organs, or vice versa 

[2]. In such cases, the cancer cells present in the liver typically 

originate from the primary tumor site elsewhere in the body. 

Since this clearly indicates cancer progression, doctors usually 

classify it as advanced cancer of stage 4. Common cancers that 

frequently metastasize to the liver include colorectal, stomach, 

lung, pancreatic, breast, melanoma, and esophageal. In most 

instances, patients with liver metastases tend to develop 

tumors in both lobes of the liver [3]. 

 

1.1 Liver cancer: Cholangiocarcinoma and metastatic 

disease 

Cholangiocarcinoma, a severe form of liver cancer, 

originates in the bile ducts. As the second most common 

primary hepatobiliary tumor, its global prevalence has been 

rising. Cholangiocarcinoma can be classified as intrahepatic 

(within the liver) or extrahepatic (outside the liver), but both 

types are collectively termed bile duct cancer due to their 

origin [4]. 

While numerous liver diseases exist, this study focuses on 

metastatic liver cancer and cholangiocarcinoma, both of which 

are life-threatening conditions. 

 

1.2 Diagnostic challenges and advances in liver imaging 

 

Computed Tomography (CT) is the preferred imaging 

modality for liver cancer due to its high lesion-to-liver contrast 

and non-ionising radiation benefits [5]. However, liver 

segmentation—a critical step in diagnosis—faces challenges 

such as: 

•Scale diversity (varying tumour sizes) 
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•Complex backgrounds (overlapping tissues) 

•Unclear tumour boundaries 

•Low contrast in organ density 

Accurate segmentation is essential for improving medical 

assessment and research outcomes [6]. Early and precise 

detection of cancer in the liver can definitely significantly 

reduce the rates of mortality and enhance the survival of the 

patient. Unfortunately, due to late diagnosis, liver disease 

remains the third leading cause of cancer-related deaths [7]. 

 

1.3 Limitations of current classification methods 

 

Existing computerized tumor classification approaches 

often fail to accurately identify early-stage disease 

characteristics [8]. While deep learning (DL) networks show 

potential for classification, their computational demands make 

them impractical for time-sensitive clinical use. Alternatively, 

shape-based strategies leveraging historical data offer a 

promising solution [9]. 

 

1.4 The role of AI in liver segmentation 

 

Deep learning through the use of AI can accelerate the 

formation of probabilistic segmentation models,  normally 

called as PSMs, assisting medical analysis. However, despite 

these advancements, clinical validation of AI-generated PSMs 

remains essential to ensure reliability [10]. Additionally, 

evaluating the clinical feasibility of automated liver 

segmentation—including the time required for clinically 

acceptable results—is crucial for real-world implementation 

[11]. 

Intensity-based strategies are widely recognised for their 

rapid implementation, particularly in zone growth, tiering, and 

threshold-based approaches [12]. However, these methods are 

predominantly semi-automatic, making them susceptible to 

noise and often requiring manual intervention when handling 

complex constraints. While they demonstrate significant 

improvements in segmentation accuracy when combined with 

machine learning (ML) techniques [13], most ML-based 

approaches still rely on manually designed features, which 

substantially limits their precision. 

This limitation has helped in significant advancements not 

only in convolutional neural networks (CNNs) but also in 

other deep learning methods and the fully convolutional 

network (FCN) provides a prominent solution for image 

classification at pixel-level [14]. Also, the Deep learning 

techniques have been proved to be far more accurate than 

conventional ML-based methods. Yet both these architectures, 

the FCN and U-Net, have notable inherent drawbacks. The 

FCN-based approach many times fails to produce reliable 

results for liver segmentation both in case of single-network or 

cascaded training [15]. The primary reason is due to the fact 

that pixel-level analysis have a tendency to overlook subtle 

visual cues [16]. On the other hand, U-Net is efficient but its 

feature maps remains unrefined till the final convolution step. 

Additional challenges like vanishing gradients and repeated 

subsampling leading to the progressive degradation in features 

is found in deeper U-Net architectures which ultimately 

reduces output quality [17]. Category imbalance further 

compounds these issues, introducing errors and poorly defined 

boundaries in certain liver regions. 

Although 3D networks benefit from enhanced z-axis 

information, memory constraints complicate slice selection, 

limiting their practicality [18]. While existing methods 

perform well in many automated liver segmentation scenarios, 

their accuracy and robustness remain insufficient for direct 

clinical application, hindering widespread adoption. 

To address these challenges, our proposed U-TransNet 

introduces two major advancements compared to existing U-

Net variants such as ResUNet and Attention-UNet. While 

ResUNet improves feature extraction through residual 

connections, it often suffers from increased model complexity 

and limited ability to capture long-range dependencies. 

Similarly, Attention-UNet enhances focus on salient regions 

but still relies heavily on local contextual information, which 

restricts its performance in cases of small or obscured liver 

lesions. In contrast, U-TransNet integrates the strengths of U-

Net with Transformer-based global self-attention, allowing the 

model to simultaneously preserve fine structural details and 

capture long-range dependencies across the CT volumes. This 

dual capability enables more accurate boundary delineation, 

robust detection of small lesions, and improved generalization 

across diverse imaging conditions, thereby overcoming the 

primary shortcomings of existing U-Net variants. 

 

 

2. RELATED WORK 

 

Recent advances in deep learning have significantly 

improved liver segmentation from CT scans through various 

innovative approaches. The MCFA-UNet architecture 

addresses edge feature loss by employing multiscale feature 

extraction via parallel convolution paths and dual attention 

mechanisms, while attention gates reduce semantic gaps 

between encoder-decoder paths [19]. Automated level set 

methods enhance segmentation through pre-processing 

techniques, particularly improving tumor identification for 

earlier diagnosis [20-22]. CNN-based models using 3×3 

kernels with ReLU activation and SoftMax classification have 

demonstrated effective binary classification [23], while 

transfer learning approaches combining SVM with NH-SVM 

variants show improved target domain adaptation [24]. The 

APESTNet framework integrates histogram equalisation with 

Mask-RCNN for precise segmentation while preventing 

overfitting [25], and hybrid ResUNet architectures combine 

ResNet and UNet advantages for better ROI extraction. 

Comparative studies evaluating CNN versus SVM 

performance on clinical samples reveal their respective 

strengths, and advanced 3D approaches like the 3D-SDBN-

ESO model leverage Gaussian filtering, CLAHE pre-

processing, and seagull optimisation to effectively capture 

liver anatomy. These diverse methodologies collectively 

represent significant progress in liver image analysis, though 

challenges remain in clinical implementation. 

Accurate liver segmentation must address vascular 

structures and achieve complete lesion inclusion, yet existing 

methods face significant challenges. The liver’s proximity to 

adjacent organs with similar CT values complicates tumor 

analysis, while poorly defined boundaries between healthy and 

diseased tissue further obscure tumor margins. Variability in 

tumor size, shape, and location across CT images exacerbates 

these difficulties. Although current techniques have made 

progress, developing a fully automated segmentation system 

remains challenging due to inconsistent intensity variations 

between liver and lesion tissues, differences in contrast, and 

variable scanner resolutions. These limitations pose a major 

obstacle in precise tumor delineation and classification. 

Medical Images that are available through CT and MRI often 

1620



 

have noise and artefacts that reduce the accuracy of 

segmentation and classification models. Existing filtering 

method either tend to over-smooth the images and thereby lose 

critical details or underperform in the process of noise 

removal. Thus, this work proposes a novel hybrid model with 

an aim to overcome the limitations of the existing approaches 

and improve segmentation and classification of liver cancer 

tumors. 

Many liver detection systems rely heavily on hand-

engineered features, which are limited in capturing complex 

structures of the liver. The use of deep learning has improved 

feature extraction but lacks robustness in handling small, early 

lesions that are often missed. Also, traditional segmentation 

techniques, including thresholding and region-growing 

algorithms, struggle with precise boundary delineation of liver 

tissues due to the proximity of other abdominal organs. This 

leads to misclassification and inaccurate detection, especially 

when distinguishing between healthy tissue and early 

pathological signs. Furthermore, current models face 

optimization challenges, with sub-optimal tuning of deep 

learning architectures, leading to underperformance when 

measured as classification accuracy. Summary of Recent 

Advances in Liver Segmentation and Classification is shown 

in Table 1. 

 

Table 1. Summary of recent advances in liver segmentation and classification 

 
Reference Methodology Key Contributions Limitations 

[18] MCFA-UNet Multiscale feature extraction, dual attention mechanisms, 

reduced encoder-decoder semantic gaps 

Edge feature loss in minimal 

feature extraction 

[19] Automated level sets Improved tumor region identification, early diagnosis 

support 

Semi-automatic, requires manual 

intervention 

[20] CNN (3×3 kernel + 

ReLU) 

Effective binary classification via SoftMax Limited to binary classification, 

lacks 3D context 

[21] TL-based SVM + NH-

SVM 

Enhanced target domain adaptation, superior classification Dependency on paired labels 

[22] APESTNet (Mask-

RCNN + HE) 

Precise segmentation, overfitting prevention Computationally intensive 

[23] Hybrid ResUNet Combined ResNet-UNet advantages for ROI extraction Limited validation on complex 

tumors 

[24] CNN vs. SVM 

comparison 

Empirical evaluation of classifier performance Small sample size (20 cases) 

[25] 3D-SDBN-ESO Gaussian/CLAHE preprocessing, seagull optimization High memory requirements 

Proposed 

Work 

Novel Hybrid Model Addresses intensity variation, unclear boundaries, and lesion 

diversity 

Validation pending on clinical 

datasets 

 

 

3. METHODOLOGY 

 

Liver tumor detection through medical imaging, 

particularly in its early stages, faces significant challenges. 

Medical Imaging techniques like CT and MRI often introduce 

noise and artifacts that compromise the accuracy of 

segmentation and classification models. To address the issues 

of noise and artefacts in medical images, the proposed method 

incorporates advanced noise reduction algorithms using 

anisotropic diffusion filtering (refer to Figure 1). This method 

is better than the traditional filtering as it can suppress noise 

effectively still preserving the intricate structures of liver 

tissues that are important for accurate detection. The enhanced 

image clarity sets the foundation for more precise 

segmentation and classification, overcoming over-smoothing 

limitations seen in earlier approaches. To address the 

inaccurate segmentation of liver boundaries, the proposed 

method integrates an Attention-based U-TransNet, which 

performs the initial segmentation, capturing key liver regions. 

With its attention mechanism, the transformer layer refines 

this by focusing on the boundaries and critical regions where 

early lesions might occur, even if they are small or obscured 

by noise. The integration of these ensures both macro-level 

segmentation and fine boundary precision, making it more 

accurate for early detection than existing models. Thus, the 

proposed method robustly capture spatial hierarchies, provides 

long-range attention while handling coarse segmentation, 

identifying fine liver abnormalities and distinguishing them 

from nearby tissues. 

Figure 2 presents the detailed system architecture of the 

proposed framework, illustrating how segmentation, feature 

extraction, and classification modules interact. To enhance 

classification accuracy and overcome the imbalance in early-

stage disease detection, we propose a metaheuristic-optimised 

classification model. A support vector machine (SVM) 

classifier is tuned using the Whale Optimisation Algorithm 

(WOA). WOA improves on the standard grid or random 

search techniques by intelligently exploring the 

hyperparameter space, leading to optimal model performance. 

Furthermore, cost-sensitive learning is incorporated to handle 

class imbalance, assigning higher weights to minority (early-

stage disease) samples, thus ensuring they are not under-

represented during training. The classification process begins 

by using the fused feature vector from the earlier step. The 

SVM classifier is optimised using WOA, which iteratively 

searches for the best kernel parameters. The combination of 

noise-resilient preprocessing, hybrid segmentation with 

attention mechanisms, and metaheuristic optimisation-based 

classification promises higher segmentation precision, robust 

feature extraction, and improved classification of early liver 

disease, making it a significant advancement over current 

techniques. 

 

3.1 Anisotropic diffusion filtering 

 

Anisotropic diffusion (Perona–Malik diffusion) is a process 

in which the image noise is decreased without removing the 

essential details of the image content for proper image 

interpretation. Magnetic resonance images normally have 

noise, and therefore, to remove it without damaging image 

details, an anisotropic diffusion filter is proposed using Eq. 

(1).  
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𝜕𝐼
𝜕𝑡⁄ = 𝑑𝑖𝑣(𝑐(𝑥, 𝑦, 𝑡)∇𝐼) = ∇𝐶 . ∇𝐼 + 𝑐(𝑥, 𝑦, 𝑡)∆ (1) 

 

where I is the original image, the gradient operator is denoted 

by ∇, Laplacian operator is given by ∆, the divergence operator 

is donated by div(…) and the coefficient of diffusion is given 

by c(x,y,t). 

 

 
 

Figure 1. Proposed flow diagram 

 

 
 

Figure 2. Comprehensive system architecture showing the 

interaction between preprocessing, segmentation, feature 

extraction, and classification modules 

 

In medical image segmentation, enhancing tissue contrast is 

critical for accurate analysis. As a first pre-processing step, we 

employ anisotropic diffusion filtering on the original CT 

images to reduce noise while preserving structural boundaries. 

This advanced filtering technique offers significant 

advantages over conventional Gaussian blurring by 

maintaining edge sharpness during the smoothing process. The 

method operates through an iterative diffusion process 

governed by the partial differential Eq. (2): 

 

𝐼𝑡+1 = 𝐼𝑡 + 𝜆(𝑐𝑁𝑥,𝑦∇𝑁(𝐼𝑡) + 𝑐𝑆𝑥,𝑦∇𝑆(𝐼𝑡) 

+𝑐𝐸𝑥,𝑦∇𝐸(𝐼𝑡) + 𝑐𝑊𝑥,𝑦∇𝑊(𝐼𝑡)) 
(2) 

 

where the original image is I, the number of iterations carried 

out is given by t. The diffusion coefficients in the four 

directions (North (N), West (W), South (S) and East (E)) are 

indicated by cN,cW,cS, and cE respectively. The following 

Eqs. (3)-(6) are for anisotropic diffusion: 

 

𝑐𝑁𝑥,𝑦 = exp⁡(−∥∥∇𝑁(𝐼)∥∥
2/𝑘2) (3) 

 

𝑐𝑆𝑥,𝑦 = exp⁡(−∥∥∇𝑆(𝐼)∥∥
2/𝑘2) (4) 

𝑐𝐸𝑥,𝑦 = exp⁡(−∥∥∇𝐸(𝐼)∥∥
2/𝑘2) (5) 

 

𝑐𝑊𝑥,𝑦 = exp⁡(−∥∥∇𝑊(𝐼)∥∥
2/𝑘2) (6) 

 

In anisotropic diffusion, the k and λ are two parameters that 

regulate the level of smoothing, with larger values leading to 

smoother images, but the edges are not retained as much. 

To evaluate how robust the anisotropic diffusion 

preprocessing is, we performed a sensitivity analysis by testing 

different values of the edge-stopping parameter (k), the time 

step (λ), and the number of iterations (N). Specifically, we 

tested k values of 5, 10, 20, and 40; λ values of 0.05, 0.10, 

0.15, and 0.25; and N values of 5, 10, 20, and 40. For each 

combination of these parameters, we measured segmentation 

performance using the Dice coefficient, Intersection over 

Union (IoU), and Mean Squared Error (MSE). Key findings 

from this analysis are discussed in Section 4.4. 

 

3.2 Anisotropic diffusion filtering 

 

Medical image segmentation typically processes 3D 

volumetric data x ∈ ℝ^(D×H×W×C). Here spatial dimensions 

are represented as D, H, W and channel depth is donated by C 

which is used to generate pixel-wise label maps of matching 

resolution. Conventional U-Net architectures process this 

input through sequential encoding and decoding stages, 

extracting hierarchical features while maintaining spatial 

resolution. However, these traditional approaches often 

struggle to capture extensive contextual relationships across 

medical volumes. Our proposed architecture addresses this 

limitation by strategically incorporating attention mechanisms 

throughout the U-shaped network’s encoder and decoder 

pathways. The enhanced design combines convolutional 

layers' local feature extraction capabilities with transformer 

modules' global self-attention mechanisms. This synergistic 

integration improves modelling of anatomical relationships 

across different scales while preserving precise spatial details, 

ultimately achieving more accurate segmentation of complex 

tissue structures in medical imaging. 

Image sequentialization: For 3D medical image processing, 

we implement volume tokenization by partitioning the input 

tensor x∈ℝD×H×W×C into non-overlapping cubic patches of size 

P×P×P. This transformation reshapes the volumetric data into 

a sequence of flattened patch vectors {xi
p∈ℝ^P³·C | i = 1,...,N}, 

where N = (D×H×W)/P³ represents both the total number of 

patches and the sequence length for subsequent processing. 

Following established practices in vision transformer 

architectures, this pacification step serves as the fundamental 

operation for converting the spatial 3D medical image into a 

sequence suitable for transformer-based processing, while 

maintaining all original voxel information through the 

flattened vector representation. 

Patch embedding: Our patch embedding process transforms 

the vectorised image patches bold x to the p into a d-

dimensional latent space through a trainable in-line projection, 

where p denotes patch size and c represents input channels. To 

preserve critical spatial information, we augment these patch 

embeddings with learned positional encodings formulated as 

Eq. (7): 

 

𝑧0 = [𝑥1
𝑝
𝐸; 𝑥2

𝑝
𝐸;⋯ ; 𝑥𝑁

𝑝
𝐸] + 𝐸𝑝𝑜𝑠 (7) 

 

where, 𝐄 ∈ ℝ(𝑃3⋅𝐶)×𝑑𝑒𝑛𝑐  is the patch embedding projection, 
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and 𝐄𝑝𝑜𝑠 ∈ ℝ𝑁×𝑑enc  denotes the position embedding. 

A standard Transformer layer contains two primary 

components: The first is Multi-head Self-Attention 

mechanism (MSA) and second is Multi-Layer Perceptron 

block (MLP) which are given using Eqs. (2) and (3). 

Consequently, the l-th layer output zₗ is computed using Eqs. 

(8) and (9) as: 

 

𝐳ℓ
′ = MSA⁡(LN⁡(𝐳ℓ−1)) + 𝐳ℓ−1 (8) 

 

𝐳ℓ = MLP⁡(LN⁡(𝐳ℓ
′)) + 𝐳ℓ

′ , (9) 

 

Our framework employs layer normalization (LN(⋅)) to 

process the encoded image representation zₗ. Departing from 

conventional pixel-wise segmentation, we reformulate 

medical image analysis as a mask classification task. Central 

to our approach are learnable d-dimensional 'organ query' 

vectors, each representing potential anatomical structures in a 

given image. Using a fixed set of N organ queries (where N ≫ 

K, with K being the true number of target classes), the model 

partitions the image into N candidate regions before assigning 

appropriate class labels. This design choice, inspired by recent 

advances in set prediction architectures, deliberately over-

generates candidate regions to reduce false negative detections 

while maintaining computational efficiency. Consider d_dec 

as the dimension of the object queries, the dot product between 

the initial green queries 𝐏0 ∈ ℝ𝑁×𝑑𝑑𝑒𝑐 and the embedding the 

last block feature of the U-Net as 𝐅 ∈ ℝ𝐷×𝐻×𝑊×𝑑𝑑𝑒𝑐 that 

computes the coarse predicted segmentation map: With ddec as 

the dimension of the object queries predicted coarse 

segmentation map can be calculated by the dot product of 

𝐏0 ∈ ℝ𝑁×𝑑𝑑𝑒𝑐 (the initial organ queries) and 𝐅 ∈
ℝ𝐷×𝐻×𝑊×𝑑𝑑𝑒𝑐 ⁡(U-Net last block feature ) as in Eq. (10): 

 

𝐙0 = 𝑔(𝐏0 × 𝐅⊤) (10) 

 

The activation function g(⋅) combines sigmoid nonlinearity 

with a 0.5 threshold for binarization, chosen over SoftMax to 

accommodate overlapping classes in our datasets. The 

Transformer decoder progressively refines organ queries to 

improve the initial prediction through multiple layers, each 

comprising: (1) a self-attention mechanism (MSA block) that 

captures inter-query relationships, and (2) a cross-attention 

module that integrates localized, multi-scale CNN features. 

This dual-path design synergistically combines the 

Transformer's global contextual understanding with CNN's 

precise spatial localization capabilities, enabling 

comprehensive feature representation while preserving 

anatomical details. The cross-attention mechanism 

specifically allows each query to dynamically attend to 

relevant spatial regions in the CNN feature maps, facilitating 

accurate boundary delineation for overlapping structures. 

Our method includes simultaneous training of both 

decoders namely CNN and Transformer. At the t-th layer P𝑡 ∈
ℝ𝑁×𝑑𝑑𝑒𝑐  represent the refined organ queries and concurrently 

the U-net feature at intermediate stage is mapped to a d_dec-

dimensional feature space represented by F to simplify cross-

attention computations. Also, multi-scale CNN topographies 

can be anticipated as  ℱ ∈ ℝ(𝐷𝑡𝐻𝑡𝑊𝑡)×𝑑𝑑𝑒𝑐, when the number of 

upsampling blocks line up with the number of Transformer 

decoder layers. In this  𝐷𝑡 , 𝐻𝐼 , and 𝑊𝐼  represents t-th 

upsampling block spatial dimensions in the feature map. 

Further, the organ queries at 𝑡 + 1-th layer are refined by 

cross-attention with Eq. (11): 

 

𝐏𝜈+1 = 𝐏𝑙 + Softmax ((𝐏′𝐰𝑞)(𝒫
𝜈𝐰𝑘)

⊤) × ℱ𝐰𝑣  (11) 

 

where the r-th query topographies are updated using linear 

projection so as to obtain queries for the subsequent layers by 

means of the weight matrix 𝑤𝑞 ∈ 𝑅(𝑑𝑑𝑒𝑒¡×𝑑4 . The U-Net 

feature, F, is likewise restructured into keys and values with 

𝑤𝑘 ∈ 𝑅𝑑𝑑𝑒𝑠𝑥𝑘  and 𝑤𝑣 ∈ 𝑅𝑑𝑑𝑜𝑐𝑥𝑑  that are parametric weight 

matrices. A residual path is used for this restructuring of P 

following earlier works [25]. Next, a attention refinement as 

coarse-to-fine is attempted to improve the segmentation 

accuracy. 

Our approach incorporates a coarse-to-fine refinement 

strategy through a novel mask attention module within the 

Transformer decoder, specifically designed to enhance small 

target segmentation in medical images. The module leverages 

coarse predictions from previous stages to guide subsequent 

refinements by constraining the cross-attention method to 

focus primarily on probable foreground regions. This attention 

masking operation, formulated as A' = A ⊙ M + A (where A 

is the original attention map and M is the binarized mask from 

the preceding stage), progressively reduces background 

interference while preserving the Transformer's global 

contextual understanding. The iterative application of this 

mechanism enables precise boundary delineation, particularly 

for small anatomical structures, by successively refining the 

region of interest while maintaining computational efficiency 

through spatially-constrained attention computation. This dual 

advantage of focused local refinement and preserved global 

context represents a significant improvement over 

conventional coarse-to-fine approaches in medical image 

segmentation. 

Concretely, the coarse level mask prediction and the organ 

queries are initially set as Z0 and P0 respectively followed by 

the iterative refinement process. At the r-th iteration coarse 

prediction Z' and the current organ query features P^' are used 

to calculate the masked cross-attention for refinement of  P(+1) 

for the iterations in the later stages. The calculation includes 

the current coarse prediction ZI into the affinity matrix as 

specified in Eqs. (12) and (13): 

 

PN+1 = PN + 

Softmax⁡ ((P𝑟w𝑞)(ℱw𝑘)
⊤ + ℎ(Z𝑟)) × ℱw𝑒 

(12) 

 

where, 

 

ℎ(𝐙′(𝑖, 𝑗, 𝑠)) = {0 if⁡𝐙𝑙(𝑖, 𝑗, 𝑠) = 1
−∞ otherwise

 (13) 

 

The coordinate indices (i,j,s) define the spatial constraints 

for our cross-attention mechanism, forcing it to operate 

exclusively within foreground regions while completely 

suppressing background interference. Through an iterative 

update scheme that simultaneously optimizes both organ 

queries and their associated mask predictions, our Transformer 

decoder progressively enhances segmentation accuracy across 

multiple refinement stages. As detailed in Algorithm 1, this 

cyclic process continues until completion at iteration t=T, 

where T corresponds precisely to the total number of decoder 

layers, ensuring comprehensive feature integration throughout 

the network's depth. 

In Fine segmentation updated organ queries P𝑇 is obtained 
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after decoding the final iteration which can be mapped to the 

final refined binarized segmentation map Z𝑇  with the dot 

product of U-Net's last block feature F. Each binarized mask 

is linked with one semantic class using a linear layer of weight 

matrices. w𝑓𝑐 ∈ ℝ𝑑×𝐾  is used to project the refined organ 

embedding P𝑇  to the output class logits O ∈ ℝ𝑁×𝐾  using the 

Eqs. (14) and (15): 

 

O = P𝑇w𝑓𝑐 (14) 

 

𝑦̂ = 𝑎𝑟𝑔𝑚𝑎𝑥𝑘=0,1,…,𝐾−1⁡ 𝑂 (15) 

 

where k is the label index. The final class labels associated 

with the refined predicted masks Z𝑇 is 𝑦̂ ∈ ℝ𝑁. 

Transformer hyperparameters: The Transformer module 

within U-TransNet was implemented with 4 encoder–decoder 

layers. Each multi-head self-attention (MSA) block employed 

8 attention heads, each with an embedding dimension of 64, 

yielding a total hidden size of 512. The feed-forward network 

within each Transformer block had an intermediate dimension 

of 2048 with GELU activation. Positional encodings were 

learned and added to the patch embeddings of dimension 128 

before entering the encoder. Layer normalization was applied 

before each attention and feed-forward block. Dropout with a 

probability of 0.1 was used throughout to reduce overfitting. 

These settings were selected after pilot hyperparameter tuning 

to balance segmentation accuracy with computational 

efficiency. 

 

3.3 SVM with WOA 

 

Whale Optimization Algorithm (WOA) is a new type of 

metaheuristic intelligent optimization algorithm proposed by 

Mirjalili and Lewis. It searches for the best possible solution 

by mimicking the ‘‘spiral bubble network’’ search strategy 

that is used humpback whales. The algorithm has the 

advantages of few adjustment parameters, simple operation, 

and easy understanding. The WOA mainly involves the 

following optimization steps: surround prey, spiral predation, 

and search for prey. 

During cooperative hunting, humpback whales employ a 

strategic encircling behavior to capture prey. Once an 

individual identifies the optimal hunting position, the entire 

pod converges toward this location. The overall process is 

mathematically modeled in our optimization algorithm with 

the help of position update equations given as Eqs. (16) and 

(17), that controls the iterative refinement of search agents in 

the specified solution space. 

 

𝐷 = |𝐶𝑀 ∗ (𝑡) − 𝑀(𝑡)| (16) 

 

𝑀(𝑡 + 1) = 𝑀 ∗ (𝑡) − 𝐴 · 𝐷 (17) 

 

The optimization framework that is proposed has the 

position vector of the best solution as M*(t). This position 

vector is found by iteration t and is dynamically updated 

whenever superior solution is found. The position of current 

solution at iteration t is denoted by M(t) and  the Euclidean 

distance (D) is calculated over each iteration as difference 

between M*(t) and M(t). Eqs. (18) and (19) are for the 

adaptive coefficient vector A that governs the magnitude and 

C gives direction of solution updates. These coefficients 

enable balanced exploration-exploitation tradeoffs throughout 

the optimization process. 

𝐴 = 2𝑎 · 𝑟1 − 𝑎 (18) 

 

𝐶 = 2𝑟2 (19) 

 

The parameter a given as 𝑎⁡ =
2𝑡

𝑚𝑎𝑥𝑔𝑒𝑛
, where the current 

iteration is t and the maximum allowed iterations are maxgen, 

controls the search intensity decreasing linearly from 

maximum of 2 to minimum of 0 across iterations carried out. 

This decay schedule balances exploration and exploitation. 

Additionally, r₁ and r₂ are randomisation vectors whose 

elements are uniformly distributed in [0,1], introducing 

stochastic variability to the search process. 

During the search process whale is searcher and prey is 

required optimum solutiom. As the searcher gradually reaches 

the optimal solution then variable a decreases accordingly. 

Also, the coefficient A reduces linearly with the variable a 

according to Eq. (18). When A is [−1, 1] then subsequent 

position of the new searcher will be between the current 

position and the optimal position (optimum solution). The 

searcher will reach the optimal solution in a spiral way, 

updating its position according to Eq. (19), and gradually reach 

to the desired solution.  

As the search agent converges toward the optimal solution, 

the control parameter' ‘a’ decreases linearly with iterations, 

causing coefficient A to similarly diminish. When A falls 

within [−1,1], the agent enters an exploitation phase where its 

next position is constrained to the convex space between its 

current location and the global optimum. For final 

convergence, the agent follows a logarithmic spiral trajectory 

that simultaneously maintains directional momentum toward 

the solution while progressively tightening the search radius. 

This dual-phase update strategy combines targeted local 

search with controlled oscillatory movements, ensuring both 

solution accuracy and convergence stability throughout the 

optimization process using Eq. (20). 

 

𝑀(𝑡 + 1) = 𝐷′ · 𝑒𝑏𝑙𝑐𝑜𝑠(2𝜋𝑙) + 𝑀 ∗ (𝑡) (20) 

 

where, 𝐷′ ⁡= ⁡ |𝑀 ∗ ⁡333⁡(𝑡) ⁡− ⁡𝑀(𝑡)| specify the error in i-th 

searcher and optimal solution at current position; constant b 

defines logarithmic spiral shape, and random number l has the 

range [−1,1]. Humpback whales constantly narrow the search 

range while moving in spiral manner. Therefore with spiral 

mode and 50% probability of shifting is assumed and the 

searcher position is updated according to Eqs. (21) and (22). 

 

𝑀(𝑡 + 1) = 𝑀 ∗ (𝑡) − 𝐴 · 𝐷 (21) 

 

𝑀(𝑡 + 1) = 𝐷0 · 𝑒𝑏𝑙𝑐𝑜𝑠(2𝜋𝑙) + 𝑀 ∗ (𝑡) (22) 

 

where, 𝐷′ = |𝑀 ∗ (𝑡) − 𝑀(𝑡)|⁡is the error between the current 

optimal solution and the i-th searcher.  

Random search capability of Humpback whales can 

enhance global search capabilities of algorithms. The updated 

Eq. (23) can be used for searching the solution randomly 

 

𝑀(𝑡 + 1) = 𝑀𝑟𝑎𝑛𝑑(𝑡) − 𝐴|𝐶𝑀𝑟𝑎𝑛𝑑(𝑡) − 𝑀(𝑡)| (23) 

 

where,⁡𝑀𝑟𝑎𝑛𝑑 is a position vector randomly selected from the 

353 current population (representing a random whale). 

SVM is a novel machine learning approach, proposed by 

Corinna Cortes and Vapnik in the year 1995, is a generalized 

linear classifier used for binary classification of data in a 
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supervised learning mode. Over traditional neural networks, 

SVM has advantage of robustness, versatility, computational 

simplicity, effectiveness and theoretical support. On the 

contrary, when it is used for regression prediction or pattern 

recognition, no uniform standard method is available for the 

selection of its parameters c and g. In SVM fitting function, a 

minimum optimization problem and the penalty parameter c is 

introduced. The parameter c is used to fine-tune the objective 

function to achieve the balance between the minimum 

relaxation factor and maximum interval, that is, when the 

sample data is classified incorrectly, the larger the value of the 

parameter c, the more complex the algorithm will be, thus 

classification errors will not occur. However, if the parameter 

c is set too high, the algorithm’s generalization ability will be 

weakened, and the empirical risk may not change. On the 

contrary, a smaller value of parameter c reduces the 

complexity of the algorithm but increases the algorithm’s 

empirical risk. As a result, it is necessary to use an intelligent 

optimization algorithm to find a suitable parameter c, so that 

the support vector machine can perform better. 

Coupling of segmentation and classification: The WOA-

based SVM optimization is performed independently of the 

segmentation network training, i.e., the optimization process 

is decoupled from the U-TransNet training. First, the 

segmentation module generates complete binary masks of the 

liver tumor regions. From these segmentation outputs, we 

extract shape, texture, and intensity-based features that serve 

as inputs to the SVM classifier. Thus, the full segmentation 

output is used to drive feature extraction and classification. 

The WOA algorithm optimizes the SVM parameters (kernel 

type, C, and Γ) to maximize classification accuracy on the 

validation set. This design ensures that improvements in 

segmentation quality directly contribute to better 

classification, while keeping the optimization stages modular. 

 

 

4. RESULTS AND DISCUSSION 

 

The proposed liver disease detection system was 

implemented using Python and TensorFlow, with an 

integrated Keras backend for deep learning model 

development. The dataset comprised annotated liver CT scans, 

pre-processed using anisotropic diffusion filtering to enhance 

image clarity by reducing noise while preserving crucial 

anatomical structures. The segmentation pipeline utilised a 

hybrid Attention-based U-TransNet model, combining the 

strengths of U-Net for capturing macro-level features and a 

Transformer-based attention mechanism for refining boundary 

detection and highlighting fine details. The learning rate, batch 

size and number of attention heads are optimised using 

Hyperparameter tuning  which ensured that the model 

achieved maximum segmentation accuracy. The system was 

trained on a high-performance CPU, using a combination of 

Dice Loss and Binary Cross-Entropy as the loss function, to 

address class imbalance and focus on lesion-specific areas. 

The classification component employed a support vector 

machine (SVM), with feature extraction driven by the 

segmented outputs. The SVM was optimised using the Whale 

Optimisation Algorithm (WOA), which dynamically adjusted 

hyperparameters to enhance classification performance. 

Precision, recall, and F1-score were computed to evaluate the 

classifier's robustness, particularly in handling early-stage 

liver disease samples. 

 

4.1 Dataset description 

 

Liver tumors represent a major global health challenge, 

ranking as the fifth most common cancer in men and ninth in 

women, with over 840,000 new cases reported in 2018 alone. 

The liver's susceptibility to both primary and metastatic 

tumors creates significant diagnostic complexities due to 

lesions' variable sizes, indistinct margins, and diverse contrast 

characteristics in CT imaging. Addressing these challenges, 

our study leverages the comprehensive DeepLesion dataset - 

comprising 32,120 contrast-enhanced CT slices from 10,594 

scans of 4,427 patients, containing 32,735 annotated lesions 

with bounding boxes and size measurements - to develop 

advanced segmentation algorithms capable of handling the full 

spectrum of lesion types (both hyper- and hypo-dense) 

encountered in clinical practice. This multi-institutional 

dataset, curated from seven hospitals and research centres, 

provides the necessary diversity in tumor morphology and 

imaging characteristics to train robust models for accurate 

lesion delineation, a critical step toward improving diagnosis 

and treatment planning for this prevalent malignancy. 

Although DeepLesion is a large-scale and diverse CT 

dataset that includes various types of lesions across multiple 

organs, it is not liver-specific. Its inclusion of liver lesions 

provides valuable samples for training a generalizable model; 

however, the dataset also contains heterogeneous lesion types 

from other organs. While this diversity helps the model learn 

robust feature representations, it introduces the limitation that 

liver-specific tumor characteristics may not be as 

comprehensively represented as in dedicated liver CT datasets 

(e.g., LiTS). Thus, while DeepLesion is useful for initial 

development and benchmarking, further evaluation on liver-

focused datasets would strengthen the clinical applicability of 

U-TransNet. 

Data augmentation: To improve generalization and 

robustness to clinical variability, we applied a suite of 

augmentation techniques during training. Geometric 

augmentations included random rotations (±15°), 

horizontal/vertical flips, and small translations (up to 10 

pixels). Intensity augmentations simulated realistic CT 

variations: random contrast adjustments (±20%), brightness 

scaling (±15%), and Gaussian noise injection with variance up 

to 0.01. To mimic CT artifacts, we introduced elastic 

deformations and low-intensity streak-like perturbations with 

a small probability (5%). These augmentations ensured that 

the model was exposed to realistic variability in liver CT 

images while preserving anatomical plausibility. 

 

4.2 Performance evaluation 

 

Figure 3 presents a comparative visualization of the original 

image, ground truth mask, and the predicted mask generated 

by the proposed method for liver segmentation. The original 

image highlights the inherent challenges posed by noise and 

artifacts, while the ground truth mask serves as the reference 

for accurate segmentation. The predicted mask demonstrates 

the efficacy of the proposed Attention based U-TransNet in 

closely replicating the ground truth. Notably, the boundaries 

and intricate structures of the liver, including regions with 

early lesions, are well-preserved, showcasing the method's 

ability to handle both coarse segmentation and fine-grained 

details. This comparison visually reinforces the quantitative 

improvements in segmentation accuracy achieved by the 

proposed approach. 
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Hyperparameters of the Transformer (embedding 

dimension, number of heads, number of layers, and dropout) 

were selected based on grid search experiments on the 

validation set. The reported settings (8 heads, embedding 

dimension 64, hidden size 512, 4 layers, dropout 0.1) 

consistently achieved the highest Dice and IoU while 

maintaining feasible training times. 

 

 
 

Figure 3. Sample of predicted outputs by the proposed model 

 

 
 

Figure 4. Confusion matrix of the proposed model 

 

The confusion matrix presented in the Figure 4 illustrates 

the classification performance of the proposed method in 

distinguishing between normal and abnormal liver conditions. 

The matrix shows that out of 368 normal cases, 365 were 

correctly classified as normal, with only 3 misclassified as 

abnormal, indicating a high true negative rate. For the 

abnormal cases, 157 out of 160 were accurately identified, 

with just 3 incorrectly classified as normal, reflecting a robust 

true positive rate. This balance demonstrates the model's 

ability to effectively minimize both false positives and false 

negatives, showcasing its reliability in early-stage liver disease 

detection, particularly for the minority abnormal class. The 

results highlight the impact of the Whale Optimization 

Algorithm and cost-sensitive learning in achieving high 

classification accuracy and addressing class imbalance. 

The Area Under the Curve (AUC) plot in Figure 5 

demonstrates the exceptional performance of the proposed 

classification model, with an AUC value nearing 1. This 

indicates a highly reliable classifier with an outstanding ability 

to distinguish between normal and abnormal liver conditions. 

The curve's proximity to the top-left corner of the plot 

showcases the model's capability to achieve a perfect balance 

between sensitivity (true positive rate) and specificity (true 

negative rate). This high AUC value validates the 

effectiveness of the optimized SVM classifier tuned using the 

Whale Optimization Algorithm, as well as the robustness of 

the feature extraction and noise reduction techniques in 

ensuring precise early-stage liver disease detection. 

 

 
 

Figure 5. AUC Curve of the proposed model 

 

 
 

Figure 6. Fitness plot obtained from WOA 

 

The fitness graph in Figure 6 of the Whale Optimization 

Algorithm (WOA) shows a significant reduction in fitness 

value from approximately 0.005 to nearly 0.000 within the first 

5 iterations, after which it stabilizes around 0. This rapid 

convergence reflects WOA's efficiency in finding the optimal 

hyperparameters for the SVM classifier with minimal 

computational iterations. 

The accuracy plot in Figure 7 reveals that the training 

accuracy starts at approximately 82% in the initial epoch and 

steadily increases, achieving nearly 98% by the end of 50 

epochs. Similarly, validation accuracy starts slightly lower at 

around 81% and reaches approximately 96%, demonstrating 

consistent performance and generalization across unseen data. 

The loss plot highlights a steady decline in training loss, 

starting at an initial value of about 0.6 and dropping to nearly 

0.1 by the 50th epoch. Validation loss begins at approximately 

0.5, with noticeable fluctuations during early epochs, 
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stabilizing around 0.2 toward the end. This reduction in both 

training and validation losses, combined with the high 

accuracy values, confirms the robustness of the proposed 

method in optimizing and learning effectively while 

maintaining generalization to unseen data. 

 

 
(a) 

 
(b) 

 

Figure 7. Accuracy and loss plot 

 

 
 

Figure 8. Performance of the proposed model 

 

The plot in Figure 8 showcasing the performance metrics of 

the proposed model for accurate liver disease prediction 

demonstrates outstanding results across various evaluation 

parameters. The accuracy of 98.86% indicates that the model 

correctly classifies most of the liver disease cases, reflecting a 

strong overall performance. The precision and recall, both at 

99.01%, suggest that the model not only correctly identifies 

positive cases (precision) but also captures almost all of the 

true positive cases (recall), which is crucial for medical 

diagnosis were missing a case can be critical. The F1-score, 

also at 99.01%, reflects a balanced performance between 

precision and recall, ensuring that the model does not favor 

one over the other. The Intersection over Union (IoU) of 98% 

indicates a high overlap between the predicted and actual 

regions of interest, highlighting the model's effectiveness in 

identifying relevant features for liver disease detection. Lastly, 

the Dice coefficient of 99.01% reinforces the model's 

reliability in accurately segmenting the liver disease area, with 

a strong correlation between the predicted and ground truth 

segments.  

 

4.3 Comparative study 

 

Table 2 highlights the performance of the model for liver 

disease prediction across different classes, with the precision, 

recall, F1-score, and support for each class as well as overall 

metrics. For class 0 (likely representing non-disease cases or 

the negative class), the model achieves a precision of 99%, 

indicating that almost all predicted negative cases are correct. 

The recall is also 99%, which means that the model 

successfully identifies 99% of the true negative cases. The F1-

score of 99% indicates that the precision and recall are well 

balanced for this class, ensuring the model performs optimally 

in detecting negative cases. With 368 support, this class has a 

larger number of instances, and the model handles it well with 

these high scores. For class 1 (likely representing liver disease 

cases or the positive class), the model reports slightly lower 

but still impressive scores: precision and recall both at 98%, 

meaning that while the model may miss a few positive cases 

or make slightly more false positives compared to class 0, it 

still performs very well. The F1-score for class 1, which has a 

total of 160 instances, is obtained as 98% that show robust 

performance as it is effectively balancing precision and recall. 

The overall accuracy of model is 99% that demonstrates its 

strong generalization capability and the majority of both 

classes are accurately predicted. The macro average is also 

99% for precision, recall, and F1-score is an indication of 

models consistency amongst the different classes because it 

gives an equal weight to the performance of each class. The 

weighted average is taken into consideration to the support for 

each class. The weighted average is also 99% for all metrics 

which is indicating that the model performs equally well 

across both the classes though there is variation in the number 

of instances. The overall performance proposes that the 

proposed model is highly effective and reliable for liver tumor 

prediction in early stage. 

 

Table 2. Class-wise performance of the proposed model 

 
 Precision Recall F1-Score Support 

0 99 99 99 368 

1 98 98 98 160 

Accuracy 99 99 99 528 

Macro average 99 99 99 528 

Weighted average 99 99 99 528 

 

 
(a) 
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(b) 

 
(c) 

 

Figure 9. Comparative performance of the proposed model 

based on (a) MSE (b) Dice (c) IoU 

 

The proposed method, in comparison to existing methods, 

show better performance in segmentation and prediction of 

liver tumors shown in Figure 9. The outcomes are measured 

particularly with the parameters as Intersection over Union 

(IoU), Dice coefficient and Mean Squared Error (MSE). The 

proposed model has higher values of IoU that reflects that it 

effectively capturing the true boundaries of the affected area 

and thus provides more precise segmentation. This is very 

important in medical imaging because accuracy in boundaries 

of affected areas directly impacts diagnosis and treatment 

planning. In addition to this, the MSE is very low that indicates 

ability of the model to generate predictions that are closer to 

the actual. The lower error is a measure of efficiency of model 

in minimizing discrepancies between predicted and actual 

affected areas thereby ensuring more reliable predictions. 

Finally, Dice coefficient is a measure of similarity between the 

predicted and true segmentation and for the proposed model it 

is significantly higher. This indicates enhanced capability of 

model to correctly identify and segment affected areas of liver. 

These results obtained through IoU, MSE and Dice clearly 

indicate the better performance of the proposed model over 

existing methods. Thus, the proposed model is a more 

accurate, reliable and effective solution for liver tumor 

prediction and segmentation adding a valuable tool in medical 

diagnostics. 

 

4.4 Sensitivity analysis of anisotropic diffusion parameters 

 

The results of the sensitivity analysis are shown in Table 3 

and Figure 10. The Dice scores remained consistently high 

(above 97%) across a wide range of values for the parameters 

k, λ, and N, demonstrating the stability of the proposed 

processing pipeline. The best performance was observed when 

using moderate values for k (10 to 20) and the number of 

iterations N (10 to 20), with a time step λ between 0.10 and 

0.15. In these settings, Dice scores exceeded 99%. When the 

number of iterations was too small or the time step too large, 

performance slightly declined due to under-smoothing 

(leaving residual noise) or over-smoothing (blurring important 

edge details). Overall, the results confirm that the model is 

robust to changes in these parameters and support the baseline 

parameter settings used in earlier sections. 

 

Table 3. Representative sensitivity results for anisotropic diffusion filtering parameters 

 
Setting (k, λ, N) Dice (%) IoU (%) MSE 

Baseline (used in main study) (20, 0.15, 10) 99.01 ± 0.45 98.00 ± 0.60 0.0012 ± 0.0004 

Best observed (10, 0.10, 20) 99.25 ± 0.32 98.40 ± 0.42 0.0009 ± 0.0003 

Over-smoothed (high λ, large N) (40, 0.25, 40) 97.40 ± 0.90 95.80 ± 1.10 0.0035 ± 0.0010 

Under-smoothed (low N) (5, 0.05, 5) 95.80 ± 1.20 93.90 ± 1.40 0.0060 ± 0.0020 

 

 
 

Figure 10. Heatmap showing Dice scores (%) across 

anisotropic diffusion parameters k and number of iterations N 

at λ = 0.10 

4.5 Baseline classifier comparisons 

 

To evaluate the effectiveness of the proposed WOA-SVM 

classifier, we compared its performance against baseline 

classifiers: standard SVM without optimization, Random 

Forest, and CNN. Table 4 summarizes the results. WOA-SVM 

achieved the highest accuracy (96.5%) and F1-score (95.9%), 

outperforming the conventional SVM (93.2%), Random 

Forest (91.8%), and CNN (94.5%). These results demonstrate 

that WOA-based optimization significantly enhances SVM 

performance, while maintaining lower computational 

complexity compared to CNN-based approaches. 

 

4.6 Convergence comparison of optimizers 

 

Figure 11 shows the convergence curves (validation fitness 

vs iteration) averaged across 5 runs for WOA, PSO, and GA. 

WOA demonstrates faster convergence towards lower 

validation fitness and smaller variance across runs compared 

to GA and comparable or better convergence than PSO in our 
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setting. This supports the choice of WOA as an effective 

optimizer for SVM hyperparameter tuning in this application. 

The proposed model is suitable for real-time clinical 

applications due to its low inference time and moderate model 

size. Its efficiency allows integration into standard hospital 

systems, enabling rapid and reliable decision support for 

clinicians. 

 

Table 4. Comparison of classification performance with different classifiers 

 
Classifier Accuracy (%) Precision (%) Recall (%) F1-Score (%) 

Random Forest (100 trees) 91.8 92.0 91.5 91.7 

Standard SVM (RBF kernel) 93.2 93.5 92.8 93.1 

CNN (3 conv layers) 94.5 94.8 94.3 94.5 

Proposed WOA-SVM 96.5 96.2 95.7 95.9 

 

 
 

Figure 11. Convergence of optimizers 

 

 

5. CONCLUSION 

 

In conclusion, the proposed method showcasing the 

significant advancements in both segmentation and 

classification for liver tumor prediction, specifically in early-

stage tumor detection. Anisotropic diffusion filtering that used 

in the proposed method successfully reduces noise and 

preserves the critical structures of liver tissues so there is 

higher clarity in medical images. This pre-processing 

technique leads to the exceptional performance of proposed 

model. This also reflects in the segmentation results showing 

an IoU of 98% and a Dice coefficient of 99.01% thereby 

indicating a high degree of overlap between the predicted and 

actual regions. Prediction of liver tumor regions is précised as 

the Mean Squared Error (MSE) is also minimum. The 

presence of small and obscured tumors can be detected due to 

the integration of an Attention based U-TransNet which 

improves segmentation. Macro level features are captured 

through the U-Net component while the Transformer’s 

attention mechanism focuses on the fine details, resulting in 

more accurate early detection. Finally, the classification phase 

which is optimized with the Whale Optimization Algorithm 

(WOA), improves classification accuracy to 99%. It indicated 

that classifiers not only performance well but also handles 

class disparity effectively by giving higher weight to samples 

at early stage. This results in 99% of a precision, recall, and 

F1-score of the SVM classifier, confirming the robustness of 

model. Overall, the integration of advanced noise reduction 

with hybrid segmentation using attention mechanisms and 

metaheuristic-optimized classification leads to a complete 

solution for early stage liver tumor detection. A limitation of 

this study is the use of DeepLesion, which, although diverse, 

is not liver-specific. Future work will include validation on 

liver-focused datasets to further confirm the applicability of U-

TransNet in clinical liver tumor segmentation. 
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