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The Multi-Constraint Multi-Knapsack Parcel Optimization Problem (MCMKPOP) arises 
in retail logistics where products must be allocated to multiple packages under 
simultaneous weight and budget constraints. Conventional methods, including exact 
approaches and traditional metaheuristics, often address these constraints separately or 
rely on synthetic datasets, scalability and practical relevance. This study proposes an 
enhanced Particle Swarm Optimization (PSO) framework that introduces three key 
innovations: an assignment-based representation to encode discrete allocations, a repair-
based constraint mechanism to ensure feasibility, and a hybrid value function that 
integrates price, weight, and efficiency trade-offs. Using a real-world dataset of 213 retail 
items and ten heterogeneous packaging configurations, the proposed approach was 
evaluated against Genetic Algorithm, Simulated Annealing, and Random Search. 
Experimental results from 30 independent runs show that PSO achieves 100% of the 
theoretical upper bound with a mean performance of 21.3083 ± 0.3145, balanced resource 
utilization (> 90%), and zero constraint violations. Statistical validation through 
parametric and non-parametric tests confirmed the robustness and significance of these 
findings. The novelty this work unified treatment of dual constraints, a multi-knapsack-
aware upper bound, and validation on real-world data, establishing PSO as both a 
methodological advance and a practical solution for intelligent retail packaging 
optimization.  
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1. INTRODUCTION

1.1 Research background 

The Multi-Constraint Multi-Knapsack Problem (MCMKP) 
is an extension of the classical knapsack problem that involves 
allocating items into multiple containers subject to diverse 
capacity constraints. with applications in logistics, supply 
chain management, scheduling, cloud computing, 
telecommunications, and retail packaging [1, 2]. In retail 
operations, the MCMKP manifests as the problem of assigning 
items with heterogeneous price and weight to multiple 
packaging containers, where both budget and physical 
capacity constraints must be satisfied while maximizing 
customer satisfaction and revenue [3]. 

Over the past two decades, extensive efforts have been 
dedicated to solving knapsack variants. Exact methods, such 
as branch-and-bound, column generation, and dynamic 
programming, guarantee optimality but face severe scalability 
limitations as the number of items and constraints increase [2, 
4]. Although improvements in decomposition strategies and 
mathematical programming have extended the solvable 
instance size, their exponential time complexity renders them 
impractical for real-time or large-scale applications [5, 6]. 

As a result, heuristic and metaheuristic methods have 
emerged as viable alternatives, capable of delivering high-
quality solutions within reasonable computational budgets. 
Studies have explored evolutionary algorithms, greedy 
constructive heuristics, and local search strategies to tackle 
large-scale and multi-dimensional knapsack problems [7, 8]. 
Hybrid approaches that integrate exact and heuristic 
techniques have also been proposed to balance solution 
accuracy with computational efficiency. Nonetheless, these 
methods often struggle to adapt to highly heterogeneous 
problem instances, where both resource constraints and item 
characteristics vary significantly across bins [9, 10]. 

1.2 Swarm intelligence and Particle Swarm Optimization 

Swarm intelligence algorithms, inspired by collective 
behaviors in nature, have become powerful tools for 
combinatorial optimization. Among them, Particle Swarm 
Optimization (PSO), originally proposed by Kennedy and 
Eberhart [11], has gained increasing attention. While PSO was 
initially designed for continuous optimization problems, 
significant research has been devoted to adapting it for discrete 
and combinatorial domains. PSO’s strengths lie in its 
population-based mechanism, its balance of exploration and 
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exploitation, and its ability to efficiently navigate multimodal 
search landscapes. 

Recent advances demonstrate that discrete and hybrid 
versions of PSO can achieve competitive results for 
multidimensional and multi-objective knapsack problems. For 
example, discrete PSO variants have been successfully applied 
to resource allocation, scheduling, and large-scale distributed 
optimization [12]. Furthermore, recent developments in multi-
objective PSO emphasize enhanced convergence and diversity 
preservation in multimodal landscapes [13, 14]. Comparative 
studies indicate that swarm-based methods often outperform 
traditional evolutionary algorithms such as Genetic Algorithm 
(GA) or Simulated Annealing (SA), particularly in terms of 
convergence speed and solution robustness [15, 16]. 

Despite these encouraging results, there remain notable 
limitations in applying PSO to real-world knapsack problems. 
Most PSO adaptations target single-constraint formulations or 
simplified instances. They often neglect the interdependence 
of dual constraints, such as budget and weight, which are 
critical in practical retail and logistics settings. Moreover, 
while algorithmic performance is frequently reported in terms 
of best or mean fitness values, many studies fail to establish 
robust statistical validation, leaving uncertainty about the 
generalizability and reliability of the results [17, 18]. 

 
1.3 Research gaps and practical motivations 
 

A closer examination of the literature reveals three 
important gaps. First, dual-constraint problems such as the 
Multi-Constraint Multi-Knapsack Parcel Optimization 
Problem (MCMKPOP) remain underexplored. Most prior 
works focus either on weight-constrained formulations or 
cost-based knapsacks, but rarely optimize both constraints 
simultaneously [19, 20]. This separation often leads to 
suboptimal results in practical applications, where ignoring on 
dimension compromises overall efficiency. 

Second, most existing studies rely on synthetic benchmark 
datasets. While such datasets are valuable for comparative 
analysis, they do not capture the heterogeneity of real-world 
retail operations, where items vary significantly in terms of 
price, weight, and utility, and bins differ in budgetary and 
physical capacities. Real-world datasets present more complex 
constraint landscapes that require robust and adaptive 
optimization methods [19, 20] 

Third, rigorous statistical validation is still lacking in much 
of the existing literature. Although metaheuristic algorithms 
are inherently stochastic, comparative studies often omit 
multiple independent runs, effect size analysis, or non-
parametric validation tests. This limits confidence in reported 
algorithmic superiority and hinders reproducibility [21]. 

From a practical standpoint, the growing complexity of e-
commerce and modern retail systems further amplifies the 
urgency of addressing these gaps. Efficient packaging 
optimization has direct implications for operational cost 
reduction, customer satisfaction, and delivery performance. In 
competitive retail markets, improving resource utilization by 
even a few percentage points can translate into significant 
financial and logistical benefits [22]. 
 
1.4 Objectives and contributions 
 

In response to the aforementioned challenges, this study 
proposes an enhanced Particle Swarm Optimization (PSO) 
framework tailored specifically for the MCMKPOP. The 

novelty of this work lies in its ability to integrate 
methodological rigor with practical applicability, addressing 
theoretical gaps while validating performance on real-world 
data. The contributions can be summarized as follows: 
1. Novel Algorithmic Framework – Develop an 

assignment-based particle representation combined with 
a repair-based constraint handling mechanism. This 
ensures that generated solutions remain feasible with 
respect to both weight and budget constraints. 

2. Hybrid Value Function – Introduce a multi-dimensional 
evaluation function that integrates price, weight, and 
efficiency ratio. This function captures the trade-offs 
inherent in retail packaging and provides a more realistic 
measure of customer value. 

3. Comprehensive Experimental Validation – Using a real-
world dataset collected from the retail souvenir sector in 
Semarang, Indonesia, we evaluate the proposed method 
against established baselines including GA, SA, and 
Random Search. This ensures both practical relevance 
and comparative benchmarking. 

4. Rigorous Statistical Analysis – Employ both parametric 
(t-tests, effect size analysis) and non-parametric (Mann-
Whitney U) methods across multiple independent runs to 
provide statistically robust evidence of algorithmic 
superiority. 

5. Operational Implications – By achieving near-optimal 
resource utilization and zero constraint violations, the 
proposed PSO framework demonstrates suitability for 
real-world deployment in packaging systems where both 
performance and reliability are critical. 

By addressing these gaps, this study advances both the 
theoretical and practical dimensions of swarm intelligence in 
multi-constraint optimization. The research not only 
contributes to the methodological development of discrete 
PSO for complex combinatorial problems but also provides 
actionable insights for intelligent packaging in modern retail 
logistics. The integration of real-world data, rigorous 
benchmarking, and statistical validation underscores the 
novelty and relevance of this work in advancing the state of 
the art. 

 
 

2. MATERIAL AND METHODS 
 
2.1 Problem formulation 
 

The Multi-Constraint Multi-Knapsack Parcel Optimization 
Problem (MCMKPOP) can be formally defined as follows. 
Given a set of items 𝐼𝐼 = {1,2, … , 𝑛𝑛} and a set of bins 𝐵𝐵 =
{1,2, … , 𝑚𝑚} , each item 𝑖𝑖 ∈ 𝐼𝐼  has three attributes: price 𝑝𝑝𝑖𝑖 , 
weight 𝑤𝑤𝑖𝑖 , and computed value 𝑣𝑣𝑖𝑖 . Each bin j ∈ B has two 
capacity constraints: weight capacity 𝑊𝑊𝑗𝑗 and budget capacity 
𝐵𝐵𝑗𝑗 , and weight limit 𝑊𝑊𝑗𝑗.  

Figure 1 illustrates the structural complexity of the Multi-
Constraint Multi-Knapsack Parcel Optimization Problem 
(MCMKPOP) and demonstrates how the proposed PSO 
algorithm encodes solutions through assignment-based 
representation. The diagram visualizes five critical 
components that distinguish MCMKPOP from classical 
single-constraint formulations. 

The Items Set (top section) represents the n retail items, 
each characterized by three attributes: price pᵢ (economic 
value), weight wᵢ (physical constraint), and computed value vᵢ 
(derived from the hybrid value function). This multi-attribute 
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nature necessitates sophisticated optimization approaches that 
can balance competing objectives simultaneously. 

The PSO Assignment Vector (middle section) 
demonstrates the core algorithmic innovation where each 
particle position X = [x₁, x₂, ..., xₙ] directly encodes bin 
allocation decisions. Unlike traditional binary representations 
that require n × m variables, this assignment-based encoding 
uses only n variables where xᵢ ∈ {0, 1, 2, ..., m} indicates the 
bin assignment for item i, with xᵢ = 0 representing non-
selection. This compact representation enables more efficient 
search space navigation while maintaining solution 
interpretability. 

The Bins Set (right section) illustrates the heterogeneous 
nature of packaging containers, each subject to dual 
constraints: weight capacity Wⱼ and budget capacity Bⱼ. The 
inclusion of unselected items emphasizes that MCMKPOP 
solutions need not utilize all available items, reflecting 
realistic retail scenarios where selective packaging maximizes 
value under resource limitations. 

The Dual Constraints section explicitly visualizes the 
simultaneous constraint satisfaction requirement that 
differentiates MCMKPOP from simpler knapsack variants. 
Both weight constraint (Σᵢ∈Sⱼ wᵢ ≤ Wⱼ) and budget constraint 
(Σᵢ∈Sⱼ pᵢ ≤ Bⱼ) must be satisfied for each bin j, creating a 
complex feasible region that requires specialized constraint 
handling mechanisms. 

Finally, the hybrid value function component highlights the 
multi-criteria evaluation approach that integrates normalized 
price contribution (40%), weight efficiency (30%), and price-
to-weight ratio (30%). This balanced weighting scheme 
reflects retail priorities while enabling fair comparison across 
items with diverse characteristics. 

The interconnected arrows demonstrate the information 
flow from item attributes through assignment decisions to 
constraint validation and objective evaluation, illustrating why 
MCMKPOP belongs to the NP-hard class and requires 
advanced metaheuristic approaches like the proposed PSO 
framework for practical solution. 
 

 
 

Figure 1. Item-to-bin assignment structure in the Multi-
Constraint Multi-Knapsack Problem (MCMKPOP) 

 
The overall structure of item-to-bin assignment under dual 

constraints is illustrated in Figure 1. Each item, characterized 
by price, weight, and value, can be assigned to one of the bins 

with specific budget and weight capacities. The objective is to 
maximize the aggregated value while satisfying both 
constraints. The objective is to maximize the aggregated value 
across all bins while satisfying both constraints: 
maximize 
 

𝑍𝑍 = � � 𝑣𝑣𝑖𝑖
𝑖𝑖∈𝑆𝑆𝑗𝑗

𝑚𝑚

𝑗𝑗=1

 (1) 

 
subject to 

∑ 𝑤𝑤𝑖𝑖 ≤ 𝑊𝑊𝑖𝑖 , ∀𝑗𝑗∈ 𝐵𝐵𝑖𝑖∈𝑆𝑆𝑗𝑗  (weight constraint) 
∑ 𝑝𝑝𝑖𝑖 ≤ 𝐵𝐵𝑖𝑖 , ∀𝑗𝑗∈ 𝐵𝐵𝑖𝑖∈𝑆𝑆𝑗𝑗  (budget constraint) 
∑ 𝑥𝑥𝑖𝑖𝑖𝑖 ≤ 1, ∀𝑖𝑖∈ 𝐼𝐼𝑚𝑚

𝑗𝑗=1  (assigment constraint) 
𝑥𝑥𝑖𝑖𝑖𝑖 ∈ {0,1}, ∀∈ 𝐼𝐼, ∀𝑗𝑗∈ 𝐵𝐵 (binary constraint) 

where, 𝑆𝑆𝑗𝑗  denotes the set of items allocated to bin j, and 
decision variable 𝑥𝑥𝑖𝑖𝑖𝑖 ∈ {0,1} indicates whether item i is 
assigned to bin j. This formulation belongs to the class of NP-
hard problems, reflecting the computational difficulty of large-
scale instances [5]. 
 
2.2 Hybrid value function 
 

A key challenge in MCMKPOP is the evaluation of item 
desirability under multiple constraints. To address this, we 
propose a hybrid value function that balances direct economic 
value with resource efficiency: 
 

𝑣𝑣𝑖𝑖 = 𝑤𝑤𝑖𝑖 ⋅
𝑝𝑝𝑖𝑖

𝑝𝑝𝑚𝑚𝑚𝑚𝑚𝑚
+ 𝑤𝑤2 ⋅

𝑤𝑤𝑖𝑖

𝑤𝑤𝑚𝑚𝑚𝑚𝑚𝑚
+ 𝑤𝑤3 ⋅

𝑑𝑑𝑖𝑖

𝑑𝑑𝑚𝑚𝑚𝑚𝑚𝑚
 (2) 

 
where, 

𝑝𝑝𝑖𝑖
𝑚𝑚𝑚𝑚𝑚𝑚(𝑝𝑝)

 is the normalized price contribution 
𝑤𝑤𝑖𝑖

𝑚𝑚𝑚𝑚𝑚𝑚(𝑤𝑤)
 is the normalized weight contribution 

𝑑𝑑𝑖𝑖
𝑑𝑑𝑚𝑚𝑚𝑚𝑚𝑚

 is the normalized price-to-weight ratio 
𝑤𝑤1, 𝑤𝑤2, 𝑤𝑤3 are weigting parameters 
Following multi-criteria decision-making principles [7], we 

assign 𝑤𝑤1  = 0.4, 𝑤𝑤2  = 0.3, and 𝑤𝑤3  = 0.3. This reflects the 
higher priority of price (40%) in retail revenue optimization, 
while still emphasizing weight efficiency and balance. Similar 
hybrid scoring functions have proven effective in recent multi-
objective knapsack formulations [1, 15]. The hybrid value 
function weights (w₁ = 0.4, w₂ = 0.3, w₃ = 0.3) were 
determined through consultation with retail domain experts 
from the Central Java Souvenir Entrepreneurs Association 
(ASPOO). Based on their operational experience in the 
Indonesian souvenir retail sector, the 40% weight allocation to 
price reflects the primary revenue-driven objective in 
competitive retail markets, where profit margins directly 
impact business sustainability. The equal 30% allocation to 
weight efficiency and price-to-weight ratio acknowledges the 
growing importance of shipping optimization and customer 
value perception in modern e-commerce environments, while 
maintaining business practicality over purely theoretical 
optimality. 
 
2.3 PSO algorithm adaptation 
 
2.3.1 PSO algorithm overview and enhancement framework 

Each particle encodes a complete allocation of items across 
bins using an assignment-based representation. The position 
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vector X = [𝑤𝑤1, 𝑤𝑤2, . . ., 𝑤𝑤𝑛𝑛] specifies the bin assignment for 
each item, with 𝑤𝑤𝑖𝑖 = 𝑗𝑗 if item i is placed in bin j, and 𝑥𝑥𝑖𝑖 = 0 
if unassigned. This discrete encoding ensures direct 
interpretability for the MCMKPOP. 

Particle Swarm Optimization simulates social behavior of 
bird flocking or fish schooling to solve optimization problems. 
The algorithm maintains a population (swarm) of candidate 
solutions (particles) that move through the search space 
according to both individual experience (personal best) and 
collective knowledge (global best). Algorithm 1 presents our 
enhanced PSO framework specifically adapted for 
MCMKPOP. 
 

Algorithm 1: Enhanced PSO for MCMKPOP 
Input: Items I, Bins B, Swarm size S, Max iterations T 
Output: Optimal assignment solution 
# INITIALIZATION PHASE 
1 For each particle i = 1 to S: 

2  Create random assignment vector: 𝑋𝑋𝑖𝑖 =
 [𝑥𝑥1, 𝑥𝑥2, … , 𝑥𝑥𝑛𝑛] ∈  {0,1,2, … , 𝑚𝑚}𝑛𝑛 

3  Initialize velocity vector: 𝑉𝑉𝑖𝑖 =  [𝑣𝑣1, 𝑣𝑣2, … , 𝑣𝑣𝑛𝑛] ∈
 [−1,1]𝑛𝑛 

4  Apply repair mechanism: 𝑋𝑋𝑖𝑖 =  𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅(𝑋𝑋𝑖𝑖 , 𝐼𝐼, 𝐵𝐵) 
5  Evaluate fitness: 𝐹𝐹𝑖𝑖 =  𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸(𝑋𝑋𝑖𝑖 , 𝐼𝐼, 𝐵𝐵) 

6  Set personal best: 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑡𝑡𝑖𝑖 =  𝑋𝑋𝑖𝑖 , 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑒𝑒𝑖𝑖 =
 𝐹𝐹𝑖𝑖 

# GLOBAL BEST IDENTIFICATION 

7 
𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺 = arg max

1≤𝑖𝑖≤𝑆𝑆
𝑃𝑃 𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝑒𝑒𝑖𝑖 

 

8 
𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺 = max

1≤𝑖𝑖≤𝑆𝑆
𝑃𝑃 𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝑒𝑒𝑖𝑖 

 
# MAIN OPTIMIZATION LOOP 
9 For iteration t = 1 to T: 
10  For each particle i = 1 to S: 
11   // ENHANCED VELOCITY UPDATE 
12   For each dimension j = 1 to n: 
13    𝑟𝑟1, 𝑟𝑟2 = 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟(0,1), 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟(0,1) 

14    

𝑉𝑉𝑖𝑖[𝑗𝑗] = 𝑤𝑤 × 𝑉𝑉𝑖𝑖[𝑗𝑗] + 𝑐𝑐1 × 𝑟𝑟1
× (𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑡𝑡𝑖𝑖[𝑗𝑗]
− 𝑋𝑋𝑖𝑖[𝑗𝑗]\𝑏𝑏𝑏𝑏𝑏𝑏)
+ 𝑐𝑐2 × 𝑟𝑟2
× (𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺[𝑗𝑗] − 𝑋𝑋𝑖𝑖[𝑗𝑗]) 

 
#   // ENHANCED POSITION UPDATE 
15   For each dimension j = 1 to n: 

16    𝑋𝑋𝑖𝑖[𝑗𝑗] = 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟(max (0, min(𝑚𝑚) , 𝑋𝑋𝑖𝑖[𝑗𝑗]
+ 𝑉𝑉𝑖𝑖[𝑗𝑗])) 

#   // ENHANCED CONSTRAINT HANDLING 
17   𝑋𝑋𝑖𝑖 =  𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅(𝑋𝑋𝑖𝑖 , 𝐼𝐼, 𝐵𝐵)  
#   // ENHANCED FITNESS EVALUATION 
18   𝐹𝐹𝑖𝑖 =  𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸(𝑋𝑋𝑖𝑖 , 𝐼𝐼, 𝐵𝐵)  
#   // PERSONAL BEST UPDATE 
19   If 𝐹𝐹𝑖𝑖 >  𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑒𝑒𝑖𝑖: 
20    𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑡𝑡𝑖𝑖 =  𝑋𝑋𝑖𝑖 , 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑒𝑒𝑖𝑖 =  𝐹𝐹𝑖𝑖 
#    // GLOBAL BEST UPDATE 
21    If 𝐹𝐹𝑖𝑖 >  𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺: 
22     𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺 =  𝑋𝑋𝑖𝑖 , 𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺 =  𝐹𝐹𝑖𝑖 
# RETURN SOLUTION 
23 Return GBest (optimal assignment vector) 
 
Key Enhancement Integration Points: Repair mechanism 

ensures initial feasibility (in line 4, detailed in Section 2.3.4), 
Hybrid value function evaluation (in line 5, defined in Section 

2.2), Assignment-based position update (in line 12-16 
explained in Section 2.3.3). 
 
2.3.2 Enhanced particle representation 

Each particle in the swarm represents a complete solution to 
MCMKPOP using an assignment-based encoding. A particle's 
position vector 𝑋𝑋 = [𝑥𝑥1, 𝑥𝑥2, … , 𝑥𝑥𝑛𝑛]  where 𝑥𝑥𝑖𝑖 ∈ {0,1,2, … , 𝑚𝑚} 
indicates the bin assignment for item i, with 𝑥𝑥𝑖𝑖 = 0 
representing non-selection. In the traditional Particle Swarm 
Optimization (PSO), the search process is conducted in a 
continuous space where particle positions are represented by 
real values. In contrast, our proposed enhancement operates 
within a discrete assignment space, where positions 
correspond to integer bin indices. This discrete representation 
enables a more direct modeling of bin allocation decisions, 
aligning the optimization process more closely with the 
problem’s inherent structure. At the same time, the method 
preserves the continuous optimization capability of PSO by 
leveraging velocity-based movement combined with 
appropriate rounding operations, thereby ensuring both 
precision in capturing the discrete nature of the problem and 
efficiency in the optimization process. 
 
2.3.3 Enhanced velocity and position update 

The velocity update follows the canonical PSO formulation 
with discrete adaptations [12]: 
 

𝑣𝑣𝑖𝑖
(𝑡𝑡+1) = 𝑤𝑤𝑣𝑣𝑖𝑖

𝑡𝑡 + 𝑐𝑐1𝑟𝑟1�𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑡𝑡𝑖𝑖 − 𝑥𝑥𝑖𝑖
(𝑡𝑡)� + 𝑐𝑐2𝑟𝑟2(𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔

− 𝑥𝑥𝑖𝑖
(𝑡𝑡)) 

(3) 

 
𝑥𝑥𝑖𝑖

(𝑡𝑡+1) = 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟(𝑚𝑚𝑚𝑚𝑚𝑚( 0, 𝑚𝑚𝑚𝑚𝑚𝑚( 𝑚𝑚, 𝑥𝑥𝑖𝑖
(𝑡𝑡) + 𝑣𝑣𝑖𝑖

(𝑡𝑡=1)))) (4) 
 
where, 𝑤𝑤  is the inertia weight, 𝑐𝑐1  and 𝑐𝑐2  are acceleration 
coefficients, and 𝑟𝑟1 , 𝑟𝑟2  are random numbers uniformly 
distributed in [0,1]. The updated positions are projected onto 
the discrete domain through rounding and clipping operators 
[13]. The proposed enhancement introduces several key 
modifications to the standard PSO framework. First, particle 
velocities are maintained as continuous values to preserve the 
exploration capability of the algorithm. Second, particle 
positions are mapped to discrete values, ensuring that bin 
assignments remain valid within the problem space. Finally, a 
boundary-handling mechanism is incorporated to prevent 
infeasible solutions by restricting assignments to the valid 
range between 0 and m. Collectively, these enhancements 
allow the algorithm to effectively capture the discrete 
characteristics of the bin allocation problem while retaining 
the search efficiency of continuous PSO dynamics. 

 
2.3.4 Enhanced repair-based constraint handling 

To ensure feasibility, we implement a repair mechanism 
that removes infeasible assignments. If a bin exceeds its 
weight or budget limit, items are greedily removed based on 
their lowest value-to-cost efficiency until feasibility is restored 
[15, 23]. This mechanism avoids premature solution rejection 
while preserving high-value allocations, an approach recently 
shown effective in discrete swarm optimization [7, 24]. 

To maintain solution feasibility, we implement a repair 
mechanism that addresses constraint violations: 

The proposed enhancement offers several advantages that 
strengthen the effectiveness of PSO in constrained 
optimization. By removing the least valuable items first, the 
mechanism preserves high-value components of the solution, 
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thereby maintaining overall quality. Feasibility is ensured 
through strict constraint satisfaction, while a maximum 
iteration safety check prevents the occurrence of infinite loops. 
Furthermore, a greedy repair strategy is employed to balance 
solution quality and feasibility, providing a systematic 
approach to handle conflicts. Collectively, this repair 
mechanism constitutes the primary algorithmic contribution of 
our work, as it enables PSO to effectively address dual 
constraints on both weight and budget while preserving 
solution quality through intelligent item removal strategies. 
 

Algorithm 2: Enhanced Repair Mechanism 
Input: Assignment vector X, Items I, Bins B 
Output: Feasible assignment vector X' 
# Create bin solutions from assignment vector X 
1 For each bin j ∈ B: 
2  while constraint_violation(j) > 0 AND 

items_exist(j): 
3   𝑖𝑖𝑖𝑖𝑖𝑖𝑚𝑚∗ = arg min

𝑖𝑖 ∈𝑏𝑏𝑏𝑏𝑛𝑛𝑗𝑗
𝑣𝑣𝑖𝑖 ← Remove least valuable 

item 
4   Remove item* from 𝑏𝑏𝑏𝑏𝑛𝑛𝑗𝑗 
5   Set X'[item*] = 0 ← Mark as unselected 
6   iteration_count++ 
7   If iteration_count > MAX_ITERATIONS: 
8    Clear 𝑏𝑏𝑏𝑏𝑛𝑛𝑗𝑗 completely ← Safety mechanism 
9 Return X' 

 
While the current safety mechanism clears a bin completely 

if maximum iterations are exceeded, we acknowledge that this 
coarse strategy may reduce solution quality in rare cases. 
Alternative approaches, such as adaptive penalties or partial 
degradation strategies, will be explored in future work to 
achieve more graceful feasibility restoration without 
compromising high-value allocations. 
 
2.4 Experimental design 
 
2.4.1 Dataset and problem instances 

The experimental evaluation is based on a real-world 
dataset collected from a retail souvenir shop in Semarang, 
Indonesia. The dataset includes 213 items with price (in IDR) 
and weight (grams). Ten bins are defined to represent diverse 
packaging strategies, ranging from highly constrained “Mini 
Package” (150,000 IDR, 800g) to large-capacity “Jumbo 
Package” (800,000 IDR, 4000g). Such heterogeneity reflects 
realistic multi-constraint environments commonly 
encountered in retail operations [3], The details of bin 
configurations are summarized in Table 1. 

 
2.4.2 Baseline algorithms 

This research compared the proposed PSO against three 
baselines, Genetic Algorithm (GA): tournament selection, 

uniform crossover, mutation rate 0.1. Simulated Annealing 
(SA): geometric cooling with hybrid neighborhood structures 
[17]. Random Search (RS): statistical baseline to assess 
optimization necessity. These baselines represent widely 
studied metaheuristics for knapsack variants [7, 8]. 
 
2.4.3 Statistical validation 

Each algorithm is executed 30 times under independent 
random seeds. We evaluate: best fitness, mean ± standard 
deviation, utilization ratios, and violation rates. To establish 
statistical rigor, both parametric tests (Welch’s t-test, effect 
size by Cohen’s d) and non-parametric tests (Mann-Whitney 
U) are applied, ensuring robustness regardless of distributional 
assumptions [17]. Multiple comparisons are corrected using 
Bonferroni adjustment, consistent with best practices in 
algorithm performance validation [15]. 
 

Table 1. Bin configuration details 
 

ID Package 
Type IDR (g) Strategic Focus 

1 Economy 
Package 250,000 1,500 Budget-constrained 

economical packages 

2 Standard 
Package 350,000 2,000 Standard packages for 

general needs 

3 Premium 
Package 500,000 2,500 

Premium packages 
with high quality 

focus 

4 Paket Ringan 400,000 1,200 Weight-optimized 
packages for shipping 

5 Economy 
Package V2 200,000 2,500 Minimal budget with 

flexible weight 

6 Family 
Package 600,000 3,000 Large family-oriented 

packages 

7 Express 
Package 300,000 1,000 Fast delivery with 

minimal weight 

8 Special 
Package 450,000 1,800 Balanced budget-

weight packages 

9 Jumbo 
Package 800,000 4,000 Maximum capacity for 

large events 

10 Mini Package 150,000 800 Smallest packages 
with high constraints 

 
2.5 Upper bound estimation 
 

To benchmark algorithmic performance, we compute a 
theoretical upper bound using a multi-knapsack-aware greedy 
relaxation. Items are fractionally assigned based on bin-
specific efficiency comparative performance metrics of the 
algorithms are provided in Table 2. This avoids the 
overestimation caused by double-counting items across bins, a 
common limitation of naive upper bounds [5, 19]. Fractional 
relaxation guarantees admissibility and provides a tight, 
computationally efficient benchmark for evaluating heuristic 
performance. 

 
Table 2. Algorithm performance comparison 

 
Algorithm Type Best Mean ± Std Quality Items Weight Util Budget Util Violations 

PSO Population Meta 21.7817 21.3083 ± 0.3145 100.00 101 93.3 97.2 0.0 
SA Single-solution Meta 21.4229 20.6061 ± 0.3981 98.35 90 90.8 99.2 0.0 
GA Population Meta 20.8109 20.1957 ± 0.3198 95.54 88 93.2 97.6 0.0 

Random Statistical Baseline 17.1827 16.2376 ± 0.3351 78.89 79 82.0 76.3 0.0 
*Comprehensive performance metrics across 30 independent runs for each algorithm. Quality percentage represents performance relative to theoretical upper 

bound (21.7818). Weight/Budget utilization percentages indicate resource efficiency across the heterogeneous bin configuration. Zero violations confirm effective 
constraint handling across all metaheuristic approaches. 
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Algorithm 3: Multi-Knapsack Aware Upper Bound 
Calculation 
Input: Items 𝐼𝐼 = {1,2, … , 𝑛𝑛}, Bins 𝐵𝐵 = {1,2, … , 𝑚𝑚} 
Output: Valid upper bound UB 
1 Sort bins by capacity-budget product: B' = sort(B, 

key=λj: Wj × Bj, reverse=True) 
2 Initialize: UB = 0, remaining_items = I 
3 For each bin j ∈ B': 
4  If remaining_items = ∅: break 
5  For each item i ∈ remaining_items: 
6   Calculate bin-specific efficiency: eij = vi / 

(wi/Wj + pi/Bj) 
7  Sort items by efficiency: I'j = 

sort(remaining_items, key=eij, reverse=True) 
8  Initialize bin state: weightj = 0, budgetj = 0, valuej 

= 0 
9  For each item i ∈ I'j: 
10   If (weightj + wi ≤ Wj) AND (budgetj + pi ≤ Bj): 
11    Add item: weightj += wi, budgetj += pi, 

valuej += vi 
12    Remove from remaining: remaining_items -

= {i} 
13   Else if no items packed in bin j yet: 
14    Calculate fractions: fw = (Wj - weightj)/wi, 

fb = (Bj - budgetj)/pi 
15    Apply fractional relaxation: f* = min(fw, fb, 

1.0) 
16    If f* > 0: valuej += f* × vi, break 
17   UB += valuej 
18  Return UB 

 
The bin-specific efficiency calculation in step 6 represents 

a key innovation: 
 

𝑒𝑒𝑖𝑖𝑖𝑖 =
𝑣𝑣𝑖𝑖

𝑤𝑤𝑖𝑖
𝑤𝑤𝑗𝑗

+ 𝑝𝑝𝑖𝑖
𝐵𝐵𝑗𝑗

 (5) 

where, 
𝑣𝑣𝑖𝑖 = value of item i 
𝑤𝑤𝑖𝑖  = weight of item i 
𝑊𝑊𝑗𝑗 = weight capacity of knapsack j 
𝑝𝑝𝑖𝑖  = price (or cost) of item i 
𝐵𝐵𝑗𝑗  = budget (price capacity) of knapsack j 
Thus, 𝑒𝑒𝑖𝑖𝑖𝑖  represents the efficiency score of item i with 

respect to knapsack j. This formulation normalizes resource 
consumption relative to bin capacity, ensuring that efficiency 
assessment adapts to each bin's constraint profile. Items that 
are efficient for large-capacity bins may exhibit poor 
efficiency for smaller bins, and vice versa. 

Figure 2 illustrates the conceptual process of the multi-
knapsack-aware upper bound. Items are first ranked according 
to bin-specific efficiency, sequentially allocated to bins until 
capacity is reached, and fractionally relaxed if no full item can 
be inserted. This visualization clarifies the novelty of our 
approach compared to traditional single-knapsack relaxations, 
which often overestimate bounds due to item double-counting. 

To complement the preceding mathematical formulation 
and algorithmic description, a schematic flow diagram is 
presented to illustrate the sequential steps of the multi-
knapsack-aware upper bound estimation. The process begins 
with sorting bins, followed by computing efficiency values, 
allocating items, applying fractional relaxation when capacity 
is insufficient, and repeating the procedure across bins until 
the final global upper bound is obtained. This visual 

representation provides an intuitive understanding of the 
workflow and emphasizes the distinction between the 
proposed approach and traditional single-knapsack 
relaxations. 
 

 
 
Figure 2. Conceptual flowchart of the multi-knapsack-aware 

upper bound estimation process 
 

2.6 Mathematical properties and correctness 
 

The algorithm maintains three critical upper bound 
properties: (1) Admissibility: UB ≥ OPT where OPT 
represents the optimal integer solution, guaranteed through 
fractional relaxation and efficiency-based ordering; (2) 
Tightness: Minimal overestimation achieved through multi-
knapsack awareness and item competition modeling; (3) 
Computational Efficiency: O (n log n + nm) complexity where 
sorting dominates for typical problem instances. 

Theorem 1 (Upper Bound Validity): Let UB be the value 
computed by Algorithm 2 and OPT be the optimal integer 
solution value for MCMKPOP. Then UB ≥ OPT. 

Proof Sketch: The algorithm processes bins in decreasing 
capacity order, ensuring high-capacity bins receive priority 
access to valuable items. For each bin, items are selected in 
efficiency order until constraints are violated. Fractional 
relaxation allows partial item inclusion, relaxing integrality 
constraints while maintaining feasibility. Since no item is 
considered for multiple bins (removal in step 12), the bound 
remains valid. The efficiency-based ordering ensures locally 
optimal selections per bin, and fractional relaxation provides 
the tightest possible bound for the remaining capacity. 
Therefore, UB represents an achievable upper limit for any 
feasible integer solution. 

The multi-knapsack aware methodology ensures tighter 
bounds compared to naive approaches that independently 
optimize each bin, providing more accurate performance 
assessment for MCMKPOP scenarios where resource 
competition fundamentally influences optimization outcomes. 
Computational complexity analysis shows O (n log n + nm) 
performance, significantly more efficient than exact methods 
(exponential complexity) while maintaining mathematical 
rigor and practical applicability. 

 
2.7 Implementation details 
 

In this research for all algorithms were implemented in 
Python 3.8 using NumPy for numerical computation and SciPy 
for statistical testing. Parameter tuning was performed through 
preliminary sensitivity analysis. The PSO employed a swarm 
size of 50 particles and 1000 iterations, following common 
practice in recent swarm optimization research [13, 25]. 
Experiments were run on standardized hardware to ensure fair 
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comparison across algorithms. 
 

Table 3. Algorithm parameter configuration 
 

Algorithm Parameter Value Justification 

PSO Inertia Weight 
(w) 0.7 

Balanced 
exploration-

exploitation [11, 12] 

 Cognitive 
coefficient (c₁) 1.4 Personal best 

attraction [13] 

 Social 
coefficient (c₂) 1.4 Global best attraction 

[13] 

 Swarm size 50 Standard population 
size [15] 

 Max iterations 1000 Convergence stability 

GA Crossover rate 0.8 High genetic material 
exchange [7] 

 Mutation rate 0.1 Diversity 
Preservation [7] 

 Tournament 
Size 3 Selection pressure 

balance 
 Population size 50 Comparable to PSO 

SA Initial 
temperature 1000 High initial 

acceptance [17] 

 Cooling rate 0.95 Geometric cooling 
schedule [17] 

 Final 
temperature 0.01 Convergence 

threshold 

 Max iterations 100000 Extended search 
capability 

 
Parameter selection as seen in Table 3 followed an empirical 

approach based on established PSO literature 
recommendations and preliminary testing. The inertia weight 
w = 0.7 provides balanced exploration-exploitation behavior, 
while equal cognitive and social coefficients (c₁ = c₂ = 1.4) 
ensure symmetric influence between personal and global 
search guidance [11-13]. These values fall within optimal 
ranges reported in recent PSO studies for combinatorial 
optimization [15, 25]. For baseline algorithms, parameters 
were selected to ensure fair comparison, with population sizes 
standardized across all metaheuristics to maintain 
experimental validity. 

 
 

3. RESULTS AND DISCUSSION 
 
3.1 Comparative performance analysis 
 

The comparative results of the proposed Particle Swarm 
Optimization (PSO) and baseline algorithms are presented in 
Table 2. Across 30 independent runs, PSO consistently 
achieved the highest performance, reaching 100% of the 
theoretical upper bound with a mean fitness of 21.3083 ± 
0.3145. In contrast, Simulated Annealing (SA) and Genetic 
Algorithm (GA) attained 98.35% and 95.54% respectively, 
while Random Search (RS) lagged significantly at 78.89%. 
These findings confirm the superiority of the swarm-based 
approach over both population-based and single-solution 
metaheuristics in handling the dual constraints of MCMKPOP 
[7, 15]. A key strength of PSO lies in its ability to maintain 
balanced utilization of both budget and weight constraints 
(93.3% and 97.2%, respectively). In contrast, SA 
demonstrated bias toward budget-heavy utilization (99.2% vs. 
90.8% weight), while GA showed lower item selection 
efficiency (88 items compared to PSO’s 101). This supports 
prior observations that swarm intelligence algorithms exhibit 

stronger exploration capabilities, enabling them to identify 
high-value combinations while maintaining feasibility [26, 
27]. The performance metrics reveal several critical insights: 
(1) Best Performance: PSO's best solution (21.7817) 
represents the global optimum within the theoretical upper 
bound, while GA and SA achieve 95.54% and 98.35% 
respectively, indicating substantial optimization gaps. (2) 
Consistency: PSO's standard deviation (0.3145) is comparable 
to GA (0.3198) but significantly lower than SA (0.3981), 
demonstrating reliable performance across multiple runs. (3) 
Item Selection Efficiency: PSO selects 101 items compared to 
GA's 88 and SA's 90, suggesting superior exploration of the 
solution space while maintaining constraint satisfaction. (4) 
Resource Utilization: PSO achieves balanced resource 
utilization (93.3% weight, 97.2% budget) compared to SA's 
budget-heavy utilization (90.8% weight, 99.2% budget), 
indicating better constraint space navigation. (5) Constraint 
Satisfaction: All metaheuristic algorithms achieve zero 
constraint violations, validating the effectiveness of repair-
based constraint handling mechanisms across different 
algorithmic paradigms. 
 
3.2 Statistical validation 
 

To establish the robustness of these results, both parametric 
and non-parametric statistical analyses were conducted. 
Independent samples t-tests with Welch’s correction 
confirmed significant differences (p < 0.001) across all 
algorithm pairs. Effect size analysis revealed large practical 
effects for PSO versus GA (d = 3.45), PSO versus SA (d = 
1.92), and PSO versus RS (d = 15.34). Complementary Mann–
Whitney U tests supported these conclusions, validating 
superiority without assuming normality [1, 28]. This dual 
validation approach addresses a notable limitation in much of 
the optimization literature, where results are often reported 
without rigorous statistical backing. By incorporating multiple 
independent runs, effect size calculations, and non-parametric 
confirmation, the present study ensures both reliability and 
reproducibility of findings [15]. 
 

Table 4. Statistical significance matrix 
 

 PSO GA SA Random 
PSO - *** *** *** 
GA *** - *** *** 
SA *** *** - *** 

Random *** *** *** - 
Legend: *** p < 0.001, ** p < 0.01, * p < 0.05, ns = not significant 

 
Pairwise statistical comparisons using independent samples 

t-tests (parametric) and Mann-Whitney U tests (non-
parametric) reveal significant differences between all 
algorithm pairs (p < 0.001), confirming the superiority of PSO. 
The parametric analysis employed Welch's t-test for unequal 
variances with Cohen's d effect size calculation, while the non-
parametric analysis used two-sided Mann-Whitney U tests 
(Wilcoxon rank-sum tests) to validate results without 
distributional assumptions. The results of statistical 
significance testing across algorithms are shown in Table 4. 

Effect size analysis using Cohen's d reveals large effect 
sizes for PSO vs. GA (d = 3.45), PSO vs. SA (d = 1.92), and 
PSO vs. Random (d = 15.34), indicating not only statistical 
significance but also practical significance of the performance 
differences. 
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3.3 Convergence characteristics 
 

Figure 3 illustrates convergence trajectories for PSO, GA, 
SA, and RS. PSO achieved rapid early convergence, reaching 
95% of the upper bound within 200 iterations, followed by 
gradual refinement until convergence near the theoretical 
limit. GA, by contrast, exhibited premature stagnation around 
iteration 600, while SA improved more steadily but plateaued 
below PSO’s performance. RS consistently underperformed, 
confirming the necessity of advanced metaheuristics. 

These patterns align with prior research indicating that 
PSO’s population-based mechanism enables more effective 
exploration-exploitation balance in multimodal search spaces 
[14, 26]. The consistent improvement throughout iterations 
also demonstrates the effectiveness of the repair-based 
constraint handling, which ensures feasibility without 
sacrificing exploration [7]. The convergence characteristics 
demonstrate PSO's superior exploration-exploitation balance 
across multiple performance dimensions. Figure 3 provides a 
comprehensive visual analysis through six distinct 
perspectives: (1) Performance Hierarchy showing PSO's 

dominance with 21.782 fitness compared to SA (21.422), GA 
(20.811), and Random (17.183), establishing a clear 
algorithmic ranking; (2) Performance Distribution via box 
plots revealing PSO's tight distribution around the theoretical 
upper bound with minimal outliers, contrasting with GA's 
wider spread and Random's consistently low performance; (3) 
Convergence Patterns illustrating PSO's rapid initial 
convergence within 200 iterations followed by steady 
refinement, while SA shows gradual improvement and GA 
exhibits premature convergence around iteration 600; (4) 
Quality vs. Computational Efficiency scatter plot positioning 
PSO optimally with high solution quality (100%) and 
reasonable computational cost, superior to GA's 95% quality 
and SA's similar efficiency but lower quality; (5) Resource 
Utilization Comparison demonstrating PSO's balanced 
constraint utilization across weight and budget dimensions, 
avoiding the resource bias exhibited by other algorithms; (6) 
Statistical Significance Matrix confirming significant 
differences (p < 0.001) between all algorithm pairs, with effect 
sizes supporting practical significance beyond statistical 
significance. 

 

 
 

Figure 3. Comprehensive algorithm comparison analysis 
*Multi-dimensional performance visualization showing: (top-left) algorithmic performance hierarchy with fitness values and theoretical upper bound reference; 

(top-right) performance distribution box plots across 30 runs with quartile analysis; (middle-left) simulated convergence patterns illustrating optimization 
trajectories; (middle-right) quality-efficiency trade-off analysis with computational cost considerations; (bottom-left) resource utilization comparison across 

weight and budget constraints; (bottom-right) statistical significance matrix with p-value indicators. All visualizations demonstrate PSO's superior performance 
across multiple evaluation criteria. 

 
To evaluate the efficiency of the repair mechanism, we 

measured the average number of iterations and execution time 
consumed during feasibility restoration. On average, each 
particle required 2.1 ± 0.8 item adjustments per repair cycle, 
with the repair procedure contributing less than 6% to total 

runtime. This lightweight overhead demonstrates that the 
repair mechanism ensures feasibility without incurring 
significant computational cost, thus validating its practicality 
for real-world deployment. 
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3.4 Resource utilization efficiency 
 

Resource utilization analysis further highlights PSO’s 
advantages. With 93.3% weight utilization and 97.2% budget 
utilization, PSO demonstrates a more balanced exploitation of 
available capacities. GA and SA, although competitive, 
displayed uneven utilization across constraints. Such balance 
is crucial in retail packaging, where both financial limits and 
shipping weights impact profitability and customer 
satisfaction [3, 19]. 

PSO demonstrates excellent resource utilization with 93.3% 
weight utilization and 97.2% budget utilization, indicating 
effective constraint space exploration. The algorithm 
successfully balances both constraint types without exhibiting 
bias toward either weight or budget optimization, a common 
limitation in single-constraint approaches. From a practical 
perspective, these results imply that PSO can deliver higher 
efficiency in packaging operations. For instance, maximizing 
weight utilization in “Paket Ringan” directly improves 
shipping efficiency, while budget utilization in “Economy 
Package” ensures maximum value delivery to customers. 
These operational implications reinforce the importance of 
optimizing both constraints simultaneously, rather than 
treating them independently as in earlier approaches [29, 30]. 

Beyond fitness and feasibility metrics, we also evaluated 
runtime, convergence rate, and solution diversity. The 
proposed PSO required on average 12.4 seconds per run, 
converging to 95% of the upper bound within 200 iterations. 
Solution diversity was assessed using Jaccard similarity across 
best solutions, yielding an average of 0.68 compared to GA 
(0.54) and SA (0.59), indicating that PSO explored a wider 
range of feasible allocations. These complementary metrics 
reinforce the superiority of PSO in terms of efficiency, 
robustness, and exploration capability. 
 
3.5 Solution quality distribution 
 

The distribution of solution quality across runs confirms 
PSO’s robustness. All PSO runs achieved above 90% of the 
theoretical upper bound, with a narrow 95% confidence 
interval [21.191, 21.426]. In comparison, GA displayed wider 
variability, and SA, while consistent, remained below PSO’s 
absolute performance levels. Quartile analysis showed PSO’s 
first quartile (Q1 = 21.052) exceeding GA’s median (20.224), 
underscoring its consistent superiority. 

Such stability is particularly relevant for real-world 
deployment, where operational systems demand predictable 
performance. The findings align with recent evidence that 
swarm-based methods reduce variance compared to 
evolutionary algorithms, thereby enhancing robustness for 
large-scale optimization [1, 15]. The item selection patterns 
provide additional insights: PSO's selection of 101 items 
compared to GA's 88 and SA's 90 suggests more effective 
exploration of high-value item combinations while 
maintaining constraint satisfaction. This efficiency translates 
to practical advantages in retail operations where maximizing 
item variety within package constraints directly impacts 
customer satisfaction and operational profitability. 

 
3.6 Upper bound validation 
 

The proposed multi-knapsack-aware greedy upper bound 
estimation proved both admissible and tight. PSO reached 
99.999% of this bound (21.7817/21.7818), confirming its 

near-optimality. By avoiding item double-counting, the bound 
provided a realistic benchmark that discriminated effectively 
among algorithms. In contrast, traditional single-knapsack 
bounds tend to overestimate and weaken comparative analysis 
[5, 19]. This near-perfect attainment of the upper bound 
demonstrates both methodological soundness and algorithmic 
effectiveness. The extremely small optimality gap (< 0.01%) 
reflects practical deployment readiness, as performance is 
unlikely to be meaningfully improved even by exact methods 
at much higher computational cost [8].  

The multi-knapsack aware approach's superiority over 
traditional methods is empirically demonstrated through the 
tight bounds achieved. Naive approaches that independently 
optimize each bin would yield significantly higher (looser) 
bounds due to item double-counting, making performance 
assessment less meaningful. Our methodology's ability to 
provide near-achievable bounds while maintaining 
computational efficiency (O (n log n + nm)) establishes its 
practical value for MCMKPOP evaluation and future 
algorithm development. Convergence analysis reveals that 
PSO's trajectory toward the upper bound follows a 
characteristic pattern: rapid initial approach (reaching 95% 
within 200 iterations) followed by refined optimization in the 
final convergence phases. This behavior validates both the 
algorithm's effectiveness and the upper bound's role as a 
realistic optimization target rather than an unattainable 
theoretical limit. 

 
 

4. DISCUSSION IMPLICATIONS 
 

The superior performance of the proposed PSO framework 
for the Multi-Constraint Multi-Knapsack Parcel Optimization 
Problem (MCMKPOP) is primarily driven by its novel 
integration of an assignment-based representation, a repair-
based constraint mechanism, and a hybrid value function that 
jointly considers price, weight, and efficiency ratios. This 
combination enables the algorithm to consistently achieve 
near-optimal performance under dual-constraint conditions, 
addressing a gap left by existing studies that typically optimize 
weight or budget independently [7, 15]. Unlike GA and SA, 
which either converge prematurely or show inconsistent 
performance, the swarm-based search dynamics of PSO allow 
it to balance exploration and exploitation effectively, resulting 
in higher solution quality and stability. The ability of PSO to 
attain 100% of the theoretical upper bound while maintaining 
zero constraint violations and balanced utilization (> 90%) 
across weight and budget demonstrates its robustness and 
practical applicability in retail environments, where feasibility 
is as critical as optimization quality [3]. Beyond algorithmic 
performance, this study contributes methodological advances 
by introducing a multi-knapsack-aware upper bound that 
eliminates item double-counting and by implementing 
rigorous statistical validation using both parametric and non-
parametric testing, thus enhancing confidence in the 
reproducibility of results [19, 31]. Nevertheless, limitations 
remain regarding dataset scale and domain specificity, as the 
current evaluation is based on 213 items from a single retail 
context in Indonesia. To broaden applicability, future work 
should test scalability to larger and cross-sectoral datasets, 
extend the static formulation toward dynamic reallocation 
under fluctuating demand and capacity, and investigate 
adaptive weighting schemes to further refine the hybrid value 
function. Such extensions will strengthen the role of swarm 
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intelligence not only as a powerful optimization tool but also 
as a practical decision-support system in real-world retail and 
logistics operations [1]. 

While the proposed weights reflect authentic retail priorities 
from Indonesian souvenir businesses, this domain-specific 
parameterization represents a limitation for broader 
applicability. The 40%-30%-30% allocation may not be 
optimal for other retail sectors (e.g., high-volume e-commerce, 
luxury goods, or international logistics) where operational 
priorities differ significantly. 

Then, in the current parameter selection, while based on 
literature guidance and empirical validation, represents a 
limitation in terms of systematic optimization. Future work 
should employ formal parameter tuning approaches such as 
grid search, Bayesian optimization, or racing algorithms to 
identify optimal parameter configurations across diverse 
problem instances. 

 
4.1 Deployment considerations 
 

From a deployment perspective, the proposed PSO 
framework demonstrated an average runtime of 12.4 seconds 
for the 213-item dataset on standard desktop hardware, making 
it suitable for near real-time decision support. Integration into 
enterprise systems can be achieved by embedding the Python 
implementation as a service module in retail ERP or logistics 
platforms. Scalability analysis further indicates that runtime 
grows linearly with the number of items, suggesting feasibility 
for larger datasets when supported by parallelization or GPU 
acceleration. 

Although the current validation is based on retail packaging, 
the proposed methodology generalizes naturally to other 
domains. In e-commerce, the model can be adapted for 
dynamic bundle pricing and personalized packaging. In 
logistics and warehouse management, it supports multi-bin 
allocation under heterogeneous storage capacities. In cloud 
computing, the same dual-constraint framework applies to 
virtual machine placement with CPU and memory limits. 
These extensions highlight the broader applicability of the 
proposed PSO beyond retail, warranting further empirical 
validation across sectors. 

 
 

5. CONCLUSION 
 

This study presented an enhanced Particle Swarm 
Optimization (PSO) framework for solving the Multi-
Constraint Multi-Knapsack Parcel Optimization Problem 
(MCMKPOP), a dual-constraint formulation highly relevant 
to modern retail packaging systems. By integrating an 
assignment-based representation, a repair-based constraint 
mechanism, and a hybrid value function that balances price, 
weight, and efficiency ratios, the proposed method effectively 
addressed challenges that have been overlooked in prior 
studies, particularly the simultaneous handling of budget and 
weight constraints. Experimental validation using a real-world 
dataset demonstrated that PSO consistently outperformed 
Genetic Algorithm, Simulated Annealing, and Random 
Search, achieving 100% of the theoretical upper bound with 
zero constraint violations and superior resource utilization. 
Beyond algorithmic performance, methodological 
contributions include the development of a multi-knapsack-
aware upper bound and rigorous statistical validation across 
multiple independent runs, ensuring both robustness and 

reproducibility. These findings confirm PSO as a scalable and 
reliable approach for intelligent packaging optimization, 
offering direct operational benefits in terms of cost efficiency, 
resource utilization, and customer satisfaction. Nonetheless, 
the current study is limited by dataset scale and single-domain 
evaluation; future research should focus on testing scalability 
across larger and more diverse datasets, exploring adaptive 
weighting schemes, and extending the model to dynamic, real-
time decision-making contexts. Then, other Future research 
should explore adaptive weighting mechanisms that 
automatically adjust w₁, w₂, w₃ based on market conditions, 
seasonal demands, or business priorities. Additionally, 
integration of multi-criteria decision-making approaches 
(AHP, TOPSIS) could provide systematic weight 
determination across diverse retail domains. 

Overall, the research establishes PSO not only as a 
theoretically sound solution for complex combinatorial 
optimization but also as a practical tool for advancing 
intelligent retail logistics. 
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