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With the growing adoption of solar photovoltaic (PV) systems, developing effective fault 

detection techniques is crucial to ensure high efficiency and reliability. This paper presents 

a wireless PV fault detection system where the solar field is divided into sectors, each 

containing multiple PV cells. After applying test signals, each cell's/panel status is 

identified as normal operation, short circuit, open circuit, or misalignment. The test data 

is encoded into protocol frames using binary encoding and Hamming error correction 

coding implemented in Field Programmable Gate Arrays (FPGA). This enables single-bit 

error detection and correction during wireless transmission. NRF24 modules transmit the 

encoded data between the solar field and the central control station. The received data is 

Hamming decoded, and the protocol frames are extracted to identify and localize faults to 

specific cells/panels. Experimental validation on a 4-module laboratory setup 

demonstrates 99.2% fault detection accuracy with an average detection time of 77.7 ms. 

The system achieves a 4.3 dB coding gain in wireless transmission through Hamming 

(14,10) error correction. Statistical analysis confirms system reliability with significance 

at p < 0.001. This wireless monitoring approach offers centralized identification of faults 

across distributed solar installations, improving operational efficiency and system 

reliability. 
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1. INTRODUCTION

The world's energy map has been drastically shifting, and 

solar photovoltaic (PV) technology is a key component of 

renewable and sustainable power generation. The importance 

of PV systems for climate protection and future energy needs 

is amply demonstrated by their growing use, which ranges 

from rooftops and facades in residential and commercial 

systems to large commercial and utility-scale solutions [1]. 

However, a number of fault types, such as partial shading, 

short-circuiting, open-circuiting, and module degradation, 

have a substantial impact on the overall performance, 

dependability, and security of these systems [2]. Unnoticed 

faults can cause significant amounts of power losses, damage 

the lifespan of the system, increase maintenance costs, and 

create safety threats as well [3]. Therefore, the implementation 

of reliable, accurate, real-time fault detection and localization 

systems becomes a necessity for efficient operation and 

economic viability of the PV systems. Conventional fault 

detection techniques are based on a direct search of cells and 

are labor-consuming, time-consuming, and not applicable to 

large-scale PV arrays. Although different automatic methods 

have been suggested, most of them have some disadvantages, 

such as being expensive and complicated, non-real-time, or 

with poor localization accuracy [4]. Wireless Sensor Network 

(WSNs) and FPGAs are emerging technologies that seem to 

be successful in addressing these challenges. The WSNs are 

the convenient way to monitor the distributed PV systems 

without heavy wire, whereas FPGAs provide the parallel 

processing and reconfigurable capability, so we use them to 

process high-speed data in real time and implement the 

complex algorithm [5, 6]. Although there have been some 

improvements in PV fault detection, there are still some 

challenges that need to be resolved, including real-time 

scanning, accurate position localization, and data integrity in 

the wireless conditions. Current solutions frequently fail to 

deliver timely fault warnings and notifications so that 

extended energy losses and possible damage may be avoided. 

In addition, most techniques can identify if an open-circuit 

fault occurred; however, they are unable to provide the 

position of the fault to the device level in a large PV plant, 

thereby making the maintenance and repair tasks inefficient. 

Although the use of wireless communication has many 

attractions resulting from flexibility of deployment, it also 

introduces the risk of data becoming corrupted by noise and 

interference, so an effective error correction mechanism is 

required. Especially, there is an urgent demand for a unified 

fault detection scheme that can simultaneously make use of the 

advantages of wireless data transmission and high-speed, 

reliable processing to accomplish accurate and prompt local 

fault diagnosis. Such a system should not only be able to 

identify different kinds of faults but should also be able to 

maintain the signal integrity of the transmitted data, thereby 

minimizing false positives and false negatives and ultimately 
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improving the reliability and performance of PV systems. 

This paper tackles these challenges by presenting and 

verifying an FPGA-based WSN for the real-time detection and 

localization of faults in a PV system. 

This work provides six main contributions toward the 

improvement of photovoltaic fault detection systems: 

1. FPGA-WSN Hybrid Architecture: Creation of a 

modular wireless sensor network architecture, based on FPGA 

for high-speed data processing and NRF24 modules for data 

transmission, in a distributed photovoltaic context. 

2. Advanced Formulated Mathematical Modelling: The 

overall systematic formulated investigations for 

characterization of photovoltaic behavior during different 

faults, such as short circuits, open circuits, and misalignments, 

using robust threshold-based fault detection algorithms. 

3. Hardware-Assisted Error Correction: Hamming 

(14,10) error correction codes are implemented in the FPGA 

core to ensure single-bit error correction during wireless 

transmission, thereby guaranteeing data integrity and system 

reliability. 

4. Integrated Validation Framework: Twin validation 

scheme including conceptual simulation modelling and 

experimental validation on scale laboratory hardware, 

showing behavior of the system under a set of diverse fault 

conditions. 

5. Performance Benchmarking: This section compares 

the performance of our system with existing fault detection 

schemes, confirming its competitive advantages in detection 

rate, computational efficiency, and reliability of wireless 

transmission. 

6. Fine Fault Isolation: Modular architecture supports 

cell-level fault isolation in any sector, minimizing 

maintenance efforts and system losses. 

The remainder of the paper is organized as follows: Section 

2 highlights the current research gap and provides a thorough 

review of earlier studies in PV fault detection, WSNs, and 

FPGA applications. Section 3 outlines the suggested system 

architecture and design, including the data flow and hardware 

components. In Section 4, we outline the theoretical and 

methodological foundation, with particular attention to PV cell 

modeling, fault condition representation techniques, the fault 

detection algorithm, and the error correction hamming code. 

The experimental setup, data collection methods, and 

evaluation metrics are presented in Section 5. The results are 

discussed and described in Section 6, taking into account 

wireless transmission efficiency, fault detection rate, detection 

time, and comparison with alternative techniques. Section 7 

concludes the paper and outlines the next steps. 

 

 

2. RELATED WORK 

 

Recent photovoltaic fault detection has shifted the paradigm 

by integrating artificial intelligence methods, WSN, and field 

programmable gate array design. This technical fusion caters 

to the increasing complexity of distributed solar installations, 

for which real-time monitoring is required with accurate fault 

detection in addition to reliable data integrity checks. 

Taxonomic analysis sheds light on fundamental transitions 

from manual methods to advanced computational techniques 

utilizing machine learning. El-Banby et al. [2] offered a 

systematic review advocating for the swift adoption of data-

driven methodologies across various operational contexts. 

Meanwhile, Hong and Pula [7] categorized contemporary 

detection methods, including visual, thermal, and electrical 

mechanisms, under the expansive umbrella of artificial 

intelligence integration. Venkatakrishnan et al [8] indicated 

that modern architectures now necessitate response times in 

the sub-second range and require fault identification at the cell 

level as a key performance characteristic. The contributions 

outlined here provide a conceptual foundation for analyzing 

the interdisciplinary convergence related to fault detection 

systems. The implementation of advanced hardware 

architectures has enabled levels of functionality in distributed 

monitoring that were previously unattainable. Zhu and Hou [9] 

presented multimedia monitoring systems that are embedded 

in FPGAs, which support advanced algorithms at the sensor 

level and reduce communication overhead by distributing 

intelligence. WSN have evolved to the point that their 

implementations include energy harvesting schemes for the 

purpose of operating autonomously via direct extraction of 

energy from photovoltaic modules. The bibliometric studies 

conducted by Sepúlveda-Oviedo et al. [10] indicated that 

publications related to artificial intelligence (AI) have been 

increasing at an exponential rate. Between 2010 and 2022, 

more than 620 AI-based publications were released, with a 

notable 4.5-fold increase from 2015 to 2022. This trend 

highlights the significant potential of artificial intelligence in 

managing high-dimensional monitoring data. Liu et al. [11] 

suggested a way to identify faults by using stacked auto-

encoder (SAE) structures along with clustering and current-

voltage analysis. This approach demonstrates superior 

performance compared to traditional methods across multiple 

scenarios, particularly regarding classification accuracy. 

Sripada et al. [12] used a combination of stacking methods and 

pre-trained convolutional networks to pull out important 

details from aerial images, leading to big improvements in 

spotting unusual patterns for large projects. Machine learning 

applications that employ well-structured architectures 

demonstrate high accuracy. In contrast, Amiri et al. [13] 

reported that their implementation of Random Forest 

Classifier algorithms achieves greater accuracy in identifying 

faults using their records, and they are capable of operating in 

real time. Predictive maintenance strategies go beyond those 

of both traditional (reactive) and preventive maintenance 

(maintain or replace before failure) by not only determining 

the condition of the equipment but also by predicting and 

conducting measured maintenance. Marangis et al. [14] 

showed trend-based analytical techniques that allow you to 

take preventive steps by analyzing historical performance and 

environment correlation models. Integration with edge 

computing facilitates the creation of frameworks that require 

less computational power. Eskandari et al. [15] suggested a 

way to automatically diagnose issues using a method called 

weighted ensemble learning, which is made for devices with 

limited resources and focuses on saving energy. This approach 

achieves real-time processing without sacrificing accuracy. 

Current research emphasizes transparent AI, characterized by 

algorithmic transparency. Thakfan and Bin Salamah [16] 

pointed out that being able to understand and trust the system 

is very important when using it in critical situations, especially 

since its reliability affects both power generation and cost-

effectiveness. Aghaei et al. [17] reported the implementation 

of advanced multi-modal imaging techniques that enhance 

fault characterization accuracy. The work includes automated 

monitoring using multispectral integrated infrared 

thermography, ultraviolet fluorescence, and 

electroluminescence images, along with advanced current-
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voltage analysis. Wireless communication security constraints 

have become crucial factors. Faris et al. [18] emphasized the 

need for strong encryption, reliable authentication, and good 

intrusion detection systems to protect data, especially when 

dealing with electromagnetic interference. Despite significant 

advancements, ongoing integration bottlenecks continue to 

impede the effectiveness of deployments. Eldeghady et al. [19] 

showed through a broad comparison that many new AI 

methods focus more on getting accurate results than on 

meeting real-time needs, and they require too much computing 

power for time-sensitive applications. Current research 

inadequately addresses wireless data corruption in harsh 

environments, especially in ideal communication channels 

that lack built-in hardware-level error correction. Additionally, 

modern systems are not scalable for large distributed 

deployments, offering system-level accuracy rather than the 

required cell-level accuracy for effective maintenance. The 

designed system addresses these shortcomings by utilizing 

unique FPGA-based wireless sensor network technology. This 

system incorporates an advanced mathematical model, a 

threshold-based approach, and hardware Hamming error 

correction. Additionally, Teta et al. [20] presented similar 

methods that involve energy valley optimizer-based 

lightweight models, demonstrating the feasibility of real-time 

processing with accurate localization. This integrated 

framework provides wireless data consistency, support for 

scalable deployment, and constitutes substantial progress by 

combining artificial intelligence, WSN, and field-

programmable gate arrays in a unified way for fault detection. 

The comprehensive literature review effectively delineates 

the evolution of photovoltaic fault detection, transitioning 

from traditional manual methods to advanced AI-integrated 

systems. The authors systematically investigate key 

technological convergences that they anticipate will propel the 

development of future smart environments and applications, 

including machine learning, sensor network technology, and 

reconfigurable computing (FPGAs). The review appropriately 

addresses current limitations and clarifies the rationale behind 

the research gap that the proposed FPGA-based solution aims 

to fill. 

Despite significant progress in photovoltaic fault detection 

and individual advancements in WSN and FPGA technologies, 

several critical gaps remain in the literature: 

1. Integration Challenge: Limited work has been done 

on fully integrating real-time processing capabilities with 

reliable wireless communication and robust error correction 

for PV fault detection. 

2. Fault Localization Granularity: Many existing 

solutions provide system-level or string-level fault detection 

but lack precise cell-level localization capabilities essential for 

efficient maintenance. 

3. Wireless Data Integrity: While wireless monitoring 

offers significant advantages, few studies adequately address 

data corruption issues in noisy outdoor environments through 

hardware-implemented error correction. 

4. Real-time Processing: Most AI-driven approaches 

focus on accuracy but do not provide the sub-second response 

times needed for safety-critical fault detection. 

5. Scalable Hardware Implementation: Limited research 

has demonstrated practical, scalable hardware 

implementations suitable for distributed PV installations. 

The proposed system tackles these identified deficiencies 

directly by incorporating a modular FPGA-based WSN 

architecture with improved mathematical modeling of PV cell 

characteristics, employing Hamming error correction coding 

for wireless data integrity, and offering accurate cell-level 

fault localization with real-time processing ability. It is this 

complete perspective that sets this work apart and offers a 

practical structure for distributed photovoltaic fault detection. 

 

 

3. SYSTEM ARCHITECTURE AND DESIGN 

 

This section provides a detailed explanation of the real-time 

PV system fault detection and localization scheme. Utilizing 

FPGA technology for quick data processing and error 

correction, the architecture prioritizes modularity, scalability, 

and dependable wireless data transfer. 

 

3.1 System overview 

 

The system under consideration is intended for control of a 

distributed photovoltaic solar installation by splitting the solar 

field into a number of manageable areas. Multiple PV cells or 

panels per sector for fault detection and localization at a 

granular level. The system adopts a distributed structure in 

which the data inside the segment of each PV unit is measured 

and processed by a local sub-control unit and then sends the 

wireless data to a central control station for further 

comprehensive analysis and failure diagnosis. The general 

system architecture is depicted in Figure 1, where we can 

observe that some functional blocks come out, such as PV 

arrays (divided into sectors), sub-control units (one per sector), 

wireless transceivers (NRF24 P-modules), and a central 

control station. The sub-control unit that includes a 

microcontroller and an FPGA is used to send a test signal to 

the PV cells, measure the response, encode the data, and send 

it wirelessly. The encoded data is transmitted to the central 

control station, which decodes the data and further processes 

the data for fault identification and location. This modular 

approach not only simplifies deployment and maintenance but 

also enhances the system's robustness by enabling localized 

fault diagnosis while maintaining centralized monitoring 

capabilities. 

 

 
 

Figure 1. Proposed solar fault detection system architecture 

showing distributed monitoring with sectored approach 

 

3.2 Hardware components 

 

Taking the real-time photovoltaic fault detection to a 

success is dependent on appropriate hardware elements, which 

are specifically engineered for the demands of distributed PV 

monitoring, well-selected, and integrated. 
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1. Arduino DUE Microcontroller: The Arduino DUE is used 

as the main controller within each sub-control unit, which is 

responsible for producing the testing signals of solar cells, 

collecting the data of voltage and current via its 12-bit ADC 

channels, and controlling the communication interfaces with 

the FPGA and the wireless modules. Its 84 MHz ARM Cortex-

M3 processor has the computational power to handle real-time 

data acquisition and analysis at moderate data rates, while the 

multitude of analog and digital I/Os provides help for more 

than just simple sensor interfaces. 

2. FPGA Processing Unit: The main controller unit for high-

speed data encoding and error correction is implemented in the 

Altera Cyclone IV EP4CE6E22C8N. This voice-activated 

device is chosen for its optimal trade-off among logic elements 

(6,272 LEs), embedded memory (276,480 bits), and low cost 

that is suitable for distributed installation. A fault-classifying 

algorithm and Hamming error correction logic are designed in 

VHDL to support register-based parallelism and generate 

deterministic timings that are essential for real-time 

applications. 

3. Wireless Communication Module: The NRF24L01+ 

module is the core of this remote control system, which 

ensures stable and low power-consuming data transmission 

between sub-control systems and the central control system. 

Operating in the 2.4 GHz ISM band with configurable data 

rates up to 2 Mbps, these modules offer robust communication 

links with automatic acknowledgment and retry mechanisms. 

The low power consumption (11.3 mA in receive mode, 7 mA 

in transmit mode) makes them particularly suitable for battery-

operated or solar-powered remote units. 

4. System Integration: The hardware integration combines 

these components through carefully designed interfaces to 

ensure seamless data flow and reliable operation. Figure 2 

illustrates the complete system integration, showing hardware 

components, FPGA firmware, and software coordination. The 

Serial Peripheral Interface (SPI) is the main way the Arduino 

DUE microcontroller talks to the NRF24L01+ wireless 

modules, while the Inter-Integrated Circuit (I2C) protocol 

helps the Arduino DUE communicate with environmental 

sensors that measure things like temperature and light, and the 

Universal Asynchronous Receiver-Transmitter (UART) 

allows two-way communication between the Arduino DUE 

and the Altera Cyclone IV FPGA. 

 

 
 

Figure 2. System integration diagram 

 

3.3 Data flow and communication protocol 

 

The data flow within the proposed system follows a well-

defined protocol designed to ensure efficient and reliable fault 

detection across distributed photovoltaic installations through 

systematic data acquisition, encoding, transmission, and 

analysis. 

 

3.3.1 Test signal generation and data acquisition 

The microcontroller in each sub-control unit creates specific 

test signals to get clear reactions from photovoltaic cells when 

they are working under different conditions. These test signals 

are made to tell apart normal operation from different 

problems, like short circuits, open circuits, and misalignment 

issues. Following signal application, the microcontroller 

acquires voltage and current responses through high-

resolution ADC channels, digitizing the data with 12-bit 

precision to capture subtle variations in electrical 

characteristics that may indicate fault conditions. 

 

3.3.2 Binary encoding and protocol frame generation 

The digital data is converted into binary form using a 

standard 10-bit protocol frame known as standard10-bit 

protocol frame encoding. This encoding effectively conveys 

both the fault status and the location information of the 

distributed PV array. The benefits of this binary encoding, 

which compactly fits the data into a 10-bit protocol frame 

structure, are illustrated in Tables 1 and 2. The significant 

dual-use of a single 2-bit encoding for both fault status and 

sector addresses enhances information density while 

preserving the separation of fault types. This encoding permits 

the indication of up to four different types of faults and four 

sectors within a total of 4 bits, leaving 6 bits available for other 

system parameters, such as signal strength information or a 

timestamp. By incorporating three pairs of detection gates 

sensitive to binary sequence progression (00, 01, 10, 11), we 

can effectively distinguish between error states, whether they 

involve single-bit or double-bit errors. This approach 

minimizes the likelihood of misinterpreting faulty cases, as 

single-bit transmission errors can be corrected using the 

Hamming (14, 10) error correction strategy. 

 

Table 1. Binary encoding for solar cell conditions 

 
Solar Cell Condition Binary Symbol Abbreviation 

Normal Operation 00 OK 

Short Circuit 01 SH 

Open Circuit 10 OP 

Misalignment 11 MI 

 

Table 2. Sector identification encoding 

 
Sector Location Binary Symbol Abbreviation 

Sector 1 00 S1 

Sector 2 01 S2 

Sector 3 10 S3 

Sector 4 11 S4 

 

3.3.3 FPGA-based error correction and wireless transmission 

The binary-numbered data is encoded using the FPGA 

Hamming (14, 10) encoder, which adds 4 parity bits to the 10-

bit data, resulting in a 14-bit code word (601, 604). This 

encoding method is designed to correct single-bit errors that 

may occur during wireless transmission among neighboring 

devices in outdoor environments with high noise levels. The 
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encoder operates in real-time, utilizing VHDL for parallel 

processing, which minimizes latency while maximizing 

throughput. The encoded code words are transmitted 

wirelessly via the NRF24L01+ radio, incorporating 

acknowledgments and retries to enhance reliability. Figures 3 

and 4 illustrate the overall bidirectional data flow architecture, 

featuring an integrated transmitter-side encoding process and 

a receiver-side decoding process, ensuring successful 

transmission of fault coding across the wireless 

communication channel. 

 

 
 

Figure 3. Data transmission architecture showing 

transmitter-side processing and encoding 

 

 
 

Figure 4. Data reception architecture showing receiver-side 

decoding and processing 

 

3.3.4 Central station processing and fault identification 

In the central control station, data packets are decoded using 

the Hamming decoding procedure to correct any single-bit 

errors that may occur during transmission. The detector 

automatically corrects the identified errors and regenerates the 

original 10-bit protocol frames for fault analysis. Once 

decoding is successful, the output data are processed for fault 

location and identification of fault types. This processed 

information is accessible through a real-time visual interface, 

which provides instant alert notifications for identified fault 

conditions, facilitating timely operator response and 

maintenance planning. The structured data flow mechanism 

ensures reliable online fault detection and location in real time, 

scalability for large photovoltaic plants, and data integrity in a 

noisy radio frequency environment. 

4. THEORETICAL FRAMEWORK AND 

METHODOLOGY 

 

This section presents the theoretical background of the fault 

detection system, emphasizing the mathematical modulation 

employed to provide the PV cells' behavior under different 

conditions and the algorithms for fault classification, as well 

as the fundamentals of Hamming Error Correction, which 

allow us to ensure the integrity of the measurement 

information. 

 

4.1 PV cell characteristic modeling 

 

Accurate modeling of PV cells provides detailed knowledge 

to enable prediction of the behavior of PV systems under 

different environmental and operating conditions, as well as to 

identify faults. The model used in this work is the single-diode 

model (SDM), which is successful in capturing the 

fundamental physical processes involved in the I-V 

characteristics of a PV cell but is also amenable for real-time 

computations. 

The SDM expresses the cell's output current as a function of 

the terminal voltage according to the implicit relation [21]: 

 

𝐼 = 𝐼𝑝ℎ − 𝐼0 [exp⁡ (
𝑞(𝑉 + 𝐼𝑅𝑠)

𝑛𝑘𝑇
) − 1] −

𝑉 + 𝐼𝑅𝑠

𝑅𝑠ℎ

 (1) 

 

where, 

• 𝐼𝑝ℎ  denotes the photocurrent generated by incident 

irradiance, scaling linearly with light intensity. 

• 𝐼0  is the reverse saturation current, reflecting 

recombination losses in the depletion region. 

• 𝑅𝑠  and 𝑅𝑠ℎ  are the series and shunt resistances, 

modeling resistive drops in the semiconductor, 

contacts, interconnections, and leakage pathways 

across the p-n junction. 

• The ideality factor 𝑛  (typically between 1 and 2) 

accounts for non-ideal recombination mechanisms. 

• 𝑘 = 1.38 × 10−23 J/K  (Boltzmann constant) and 

𝑞 = 1.602 × 10−19C (elementary charge). 

• 𝑇 is the cell temperature in Kelvin. 

 

 
 

Figure 5. I-V curves comparison showing normal operation 

versus various fault conditions, illustrating distinctive 

electrical signatures for each fault type 

 

By fitting these parameters to measured I-V curves, the 

SDM provides a robust baseline against which deviations such 

as those induced by partial shading, cell cracks, or connection 

failures can be identified and quantified in real time. Figure 5 
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depicts typical I-V curves for a PV cell during normal 

operation and under various fault conditions, demonstrating 

that each fault type produces distinctive distortions in the I-V 

curve characteristics. 

 

4.2 Fault condition mathematical representations 

 

To represent and simulate various fault conditions in the 

single-diode model, key parameters are modified to predict I-

V characteristics under each fault scenario, providing the 

theoretical foundation for fault detection algorithm 

development. 

• Normal Operation: Under normal conditions, the 

photovoltaic cell operates with nominal parameter 

values: 

 

𝑅𝑠 = 𝑅𝑠, nominal , 𝑅𝑠ℎ = 𝑅𝑠ℎ, nominal  (2) 

 

• Short-Circuit Fault: This condition is characterized 

by either a dramatic decrease in series resistance or 

significant changes in shunt resistance, representing 

external shorts or internal damage: 

 

𝑅𝑠 → 0⁡or⁡𝑅𝑠ℎ significantly reduced (3) 

 

• Open-Circuit Fault: This occurs when the current 

path is interrupted, effectively preventing current 

flow: 

 

𝑅𝑠 → ∞⁡or⁡𝑅𝑠ℎ → 0 (4) 

 

• Misalignment/Partial Shading: These conditions 

primarily reduce the photocurrent generated by the 

cell. The photocurrent under these conditions can be 

expressed as [22-24]: 

 

𝐼𝑝ℎ = 𝐼𝑝ℎ, nominal ⋅ cos⁡(𝜃) ⋅ 𝜂dust ⋅ 𝜂shading  (5) 

 

where, θ is the misalignment angle, 𝜂dust ∈ [0,1] represents 

the reduction due to dust accumulation, and 𝜂shading ∈ [0,1] 

accounts for partial shading effects. 

These mathematical representations enable simulation of 

various fault conditions, providing the theoretical basis for 

fault detection algorithm development and validation. 

 

4.3 Fault detection algorithm 

 

The fault classification algorithm employs a threshold-

based decision mechanism that exploits the characteristic I-V 

distortions associated with each fault type. From each PV cell 

or panel, the measured voltage V, current I, and calculated 

power P=V×I are compared against empirically determined 

threshold values. 

The classification decision follows a hierarchical rule set: 

 

Fault⁡(𝑉, 𝐼, 𝑃)

= {

Short-Circuit, 𝑉 < 𝑉th1 ∧ 𝐼 > 𝐼th1

Open-Circuit, 𝑉 > 𝑉th2 ∧ 𝐼 < 𝐼th2

Misalignment, 𝑃 < 𝑃th ∧ 𝑉 ≥ 𝑉th1 ∧ 𝐼 ≥ 𝐼th2

Normal, otherwise

 
(6) 

 

These thresholds are based on calibration by simulating and 

processing with temperature-conditioned data. We set the 

parameters to minimize false positives while maintaining high 

detection sensitivity. The fault detection and localization 

process are summarized in Figure 6, showing the complete 

sequence from data acquisition to fault identification. 

 

 
 

Figure 6. Flowchart of the fault detection and localization 

sequence 

 

This algorithm is implemented within the FPGA using 

parallel processing architectures, allowing simultaneous 

analysis of multiple sensor inputs with deterministic timing 

performance essential for real-time operation. 

 

4.4 Error correction coding (hamming code) 

 

Wireless communication in outdoor environments is 

susceptible to noise and interference, which can lead to bit 

errors in transmitted data. To ensure data integrity and 

reliability, the system incorporates Hamming error correction 

coding specifically optimized for the application requirements. 

 

4.4.1 Hamming (14,10) code implementation 

The system employs a Hamming (14,10) code, where 𝑘 =
10  data bits are encoded into 𝑛 = 14 -bit codewords by 

appending 𝑟 = 4 parity bits. This configuration satisfies the 

fundamental requirement for single-bit error correction: 

 

2𝑟 ≥ 𝑘 + 𝑟 + 1 (7) 
 

For our implementation: 
 

24 = 16 ≥ 10 + 4 + 1 = 15 (8) 

 

4.4.2 Encoding process 

The encoding operation is performed by multiplying the 1×k 

data vector d by the k×(k+r) generator matrix G: 
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G = [I𝑘 ∣ P] (9) 

 

where, I𝑘 is the 𝑘 × 𝑘 identity matrix and P is the 𝑘 × 𝑟 parity 

submatrix that determines how each parity bit is computed 

from the data bits. 

 

4.4.3 Error detection and correction 

On reception, the received word r is checked by computing 

the syndrome vector S: 

 

𝑆 = 𝑟𝐻𝑇  (10) 

 

where, 

 

𝐻 = [𝑃𝑇 ∣ 𝐼𝑟] (11) 

 

H is the parity-check matrix. 

If the syndrome is non-zero, an error has occurred. The error 

position is determined by: 

 

Error Position =∑  

𝑟−1

𝑖=0

𝑆𝑖 ⋅ 2
𝑖 (12) 

 

The erroneous bit is then corrected using an XOR operation: 

 

corrected bit = received_bit ⊕ 1 (13) 

 

4.4.4 Performance validation 

Figure 7 demonstrates the validation of the FPGA-based 

Hamming (14,10) implementation, showing excellent 

agreement between theoretical and simulated bit error rate 

(BER) performance. This validation confirms the 4.3 dB 

coding gain and ensures reliable wireless data transmission. 

This robust error correction mechanism is vital for 

maintaining fault detection accuracy, especially in noisy 

wireless environments, and provides the foundation for 

reliable distributed PV system monitoring. 

 

 
 

Figure 7. BER comparison between simulation and 

theoretical performance for Hamming (14,10) code 

5. EXPERIMENTAL SETUP AND VALIDATION 

 

This section explains how the proposed real-time PV fault 

detection and localization system was tested, including how 

data was generated, the test cases used, and the evaluation 

metrics for checking the system's accuracy, reliability, and 

effectiveness. 

 

5.1 Experimental setup details 

 

A full laboratory-scale experimental installation was 

developed to simulate distributed solar PV plants and to inject 

and monitor the induced faults. The system features a realistic 

testing scenario, and it can control fault settings and 

environmental conditions accurately. Four monocrystalline 

silicon PV modules were arranged as a modular solar field 

comprising two sectors with two modules per sector. This 

configuration enables independent testing within each sector 

while demonstrating the distributed monitoring capabilities of 

the proposed system. Every sector operates with a specific set 

of dedicated sub-control units, as outlined in Table 3. 

Monitoring and analysis are conducted from a centralized 

point using the configuration detailed in Table 4. This modular 

architecture promotes scalability for larger installations and 

allows for precise control over fault injection and system 

performance measurement. The complete experimental setup 

is shown in Figure 8. 

Table 5 demonstrates realistic system specifications with 

scaled laboratory parameters maintaining proportional fault 

signatures, efficient FPGA resource utilization at 45%, and 

robust wireless communication capabilities suitable for 

distributed deployment. The voltage and current ranges were 

scaled down for laboratory safety and equipment compatibility 

while maintaining the relative characteristics and fault 

signatures of full-scale PV cells. 

 

 
 

Figure 8. Complete experimental setup 

 

Table 3. Sub-control unit hardware configuration (Per Sector) 

 
Component Specifications Primary Functions 

Arduino DUE 

Microcontroller 

12V DC supply, 84 MHz ARM Cortex-

M3, 100 Hz sampling rate 

Test signal generation, real-time voltage and current 

sampling, bidirectional communication management 

Altera Cyclone IV 

EP4CE6E22C8N FPGA 

3.3V dedicated supply, custom VHDL 

firmware, 6,272 logic elements 

Hamming (14,10) encoder implementation, threshold-based 

fault classification, raw sensor data processing 

NRF24L01+ Wireless 

Transceiver 

2.4 GHz operation, 250 kbps data rate, 

100m range 

Wireless data transmission with automatic acknowledgment 

and retry mechanisms 
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Table 4. Central control station configuration 

 
Component Specifications Primary Functions 

Workstation with Python 

Software 

Custom software suite, real-time 

processing capability 

Hamming decoding, protocol frame parsing, fault identification and 

localization, comprehensive data logging 

Arduino UNO with 

NRF24L01+ Receiver 

2.4 GHz reception, wireless network 

interface 
Central wireless network interface and data collection hub 

Real-time Graphical 

Interface 

Python-based GUI, immediate alert 

system 
System status visualization, fault alerting, operator interface 

 

Table 5. Detailed experimental setup specifications 

 
Component Parameter Value 

PV System 

Configuration 2 sectors × 2 modules 

Module Type Monocrystalline Silicon 

Voltage Range per Module 0-21.6V (scaled to 0-0.7V for testing) 

Current Range per Module 0-1.93A (scaled to 0-0.001A for testing) 

Fault Injection Programmable resistive loads 

FPGA Platform 

Device Altera Cyclone IV EP4CE6E22C8N 

Clock Frequency 50 MHz 

Logic Elements Used 2,847 out of 6,272 (45%) 

Memory Bits Used 1,024 out of 276,480 (0.4%) 

Wireless Communication 

Module NRF24L01+ 

Operating Frequency 2.4 GHz 

Data Rate 250 kbps 

Transmission Power 0 dBm 

Range (Open Field) Up to 100 meters 

 

The experimental validation employs precision 

measurement equipment to ensure accurate data collection and 

system performance verification. Digital mustimeters (Fluke 

17B+) provide independent verification of voltage and current 

measurements for calibration and ground truth establishment, 

enabling cross-validation of the Arduino DUE's ADC readings 

and ensuring measurement accuracy across all test scenarios. 

Environmental monitoring systems maintain continuous 

tracking of temperature and simulated irradiance levels using 

calibrated sensors, providing essential data for fault detection 

algorithm validation and environmental compensation 

analysis. The controlled lighting setup uses an LED array that 

can change brightness from 200 to 1000 W/m², allowing for 

organized testing in different lighting situations while keeping 

tight control over the experiment details and making sure 

results can be repeated in different tests. 

 

5.2 Data collection and test scenarios 

 

Comprehensive data collection was performed under 

systematically varied operating conditions and deliberately 

induced fault scenarios to ensure thorough validation of the 

fault detection system. 

 

5.2.1 Normal operation testing 

Normal operation was established under controlled 

laboratory conditions with: 

• Simulated irradiance: 200-1000 W/m² using LED 

array 

• Temperature range: 25-60℃ using environmental 

chamber 

• Load conditions: Variable resistive loads simulating 

different operating points 

 

5.2.2 Fault injection protocols 

Every fault scenario was conducted multiple times to ensure 

that the results are statistically significant and valid. Table 6 

outlines systematic fault injection protocols that feature unique 

electrical signatures for each fault type, leading to clear 

algorithmic discrimination. This approach provides controlled 

test periods that facilitate adequate data acquisition for 

statistical validation and the establishment of ground truth. 

 

Table 6. Systematic fault injection parameters 

 
Fault 

Condition 

Implementation 

Method 
Volt Duration 

Normal 

Operation 
Standard load 0.6 Continue 

Short Circuit 
Direct terminal 

shorting 
0.0 

10 

seconds 

Open Circuit 
Terminal 

disconnection 
0.6 

10 

seconds 

Misalignment 
Partial 

covering/tilting 

0.15-

0.33 

30 

seconds 

 

Table 7. Experimental data acquisition parameters 

 
Parameter Description 

Sampling Rate 100 Hz continuous data acquisition 

Recording Duration 60 seconds per test condition 

Environmental 

Logging 

Simultaneous temperature, irradiance, 

and load condition recording 

Ground Truth 

Verification 

Independent measurement verification 

using precision instruments 

Test Repetition 
Minimum 10 repetitions per condition for 

statistical validity 

 

5.2.3 Data acquisition protocol 

As we can see from the data presented in Table 7, for each 

test case, the data collected to obtain samples and the 

corresponding sampling environment were entirely suitable to 

effectively monitor the overall quality, while the test 

procedure was furthermore repeated several times to reliably 

maintain statistical stability, which thereby effectively 

provides the valuable ground truth essential for system 

performance benchmarking and fault detection study. 
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5.3 Performance metrics 

 
The performance of the proposed fault detection system is 

evaluated using comprehensive metrics that assess both 

accuracy and operational characteristics: 

 
5.3.1 Accuracy metrics 

Fault Detection Accuracy: Percentage of correctly 

identified fault conditions across all test cases: 

 

Accuracy =
Number of Correct Classifications

Total Number of Test Cases
× 100% (14) 

 

Precision and Recall: For each fault type 𝑖: 

 

Precision⁡𝑖 =
True Positives𝑖

True Positives𝑖+False Positives 𝑖
 (15) 

 

Recall𝑖=
True Positives𝑖

True Positives𝑖 + False Negatives
𝑖

 (16) 

 
F1-Score: Harmonic mean of precision and recall: 

 

F1-Score⁡𝑖 = 2 ×
Precision𝑖 × Recall𝑖

Precision𝑖 + Recall𝑖
 (17) 

 

 

5.3.2 Performance evaluation metrics 

The proposed fault detection system performance is 

assessed through temporal, communication, and statistical 

metrics. As illustrated in Table 8, temporal performance 

evaluates average detection time from fault occurrence to 

successful detection at the central control station, measured 

using high-precision timestamps. Communication reliability 

encompasses BER, calculated as the ratio of bit errors to total 

transmitted bits, and coding gain, representing signal-to-noise 

ratio improvement achieved by error-correcting code 

compared to uncoded transmission. Statistical validation 

employs 95% confidence intervals, hypothesis testing with 

significance level α = 0.05, and power analysis to ensure 

adequate sample sizes for reliable conclusions.  

 

5.4 Simulation model development and validation 

 

A comprehensive MATLAB simulation model was 

developed to verify system behavior under extended 

operational conditions and validate theoretical predictions. 

The simulation framework encompasses five integrated 

components: a PV module model implementing the single-

diode model with fault condition variations, a test signal 

generator replicating Arduino DUE functionality, an FPGA 

logic simulation modeling Hamming encoding/decoding and 

fault classification algorithms, a wireless channel model 

incorporating realistic noise and interference with 

configurable SNR levels, and a performance analysis module 

providing comprehensive result aggregation. 

 

Table 8. Performance evaluation framework 

 
Metric Category Specific Measures Evaluation Criteria 

Temporal Performance Average detection time, response consistency Microsecond-precision timestamps, sub-100ms targets 

Communication Reliability BER, coding gain, packet success rate 10⁻⁵ BER threshold, >4 dB coding gain 

Statistical Validation Confidence intervals, hypothesis testing 95% CI, α = 0.05, power analysis 
 

The validation methodology employed parameter 

correlation analysis against experimental hardware 

characteristics, fault scenario replication of identical 

experimental conditions, and statistical comparison using 

correlation analysis and hypothesis testing. This simulation 

framework provides additional confidence in experimental 

findings while enabling investigation of operational scenarios 

beyond laboratory constraints, supporting theoretical 

validation and performance prediction for scaled deployments. 

 

 

6. RESULTS AND DISCUSSION 

 

This section presents comprehensive experimental results 

obtained from the validated real-time PV fault detection and 

localization system, including detailed performance analysis, 

comparative evaluation, and discussion of implications for 

practical deployment. 

 

6.1 Fault detection accuracy and performance analysis 

 

The proposed FPGA-based wireless sensor network 

demonstrated strong performance in detecting and classifying 

various fault conditions across all tested photovoltaic 

scenarios. Through systematic experimental validation 

involving multiple fault types and environmental conditions, 

the system achieved an overall fault detection accuracy of 

99.2% with consistent performance across different 

operational scenarios. 

 

Table 9. Fault detection accuracy results 
 

Fault Type 
Detection 

Accuracy (%) 

Sample 

Size 

95% 

Confidence 

Interval 

Normal 

Operation 
99.8 120 [99.1%, 100%] 

Short Circuit 99.5 100 [98.2%, 100%] 

Open Circuit 99.3 100 [97.8%, 100%] 

Misalignment 98.5 80 [96.9%, 99.7%] 

Overall 99.2 400 [98.7%, 99.7%] 

 

Table 10. Detailed performance metrics by fault type 
 

Fault Type 
Precision 

(%) 

Recall 

(%) 

F1-

Score 

(%) 

Avg 

Detection 

Time (ms) 

Normal 

Operation 
100.0 98.5 99.2 77.7 

Short Circuit 99.5 100.0 99.7 77.7 

Open Circuit 97.6 100.0 98.8 77.7 

Misalignment 100.0 98.5 99.2 77.7 

Overall 99.2 99.2 99.2 77.7 

 

6.1.1 Classification performance by fault type 

Tables 9 and 10 demonstrate consistently high performance 

across all fault types, with detection accuracy exceeding 

98.5% and balanced precision-recall metrics. The uniform 
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77.7 ms detection time across fault categories confirms 

algorithmic consistency and real-time capability regardless of 

fault complexity. 

6.1.2 Statistical validation 

Statistical analysis confirms the reliability of the results: 

• Sample Size: 400 total test cases across all fault types 

• Statistical Significance: Chi-square test yields p < 

0.001, indicating highly significant results 

• Confidence Level: 95% confidence interval for 

overall accuracy: [98.7%, 99.7%] 

• Effect Size: Large effect size (Cohen's d > 0.8) 

confirms practical significance 

 

 
 

Figure 9. Confusion matrix showing fault classification 

results with strong diagonal performance indicating accurate 

identification and minimal misclassification errors 

 

The confusion matrix in Figure 9 demonstrates balanced 

performance across fault categories with strong diagonal 

elements and minimal misclassification. 

The confusion matrix in Figure 9 reveals critical false 

positive rate (FPR) and false negative rate (FNR) metrics for 

operational reliability. Analysis of off-diagonal elements 

shows weighted average FPR and FNR both at 0.8%. Short 

circuit detection achieves zero false negatives with 0.5% false 

positives, ensuring safety-critical faults are never missed. 

Open circuit detection exhibits 2.4% FPR with zero false 

negatives, acceptable given low verification costs. Normal 

operation and misalignment show zero false positives with 

1.5% false negatives each. These balanced error rates 

minimize unnecessary maintenance (FPR < 1%) while 

ensuring reliable fault detection (FNR < 1%), supporting cost-

effective deployment with estimated annual false alarm costs 

below $500 per MW installed capacity. 

 

6.2 Detection time analysis and real-time performance 

 

The system achieved an average fault detection time of 77.7 

ms, establishing strong real-time performance capabilities 

essential for timely fault response and system protection. 

 

6.2.1 Temporal performance characteristics 

Figure 10(a) reveals remarkable detection time consistency 

across all fault types. The fault types show median values 

clustering around 77-80 ms, with minimal interquartile ranges 

that confirm predictable performance; however, occasional 

outliers extending to 250 ms represent worst-case wireless 

conditions. Figure 10(b) demonstrates exceptional temporal 

reliability, with over 80% of detections occurring within a 10 

ms window (72-82 ms), indicating deterministic behavior 

essential for safety-critical applications. The comparative 

analysis in Figure 10(c) establishes clear superiority over 

alternative methodologies. While the proposed FPGA-WSN 

system achieves 77 ms detection time, RF+ST requires 141 ms, 

T-test demands 197 ms, and fuzzy logic approaches require 

903 ms, an order-of-magnitude degradation compromising 

real-time capabilities. Figure 10(d) reveals optimal positioning 

in the accuracy-speed parameter space, achieving high 

detection accuracy (99.2%) and minimal detection time (77 

ms). While ANN-SVM matches speed (78 ms), it sacrifices 

accuracy (92.6%). The 77.7 ms detection time enables true 

real-time monitoring with immediate alert generation, 

particularly critical for safety-related faults requiring 

immediate system isolation. The consistent performance 

across fault types ensures predictable system behavior and 

guarantees reliable real-time operation for large-scale 

photovoltaic installations. 

 

 
 

Figure 10. Comprehensive detection time analysis: (a) consistency across fault types, (b) distribution histogram, (c) comparative 

performance, (d) accuracy vs. speed positioning 

(a) (b)

(c) (d)
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(a) 

 
(b) 

 

Figure 11. Hamming error-correcting code implementation test: (a) encoder and decoder test without error, (b) encoder and 

decoder test with error at position 6 

 

6.2.2 Cost-benefit analysis compared to commercial 

solutions 

The economic analysis of FPGA-WSN monitoring 

architecture for utility scale photovoltaic systems 

demonstrates favorable cost benefit ratios compared to 

commercial alternatives. Open source SCADA systems 

eliminate proprietary licensing fees and cloud platform 

charges, as evidenced by PV deployments using 

Emoncms/Raspberry Pi configurations with local data 

storage [25]. Operation over the 2.4 GHz ISM band (IEEE 

802.15.4/Zigbee) eliminates cellular data costs, with 

documented performance characteristics supporting this 

approach [26]. Hardware costs align with industry 

benchmarks. Distributor pricing for 2.4 GHz modules ($19 

to $41) corresponds to the projected $12.5 to $40 per node 

hardware envelope. Standard operations and maintenance 

ranges from PV literature validate five year total cost of 

ownership modeling [27, 28]. Performance metrics support 

technical feasibility. Sub 0.1 second event detection (77.7 ms) 

proves achievable given protection relay operation times of 

milliseconds plus breaker delays of 100 ms [29]. Rapid fault 

detection reduces energy losses. IEA PVPS Task 13 

documents annual soiling losses of 3 to 5 percent, while 

predictive maintenance studies demonstrate yield recovery 

through early fault intervention [29, 30]. Five year TCO 

analysis indicates $65,000 for FPGA-WSN versus $128,500 

to $206,500 for cloud based systems (49 to 68% reduction) 

in which yield recovery of 3 to 5% $4,200 to $7,000 per MW 

year at standard tariffs. 

 

6.2.3 Real-time capability validation 

The consistent sub-100ms detection time enables 

immediate alert generation with real-time notification within 

seconds of fault occurrence, ensuring rapid operator response 

capabilities. This performance facilitates safety response 

through rapid system isolation for safety-critical faults, 

preventing potential equipment damage or hazardous 

conditions. The system achieves operational efficiency by 

minimizing energy loss due to prompt fault detection, 

reducing the economic impact of undetected faults. 

Additionally, the predictable performance characteristics 

demonstrate scalability suitable for large-scale installations, 

where consistent timing behavior across distributed 

monitoring nodes is essential for coordinated system 

management and maintenance scheduling. 
 

6.3 Wireless transmission performance and error 

correction validation 
 

The implementation of Hamming (14,10) error correction 

significantly enhanced wireless data integrity, demonstrating 

robust performance in challenging communication 

environments. 
 

6.3.1 Error correction performance 

Coding Gain Achievement: The system demonstrated a 

4.3 dB coding gain compared to uncoded transmission, 

measured through systematic BER testing under controlled 

noise conditions. 

Error Correction Validation: Figure 11 illustrates the 

FPGA-based Hamming error correction implementation 

under both error-free and error-present conditions. 
 

6.3.2 Communication reliability metrics 

• Bit Error Rate: Reduced from 10⁻³ (uncoded) to 10⁻⁵ 

(coded) under standard outdoor noise conditions 

• Packet Success Rate: 99.8% successful packet 

delivery with error correction 

• Transmission Range: Reliable operation up to 100 

meters in open field conditions 

• Data Throughput: 250 kbps sustained data rate with 

error correction overhead 
 

6.4 Comparative analysis with existing methods 
 

A comprehensive comparative analysis was conducted to 

validate the proposed methodology against established state-

of-the-art fault detection techniques. The multi-dimensional 

performance evaluation is presented through Figure 12 and 

Table 11, providing both quantitative metrics and qualitative 

feature comparisons. Figure 12 demonstrates clear 

performance superiority across all metrics. The accuracy 

analysis in Figure 12(a) shows the proposed system 

achieving 99.2% compared to RF+ST (95.0%), Fuzzy Logic 

(94.3%), T-test (94.0%), and ANN-SVM (92.6%), a 4.2 

percentage point improvement. Figure 12(b) reveals optimal 

precision-recall positioning, while Figure 12(c) confirms 
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temporal superiority at 77 ms versus competitors ranging 

from 78 ms to 903 ms. The F1-score analysis in Figure 12(d) 

validates balanced optimization at 99.2%. Table 11 reveals 

distinct advantages: superior speed (77.7 ms versus minutes 

to hours), precise cell-level localization, true real-time 

capability without system shutdown requirements, and 

unique wireless data integrity through Hamming error 

correction features absent in competing methods. 

 

 
 

Figure 12. Multi-dimensional performance comparison: (a) accuracy benchmarking, (b) precision-recall optimization, (c) 

detection time advantages, (d) F1-score excellence 

 

Table 11. Method comparison 

 

Method 
Detection Accuracy 

(%) 

Avg Detection 

Time 

Fault 

Localization 

Real-Time 

Capability 
Data Integrity 

Proposed FPGA-WSN 99.2 77.7 ms Cell-Level Yes 
High 

(Hamming) 

Random Forest 

Classifier 
99.5 141 ms Module-Level Limited N/A 

ANN-SVM 92.6 78 ms String-Level Limited N/A 

I-V Curve Analysis 95.0 Minutes Module-Level No N/A 

Thermal Imaging 94.3 Minutes Module-Level No N/A 

Statistical (T-test) 94.0 197 ms String-Level Limited N/A 

 

Table 12. Comparative analysis of PV fault detection methods 

 

Feature/Method 
The Proposed 

System 

I-V Curve Analysis 

[31, 32] 

Time Domain 

Reflectometry (TDR) 

[33] 

Machine Learning 

[34-36] 

Thermal 

Imaging [37, 

38] 

IoT-Based 

Systems [39]  

Fault Detection 

Accuracy 
99.2% High (Effective) High 81.29-98.15% 98.85% 98.15% 

Average Detection 

Time 
77.7 ms Minutes to Hours Minutes Seconds to Minutes Minutes Real-time 

Fault Localization 
Precise 

(Cell/Panel) 
Module/String Precise 

Module/String to 

Cell 
Module Module/String 

Real-time Capability Yes No No Yes (IoT-enabled) Limited Yes 

System Shutdown Req. No Yes (often) Yes No No No 

Cost/Complexity Moderate Low (Cost-free) Moderate High High High 

Data Integrity 

(Wireless) 

High 

(Hamming) 
N/A N/A 

High (IoT 

protocols) 
N/A 

High (IoT 

protocols) 

Cybersecurity 

Resilience 
Not specified N/A N/A 

93.12% (under 

attack) 
N/A 

93.12% (under 

attack) 

Environmental 

Adaptability 
Not specified Limited Limited High High High 
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Table 12 provides a comprehensive comparison of the 

proposed FPGA-WSN system against established literature 

methods, revealing superior performance characteristics. 

Unlike existing approaches that require system shutdown or 

lack real-time capability, the proposed method uniquely 

combines quantified high accuracy (99.2%), sub-100ms 

detection speed, precise localization, and wireless data 

integrity through Hamming error correction. 

 

6.4.1 Performance advantages 

The proposed system demonstrates several key advantages: 

1. Balanced Performance: Optimal positioning in 

accuracy-speed parameter space 

2. Granular Localization: Cell-level fault 

identification capability 

3. True Real-Time Operation: Sub-100ms response 

time with no system shutdown required 

4. Data Integrity: Unique wireless error correction 

capability 

5. Scalable Architecture: Modular design suitable for 

distributed deployment 

 

6.5 Environmental robustness and operational validation 

 

The system demonstrated exceptional environmental 

resilience across varying operational conditions, as 

illustrated in Figure 13. Environmental testing validated 

operational reliability across temperature ranges of 25℃ to 

60℃ and irradiance levels from 200 W/m² to 1000 W/m². 

Performance degradation remained below 2% across all 

conditions. Figure 13 reveals stable temperature performance 

between 96.5% and 97.0% accuracy with minor thermal 

effects around 50-60℃, while irradiance performance 

improved from 96.2% to 97.1% as conditions increased from 

200 to 1000 W/m². The positive correlation with irradiance 

suggests enhanced signal-to-noise ratios under higher solar 

conditions, confirming the system's suitability for practical 

photovoltaic applications across diverse environmental 

scenarios. 

 

6.5.1 Environmental testing results 

• Temperature Range: 25-60℃ with <2% accuracy 

variation 

• Irradiance Levels: 200-1000 W/m² with improved 

performance at higher irradiance 

• Humidity Tolerance: Tested at 40-90% relative 

humidity with stable operation 

• Noise Immunity: Maintained performance in 

presence of electromagnetic interference 

 

6.5.2 Field validation results 

Following laboratory validation, the system was deployed 

in a scaled field test using 40 modules (approximately 1.67 

kW) arranged in 4 sectors with 10 modules each, maintaining 

the same monitoring architecture. 

 

 
 

Figure 13. Environmental robustness validation showing 

stable performance across temperature (25-60℃) and 

irradiance (200-1000 W/m²) variations 

 

Table 13. Field performance under environmental stress conditions 

 

Test Condition 
Temperature 

(℃) 

Dust Density 

(g/m²) 

Detection Accuracy 

(%) 

Detection Time 

(ms) 

Packet Success Rate 

(%) 

Laboratory Baseline 25 0 99.2 77.7 99.8 

Mild Desert 

(Morning) 
28-35 2-4 97.8 82.3 98.5 

Moderate Heat 

(Noon) 
40-45 5-8 96.3 87.5 97.2 

Extreme Heat (Peak) 48-52 8-12 94.7 93.8 95.8 

Dust Storm Event 38-42 15-20 91.2 108.4 92.3 

After Rain Cleaning 25-30 0-1 98.5 79.2 99.1 

6-Month Average 35.8 6.7 95.8 88.6 96.9 

 

Table 14. Fault-specific performance degradation in field conditions 

 

Fault Type 
Lab Accuracy 

(%) 

Field Accuracy 

(%) 

Major Degradation 

Factors 

False Positive Rate 

(%) 
Maintenance Impact 

Normal 

Operation 
99.8 97.5 Temperature drift, dust 0.8 +2.1% after cleaning 

Short Circuit 99.5 96.2 Connector expansion 1.3 
+1.8% after 

inspection 

Open Circuit 99.3 97.8 Stable detection 0.5 +0.5% after cleaning 

Misalignment 98.5 93.1 
Dust asymmetry, 

shadows 
2.7 

+3.2% after 

realignment 

Partial Shading N/A 92.4 
Dynamic cloud 

movement 
3.1 N/A 

Soiling Losses N/A 89.7 Progressive accumulation 4.2 +5.8% after cleaning 

Weighted 

Average 
99.2 95.4* - 1.9 +2.6% average 
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Table 15. FPGA resource utilization and scaling analysis 

 
Resource Type Current (2 Sectors) 3 Sectors 4 Sectors (Max) Available 

Logic Elements 2,847 (45.4%) 4,271 (68.1%) 5,694 (90.8%) 6,272 

Memory Bits 1,024 (0.4%) 1,536 (0.6%) 2,048 (0.7%) 276,480 

Embedded Multipliers 8 (26.7%) 12 (40.0%) 16 (53.3%) 30 

PLLs 1 (50.0%) 1 (50.0%) 1 (50.0%) 2 

Timing Closure 50 MHz 50 MHz 40 MHz - 

Deployment Recommended Feasible Not Advised - 

 

Table 13 demonstrates progressive performance 

degradation correlating with environmental severity. 

Extreme heat conditions (48-52℃) reduced accuracy to 

94.7% and increased detection time by 20.8%. Dust storm 

events showed the most severe impact with 91.2% accuracy 

and 108.4 ms detection time. Post-rain cleaning restored 

performance to 98.5% accuracy, confirming dust 

accumulation as a reversible degradation factor. Table 14 

reveals differential field impacts on fault types. Open circuit 

detection maintained highest resilience (97.8% accuracy), 

while misalignment detection suffered most (5.4% 

degradation) due to asymmetric dust deposition mimicking 

misalignment signatures. Two new fault categories emerged: 

partial shading (92.4%) and soiling losses (89.7%). Regular 

maintenance improved average accuracy by 2.6%, with 

soiling-related faults showing highest improvement (5.8%) 

after cleaning. 
 

6.6 Hardware implementation validation 
 

The hardware implementation demonstrated successful 

integration and reliable operation across all system 

components. Tables 15 and 16 validate efficient hardware 

implementation with 45% FPGA resource utilization, 

demonstrating optimal performance without overloading the 

system. The standardized pin mapping configuration ensures 

reliable high-speed data transfer between Arduino and FPGA 

components, enabling modular deployment and simplified 

system maintenance across distributed installations. By using 

the standard “pin” configuration shown in Table 15, modular 

installation and easy system maintenance are achieved, and a 

robust high-speed data transmission between the 

microcontroller and the FPGA is provided. We have used this 

uniform interface design to achieve scalable implementation 

across clustered deployments with less complexity in system 

integration and troubleshooting. The resource utilization 

analysis demonstrates that while the Cyclone IV 

EP4CE6E22C8N can theoretically accommodate up to four 

sectors, the distributed architecture maintains optimal 

performance through horizontal scaling with multiple 

FPGAs operating at 45% utilization. This approach ensures 

reliable timing closure and simplifies system maintenance 

for utility-scale deployments. 
 

Table 16. Arduino-FPGA interface pin mapping 
 

Data Bit Arduino DUE Pin FPGA Pin Direction 

D9 (MSB) 40 55 Output 

D8 38 53 Output 

D7 36 51 Output 

D6 34 49 Output 

D5 32 44 Output 

D4 30 42 Output 

D3 28 38 Output 

D2 26 33 Output 

D1 24 31 Output 

D0 (LSB) 22 28 Output 

6.7 Limitations and considerations 

 

The extensive experimental results confirmed the practical 

utility of the proposed FPGA-based WSN system for 

distributed PV fault detection. The validation results indicate 

high performance across several metrics, achieving 99.2% 

accuracy with a detection time of only 77.7 ms on 400 

omnidirectional stitching test cases, which is statistically 

significant with p < 0.001. Environmental stability testing 

demonstrated consistent performance within the temperature 

range of 25 to 60℃ irradiance intensity levels of 200–1000 

W/m², with performance fluctuations of less than 2%. 

Validation of hardware integration confirmed the successful 

implementation on FPGA, consuming 45% of the resources 

and achieving error-free wireless communication over a 

distance of 100 m. Measurement results for error correction 

verification indicated a coding gain of 4.3 dB, which 

demonstrates data reliability in a noisy outdoor environment. 

These extensive results lay a solid foundation for real-world 

applications and highlight potential pathways for 

improvements and scaling of the system to utility scale. 

Multi-path fading from metallic PV panel reflections and 

co-channel interference in dense arrays represent 

uncharacterized propagation effects. While NRF24L01+ 

modules employ frequency hopping across 125 channels, 

Rayleigh fading variations and packet collision rates at scale 

remain uninvestigated.  

Advantages: 

1. Cost-Effectiveness: Moderate hardware costs with 

potential for significant operational savings through 

early fault detection 

2. Maintenance Efficiency: Precise fault localization 

reduces diagnostic time and targeted maintenance 

3. Safety Enhancement: Rapid fault detection enables 

prompt safety responses 

4. Energy Optimization: Minimal downtime through 

immediate fault identification 

5. Scalability: Modular architecture supports 

incremental deployment and expansion 

The comprehensive experimental validation confirms that 

the proposed FPGA-based wireless sensor network provides 

a practical and effective solution for real-time PV fault 

detection and localization, addressing key challenges in 

distributed solar system monitoring while maintaining high 

accuracy, speed, and reliability. 

 

6.8 Scalability analysis for utility-scale deployment 

 

Experimental validation demonstrated excellent 

performance for 4-module laboratory and 40-module field 

deployments; however, utility-scale applicability requires 

theoretical analysis. Table 17 presents the scalability 

assessment methodology, distinguishing validated results 

from theoretical extrapolations. Communication bandwidth 

scales linearly at 1.4 kbps per module (high confidence), 
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while latency projections use queuing theory models 

(moderate confidence). Detection accuracy and cost 

projections rely on statistical models and vendor quotes 

respectively, requiring empirical validation. 

 

Table 17. Scalability analysis methodology and confidence levels 

 
Analysis Component Validation Basis Extrapolation Method Confidence Level 

Communication Bandwidth Measured (4 & 40 modules) Linear scaling (1.4 kbps/module) High (deterministic) 

Network Latency Measured (77.7-88.6 ms) Queuing theory model Moderate (simulated) 

Detection Accuracy Experimental (99.2-95.8%) Statistical degradation model Low (unvalidated) 

Hardware Cost Actual component pricing Volume discount curves Moderate(vendor quotes) 

Table 18 outlines a three-tier hierarchical architecture for 

managing thousands of modules. Tier 1 handles 20 modules 

per cluster (partially validated), Tier 2 aggregates 200 

modules (simulated only), and Tier 3 provides central control 

for 15,000 modules (theoretical). This design requires 

progressive field validation. 

 

Table 18. Proposed hierarchical architecture for large-scale deployment 

 
Tier Level Function Theoretical Capacity Bandwidth Validation Status 

Tier 1 (Cell) Local monitoring 20 modules/cluster 28 kbps Partially validated (40 modules) 

Tier 2 (String) Data aggregation 200 modules/node 280 kbps Simulated only 

Tier 3 (Array) Central control 15,000 modules 21 Mbps Theoretical 

Communication requirements scale linearly as shown in 

Table 19. Validated results confirm 5.6 kbps for 4 modules 

and 56 kbps for 40 modules. Theoretical projections estimate 

7.0 Mbps for 5,000 modules and 21.0 Mbps for 15,000 

modules, with latency increasing from 77.7 ms to 245 ms. 

The NRF24L01+ theoretically supports 178 modules per 

channel across 125 channels, though interference effects 

remain unvalidated. 

 

Table 19. Communication requirements - experimental vs. theoretical 

 
System Scale Modules Total Bandwidth Latency Channel Utilization Status 

Laboratory 4 5.6 kbps 77.7 ms 2.2% Validated 

Field Test 40 56 kbps 88.6 ms 22.4% Validated 

Commercial 500 700 kbps 112 ms 35% Simulated 

Utility 5,000 7.0 Mbps 142 ms 70% Theoretical 

Large Utility 15,000 21.0 Mbps 245 ms 92% Theoretical 

Table 20 presents MATLAB simulation results 

extrapolating from experimental data. Detection accuracy 

decreases from 99.2% (4 modules) to projected 98.3% 

(15,000 modules). Detection time increases from 77.7 ms to 

245 ms, while costs decrease from $45.00 to $2.80 per 

module through volume economics. 

 

Table 20. Experimental results and theoretical projections 

 
Performance Metric Experimental Experimental Simulated Projected  

(4 modules) (40 modules) (5,000 modules) (15,000 modules) 

Detection Accuracy 99.2% ± 0.5% 95.8% ± 1.2% 98.7% ± 2.5% 98.3% ± 3.8% 

Detection Time 77.7 ms 88.6 ms 142 ± 25 ms 245 ± 45 ms 

Packet Success Rate 99.8% 96.9% 98.2% ± 1.5% 97.8% ± 2.2% 

Cost per Module $45.00 $12.50 $3.50 $2.80 

Table 21 identifies critical uncertainties requiring 

validation. Network congestion and RF interference pose 

high-priority risks requiring 500 and 200-module tests 

respectively. Processing bottlenecks and environmental 

effects need medium-priority validation through extended 

field trials. 

 

Table 21. Critical uncertainties requiring field validation 

 
Risk Factor Potential Impact Minimum Test Scale Priority 

Network Congestion Latency >500 ms 500 modules High 

RF Interference Packet loss >5% 200 modules High 

Processing Bottlenecks Accuracy degradation >5% 1,000 modules Medium 

Environmental Effects Unknown performance impact 500 modules (6 months) Medium 

Theoretical analysis suggests feasibility for 15,000-

module deployments with sub-250 ms latency and 98% 

accuracy. However, these projections rely on linear 

extrapolation from small-scale tests. Network congestion, 

interference, and processing bottlenecks remain unvalidated 

risks. Pilot deployments of 500-1,000 modules are essential 

before confirming utility-scale feasibility. Current scalability 

claims represent simulation-based estimates requiring 

progressive field validation. 
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6.9 Energy consumption analysis and power management 

 

Energy consumption characteristics are critical for solar-

powered autonomous operation. Table 22 presents 

component-level power consumption based on manufacturer 

specifications. Each node requires 435 mW average power 

(10.44 Wh daily). A 5W solar panel with 20% efficiency 

provides adequate generation assuming 5 peak sun hours. A 

12V, 1.2Ah battery (14.4 Wh capacity) supports 33 hours 

operation without solar input, ensuring continuity during 

cloudy periods. Energy harvesting directly from monitored 

PV modules eliminates separate power infrastructure, 

requiring less than 0.01% of module output. Power 

management strategies including adaptive duty cycling and 

selective sleep modes could reduce consumption by 40%. 

Future work will incorporate maximum power point tracking 

and dynamic power management algorithms for optimal 

autonomous operation. 

 

Table 22. Component power consumption analysis 

 
Component Operating Mode Current Power Duty Cycle Average Power 

Arduino DUE Active 75 mA 248 mW 100% 248 mW 

Cyclone IV FPGA Active 50 mA 165 mW 100% 165 mW 

NRF24L01+ Transmit 11.3 mA 37.3 mW 10% 3.73 mW  
Receive 13.5 mA 44.6 mW 40% 17.84 mW 

Total 
 

139.8 mA 461 mW - 435 mW 

 

 

7. CONCLUSION AND FUTURE WORK 

 

7.1 Conclusion 

 

This research successfully developed and validated an 

FPGA-based wireless sensor network for real-time 

photovoltaic system fault detection and localization. The 

proposed system addresses critical challenges in PV 

monitoring by integrating mathematical modeling, threshold-

based fault detection algorithms, and robust Hamming (14,10) 

error correction coding within a modular hardware 

architecture. 

The experimental validation on a laboratory-scale setup 

demonstrated strong performance metrics: 99.2% fault 

detection accuracy across multiple fault types (normal 

operation, short circuit, open circuit, and misalignment), with 

a 95% confidence interval [98.7%, 99.7%] based on 400 test 

cases. The system achieved 77.7 ms average detection time, 

enabling true real-time operation essential for prompt fault 

response and system protection. The implemented Hamming 

error correction provided 4.3 dB coding gain, ensuring reliable 

wireless data transmission in challenging outdoor 

environments. 

The research provides several significant technical 

contributions: precise cell-level fault localization (98.9% 

accuracy) enabling targeted maintenance operations, real-time 

operation without system shutdown requirements, balanced 

optimization across accuracy, speed, and reliability 

dimensions, and comprehensive validation through both 

simulation and experimental testing. The modular design 

supports scalable deployment across diverse photovoltaic 

installations while maintaining consistent performance 

standards. 

The validated system offers practical advantages for PV 

system operators, including reduced operational costs through 

early fault detection and targeted maintenance, enhanced 

safety through rapid fault identification and response 

capability, improved energy yield through minimized 

downtime, and scalable architecture supporting incremental 

deployment across installations of varying sizes. 

The integration of FPGA-based processing with WSN 

provides a robust foundation for distributed PV monitoring, 

addressing the growing need for reliable fault detection in 

expanding solar energy infrastructure. 

 

7.2 Future work 

 

Based on the experimental validation and identified system 

capabilities, future research will address critical development 

areas to transition from laboratory prototype to commercial 

deployment. Immediate development priorities include scale 

validation through extension from the current 4-module 

laboratory setup to utility-scale installations with hundreds of 

modules, requiring investigation of network topology 

optimization and communication management strategies. 

Fault coverage expansion represents another critical priority, 

involving integration of degradation detection algorithms, 

bypass diode failure identification mechanisms, and soiling 

assessment capabilities to provide comprehensive monitoring 

coverage. Long-term performance studies will involve multi-

year outdoor deployment under diverse weather conditions to 

validate system reliability and maintenance requirements over 

extended operational periods. 

Advanced system enhancements will focus on adaptive 

intelligence integration through machine learning algorithms 

for dynamic threshold optimization and environmental 

condition compensation, potentially improving detection 

accuracy and reducing false positive rates. Communication 

enhancement through mesh networking implementation will 

provide improved reliability and extended range capabilities, 

essential for large-scale distributed installations. Industrial 

integration development will establish standardized protocols 

for seamless SCADA system integration, enabling 

compatibility with existing utility infrastructure and 

operational procedures. 

Economic and commercial development activities will 

include comprehensive cost-benefit quantification through 

detailed ROI analysis for large-scale deployments, helping 

utilities and solar operators make informed investment 

decisions. Maintenance optimization research will develop 

predictive algorithms for proactive fault prevention, 

potentially reducing operational costs and improving system 

uptime. Market deployment strategy development will 

establish commercial pilot programs with utility-scale solar 

operators, providing real-world validation and demonstrating 

commercial viability. These integrated research directions will 

transform the validated laboratory prototype into a 

comprehensive commercial solution for next-generation PV 

system monitoring, addressing the growing need for reliable, 
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scalable fault detection in the expanding solar energy 

infrastructure. 
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