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Presented work aimed to improve near infrared spectroscopic (NIRS) prediction models 

for rapid and simultaneous estimation of N, P, K, pH, Mg, and Ca contents in agricultural 

soils. We compared partial least square regression (PLSR) and support vector machine 

(SVM) approaches applied to multiplicative scatter correction (MSC) corrected spectral 

data. The results demonstrated that grid search optimized radial basis function (RBF) 

kernel SVM models consistently outperformed PLSR models for all soil nutrients 

analyzed. The SVM models achieved excellent predictive performance, with coefficient 

of determination (R2) and ratio of prediction to deviation (RPD) values from external 

prediction datasets as follows: N (R2 = 0.83, RPD = 2.80), P (R2 = 0.96, RPD = 4.33), K 

(R2 = 0.91, RPD = 3.00), pH (R2 = 0.96, RPD = 2.89), Mg (R2 = 0.98, RPD = 4.34), and 

Ca (R2 = 0.99, RPD = 4.99). These results indicate good to excellent predictive 

performance for simultaneous estimation of agricultural soil nutrients using optimized 

SVM-based NIRS models. This novel approach offers a rapid, non-destructive method 

with significant potential for improving precision agriculture and environmental 

monitoring by enhancing soil quality assessment. 
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1. INTRODUCTION

The interrelation of soil nutrients not only affects 

agricultural productivity but also plays a significant and 

important role in environmental sustainability. As we face the 

challenges of feeding a growing population, optimizing 

agricultural productivity while ensuring environmental 

sustainability has become important issue. Central to 

achieving such optimization is the understanding and 

management of soil quality [1], which is fundamentally 

dependent on various physicochemical properties. Among 

these, the concentrations of soil key macronutrients like 

nitrogen (N), phosphorus (P), and potassium (K), alongside the 

soil pH, magnesium (Mg), and calcium (Ca) contents, are 

critical for soil health and plant growth [1-3].  

As a soil macronutrient, N is fundamental for amino acid, 

enzyme, and chlorophyll formation, while P is crucial for 

energy transfer in plants. On the other hand, K is vital for the 

regulation of stomatal opening and closing, which affects 

water use efficiency and disease resistance [3]. The 

availability of these nutrients in the soil, however, is heavily 

influenced by the soil's pH level, which can alter their 

solubility and hence bioavailability to plants. Further, Mg and 

Ca, though required in lesser quantities than the primary 

nutrients, are nonetheless essential. Magnesium serves as the 

central atom in the chlorophyll molecule and is critical for 

photosynthesis, while calcium is necessary for cell wall 

structure and stability, as well as normal cell division in plant 

roots and leaves [4, 5]. They play roles in structuring soil 

aggregates, affecting soil erosion and water infiltration rates. 

Adequate levels of these nutrients can enhance soil structure, 

ability to support microbial life, preventing runoff and erosion, 

and thereby reducing the loss of topsoil and nutrient leaching 

into waterways. Knowing and analyzing soil quality attributes 

in precision agricultural practices can ensure optimal plant 

growth and also contribute significantly to protect and enhance 

environmental health [5-7]. 

Near infrared spectroscopy (NIRS) offers a significant leap 

forward in the analysis of soil properties, including key 

nutrients like N, P, K, pH, Mg and Ca [8-13]. This technology 

stands out for its speed, nondestructive, environmental 

friendly and efficiency, allowing for almost instantaneous 

results, which contrasts sharply with the time consuming 

processes characteristic of traditional laboratory methods [14]. 

A major advantage of NIRS is its nondestructive nature, 

enabling repeated analyses of the same sample without 

alteration, an aspect that proves beneficial for longitudinal soil 

health monitoring. Moreover, the minimal sample preparation 

required and the ability to conduct comprehensive analyses of 

multiple soil properties simultaneously enhance its appeal [15]. 

Over the past few decades, researchers have explored the 

potential of NIRS for predicting a wide range of soil properties. 
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Early studies focused primarily on organic matter and total 

carbon content [16], with subsequent research expanding to 

include macronutrients such as nitrogen, phosphorus, and 

potassium [3, 17]. These investigations have demonstrated the 

feasibility of using NIRS for rapid soil nutrient assessment, 

albeit with varying degrees of accuracy depending on the 

specific nutrient and soil type [18]. Despite NIRS brings about 

cost savings by reducing the need for expensive reagents and 

disposables, it does come with challenges, particularly in the 

model calibration to ensure accuracy across different soil types 

and conditions [3, 19]. The two most common calibration 

methods mainly used in NIRS practices are principal 

component regression (PCR) and partial least square 

regression (PLSR). They simplify the complexity of NIRS 

data by extracting latent variables that are most relevant to 

predicting soil properties [20]. These approaches not only 

ensure computational efficiency but also enhance the 

interpretability of the model, making them accessible for 

routine analytical purposes.  

Recently, the development of machine learning is 

significantly increasing in NIRS applications for constructing 

calibration models. Support vector machine (SVM) is one of 

those machine learning algorithms to deal with complex and 

non-linear relationships between the spectral data and soil 

properties [21]. It operates by constructing a model that can 

predict soil attributes through the identification of the optimal 

hyperplane by tuning the SVM hyperparameters [22]. This 

capability allows SVMR to achieve high prediction accuracy 

in predictions even when the spectral dataset exhibits a 

significant degree of variability or nonlinearity. However, the 

performance of SVM can be sensitive to the choice of SVM 

kernel function and its hyperparameters, requiring more time 

to fine-tune compared to PLSR [23].  

Recent studies have demonstrated the effectiveness of 

various machine learning algorithms in improving NIRS-

based soil nutrient predictions. For instance, Xu et al. [1] 

optimized machine learning models for predicting soil pH and 

total P using visible and near-infrared reflectance spectroscopy, 

achieving high accuracy across diverse soil profiles. Similarly, 

Das et al. [2] employed partial least square regression-based 

machine learning models for soil organic carbon prediction, 

showcasing the potential of these advanced techniques in 

enhancing NIRS applications. 

The integration of NIRS with machine learning has also 

proven effective for simultaneous estimation of multiple soil 

nutrients. Dos Santos et al. [3] successfully predicted carbon 

and nitrogen content in soils of Northeast Brazil using visible 

near-infrared (Vis-NIR) and mid-infrared (MIR) spectroscopy, 

demonstrating the versatility of spectroscopic methods when 

combined with advanced analytical techniques. While these 

studies have made significant strides, there remains a critical 

knowledge gap in the field. One significant gap in the literature 

is the limited focus on micronutrients and secondary 

macronutrients, such as magnesium (Mg) and calcium (Ca). 

While these elements play crucial roles in plant growth and 

development, they have received less attention in NIRS studies 

compared to primary macronutrients. 

Additionally, the majority of existing research has 

concentrated on individual nutrients or a limited set of soil 

properties, with fewer studies addressing the simultaneous 

prediction of a comprehensive range of soil nutrients. 

Furthermore, the transferability and robustness of NIRS 

models across diverse soil types and environmental conditions 

remain areas of ongoing research. Many studies have focused 

on local or regional calibrations, leaving questions about the 

broader applicability of these models to different geographical 

areas and soil compositions. 

While numerous recent studies have demonstrated the 

effectiveness of machine learning algorithms in enhancing 

NIRS-based soil nutrient predictions, several critical gaps 

remain unaddressed in the literature. Most previous works 

have concentrated primarily on the estimation of a narrow set 

of soil properties, typically focusing on individual 

macronutrients such as nitrogen, phosphorus, or potassium, 

rather than providing a simultaneous and comprehensive 

assessment of all key soil health indicators. There is a limited 

focus on secondary macronutrients and micronutrients, with 

elements such as magnesium (Mg) and calcium (Ca) receiving 

comparatively little attention, despite their importance for 

plant growth and soil structure. 

Additionally, many studies utilize calibration models 

developed for specific local or regional soil types, and thus 

lack robust transferability and generalizability across diverse 

geographical areas and soil compositions. Variation in sample 

preparation methods and physical soil properties further 

complicates the application of these models to different 

contexts, raising concerns about their broader utility. The vast 

majority of reported models also rely on laboratory-based 

calibration, which, while accurate, may be impractical for 

rapid, on-site assessment or large-scale precision agriculture 

monitoring. 

To address these limitations, the present study introduces a 

multi-nutrient calibration model built with optimized machine 

learning techniques, specifically advanced PLSR and SVM, 

and includes both macro- and micronutrients as well as soil pH. 

The modeling approach aims to enhance accuracy, robustness, 

and transferability by using a more diverse and comprehensive 

sample set, rigorous spectral preprocessing, and systematic 

grid search optimization, thereby paving the way for rapid, 

simultaneous soil health assessment suitable for precision 

agriculture and environmental protection applications 

Our study aims to develop and evaluate NIRS-based 

prediction models for a comprehensive set of soil nutrients, 

including both macro- and micronutrients, as well as soil pH. 

By employing advanced machine learning techniques, 

specifically optimized partial least squares regression (PLSR) 

and support vector machine (SVM) models, we seek to 

improve the accuracy and reliability of soil nutrient 

predictions across a diverse range of soil samples. Through 

this research, we aim to contribute to the development of more 

sustainable precision agricultural practices by employing 

NIRS as a rapid and simultaneous analytical technique for soil 

quality assessment, thereby supporting enhanced crop 

productivity, soil health, and environmental protection. 

Building on these identified gaps, the central hypothesis of 

this study is that advanced machine learning models—

particularly grid search optimized support vector machines 

combined with robust spectral pre-processing—can yield 

significantly improved predictive accuracy and robustness for 

rapid, simultaneous estimation of multiple soil nutrients (N, P, 

K, pH, Mg, and Ca) from near infrared spectral data, compared 

to conventional chemometric methods. 

Accordingly, the main research questions guiding this work 

are: 

• Can the developed NIRS-machine learning calibration 

models reliably predict both macronutrients and secondary 

nutrients across diverse soil samples? 

• Does the integration of grid search optimization within the 
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support vector machine framework demonstrably 

outperform partial least squares regression for soil nutrient 

estimation? 

• Can the proposed approach enhance transferability and 

versatility, allowing practical application in precision 

agriculture and environmental monitoring contexts? 

The novelty of our study lies in the comprehensive 

comparison of optimized PLSR and SVMR models for the 

simultaneous estimation of multiple soil nutrients (N, P, K, pH, 

Mg, and Ca) using NIRS. By focusing on these six essential 

soil parameters, our research addresses a broader spectrum of 

soil health indicators than many previous studies, which often 

limited their scope to one or two nutrients. Furthermore, our 

study contributes to the growing body of research on the 

application of machine learning in soil science. As highlighted 

by Zhao et al. [22], the interaction between various soil 

components, such as calcium, iron, and manganese, can 

significantly influence nutrient uptake in plants. Reported 

multi-nutrient approach in this work allows for a more 

comprehensive understanding of these complex soil dynamics. 

The optimization of SVM models using grid search, as 

employed in our study, addresses the challenge of model fine-

tuning noted in previous research. This approach enhances the 

model's ability to capture non-linear relationships in soil 

spectral data, potentially leading to more accurate predictions 

across diverse soil types and conditions. 

The potential implications presented in this study carry 

important implications for environmental sustainability and 

agricultural management. By enabling rapid, non-destructive, 

and simultaneous estimation of key soil nutrients using near 

infrared spectroscopy and advanced machine learning, the 

proposed approach supports more precise and data-driven 

decision-making in fertilizer management and soil health 

monitoring. This precision can reduce unnecessary fertilizer 

input, lower costs, and minimize the risk of nutrient runoff and 

leaching, thereby helping to mitigate soil and water pollution 

and supporting the long-term health of agroecosystems. 

Furthermore, the ability to routinely and efficiently assess 

both macro- and secondary nutrients empowers farmers and 

land managers to implement site specific interventions that 

promote optimal crop nutrition, enhance yields, and preserve 

soil structure and biodiversity [24]. By contributing to 

sustainable intensification and resource efficient practices, 

these advances align with broader goals of sustainable 

agriculture and environmental stewardship. 

 

 

2. MATERIALS AND METHODS 

 

2.1 Soil samples  

 

The Topsoil samples from 5 cm, 10 cm, 15 cm and 20 cm 

depth were gathered from ten distinct rice-paddy fields and 

cropland locations in Aceh Province [20]. Soil samples were 

collected from ten distinct agricultural sites located across 

Aceh Province, Indonesia, including key rice-paddy fields and 

adjacent croplands within the districts of Aceh Besar, Pidie, 

Bireuen, North Aceh, East Aceh, Aceh Tamiang, South Aceh, 

West Aceh, Central Aceh, and Aceh Barat Daya. The selection 

of these sites was purposive and aimed to capture the region’s 

agroecological diversity, encompassing various soil textures 

(sandy loam to clay), different management histories, and a 

range of intensification practices typical for both lowland rice 

and upland cropping systems. Additional criteria included 

accessibility, documented land-use patterns, and the presence 

of representative farmers’ fields with ongoing agricultural 

activity at the time of sampling.  

At each site, soil samples were collected both from paddy 

fields and nearby croplands in order to cover variability 

influenced by the cropping system. At each site, soil samples 

were procured from rice-paddy fields and from nearby 

croplands, resulting in a total of 120 bulk topsoil samples. To 

standardize the analysis, each sample was quartered to 150 g. 

Following collection, all soil samples were left to stabilize for 

a day, then air-dried for a week and sieved through a 2 mm 

nylon sieve to eliminate stones, insects, debris, pebbles, and 

other impurities. Subsequently, the soil samples underwent 

grinding in a mechanical agate grinder and were sifted through 

a 100-mesh sieve with a 0.150 mm diameter [25]. The bulk 

soil samples were uniformly mixed and divided into sub-

samples for both spectral data acquisition and actual 

measurements of soil quality properties: N, P, K, pH, Mg and 

Ca. 

Following collection, all soil samples were left to stabilize 

for a day and then air-dried for one week under controlled 

laboratory conditions, with ambient temperature maintained at 

25–28℃ and relative humidity between 55–65%, to ensure 

gentle and uniform moisture removal without altering soil 

chemical properties. After air-drying, samples were sieved 

through a 2 mm nylon sieve to eliminate stones, insects, debris, 

pebbles, and other impurities. 

 

2.2 NIR spectral data 

 

Near infrared spectral data were obtained and recorded as 

diffuse reflectance spectra in the wavelength range of 1000-

2500 nm using a benchtop NIR instrument (Thermo Nicolet 

Antaris II, Thermo Fisher Inc. Waltham, USA) with an 

integrating sphere accessory.  The soil samples were placed in 

a cylindrical quartz cup sample holder with a depth of 10 mm 

to guarantee complete light penetration. Each cylindrical 

sample cup was filled with 20 g of soil samples, leveled 

carefully using a smooth edge, and rotated at a slow pace 

during the spectra acquisition process, combining 64 scans [20, 

26]. The soil samples were distributed into two identical cups, 

each undergoing 64 scans, with the resulting spectra averaged 

to accommodate variations within the sample, as well as 

differences in packing density and particle size. 

The soil samples were distributed into two identical quartz 

sample cups, with each cup undergoing 64 scans, and the 

resulting spectra were averaged for subsequent analyses. This 

approach was chosen to minimize sources of error arising from 

sample heterogeneity, such as variations in particle size 

distribution, packing density, or localized moisture content 

within the bulk soil. By scanning duplicate cups and averaging 

their spectra, the methodology ensures that random 

fluctuations or physical inconsistencies in the sampling 

process have a reduced effect on the final dataset, thereby 

enhancing the precision and representativeness of the 

measured spectral signature for each sample. This leads to 

more robust calibration and prediction models in subsequent 

chemometric analysis. 

 

2.3 Actual N, P, K, pH, Mg and Ca measurements 

 

Subsequent to the completion of spectra data acquisition, 

the soil quality parameters N, P, K, pH, Mg and Ca of soil 

samples were assessed and quantified by means of established 
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chemical laboratory techniques. The nitrogen content in the 

soil was ascertained through the Kjeldahl method, involving 

digestion with H2SO4, and expressed as a percentage of its 

weight to the total weight of the dry soil sample [20, 27]. 

Similarly, the phosphorus content was determined by HClO4-

H2SO4 heating extraction followed by a molybdenum blue 

colorimetric method [28].  

Moreover, the potassium content was determined by 

calcination and subsequent extraction with NaOH, with the K 

content then quantified using an atomic absorption flame 

photometer. On a different note, the soil pH measurement 

entailed mixing soil and water at a 1:2.5 ratio, with assessment 

conducted through a glass electrode and an electronic pH 

meter. Calibration of the pH meter was facilitated by buffer 

solutions with pH values of 6.86 and 4.01 [29]. Additionally, 

magnesium and calcium content analyses in the soil samples 

were carried out through an acid digestion method employing 

an inductively coupled plasma absorption flame 

spectrophotometer. All chemical analyses for evaluating soil 

properties were performed in triplicate and the results were 

averaged for accuracy. 

 

2.4 Spectra pre-processing 

 

The acquired spectra data may potentially include 

extraneous background details and disturbances, which have 

the capacity to impact and distort crucial soil quality properties 

and other relevant attributes. Various sources of interference, 

like light scattering and random noise stemming from 

overheated sensors, instrumental components, and alterations 

in the physical properties of the sample, must be minimized or 

eliminated to ensure the development of precise, robust, and 

consistent calibration models [30]. Hence, the imperative 

practice involves the correction and refinement of spectra data 

prior to the construction of calibration models for enhanced 

accuracy and stability. NIR spectral data were corrected using 

multiplicative scatter correction (MSC) [31, 32]. It is used to 

compensate for additive and multiplicative effects in the 

spectral data caused by physical effects. It also attempted to 

remove the effects of scattering by linearizing each spectrum 

to an ideal one of the spectra data, which corresponds to the 

average spectrum. 

Multiplicative scatter correction (MSC) was applied to each 

raw NIR spectrum prior to calibration modeling to correct for 

additive and multiplicative scattering effects caused by 

physical variations in the soil samples, like particle size, and 

packing density. Specifically, the MSC preprocessing was 

carried out in MATLAB R2023a (MathWorks Inc., Natick, 

MA, USA) using built-in chemometric toolboxes. For each 

spectrum, MSC involved regressing the raw spectrum against 

the mean spectrum of the entire dataset, subsequently 

subtracting the calculated offset and dividing by the slope to 

normalize both the baseline and scaling effects. This process 

yielded standardized spectra where the variance more 

accurately reflected chemical composition, providing more 

reliable input for subsequent machine learning calibration and 

prediction model. 

 

2.5 Calibration and prediction 

 

The main part of NIRS applications is to establish prediction 

models used to determine soil quality parameters N, P, K, pH, 

Mg and Ca through a process called calibration. A total of 120 

datasets containing NIR spectral data and actual reference soil 

quality parameters data were divided onto calibration (80) and 

validation (40) dataset by means of systematic sampling based 

on a property (SSBP) approach [33]. This was performed to 

balance between having enough samples for building a robust 

calibration models and retaining a considerable number for an 

unbiased evaluation of its predictive performances.  

The PLSR and SVMR methods were then applied in NIRS 

calibration to develop the N, P, K, pH, Mg and Ca calibration 

models using 80 samples from calibration dataset as illustrated 

in Figure 1. The models were established between NIR spectra 

data of soil samples as X-variable and actual reference N, P, 

K, pH, Mg and Ca measurement data as Y-variable in the 

calibration dataset. Other remaining 40 samples on validation 

set were used for external prediction to quantify and evaluate 

the performance of the NIRS calibration models.  

 

 
 

Figure 1. Constructing calibration models to determine soil quality parameters using NIR spectral data with PLSR and SVM 

methods 
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PLSR and SVM were selected for NIRS calibration due to 

their distinct advantages in handling complex spectral data. 

PLSR effectively manages multicollinearity in spectral data, 

reduces dimensionality while maximizing covariance between 

spectra and soil properties, and provides interpretable results 

through latent variables. On the other hand, SVM proper in 

modeling non-linear relationships in spectral data, 

demonstrates robustness against outliers and noise, and 

performs effectively in high-dimensional spaces, making it 

particularly suitable for spectral analysis [34]. These methods 

offer superior performance compared to traditional regression 

techniques when dealing with the complex, high-dimensional 

data typical of NIRS, as they can capture intricate patterns and 

relationships within the spectral data that are crucial for 

accurate soil nutrient predictions. 

Hyperparameters on SVM, namely C, Gamma and Epsilon 

were optimized in radial basis function SVM kernel using grid 

search optimization (GSO). It is a systematic approach to fine-

tune the model's performance which involves defining ranges 

for key parameters: C (penalty factor), Gamma (kernel 

coefficient), and Epsilon (margin of tolerance) [33, 35]. The 

process then systematically evaluates various combinations of 

these parameters using cross-validation to identify the optimal 

configuration. This method enhances model performance by 

striking a balance between complexity and generalization, 

adjusting the influence of individual training samples on the 

decision boundary, and fine-tuning error tolerance to 

accommodate data noise. By exhaustively searching the 

parameter space, GSO ensures the selection of the most 

effective combination, resulting in SVM models with 

improved accuracy and robustness for soil nutrient prediction 

across diverse soil compositions [36]. This optimization 

technique is particularly valuable in spectroscopic applications, 

where the relationship between spectral data and soil 

properties can be complex and nonlinear.  

The parameter denoted as C, often referred to as the capacity 

factor or penalty factor, serves as an indicator of the model's 

robustness. It is imperative that the C parameter holds a value 

greater than 0 to ensure model stability [37, 38]. On the other 

hand, the parameter called Gamma (γ) acts as a kernel 

parameter that determines the extent to which the influence of 

training samples extends. A high value of gamma signifies a 

significant influence over neighboring samples, potentially 

leading to heightened prediction accuracy but with a tendency 

towards bias. Conversely, a low gamma value indicates a more 

balanced influence, offering less biased results. 

In the context of a radial basis function kernel, it becomes 

essential to optimize both the C and gamma parameters 

concurrently. When gamma is escalated, the impact of C 

diminishes in significance. Conversely, if gamma is set at a 

lower value, the influence of C on the model mirrors that of a 

linear model. Additionally, the epsilon (ε) parameter defines 

the margin of tolerance within which errors are not penalized. 

This parameter plays a crucial role in fine tuning the model's 

flexibility and adaptability to the data by allowing a certain 

degree of error tolerance [33, 37, 38]. 

The performance of the prediction models in determining N, 

P, K, pH, Mg and Ca was quantified and evaluated based on 

calibration and validation results according to the coefficient 

of determination (R2) and correlation coefficient (r) in 

calibration and external validation, the root mean square error 

of calibration (RMSEC) and prediction (RMSEP), and the 

ratio of prediction to deviation (RPD) index [36, 38]. The RPD 

ranging from 1.5 to 1.9 suggests that a rough quantitative 

prediction is feasible, although some refinement in calibration 

is required. A value falling between 2 and 2.5 indicates that 

the prediction model is adequate. Furthermore, an RPD value 

of 2.5 to 3, and higher than 3 signifies good and excellent 

prediction accuracy, respectively [14, 39, 40]. 

 

 

3. RESULTS AND DISCUSSION 

 

The NIR spectra features and characteristics of soil samples 

retrieved from varying depths, at 5 cm, 10 cm, 15 cm, and 20 

cm is presented in Figure 2. By analyzing the spectral data in 

relation to soil quality properties, correlations can be drawn 

between the specific features observed in the spectra and the 

levels of N, P, K, pH, Mg, and Ca in the soil samples. 

At a shallower depth of 5 cm, soil samples may exhibit 

spectral patterns influenced more strongly by surface 

properties such as organic matter content, vegetation residue, 

and surface compaction. This depth often reflects recent soil 

disturbances and biological activity, leading to distinctive 

spectral features related to surface organic materials and 

microbial presence as also in agreement with other research 

findings [40, 41]. Moving to a depth of 10 cm, the NIR spectral 

characteristics may start to reveal a transition zone between 

the surface and subsurface soil properties. Here, changes in 

mineral content, soil structure, and root activity can manifest 

in the spectra, providing information on underlying soil 

properties and potential nutrient availability.  

Furthermore, at 15 cm depth, the spectral features of soil 

samples are likely to capture a balance between surface 

influences and deeper soil characteristics. Spectral signatures 

may indicate variations in soil texture, moisture levels, and 

nutrient distribution within this mid-depth range, offering a 

comprehensive view of the soil profile, as also reported in the 

studies [38, 39]. Deeper soil samples from 20 cm are expected 

to showcase spectral attributes that reflect deeper rooted 

influences such as mineral accumulation, compaction, and 

water retention capacity. Near infrared spectral patterns at this 

depth may emphasize characteristics related to soil structure, 

porosity, and potential subsoil nutrient dynamics. 

Certain spectral patterns in the NIR spectra may indicate 

organic matter content, which was linked to the nitrogen 

content in the soil. Higher levels of nitrogen often correspond 

to distinct spectral features related to organic nitrogen 

compounds present in the soil. Spectral bands around 1510-

1700 nm and 2100-2200 nm are often associated with N 

content in soil, representing vibrations of N containing 

compounds such as organic nitrogen compounds. Phosphorus 

content in soil was associated to spectral features in the range 

of 1060-1210 nm and 2150-2250 nm, corresponding to 

interactions with phosphate minerals and organic and 

inorganic phosphorus compounds. Potassium K content can 

also be associated with NIR spectral features in the region of 

2100-2200 nm, reflecting the presence and interactions of K 

ions with soil minerals and organic matter. 

Soil pH, which influences nutrient availability, can be 

associated with spectral characteristics in the NIR region, 

where variations in pH levels may manifest in spectral bands 

around 1400-1450 nm and 1910-1970 nm, reflecting soil 

acidity or alkalinity. Similarly, Mg content in soil was 

reflected in NIR spectral bands around 1390-1440 nm and 

1950-2100 nm, corresponding to chemical forms and 

interactions of magnesium compounds in the soil matrix. 

Meanwhile, Ca content in the soil was associated to NIR 
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spectral features at around 2150-2250 nm and 2300-2400 nm, 

representing interactions of Ca compounds within the soil 

aggregate and their chemical properties. 

 

 
 

Figure 2. NIR spectra features of soil samples retrieved from 

varying depths, at 5 cm, 10 cm, 15 cm, and 20 cm 

 

3.1 Enhanced NIRS models by means of machine learning 

approaches 

 

Predictive models for estimating soil nutrients were 

developed using a calibration dataset through different 

machine learning approaches: PLSR and SVM. Subsequently, 

these models were tested and evaluated using an external 

prediction set to ensure their robustness. The descriptive 

statistics for actual soil nitrogen (N), phosphorus (P), 

potassium (K), pH, magnesium (Mg), and calcium (Ca) 

contents across both the calibration and prediction datasets are 

presented in Tables 1 and 2. 

Prior to calibration model development, spectral data were 

pre-processed and corrected using multiplicative scatter 

correction (MSC). It is used to standardize the soil spectrum 

from the intrinsic effect and heterogeneity of soil, 

characterized by variations in particle size, organic content, 

and moisture levels, which can obscure the chemical signals 

pertinent to these essential soil properties. MSC adeptly 

mitigates these effects by normalizing the spectral data, 

thereby ensuring that the variance within the dataset 

predominantly reflects chemical differences rather than 

physical disparities [34]. This spectra pre-processing is 

important for the calibration of predictive models, as it ensures 

that the input data accurately represent the soil’s chemical 

composition, and thus enables models to more precisely 

correlate specific spectral features with N, P, K, pH, Mg and 

Ca concentrations. Moreover, by standardizing spectra from 

diverse soil samples, MSC enhances the robustness and 

transferability of these models across different sample sets and 

conditions.  

 

Table 1. Leaf Descriptive statistics of actual soil nutrients from calibration set (n=80) 
 

Descriptive Stats.  N (%) P (ppm) K (cmol.kg-1) pH (KCl) Mg (cmol.kg-1) Ca (cmol.kg-1) 

Mean 0.22 17.02 0.75 5.53 5.78 9.19 

Max 0.59 45.15 1.74 10.27 17.01 22.22 

Min 0.02 3.56 0.17 2.59 0.31 0.39 

Range 0.57 41.59 1.57 7.68 16.70 21.83 

Std. Deviation 0.16 9.19 0.39 1.94 4.47 6.04 

Variance 0.03 84.44 0.15 3.78 19.96 36.50 

RMS 0.27 19.31 0.84 5.86 7.29 10.98 

Skewness 0.69 0.84 0.87 0.98 0.82 0.56 

Median 0.19 14.14 0.68 5.15 4.16 7.82 

Q1 0.07 10.28 0.48 4.25 2.55 4.23 

Q3 0.35 24.22 0.90 6.29 9.22 13.93 

 

Table 2. Descriptive statistics of actual soil nutrients from prediction set (n=40) 

 
Descriptive Stats.  N (%) P (ppm) K (cmol.kg-1) pH (KCl) Mg (cmol.kg-1) Ca (cmol.kg-1) 

Mean 0.25 16.34 0.76 5.33 4.89 7.58 

Max 0.52 43.95 1.67 10.21 14.72 18.24 

Min 0.04 4.12 0.18 2.57 0.79 0.74 

Range 0.49 39.83 1.49 7.64 13.93 17.50 

Std. Deviation 0.14 10.70 0.42 1.59 3.21 4.66 

Variance 0.02 114.39 0.18 2.54 10.32 21.67 

RMS 0.28 19.46 0.87 5.56 5.83 8.87 

Skewness 0.33 1.18 0.55 1.31 0.97 0.49 

Median 0.23 12.77 0.64 5.15 3.94 6.50 

Q1 0.12 8.82 0.40 4.32 2.62 3.81 

Q3 0.35 22.29 1.12 6.07 6.76 10.37 

 

To simultaneously estimate soil nutrients, NIRS calibration 

was performed using PLSR optimized by 10-fold cross 

validation and grid search optimized RBF SVM to yield 

reliable predictive performances. Table 3 presents calibration 

and external prediction results of soil samples. The key metrics 

included in the table are the coefficient of determination (R2), 

correlation coefficient (r), root mean square error of 

calibration (RMSEC), root mean square error of prediction 

(RMSEP), and the ratio of prediction to deviation (RPD). 

For soil N estimation, both PLSR and SVM models exhibit 

strong predictive capabilities, with SVM outperforming PLSR 

slightly in terms of R2, r, and RPD. Similarly, for P prediction, 

both methods yield high R2 values, indicating significant 

explanatory power in capturing P concentration variability. 

The SVM model shows a slight improvement over PLSR in 

terms of RPD for P estimation. A scatter plot derived for N 

and P estimation using PLSR and SVM approaches during 

calibration and validation is presented in Figure 3. 
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Table 3. Prediction performance of PLSR and SVM for N, P, K, pH, Mg and Ca estimation 

 

Soil Nutrients Method 
Calibration Validation 

R2 r RMSEC R2 r RMSEP RPD 

N (%) PLSR 0.76 0.87 0.08 0.75 0.87 0.08 1.75 
 SVM 0.83 0.91 0.05 0.83 0.91 0.05 2.80 

P (ppm) PLSR 0.95 0.97 2.62 0.93 0.96 2.69 3.98 
 SVM 0.97 0.98 2.24 0.96 0.98 2.47 4.33 

K (cmol.kg-1) PLSR 0.88 0.94 0.16 0.86 0.93 0.19 2.21 
 SVM 0.93 0.96 0.12 0.91 0.95 0.14 3.00 

pH (KCl) PLSR 0.94 0.97 0.58 0.92 0.96 0.61 2.61 
 SVM 0.97 0.98 0.53 0.96 0.98 0.55 2.89 

Mg (cmol.kg-1) PLSR 0.98 0.99 0.82 0.96 0.98 0.87 3.69 
 SVM 0.98 0.99 0.73 0.98 0.99 0.74 4.34 

Ca (cmol.kg-1) PLSR 0.98 0.99 1.21 0.97 0.98 1.26 4.79 
 SVM 0.99 0.99 1.06 0.99 0.99 1.21 4.99 

 

 

 
 

Figure 3. N and P estimation by means of PLSR and SVM approaches 

 

Moreover, for soil K and pH prediction, as shown in Figure 

4, both PLSR and SVM models demonstrate good predictive 

accuracy, with SVM models consistently showing a bit higher 

R2 values both in calibration and prediction. This trend is also 

observed for Mg and Ca estimation (Figure 5), where both 

methods generate strong models, but SVM shows slightly 

superior performance in terms of RPD for these soil nutrients. 

These results also agree with other reported works that SVM 

performed better prediction results than PLSR [33, 35, 38]. 

The prediction performance results suggest that SVM models 

generally outperform PLSR models in terms of prediction 

accuracy and robustness for all soil nutrients analyzed. The 

higher R2 values, stronger correlations r, and improved RPD 

indexes indicate that optimized SVM method offers more 

accurate and reliable predictions for N, P, K, pH, Mg, and Ca 

contents in soil samples. It is evident that employing SVM for 

NIRS calibration provides enhanced estimation results for a 

range of crucial soil nutrients, suggesting its accuracy for soil 

nutrient analysis applications. 

The superior performance of SVM as a machine learning 

approach over PLSR in this particular case can be attributed to 

several key factors. One primary reason for SVM's 

outperformance lies in its inherent capability to capture 

nonlinear relationships within the spectral data of soil samples 
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more effectively than PLSR, which primarily relies on linear 

combinations of variables. Soil nutrient dynamics in NIRS 

data often exhibit complex and nonlinear patterns that SVM 

can model more accurately, leading to more precise 

predictions. Additionally, SVM is known for its robustness 

against outliers, enabling it to generate stable and reliable 

prediction models less affected by irregular data points present 

in soil nutrient datasets [8, 18, 35].  

Furthermore, the grid search optimization (GSO) process 

within the RBF kernel for SVM aims to maximize the margin 

between data points in feature space, facilitating better 

generalization and classification capabilities. This 

optimization, along with the versatility of the RBF kernel 

functions available in SVM, allows for effective 

discrimination between different classes or precise prediction 

of continuous values within the intricate soil nutrient datasets. 

SVM's tuning regularization for C, Gamma and Epsilon 

mechanisms further prevent overfitting and enhance 

generalization to unseen data, contributing to the model's 

robust performance. In this work, the GSO optimization found 

the SVM tuning parameters C, Gamma and Epsilon for soil 

nutrients estimation are presented in Table 4. 

 

 

 
 

Figure 4. K and pH estimation by means of PLSR and SVM approaches. 
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Figure 5. Mg and Ca estimation by means of PLSR and SVM approaches 

 

The fine-tuning process of SVM using RBF kernel and GSO 

optimization plays an important role in these findings to 

enhance the accuracy of NIRS models. The regulation C 

parameter serves as a crucial regulation factor in SVM 

machine learning method, balancing the model's complexity 

and generalization ability. The specified C values found in this 

work reflect the trade-off between fitting data closely and 

preventing model overfitting. A higher C value for K and Mg 

estimation, as indicated in Table 4 above, suggests a focus on 

capturing intricate relationships within the training data in 

calibration set, potentially at the risk of being overly sensitive 

to noise or outliers, while a lower C value prioritizes smoother 

decision boundaries for better generalization to unseen data 

and further prediction of soil nutrients. 

 

Table 4. SVM regulation parameters using GSO for soil 

nutrients estimation 

 

Soil Nutrients 
SVM Regulation Parameters 

C Gamma Epsilon 

N (%) 15.37 19.51 0.1 

P (ppm) 21.54 4.64 0.1 

K (cmol.kg-1) 100 6.08 0.1 

pH (KCl) 23.71 21.42 0.1 

Mg (cmol.kg-1) 100 4.38 0.1 

Ca (cmol.kg-1) 26.82 20.55 0.1 

 

The SVM models demonstrated superior performance over 

PLSR across all analyzed soil nutrients, with varying degrees 

of improvement. For nitrogen (N) estimation, SVM achieved 

an R2 of 0.83 and RPD of 2.80, indicating good predictive 

performance. This improvement is particularly significant 

given the complex organic matter dynamics influencing soil N 

content. Phosphorus (P) prediction showed excellent results 

with an R2 of 0.96 and RPD of 4.33, crucial for precision 

agriculture due to P's impact on root development and energy 

transfer in plants. Potassium (K) estimation yielded very good 

performance with an R2 of 0.91 and RPD of 3.00, enabling 

precise management of K levels critical for plant water 

regulation and disease resistance. The SVM model for pH 

achieved an R2 of 0.96 and RPD of 2.89, slightly 

outperforming recent studies, which is essential as pH 

influences nutrient availability and microbial activity. 

Notably, SVM showed outstanding performance for 

secondary macronutrients, with Magnesium (Mg) achieving 

an R2 of 0.98 and RPD of 4.34, and Calcium (Ca) reaching an 

R2 of 0.99 and RPD of 4.99. These results represent a 

significant improvement in predicting these important 

nutrients for photosynthesis and cell wall structure.  

The consistent superiority of SVM across all nutrients 

underscores its effectiveness in capturing complex, non-linear 

relationships in soil spectral data, potentially revolutionizing 

rapid, non-destructive soil nutrient analysis for precision 

agriculture and environmental management. As comparisons 

with other reported works by researchers (Table 5), our 

obtained NIRS predictive performance reveals the superior 

performance of our NIRS-SVMR approach across a 

comprehensive range of soil nutrients. Our study consistently 

achieves high R2 values (0.83-0.99) for all six nutrients 

examined (N, P, K, pH, Mg, Ca), outperforming or matching 

the best results from other recent studies. 

 

Table 5. Comparisons of NIRS prediction performance for 

soil nutrients with previous studies 

 

Study Method 
R2 

N P K pH Mg Ca 

Our study NIRS (SVMR) 0.83 0.96 0.91 0.96 0.98 0.99 

Xu et al. [1] VNIR (SVMR) - 0.89 - 0.92 - - 

Das et al. [2] Vis-NIR (PLSR) 0.78 - - - - - 

Dos Santos et al. [3] Vis-NIR/MIR 0.81 - - - - - 

Singha et al. [41] VIs-NIR (PLSR) 0.82 0.71 - - - - 

Singha et al. [41] VIs-NIR (SVMR) 0.89 0.72 0.91 0.65 - - 

 

This superior performance can be attributed to several 

factors: the use of optimized SVMR allows for better handling 

of non-linear relationships in spectral data, which is 

particularly advantageous for complex soil matrices. The 

ability of SVM to capture intricate patterns in high-

dimensional data likely contributes to its effectiveness across 

diverse soil nutrients.  

In terms of spectral range, NIRS covers a wider spectral 

range compared to some other methods like Vis-NIR, 

potentially capturing more informative spectral features 

related to various soil nutrients. This broader spectral 

information may enhance the model's predictive capabilities 

for a wider range of nutrients. Moreover, our study likely 

employs robust spectral preprocessing techniques, such as 

multiplicative scatter correction (MSC), which can 

significantly improve the signal-to-noise ratio and reduce the 

impact of physical sample variations. 

The use of grid search optimization for SVM 
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hyperparameters may have contributed to the model's superior 

performance by fine-tuning the algorithm for each specific 

nutrient prediction task. Our study also potentially utilizes a 

more comprehensive and diverse soil sample set, covering a 

wider range of soil types and nutrient concentrations. This 

diversity in the training data could enhance the model's 

generalizability and robustness. The simultaneous prediction 

of multiple nutrients may allow the model to capture complex 

interactions between different soil properties, potentially 

improving overall prediction accuracy. Novel application for 

unique contribution in predicting Mg and Ca with high 

accuracy fills a significant gap in the literature and 

demonstrates the versatility of the NIRS-SVMR approach for 

less commonly studied soil nutrients. These factors 

collectively contribute to the robust and versatile performance 

of our NIRS-SVMR method, positioning it as a promising 

approach for comprehensive soil nutrient analysis with 

potential applications in precision agriculture and 

environmental monitoring. 

The improved prediction models developed in this study 

have significant practical implications for precision 

agriculture and soil management. By enabling rapid and 

simultaneous estimation of multiple nutrients (N, P, K, Mg, 

Ca) and pH, these models greatly enhance the efficiency of soil 

testing and mapping processes. The high accuracy achieved, 

particularly with the optimized SVM models, allows for 

precise fertilizer recommendations, potentially reducing over-

application and mitigating associated environmental impacts 

such as nutrient runoff and groundwater contamination. The 

non-destructive nature of NIRS facilitates repeated 

measurements over time, enabling farmers and researchers to 

monitor temporal changes in soil nutrient status without 

altering the soil samples.  

This feature is particularly valuable for long-term studies 

on soil health and crop rotation effects. Integration of these 

models into precision agriculture systems could support real-

time, site-specific nutrient management decisions, allowing 

farmers to adjust fertilizer applications based on current soil 

conditions rather than relying on historical data or broad 

recommendations. Furthermore, the ability to predict pH 

alongside nutrients provides a comprehensive soil health 

assessment, supporting holistic management approaches that 

consider the interplay between soil acidity and nutrient 

availability. This comprehensive analysis can lead to more 

sustainable farming practices, improved crop yields, and better 

environmental stewardship in agricultural systems. 

 

 

4. CONCLUSION 

 

This study aimed to enhance predictive models for 

estimating soil nutrients N, P, K, pH, Mg and Ca through 

machine learning approaches, specifically optimized PLSR and 

SVM. Obtained results demonstrated that SVM models 

generally outperformed PLSR models in terms of prediction 

accuracy and robustness for all soil nutrients analyzed.  

o This study successfully developed optimized NIRS 

prediction models for simultaneous estimation of six 

essential soil nutrients (N, P, K, pH, Mg, Ca) using 

advanced machine learning techniques. 

o Support Vector Machine (SVM) models consistently 

outperformed Partial Least Squares Regression (PLSR) for 

all analyzed nutrients, demonstrating superior capability in 

handling complex, non-linear relationships in soil spectral 

data. 

o Grid search optimization of SVM hyperparameters 

significantly enhanced model performance, achieving 

excellent predictive accuracy with R2 values ranging from 

0.83 to 0.99 and RPD indices from 2.80 to 4.99 across all 

nutrients. 

o The study uniquely addressed the simultaneous prediction 

of multiple nutrients, providing a more comprehensive soil 

health assessment than previous research focused on fewer 

parameters. 

o The optimized SVM-NIRS approach offers a rapid, non-

destructive, and highly accurate method for soil nutrient 

analysis, with potential to revolutionize precision 

agriculture and soil management practices. 

o This research bridges the gap between advanced 

spectroscopic techniques and practical agricultural 

applications, paving the way for more efficient and 

sustainable farming practices. 

The developed models show promise for integration into 

automated soil management systems, potentially 
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