
Real-Time Object Detection for Forklift Automated Guided Vehicles Using Deep Learning

Ryham Ibrahim Khalil* , Naktal Moiad Edan

Department of Software, College of Computer Science and Mathematics, University of Mosul, Mosul 41002, Iraq

Corresponding Author Email: ryham.22csp14@student.uomosul.edu.iq

Copyright: ©2025 The authors. This article is published by IIETA and is licensed under the CC BY 4.0 license

(http://creativecommons.org/licenses/by/4.0/).

https://doi.org/10.18280/ijtdi.090319 ABSTRACT

Received: 26 June 2025

Revised: 14 August 2025

Accepted: 25 August 2025

Available online: 30 September 2025

Automated Guided Vehicles (AGVs) are increasingly used in industrial and logistics

operations for material handling, offering benefits such as reduced human error, improved

efficiency, and lower operational costs. This study presents the design and implementation

of a real-time intelligent management system for Forklift AGVs based on deep learning

techniques. The core of the system is an optimized version of YOLOv3, termed YOLOX,

enhanced with Adaptive Spatial Feature Fusion (ASFF) and advanced data augmentation

strategies. The ASFF module employs spatially adaptive weights (α, β, γ) to dynamically

integrate multi-scale features across the Feature Pyramid Network, improving the detection

of small, occluded, and overlapping objects. The system is trained on a combined Pascal

VOC dataset using mix-up and label smoothing to enhance generalization and model

robustness. It is deployed on embedded hardware, including Raspberry Pi 4, enabling real-

time processing of visual data and sensor inputs under various lighting and environmental

conditions. Evaluation results indicate that the model achieves a high mean Average

Precision (mAP) of 94.17%, with real-time confidence scores reaching 98.1% in natural

lighting and 94.3% in dim conditions. The system effectively detects and classifies a wide

range of objects—including static, dynamic, small, distant, and partially occluded—in

complex scenes. The proposed solution demonstrates robust real-time performance and

adaptability, making it suitable for deployment in resource-constrained environments. It

offers a scalable and intelligent framework for autonomous AGV navigation, contributing

to safer and more efficient material transportation in real-world applications.

Keywords:

real-time system, artificial intelligence, deep

learning, object detection, Forklift AGV,

Raspberry Pi 4, YOLOX

1. INTRODUCTION

The development of Automated Guided Vehicles (AGVs)

represents a significant technological milestone. AGVs, which

are intelligent robots used for automatic material handling in

industrial settings and ports [1], have seen their traditional

methods overshadowed by modern technologies such as deep

learning and advanced sensors. These traditional methods are

often time-consuming, error-prone, and unsafe. Improving

automation is essential for industrial competitiveness,

operational efficiency, and sustainability. AGVs face

challenges such as misclassification, low inference speed, and

potential collisions [2, 3]. Effective real-time object detection

depends on accuracy and speed [4, 5], with many detection

networks focusing on accuracy while neglecting

computational complexity. Consequently, enhancing AGV

performance is a key research area [6].

Recent advances in Convolutional Neural Networks

(CNNs) [7, 8] offer promising solutions to complex computer

vision problems [9], improving speed and accuracy compared

to older methods. However, real-time neural networks require

substantial computing power, which poses challenges when

integrating them with embedded systems such as Arduino and

Raspberry Pi [10]. The RetinaNet model, featuring multiple

convolutional layers [11], and the Faster Region

Convolutional Neural Networks (RCNN) model, which

utilizes a Region Proposal Network for feature acquisition,

represent notable object detection approaches [12]. However,

these methods often suffer from slow detection speeds.

In contrast, the You Only Look Once (YOLO) model offers

rapid inference with single-stage detection [13]. YOLOv3,

widely adopted for its efficiency, employs Darknet-53 for

direct predictions without needing additional proposal

generation. Despite its advancements, YOLOv3 struggles with

detecting small, densely distributed, or occluded objects under

varying lighting conditions [5, 14]. Real-time communication

protocols, such as Web Real-Time Communication

(WebRTC), offer low latency but face limitations in certain

applications [15, 16]. To address these issues, an improvement

to the YOLOv3 model is proposed, along with constructing

and applying a smart control architecture for AGVs to enable

object detection in autonomous driving environments. The

developed model achieves a dual-directional improvement in

object detection accuracy and speed during autonomous

driving. The system operates in real-time using the Secure

Shell (SSH) protocol for communication, ensuring efficient

and secure data exchange between the hardware and software

components. The key contributions of this study are

summarized as follows:

(1) Design and implementation of an integrated hardware-

International Journal of Transport Development and
Integration

Vol. 9, No. 3, September, 2025, pp. 665-676

Journal homepage: http://iieta.org/journals/ijtdi

665

https://orcid.org/0009-0008-6543-5781
https://orcid.org/0000-0002-7768-8216
https://crossmark.crossref.org/dialog/?doi=10.18280/ijtdi.090319&domain=pdf

software AGV system using Raspberry Pi 4 for real-time

object detection and autonomous control.

(2) Development of an enhanced YOLOX-based model to

improve object detection accuracy in complex environments.

(3) Utilization of mix-up and label smoothing techniques to

augment the dataset, improve generalization, and reduce

classification errors.

(4) Application of Adaptive Spatial Feature Fusion (ASFF)

with adaptive weights (α, β, γ) to improve multi-scale feature

integration and small object detection.

(5) Experimental validation of the system’s real-time

performance in dynamic indoor environments under varied

lighting and obstacle scenarios.

The structure of this paper is organized as follows: Section

2 reviews related work, Section 3 presents the methodology,

Section 4 describes the monitoring and control system and its

integration with the Forklift AGV, Section 5 summarizes the

results and evaluation metrics, Section 6 discusses the

findings, and Section 7 concludes the paper.

2. LITERATURE REVIEW

Following the challenges outlined in the introduction,

several studies have focused on improving object detection

models, particularly those based on the YOLO architecture, in

the context of autonomous systems. While these studies have

achieved measurable improvements in detection accuracy and

speed, many of them present limitations that hinder their

suitability for real-time deployment on embedded AGV

platforms. The following section presents selected studies and

critically examines their approaches and relevance to the

current work.

In the study [17], an enhanced algorithm for YOLOv3,

named YOLO MFE, aimed to resolve the difficulty of

extracting features at multiple scales in YOLOv3. This

enhancement was achieved through multi-scale normalization

combined with the Generalized Intersection over Union

(GIOU) loss, aiming to enhance prediction precision. The

proposed model was conducted using dataset named Pascal

VOC. When comparing the modified model to YOLOv3 using

the mAP metric, YOLOv3 recorded a mAP of 81.04%,

whereas the improved model reached 83.04%, demonstrating

an improvement of 1.66%. Nonetheless, the use of GIOU as a

loss function, instead of the traditional box loss function for

bounding box localization, did not result in overall better

outcomes. In the study [18], to improve the detection of the

lower part of the human body and support the autonomous

tracking of AGV, a system based on the Single Shot Detector

(SSD) model was introduced. The system addressed the issue

of poor feature extraction performance in the traditional SSD

model due to the use of Visual Geometry Group (VGG16) and

the lack of complexity in the training data. An improved

model, referred to as Residual Network (ResNet50), in which

the input dimensions were increased to 448×448 pixels to

improve accuracy. The experimental outcomes showed that

improved detection accuracy by 7% and mAP of 85.1% as

compared to the baseline model. However, the system still

needs to be optimized for performance when operating in

environments where the data is diverse or complex, as well as

the proposed model is trained to detect only five classes, which

impacts efficiency in various scenarios. The study [19]

compared YOLOv3, YOLOv4, and YOLOv5 using the Pascal

VOC dataset with a fixed input size of 416×416. YOLOv3

achieved the highest accuracy (77%), while YOLOv5

recorded the fastest inference time. Despite minor

improvements to YOLOv5, YOLOv3 remained the most

accurate. However, the experiments were based on relatively

simple detection tasks, without addressing more complex

challenges such as occlusion, dense scenes, or small object

detection.

In the study [20], a multiple class deep SoRT and G-RCNN

were introduced to develop detection and tracking in video

streams. The integrated approach achieved a mAP of 80.6%

and demonstrated promising performance with respect

accuracy and speed. Nonetheless, evaluation primarily relied

on positive RoI samples, and the loss function did not

sufficiently capture background or ambiguous regions—

factors that significantly affect AGV perception in

uncontrolled environments. Reference [21] presented a

modified YOLOv3 architecture by employing atailored

convolutional deep neural networks (CDNNs) and additional

layers to enhance small object detection. The modified

YOLOv3 model achieved an accuracy of 58.80% mAP,

compared to 55.3 and 57.9 for YOLOv3-416 and YOLOv3-

608, respectively. However, the image resolution was reduced

to 256×256 to accelerate training, which may have resulted in

the loss of critical information and a decline in the model

effectiveness in recognizing fine-grained details. In reference

[22], an enhancement of the SSD model was proposed through

integration with Spiking Neural Networks (SNN), aiming to

improve the detection of dark objects while reducing

computational overhead. Utilizing the VGG16 backbone, the

model reached a mAP of 66.01%. Despite this improvement,

the method was not evaluated in embedded or real-time

scenarios, raising concerns about its suitability for AGV-based

deployment. In reference [23], the Tiny YOLOv3, based on

DCNN and Darknet-53 as a backbone for feature extraction,

was utilized to develop the Vehicle and Pedestrian Detection

(VaPD) system for real-time detection using the TensorFlow

library on the Google Colab environment, with a Raspberry Pi

4, and the Pascal VOC dataset. A fixed input size of 416 × 416

pixels was used for the images. Concerning the metric of mAP,

based on the result obtained at the dataset, the detection system

yielded an accuracy 77.5% Therefore, both the accuracies in

terms of AP and mAP portrayed high values. However, the

VaPD system build based on the Tiny YOLOv3 model has

limitation in detection of occluded or overlapping objects

because often it misclassified.

Collectively, the reviewed studies demonstrate meaningful

progress in object detection; however, most do not fully

address the constraints of real-time AGV applications,

particularly regarding small object detection, computational

efficiency, and hardware compatibility. The objective of this

research is to resolve these challenges through development of

a lightweight, optimized YOLOv3-based detection system

integrated within AGV control architecture, suitable for real-

time autonomous operation on embedded platforms.

3. METHODOLOGY

The proposed system was developed through a structured

methodology encompassing hardware configuration, software

implementation, and full system integration into an AGV

prototype. This section outlines the experimental setup and

implementation details across both hardware and software

domains.

666

3.1 Hardware configuration

The hardware framework consists of two main controllers:

• Main Controller: A high-performance computing unit

configured with an Intel® Core™ i7-11800H (11th Gen)

processor @ 2.30 GHz, 32 GB of memory, and 512 GB of

NVMe SSD storage, used primarily for object detection and

decision-making tasks.

• Sub-controller (Raspberry Pi 4): Responsible for data

acquisition and basic control tasks. It is equipped with a

Cortex-A72 quad-core processor, 8 GB RAM, and dual-band

wireless capability. The Pi Camera module captures 5 MP

images and streams real-time video at 1080p/30 FPS to the

main controller for further processing. Additional components

include:

• Ultrasonic Sensor (HC-SR04): Used for obstacle detection

within a range of 2 cm to 400 cm. The sensor is interfaced with

the Raspberry Pi GPIO pins and operates through a voltage

divider to ensure compatibility with 3.3V logic.

• Relay Modules: Used for controlling actuator responses in

the prototype. All components were mounted onto a Forklift

AGV robot. This setup enables real-time testing of object

detection, classification, and motion control capabilities in a

semi-structured environment.

3.2 Software implementation

The software environment was developed using Python

3.11 and OpenCV2 [24], in conjunction with the YOLOX

object detection framework. Model training and testing were

performed using the Pascal VOC dataset. VOC 2012 includes

11,530 images containing 27,450 annotated objects, and VOC

2007 consists of 9,963 images with a total of 24,640 labeled

objects [25]. Both VOCs contain eleven object classes relevant

to AGV operations. Input images were resized to 608×608

pixels, and bounding boxes were normalized accordingly. The

training process utilized Darknet53 as the backbone network

within a CUDA-accelerated PyTorch environment, leveraging

pre-trained weights for optimized convergence. The model’s

effectiveness was assessed using the mAP metric and

inference latency to ensure real-time viability on the

embedded system.

3.3 System integration

Following hardware and software development, the full

system was deployed on the Forklift AGV prototype. This

integration facilitated the real-time transfer of data from

sensors and cameras to the detection model, allowing the AGV

to recognize, classify, and respond to objects and activities

autonomously. The systems behavior was evaluated in various

indoor scenarios to evaluate detection accuracy, decision

speed, and system robustness.

3.4 Object detection

In recent years, deep learning (DL) methods have been

widely applied to object detection, as they can extract fine-

grained visual features and progressively construct more

abstract semantic representations. These DL-based methods

enable a hierarchical representation of data, enhancing the

object detection process. For multi-classification tasks, DL-

based object detection outperforms conventional detection

methods in terms of speed, accuracy, and robustness. The

ongoing advancement of neural networks using convolutions

(CNNs) [8] has significantly advanced object detection, with

contemporary deep CNN-based object detectors such as SSD,

R-CNN, and YOLO being essential to this advancement [26].

To efficiently extract features, these detectors employ DL

methods. Nevertheless, CNNs require constructing their

network structure and optimizing weight parameters through

training [7, 14]. YOLOv3 is an improved variant of YOLO and

YOLOv2. This network directly uses a single feed-forward

method to estimate class probabilities and bounding box

offsets from complete images CNN, eliminating the need to

generate region proposals or sample features [27]. In

YOLOv3, the input is divided into grid cells of size S×S. It is

the grid cell's responsibility to detect an object when its center

point is inside its borders. Every cell in the model computes

the object scores associated with B bounding boxes and

forecasts the location data for these bounding boxes [28]. For

every object, the score is calculated as Eq. (1):

𝐶𝑜𝑛𝑓𝑖𝑑𝑒𝑛𝑐𝑒 𝑆𝑐𝑜𝑟𝑒 = Pr(𝑜𝑏𝑗𝑒𝑐𝑡) × 𝐼𝑂𝑈𝑝𝑟𝑒𝑑
𝑡𝑟𝑢𝑡ℎ (1)

where, Pr(𝑜𝑏𝑗𝑒𝑐𝑡) indicates the probability that an item is

inside the box, and 𝐼𝑂𝑈𝑝𝑟𝑒𝑑
𝑡𝑟𝑢𝑡ℎ is the intersection over union

between the anticipated bounding box and the ground truth

bounding box. Class prediction involves assigning

probabilities to multiple categories to determine the most

likely classification of an object detected within an image.

Four coordinates are predicted by the model for every

bounding box: x, y, w, and h. These coordinates are typically

expressed as offsets relative to the grid cell containing the

bounding box [27, 28]. The bounding box's expected

locations, represented as (𝑏𝑥 , 𝑏𝑦 , 𝑏𝑤 , 𝑏ℎ), are given in Eqs.

(2)-(5) are computed using the sigmoid function to constrain

the values between 0 and 1.

𝑏𝑥 = 𝜎(𝑡𝑥) + 𝑐𝑥 (2)

𝑏𝑦 = 𝜎(𝑡𝑦) + 𝑐𝑦 (3)

𝑏𝑤 = 𝑝𝑤 𝑒𝑥𝑝𝑡𝑤 (4)

𝑏ℎ = 𝑝ℎ 𝑒𝑥𝑝𝑡ℎ (5)

where, (σ) denotes the sigmoid function, (𝑡𝑥, 𝑡𝑦 , 𝑡𝑤, 𝑡ℎ)

represents the predicted values, and (𝑐𝑥, 𝑐𝑦) the coordinates of

the top-left corner of the grid cell are the coordinates. (𝑝𝑤 , 𝑝ℎ)

refer to the dimensions of the anchor box. Figure 1 shows

YLOLv3 architecture.

YOLOX is a single-stage object detection framework that is

tailored for real-time applications. Important elements

including residual modules, skip connections, and up-

sampling procedures are incorporated into its structure. To

provide prediction outputs, the model uses tiny 1×1 kernels

and only convolutional layers. The detecting head has a kernel

dimension of 1×1×255 and is based on the formula

(B×(5+C))×1. Compared to previous iterations of the YOLO

series, YOLOX offers better detection accuracy while

operating at 30 frames per second (FPS) [28, 29]. The YOLOX

model's detection pipeline consists of three main steps.

(1) Input Stage: To guarantee compatibility with the ensuing

convolutional layers and preserve uniformity in spatial

processing across the network, raw input images are resized to

608×608×3 (height×width×channels).

667

Figure 1. YOLOv3 architecture [30]

(2) Feature Extraction Stage: A deep convolutional network

called the Darknet-53 backbone, which is intended to

recognize hierarchical visual patterns, receives the scaled

images. At 76×76, 38×38, and 19×19 spatial resolutions, this

stage generates three unique feature maps that correspond to

various receptive fields. From the original RGB channels to

the 32, 64, 128, 256, 512, and finally 1024 filters, the feature

maps are progressively deepened as the signal moves through

the layers. These layers gradually pick up visual characteristics

at low and high levels. Convolutional processing, up-

sampling, down-sampling, and spatial-weighted feature fusion

are all used in the ASFF method [31] to improve contextual

representation once the acquired multi-scale features have

been fused via an FPN.

(3) Prediction Stage: The detecting head uses the improved

feature maps produced by the FPN and ASFF modules to make

item predictions. Three anchor-based bounding boxes are

produced by the model for every geographic grid cell. Multiple

parameters obtained from the fused multi-scale features are

encapsulated in each bounding box as Eq. (6):

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝐹𝑖𝑙𝑡𝑒𝑟𝑠 = (5 + 𝐶) × 𝐵 (6)

where, B indicates the quantity of anchor or boundary boxes

that are used in the model, 5 represents the value of predictions

for each bounding box (𝑝𝑐, 𝑏𝑥, 𝑏𝑦, 𝑏𝑤, 𝑏ℎ) and C represents

the class probabilities.

3.4.1 Image augmentation

During pre-processing, data augmentation methods were

used to improve the model's performance on dataset that were

unbalanced. Specifically, image mix-up and label smoothing

were utilized to improve the model generalization capacity and

promote linear behaviour between training examples. Two

examples are chosen at random for the image mix, Xi, Yi and

Xj, Yj [32], and the creation of a new instance through linear

interpolation, by the following Eqs. (7) and (8):

𝑥̂ = 𝜆𝑥𝑖 + (1 − 𝜆)𝑥𝑗 (7)

𝑦̂ = 𝜆𝑦𝑖 + (1 − 𝜆)𝑦𝑖 (8)

In these equations, Xi, Yi and Xj, Yj are two randomly

selected samples from the training data, and 𝜆 ∈ [0,1] is a

value drawn from the Beta (β, β) distribution. This newly

generated example (𝑥̂ , 𝑦̂) is then used in mix-up training.

Moreover. Label smoothing regularizes the output distribution

by softening the ground truth labels in the training data,

thereby enhancing the model generalization ability. This

technique introduces controlled noise to the actual class

values, limiting the model capacity to overfitting and thus

improving its overall classification accuracy [33].

3.4.2 Data augmentation methods

During testing and validation, this method was utilized to

improve predictions for cases where the object in the image is

too small. The images were resized using a randomly chosen

interpolation technique from among the popular methods and

then normalized [34].

3.4.3 ASFF

In the standard YOLOv3 model features through the FPN are

fused in a top-down fashion to integrate deep and shallow

feature information [29]; however, features at different scales

remain interdependent and mutually constrained [35]. The

ASFF process includes two key steps as follows [36]:

• Feature Resizing

In YOLOv3, for a given feature level l ∈{1,2,3} associated

with a feature map 𝑋𝑙, the feature maps from all other levels

𝑋𝑛 where n ≠ l, are spatially adjusted to conform to the

resolution of (𝑋𝑙). This alignment is essential to enable

effective multi-level feature aggregation. As YOLOv3 features

across the three levels differ in resolution and channel numbers,

up-sampling and down-sampling techniques are modified

accordingly for each scale. followed by an interpolation to

upscale the resolution.

• Adaptive Fusion

Concatenation along the channel dimension is performed

once the tree-adjusted feature maps have been resized. After

concatenation, the feature map is normalization through the

soft-max activation function, generating weight vectors (α),

(β), and (γ), which are then employed to combine the feature

maps adaptively. The representation of the feature vector at

spatial location (𝑖, 𝑗) on the feature map that was moved from

level n to level l is (𝑥𝑖𝑗
𝑛→𝑙). At level l, the multi-scale feature

aggregation can therefore be expressed as Eq. (9) [36, 37]:

𝑦𝑖𝑗
𝑙 = 𝛼𝑖𝑗

𝑙 . 𝑥𝑖𝑗
1→𝑙 + 𝛽𝑖𝑗

𝑙 . 𝑥𝑖𝑗
2→𝑙 + 𝛾𝑖𝑗

𝑙 . 𝑥𝑖𝑗
3→𝑙 (9)

where, (𝑦𝑖𝑗
𝑙) indicate the output feature vector at (𝑖, 𝑗) among

channels, and weights (𝛼𝑖𝑗
𝑙), (𝛽𝑖𝑗

𝑙), and (𝛾𝑖𝑗
𝑙) show how

important feature mappings are spatially at three levels for level

l, adaptively learnt, with shared across channels. Based on

previous studies, the constraint (𝛼𝑖𝑗
𝑙 + 𝛽𝑖𝑗

𝑙 + 𝛾𝑖𝑗
𝑙 = 1) is

enforced, with values 𝛼𝑖𝑗
𝑙 , 𝛽𝑖𝑗

𝑙 , 𝛾𝑖𝑗
𝑙 ∈ [0,1] as Eq. (10) [36, 37]:

668

𝛼𝑖𝑗
𝑙 =

𝑒
𝜆𝛼𝑖𝑗

𝑙

𝑒
𝜆𝛼𝑖𝑗

𝑙

+ 𝑒
𝜆𝛽𝑖𝑗

𝑙

+ 𝑒
𝜆𝛾𝑖𝑗

𝑙
 (10)

where, (𝛼𝑖𝑗
𝑙 , 𝛽𝑖𝑗

𝑙) and (𝛾𝑖𝑗
𝑙) are determined using the softmax

function, with the control parameters being (𝜆𝛼𝑖𝑗
𝑙), (𝜆𝛽𝑖𝑗

𝑙), and

(𝜆𝛾𝑖𝑗
𝑙). Utilising 1×1 convolution layers, the weight scalar

maps (𝜆𝛼
𝑙), (𝜆𝛽

𝑙), and (𝜆𝛾
𝑙) are calculated from (𝑥1→𝑙), (𝑥2→𝑙),

and (𝑥3→𝑙) and are therefore learnable through standard

backpropagation. This approach ensures each pixel in the

fused feature map is a weighted average of corresponding

pixels in the rescaled maps, uses adaptively learnt weights to

improve detection accuracy and better integrate multi-level

features. Table 1 and Figure 2 show Darknet-53 with ASFF in

YOLOX architecture.

Table 1. YOLOX darknet-53 architecture

Layer Filters Size/Stride Repeat Output Size

Image - - - 608×608

Conv 32 3×3/1 1 608×608

Conv 64 3×3/2 1 304×304

Conv 32 1×1/1 Conv×1 304×304

Conv 64 3×3/1 Conv×1 304×304

Residual - - Residual×1 304×304

Conv 128 3×3/2 1 152×152

Conv 64 1×1/1 Conv×2 152×152

Conv 128 3×3/1 Conv×2 152×152

Residual - - Residual×2 152×152

Conv 256 3×3/2 1 76×76

Conv 128 1×1/1 Conv×8 76×76

Conv 256 3×3/1 Conv×8 76×76

Residual - - Residual×8 76×76

Conv 512 3×3/2 1 38×38

Conv 256 1×1/1 Conv×8 38×38

Conv 512 3×3/1 Conv×8 38×38

Residual - - Residual×8 38×38

Conv 1024 3×3/2 1 19×19

Conv 512 1×1/1 Conv×4 19×19

Conv 1024 3×3/1 Conv×4 19×19

Residual - - Residual×4 19×19

Figure 2. YOLOX architecture

669

4. MONITORING AND CONTROL SYSTEM

The Forklift AGV system relies on a distributed control

strategy that ensures synchronized performance between two

core processing units. This structure was developed to support

real-time navigation, object detection, and responsive

decision-making during autonomous movement in dynamic

environments [38]. At the operational level, the Sub

Controller—implemented using a Raspberry Pi 4—plays a

pivotal role in managing sensory data. It continuously captures

video via a Pi Camera and collects distance measurements

through an ultrasonic sensor. These data streams are prepared

for transmission and sent over a secure Wi-Fi connection using

the SSH protocol, relying on a static IP address for consistent

communication. Once the connection is established, the Sub

Controller streams live visual and distance information to the

Main Controller without interruption. On the receiving end,

the Main Controller, equipped with high processing

capabilities, initializes a graphical user interface (GUI) and

activates the pretrained YOLOX-based object detection

model. Incoming video frames are analyzed at 30 frames per

second, enabling accurate and timely object recognition. In

parallel, the system interprets real-time distance data from the

ultrasonic sensor to assess the proximity of potential obstacles

and determine the necessary control actions. System responses

follow a tiered logic based on predefined distance thresholds,

calibrated through repeated experiments. When the measured

distance to an object exceeds the first threshold (D1), the AGV

proceeds at its normal speed. If the distance falls between D1

and a lower critical threshold (D2), the system initiates an

immediate directional adjustment to avoid potential contact. In

scenarios where the object lies within the critical zone

(D_object ≤ D2), the AGV halts immediately to avoid

collision. The effectiveness of this control design has been

demonstrated in three real-world evaluation scenarios. In the

first case, the AGV maintained uninterrupted navigation along

a path free of obstacles, validating system stability and the

absence of false detections. In the second, a moderate-distance

obstacle (approximately 120 cm) triggered a successful course

adjustment without stopping the vehicle.

This intermediate scenario is graphically illustrated in

Figure 3, which highlights the system’s detection and

responsive adjustment mechanism. The third case represented

a critical situation, where the AGV encountered an obstacle

within less than 70 cm, prompting an immediate and

controlled stop. These evaluations highlight the system’s

ability to interpret environmental feedback and react

appropriately, confirming its suitability for autonomous

operation in practical settings.

Figure 3. Forklift AGV path adjustment to avoid obstacles

5. RESULTS ANALYSIS AND EVALUATION

METRICS

5.1 Experiment and operating environment

To assess the suggested YOLOX-based object identification

model effectiveness in relation to AGV navigation,

experiments were conducted using a well-structured and

reproducible computational environment. The development

and training processes were carried out within the Anaconda

distribution, utilizing the PyCharm IDE and Python 3.11. The

hardware configuration comprised a 13th Generation Intel®

Core™ i7-1335U processor operating at 1.30 GHz,

accompanied by 16 GB of system memory. The

implementation relied on both TensorFlow and PyTorch

frameworks to support efficient model construction and

training flexibility. The training and testing dataset were

generated through the combination of two benchmark datasets:

Pascal VOC 2007 and Pascal VOC 2012. Specifically, the

VOC 2012 dataset contributed 11,530 labeled images with

27,450 object annotations, while the VOC 2007 dataset

provided 9,963 images containing 24,640 labeled objects. This

combination resulted in a comprehensive dataset of 21,493

images and 52,090 object instances, representing a substantial

and diverse collection of visual scenes. To ensure balanced

learning and validation, 30% of the images were used for

testing, while the remaining 70% were used for training. The

large-scale dataset contributed significantly to improving

model generalization and robustness across various object

classes and environmental conditions. The training process

utilized pre-trained Darknet53 weights as the initialization

backbone. A total of 100 epochs were executed, comprising

8,275 iterations, with a 0.001 starting learning rate and a batch

size of 16. To enhance convergence, an exponential decay

strategy was applied every 20 epochs, reducing the learning

rate by a factor of 0.9. 0.0005 weight decay regularization was

also employed to prevent overfitting. Input images were

resized dynamically between 320×320 and 608×608 pixels in

order to reduce overfitting and enhance data variability, the

model incorporates Mix-up and ASFF, supporting multi-scale

object detection. Standard measures, namely Precision, Recall,

and mAP, are used to evaluate performance. The IoU threshold

was set to 0.8, ensuring that only predictions with substantial

overlap with ground truth were accepted as true positives. An

NMS threshold of 0.5 and a confidence score of 0.8 were

applied.

Figure 4. Intersection over union [28]

As illustrated in Figure 4, IoU was used to measure

detection accuracy by comparing predicted and ground truth

670

boxes. The high IoU threshold, while reducing false positives,

also presents a more rigorous standard, thereby balancing

precision and recall in a meaningful manner. Figure 5 shows

the loss value (object, box, class).

To examine robustness, the model was evaluated under

different conditions, including variable lighting, partial

occlusions, and dynamic backgrounds, to detect in real-world

environments encountered by AGVs. Results indicate that the

model retained high detection accuracy and decision reliability

despite such environmental fluctuations, confirming its

applicability to autonomous navigation in practical

deployment scenarios.

5.2 Evaluation metrics

According to experiments, three metrics, Precision, Recall,

and mAP, have been identified to assess the YOLO model's

effectiveness in object detection.

Precision: the ratio of True Positive (TP) cases to all

positive forecasts, quantifies how accurate positive predictions

[34]. It is determined utilizing the Eq. (11):

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 (11)

Recall: measured as the percentage of actual positive

predictions out of all potential positives, identifying missed

positive predictions. It is measured utilizing Eq. (12) [34],

where the number of TPs accurately predicted positive

samples, while False Positive (FP) tracks incorrectly projected

negative samples to be positive. Conversely, False Negatives

(FN) tallies incorrectly projected positive samples to be

negative. Due to the abundance of irrelevant background

regions in images, True Negative (TN) is disregarded in

evaluation, as these regions do not affect performance

assessment. These metrics are crucial for evaluating

classification model performance.

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 (12)

Mean Average Precision (mAP): known as the average

precision (AP) across all detection categories, computed by

averaging the AP values for each class. It provides a

comprehensive assessment of model performance, calculated

as the sum of AP values for all classes divided by the number

of classes (N) in total [34], as Eq. (13):

𝑚𝐴𝑃 =
1

𝑁
 ∑ 𝐴𝑃

𝑁

𝑖=0
 (13)

Figure 5. Results training and validation loss object, box, class vs. each epoch

671

Figure 6. Evaluation metrics Precision, Recall, mAP@0.5, and mAP@0.5: 0.95

Figure 7. Average precision of dataset classes

The precision-recall curve's area under the curve is

represented by this, where AP is computed over recall values

at 0 and 1. mAP@0.5:0.95 averages mAP across IoU

thresholds from 0.5 to 0.95, whereas mAP@0.5 denotes mAP

at an IoU threshold of 0.5 itself. mAP also varies with

confidence thresholds. Figure 6 shows the analysis of Recall,

Precision, mAP@0.5:0.95 and mAP@0.5 for YOLOv3 on the

Pascal VOC validation dataset. The results demonstrate

significant improvements in performance metrics. Precision

increased from 0.0039 at epoch 1 to 0.6405 at epoch 100, while

recall rose from 0.0088 to 0.6815. Both mAP@0.5 and

mAP@0.5:0.95 improved from 0.0002 to 0.3472 and from

0.0010 to 0.6685, respectively. The AP values, which indicate

precision at various recall levels, showed high accuracy across

all classes, as shown in Figure 7.

6. DISCUSSION

The system presented in this work demonstrates a

successful optimization of the YOLOv3 model to YOLOX.

Although YOLOv3 may exhibit marginally lower accuracy

than some advanced detection models, it retains advantages in

high real-time detection speed and low computational

demands. This balance renders YOLOv3 particularly suited

for applications requiring rapid response, even on hardware

with limited processing capacity. In order to improve the

system's small item detection capabilities, targeted

modifications were applied, incorporating image enhancement

methods such as mix-up, and label smoothing. These

techniques improved the model generalization capacity,

enhanced classification accuracy, regulated output

distribution, and reduced the risk of overfitting. Further

augmentation steps, including interpolation and

normalization, were implemented to boost prediction

reliability. Structurally, the inclusion of the ASFF was crucial

in refining the FPN. ASFF enabled the dynamic integration of

spatial information, significantly enhancing feature extraction

and representation across diverse image scales. The system

was rigorously trained and validated on the Pascal VOC

672

dataset, employing three distinct loss functions to measure

prediction errors. This approach led to error reductions

between ground-truth and predicted bounding boxes by

0.0879%, 0.0361%, and 0.0239% for the training set, and

0.1088%, 0.0153%, and 0.0188% for the validation sets,

respectively. Importantly, these improvements were achieved

without overfitting, as illustrated in Figure 5, highlighting the

model’s robustness. Comparative performance analyses

further demonstrate that the optimized system achieved

notable improvements over all single-stage detection models

on the VOC dataset, which encompassed 11 object categories

Table 2. The model’s accuracy, measured via mAP, was

compared against both single-stage and two-stage detection

frameworks. While some models reduce image resolution to

increase processing speed, this system maintained a resolution

of 608×608 pixels, balancing accuracy with computational

efficiency Table 3. Finally, measures including mAP@0.5,

recall, accuracy, and mAP@0.5:0.95 were contrasted with

advanced YOLO versions, with results presented in Table 4.

According to the results, the YOLOX model significantly

outperformed the reviewed detection models in Section 2,

achieving an mAP score of approximately 94.17%. The

deployment of the optimized model on a Forklift AGV robot

allowed for a comprehensive evaluation, affirming the

efficiency and usefulness of the system in real-world, real-time

object identification applications. Figure 8 shows real-time

object detection scenarios using the Forklift AGV system.

Table 2. Results of comparison detection for various classes on the VOC dataset

Model Person Car Train Motorbike Bus Bicycle Airplane Boat Cow Sheep Hours

YOLOv3 [17] 75.3 65.6 84.5 75.0 82.1 73.2 71.5 74.5 87.9 88.7 55.9

YOLOv4 [17] 51.3 65.5 41.0 75.0 62.1 62.1 83.2 41.0 67.9 58.7 67.6

YOLOv5 [17] 60.5 74.7 72.1 66.9 66.9 73.4 70.6 44.3 42.2 34.9 67.6

YOLOv3 [33] 89.0 92.0 85.0 89.0 95.0 90.0 - 62.0 64.0 66.0 90.0

YOLO-ESFM

[39]
88.8 91.0 89.1 90.0 85.7 88.1 89.5 72.9 91.6 86.0 84.8

SSD [20] 70.0 79.6 77.4 74.4 73.1 75.3 70.2 54.5 68.5 66.6 80.0

RFENet-

YOLOv8 [4]
89.5 92.9 90.4 91.4 89.8 92.4 90.9 80.8 89.8 84.4 92.5

YOLOX 95.9 93.3 97.2 93.3 94.2 90.8 96.0 90.5 94.2 92.4 95.4

Table 3. Comparison accuracy mAP for detection models on VOC dataset

Model Input Size Base Network Framework mAP % Type Year

Modified YOLOv3 [13] 416×416 Darknet-53 One stage 83.04 Real-time 2023

YOLOv3 [13] - Darknet-53 One stage 81.04 - 2023

YOLOv3 [33] - Darknet-53 One stage 58.80 Not real-time 2021

SSD (SCOD) [20] - VGG16 One stage 66.01 Real-time 2024

YOLOv3 [17] 416×416 Darknet-53 One stage 77.20 Real-time 2022

YOLOv4 [17] 416×416 CSPDDarknet-53 One stage 54.90 Real-time 2022

Fast RCNN [20] - VGG16 Two-stage 70.00 Not real-time 2024

RCNN [31] 1000×600 ZFNet Two-stage 80.50 - 2023

YOLO-ESFM [39] 640×640 Darknet-53 One stage 87.0 Not real-time 2024

RFENet-YOLOv8 [4] 640×640 ResNet-50 One stage 82.9 Not real-time 2025

YOLOX 608×608 Darknet-53 One stage 94.17 Real-time

Table 4. Comparative metrics for detecting the VOC dataset

Model mAP@0.5 mAP@0.5:0.95 Precision Recall Year

YOLOv5 [40] 45.1 20.9 55.4 48.7 2022

MobileNetv3 YOLOv5s [21] 55.3 32.6 - - 2024

Ghost-C3M YOLOv5 [40] 44.4 20.8 56.2 47.0 2022

Ghost-C3 YOLOv5 [40] 46.6 21.5 57.0 48.3 2022

MobileNetv3 YOLOv5s [21] 56.1 35.4 - - 2024

Ghost-C3SE YOLOv5 [40] 45.3 20.8 56.7 48.2 2022

YOLOX 66.8 34.7 64.0 68.1 -

673

Figure 8. Real-time object detection scenarios using the Forklift AGV system

7. CONCLUSIONS

This study presents a real-time control system for Forklift

AGVs that combines deep learning-based object detection

with adaptive motion handling. The system integrates an

improved YOLOX model supported by ASFF, where spatial

weights (α, β, γ) contribute to better feature representation

across different scales. Experimental results showed that the

system can accurately detect small, distant, overlapping, and

partially visible objects under various lighting conditions,

achieving a detection precision exceeding 97%. The Forklift

AGV demonstrated stable navigation across three obstacle

scenarios—clear paths, medium-range objects, and close

obstacles—with consistent responses such as stopping or re-

routing. The system maintained reliable real-time performance

even on resource-constrained hardware, confirming its

applicability in industrial environments. However, the current

implementation is limited to reactive navigation without

predefined path planning within a fixed indoor industrial

layout. Future work will focus on extending the system to

support multi-AGV coordination and integrating additional

sensing capabilities to enable site-level path planning.

ACKNOWLEDGMENT

This work is supported by the University of Mosul, which

has provided the necessary academic resources that

contributed to the completion of this research.

REFERENCES

[1] Verma, P., Olm, J.M., Suárez, R. (2024). Traffic

management of multi-AGV systems by improved

dynamic resource reservation. IEEE Access, 12: 19790-

19805. https://doi.org/10.1109/ACCESS.2024.3362293

[2] Zhang, D.X., Chen, C., Zhang, G.Y. (2024). AGV path

planning based on improved A-star algorithm. In 2024

IEEE 7th Advanced Information Technology, Electronic

and Automation Control Conference (IAEAC),

Chongqing, China, pp. 1590-1595.

https://doi.org/10.1109/IAEAC59436.2024.10503919

[3] Clavero, C., Patricio, M.A., García, J., Molina, J.M.

(2024). DMZoomNet: Improving object detection using

distance information in intralogistics environments.

IEEE Transactions on Industrial Informatics, 20(7):

9163-9171. https://doi.org/10.1109/TII.2024.3381795

[4] Li, Z.H., Dong, Y.S. (2025). Refined feature

enhancement network for object detection. Complex &

Intelligent Systems, 11: 13.

https://doi.org/10.1007/s40747-024-01622-w

[5] Zou, Z.X., Chen, K.Y., Shi, Z.W., Guo, Y.H., Ye, J.P.

(2023). Object detection in 20 years: A survey.

Proceedings of the IEEE, 111(3): 257-276.

https://doi.org/10.1109/JPROC.2023.3238524

[6] Cheng, G., Yuan, X., Yao, X.W., Yan, K.B., Zeng, Q.H.,

Xie, X.X., Han, J.W. (2023). Towards large-scale small

object detection: Survey and benchmarks. IEEE

Transactions on Pattern Analysis and Machine

Intelligence, 45(11): 13467-13488.

https://doi.org/10.1109/TPAMI.2023.3290594

[7] Sulaiman, N., Hasoon, S.O. (2023). Using intelligence

techniques to automate Oracle testing. Al-Rafidain

Journal of Computer Sciences and Mathematics, 17(1):

91-97. https://doi.org/10.33899/CSMJ.2023.179485

[8] Hamdy, R.A., Younis, M.C. (2023). Performance

evaluation of artificial neural network methods based on

block machine learning classification. Al-Rafidain

Journal of Computer Sciences and Mathematics, 17(2):

111-123.

https://doi.org/10.33899/csmj.2023.142250.1079

[9] Du, W.X. (2024). The computer vision simulation of

athlete’s wrong actions recognition model based on

artificial intelligence. IEEE Access, 12: 6560-6568.

https://doi.org/10.1109/ACCESS.2023.3349020

[10] Rosero-Montalvo, P.D., Tözün, P., Hernandez, W.

(2024). Optimized CNN architectures benchmarking in

hardware-constrained edge devices in IoT environments.

IEEE Internet of Things Journal, 11(11): 20357-20366.

https://doi.org/10.1109/JIOT.2024.3369607

[11] Mahum, R., Al-Salman, A.S. (2023). Lung-RetinaNet:

Lung cancer detection using a RetinaNet with multi-scale

feature fusion and context module. IEEE Access, 11:

674

53850-53861.

https://doi.org/10.1109/ACCESS.2023.3281259

[12] Song, P.H., Li, P.T., Dai, L.H., Wang, T., Chen, Z.

(2023). Boosting R-CNN: Reweighting R-CNN samples

by RPN’s error for underwater object detection.

Neurocomputing, 530: 150-164.

https://doi.org/10.1016/j.neucom.2023.01.088

[13] Diwan, T., Anirudh, G., Tembhurne, J.V. (2023). Object

detection using YOLO: Challenges, architectural

successors, datasets and applications. Multimedia Tools

and Applications, 82(6): 9243-9275.

https://doi.org/10.1007/s11042-022-13644-y

[14] Ragab, M.G., Abdulkader, S.J., Muneer, A., Alqushaibi,

A., Sumiea, E.H., Qureshi, R., Al-Selwi, S.M.,

Alhussian, H. (2024). A comprehensive systematic

review of YOLO for medical object detection (2018 to

2023). IEEE Access, 12: 57815-57836.

https://doi.org/10.1109/ACCESS.2024.3363300

[15] Edan, N., Mahmood, S.A. (2021). Multi-user media

streaming service for e-learning based web real-time

communication technology. International Journal of

Electrical and Computer Engineering, 11(1): 567-574.

https://doi.org/10.11591/ijece.v11i1.pp567-574

[16] Edan, N.M., Al-Sherbaz, A., Turner, S. (2017).

WebNSM: A novel WebRTC signalling mechanism for

one-to-many bi-directional video conferencing. In 2017

IEEE 3rd International Conference on Collaboration and

Internet Computing (CIC), San Jose, CA, USA, pp. 27-

33. https://doi.org/10.1109/CIC.2017.00015

[17] Li, H., Yin, Z., Fan, C., Wang, X. (2023). YOLO-MFE:

Towards more accurate object detection using multiscale

feature extraction. In Sixth International Conference on

Intelligent Computing, Communication, and Devices

(ICCD 2023), Hong Kong, China, pp. 143-152.

https://doi.org/10.1117/12.2682803

[18] Gao, X.B., Xu, J.H., Luo, C., Zhou, J., Huang, P.L.,

Deng, J.X. (2022). Detection of lower body for AGV

based on SSD algorithm with ResNet. Sensors, 22(5):

2008. https://doi.org/10.3390/s22052008

[19] Francies, M.L., Ata, M.M., Mohamed, M.A. (2022). A

robust multiclass 3D object recognition based on modern

YOLO deep learning algorithms. Concurrency and

Computation: Practice and Experience, 34(1): e6517.

https://doi.org/10.1002/cpe.6517

[20] Pramanik, A., Pal, S.K., Maiti, J., Mitra, P. (2021).

Granulated RCNN and multi-class deep sort for multi-

object detection and tracking. IEEE Transactions on

Emerging Topics in Computational Intelligence, 6(1):

171-181. https://doi.org/10.1109/TETCI.2020.3041019

[21] Santhanalakshmi, S.T., Khilar, R. (2023). A custom deep

convolutional neural network CDNN-(with YOLO v3

based newly constructed backbone) for multiple object

detection. Journal of Data Acquisition and Processing,

38(3): 1511.

[22] Ali, M., Yin, B., Bilal, H., Kumar, A., Shaikh, A.M.,

Rohra, A. (2024). Advanced efficient strategy for

detection of dark objects based on spiking network with

multi-box detection. Multimedia Tools and Applications,

83(12): 36307-36327. https://doi.org/10.1007/s11042-

023-16852-2

[23] Falaschetti, L., Manoni, L., Palma, L., Pierleoni, P., &

Turchetti, C. (2024). Embedded real-time vehicle and

pedestrian detection using a compressed tiny YOLO v3

architecture. IEEE Transactions on Intelligent

Transportation Systems, 25(12): 19399-19414.

https://doi.org/10.1109/TITS.2024.3447453

[24] Pulipalupula, M., Patlola, S., Nayaki, M., Yadlapati, M.,

Das, J., Sanjeeva Reddy, B.S. (2023). Object detection

using You Only Look Once (YOLO) algorithm in

Convolution Neural Network (CNN). In 2023 IEEE 8th

International Conference for Convergence in

Technology (I2CT), Lonavla, India, pp. 1-4.

https://doi.org/10.1109/I2CT57861.2023.10126213

[25] TensorFlow. (2022). VOC.

https://www.tensorflow.org/datasets/catalog/voc#voc20

07defaultconfig.

[26] Alsultan, O.K.T., Mohammad, M.T. (2023). A deep

learning-based assistive system for the visually impaired

using YOLO-V7. Revue d'Intelligence Artificielle,

37(4): 901-906. https://doi.org/10.18280/ria.370409

[27] Gu, H., Zhu, K., Strauss, A., Shi, Y., Sumarac, D., Cao,

M. (2024). Rapid and accurate identification of concrete

surface cracks via a lightweight & efficient YOLOv3

algorithm. Structural Durability & Health Monitoring,

18(4): 363-380.

https://doi.org/10.32604/sdhm.2024.042388

[28] Terven, J., Córdova-Esparza, D.M., Romero-González,

J.A. (2023). A comprehensive review of YOLO

architectures in computer vision: From YOLOv1 to

YOLOv8 and YOLO-NAS. Machine Learning and

Knowledge Extraction, 5(4): 1680-1716.

https://doi.org/10.3390/make5040083

[29] Salim, H., Mustafa, F.S. (2024). A comprehensive

evaluation of YOLOv5s and YOLOv5m for document

layout analysis. European Journal of Interdisciplinary

Research and Development, 23: 21-33.

[30] Choi, J., Chun, D., Kim, H., Lee, H.J. (2019). Gaussian

YOLOv3: An accurate and fast object detector using

localization uncertainty for autonomous driving. In 2019

IEEE/CVF International Conference on Computer

Vision, Seoul, Korea (South), pp. 502-511.

https://doi.org/10.1109/ICCV.2019.00059

[31] Liu, S., Huang, D., Wang, Y. (2019). Learning spatial

fusion for single-shot object detection. arXiv preprint

arXiv:1911.09516.

https://doi.org/10.48550/arXiv.1911.09516

[32] Xu, M., Yoon, S., Fuentes, A., Park, D.S. (2023). A

comprehensive survey of image augmentation

techniques for deep learning. Pattern Recognition, 137:

109347. https://doi.org/10.1016/j.patcog.2023.109347

[33] Shen, L., Yu, J., Yang, H., Kwok, J.T. (2024). Mixup

augmentation with multiple interpolations. arXiv

preprint arXiv:2406.01417.

https://doi.org/10.48550/arXiv.2406.01417

[34] Mohammed, E.A., Ali, A.J., Abdullah, A.M. (2024).

Artificial intelligence-based helipad detection with

convolutional neural network. NTU Journal of

Engineering and Technology, 3(1): 18-25.

https://doi.org/10.56286/ntujet.v3i1.799

[35] Wang, M., Li, K., Zhu, X., Zhao, Y. (2022). Detection of

surface defects on railway tracks based on deep learning.

IEEE Access, 10: 126451-126465.

https://doi.org/10.1109/ACCESS.2022.3224594

[36] Liu, H., Du, J., Zhang, Y., Zhang, H. (2022).

Performance analysis of different DCNN models in

remote sensing image object detection. EURASIP

Journal on Image and Video Processing, 2022(1): 9.

https://doi.org/10.1186/s13640-022-00586-6

675

[37] Khalil, R.I., Edan, N.M. (2025). Development of

automated guided vehicles using software engineering.

In 2025 International Conference on Computer Science

and Software Engineering (CSASE), Duhok, Iraq, pp.

20-27.

https://doi.org/10.1109/CSASE63707.2025.11054012

[38] Abdullah, D.B., Abood, I.N. (2023). Real time system

scheduling approach: Survey. AL-Rafidain Journal of

Computer Sciences and Mathematics, 17(1): 43-51.

https://doi.org/10.33899/csmj.2023.179512

[39] Yan, F., Chen, K., Cheng, E., Qu, P., Ma, J. (2024).

YOLO-ESFM: A multi-scale YOLO algorithm for sea

surface object detection. ResearchGate.

https://doi.org/10.21203/rs.3.rs-4623645/v1

[40] Wu, L., Zhang, L., Shi, J., Zhang, Y., Wan, J. (2022).

Damage detection of grotto murals based on lightweight

neural network. Computers and Electrical Engineering,

102: 108237.

https://doi.org/10.1016/j.compeleceng.2022.108237

NOMENCLATURE

AGV Automated Guided Vehicle

AP Average precision for each class

mAP Mean average precision across all classes

mAP@0.5 Mean average precision at IoU threshold

of 0.5

mAP@0.5: 0.95 Mean average precision at IoU threshold

of 0.5 to 0.95

IoU Intersection over union

NMS Non-maximum suppression at IoU

thresholds 0.3 to 0.7

TP True positive count

FP False positive count

FN False negative count

FPS Frames per second

D1, D2 Distance thresholds for AGV control

ASFF Adaptive spatial fusion features

FPN Feature pyramid network

Greek symbols

l Learning rate for model training

𝜆 Mix up parameter

𝜎 Sigmoid activation function

α Weight for low-level spatial features

β Weight for mid-level contextual features

γ Weight for high-level semantic features

Subscripts

obj Parameter to detection objects

det Detection layer

cls Classification layer

676

