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Automated Guided Vehicles (AGVs) are increasingly used in industrial and logistics 

operations for material handling, offering benefits such as reduced human error, improved 

efficiency, and lower operational costs. This study presents the design and implementation 

of a real-time intelligent management system for Forklift AGVs based on deep learning 

techniques. The core of the system is an optimized version of YOLOv3, termed YOLOX, 

enhanced with Adaptive Spatial Feature Fusion (ASFF) and advanced data augmentation 

strategies. The ASFF module employs spatially adaptive weights (α, β, γ) to dynamically 

integrate multi-scale features across the Feature Pyramid Network, improving the detection 

of small, occluded, and overlapping objects. The system is trained on a combined Pascal 

VOC dataset using mix-up and label smoothing to enhance generalization and model 

robustness. It is deployed on embedded hardware, including Raspberry Pi 4, enabling real-

time processing of visual data and sensor inputs under various lighting and environmental 

conditions. Evaluation results indicate that the model achieves a high mean Average 

Precision (mAP) of 94.17%, with real-time confidence scores reaching 98.1% in natural 

lighting and 94.3% in dim conditions. The system effectively detects and classifies a wide 

range of objects—including static, dynamic, small, distant, and partially occluded—in 

complex scenes. The proposed solution demonstrates robust real-time performance and 

adaptability, making it suitable for deployment in resource-constrained environments. It 

offers a scalable and intelligent framework for autonomous AGV navigation, contributing 

to safer and more efficient material transportation in real-world applications.  
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1. INTRODUCTION

The development of Automated Guided Vehicles (AGVs) 

represents a significant technological milestone. AGVs, which 

are intelligent robots used for automatic material handling in 

industrial settings and ports [1], have seen their traditional 

methods overshadowed by modern technologies such as deep 

learning and advanced sensors. These traditional methods are 

often time-consuming, error-prone, and unsafe. Improving 

automation is essential for industrial competitiveness, 

operational efficiency, and sustainability. AGVs face 

challenges such as misclassification, low inference speed, and 

potential collisions [2, 3]. Effective real-time object detection 

depends on accuracy and speed [4, 5], with many detection 

networks focusing on accuracy while neglecting 

computational complexity. Consequently, enhancing AGV 

performance is a key research area [6]. 

Recent advances in Convolutional Neural Networks 

(CNNs) [7, 8] offer promising solutions to complex computer 

vision problems [9], improving speed and accuracy compared 

to older methods. However, real-time neural networks require 

substantial computing power, which poses challenges when 

integrating them with embedded systems such as Arduino and 

Raspberry Pi [10]. The RetinaNet model, featuring multiple 

convolutional layers [11], and the Faster Region 

Convolutional Neural Networks (RCNN) model, which 

utilizes a Region Proposal Network for feature acquisition, 

represent notable object detection approaches [12]. However, 

these methods often suffer from slow detection speeds. 

In contrast, the You Only Look Once (YOLO) model offers 

rapid inference with single-stage detection [13]. YOLOv3, 

widely adopted for its efficiency, employs Darknet-53 for 

direct predictions without needing additional proposal 

generation. Despite its advancements, YOLOv3 struggles with 

detecting small, densely distributed, or occluded objects under 

varying lighting conditions [5, 14]. Real-time communication 

protocols, such as Web Real-Time Communication 

(WebRTC), offer low latency but face limitations in certain 

applications [15, 16]. To address these issues, an improvement 

to the YOLOv3 model is proposed, along with constructing 

and applying a smart control architecture for AGVs to enable 

object detection in autonomous driving environments. The 

developed model achieves a dual-directional improvement in 

object detection accuracy and speed during autonomous 

driving. The system operates in real-time using the Secure 

Shell (SSH) protocol for communication, ensuring efficient 

and secure data exchange between the hardware and software 

components. The key contributions of this study are 

summarized as follows: 

(1) Design and implementation of an integrated hardware-
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software AGV system using Raspberry Pi 4 for real-time 

object detection and autonomous control. 

(2) Development of an enhanced YOLOX-based model to

improve object detection accuracy in complex environments. 

(3) Utilization of mix-up and label smoothing techniques to

augment the dataset, improve generalization, and reduce 

classification errors. 

(4) Application of Adaptive Spatial Feature Fusion (ASFF)

with adaptive weights (α, β, γ) to improve multi-scale feature 

integration and small object detection. 

(5) Experimental validation of the system’s real-time

performance in dynamic indoor environments under varied 

lighting and obstacle scenarios. 

The structure of this paper is organized as follows: Section 

2 reviews related work, Section 3 presents the methodology, 

Section 4 describes the monitoring and control system and its 

integration with the Forklift AGV, Section 5 summarizes the 

results and evaluation metrics, Section 6 discusses the 

findings, and Section 7 concludes the paper. 

2. LITERATURE REVIEW

Following the challenges outlined in the introduction, 

several studies have focused on improving object detection 

models, particularly those based on the YOLO architecture, in 

the context of autonomous systems. While these studies have 

achieved measurable improvements in detection accuracy and 

speed, many of them present limitations that hinder their 

suitability for real-time deployment on embedded AGV 

platforms. The following section presents selected studies and 

critically examines their approaches and relevance to the 

current work. 

In the study [17], an enhanced algorithm for YOLOv3, 

named YOLO MFE, aimed to resolve the difficulty of 

extracting features at multiple scales in YOLOv3. This 

enhancement was achieved through multi-scale normalization 

combined with the Generalized Intersection over Union 

(GIOU) loss, aiming to enhance prediction precision. The 

proposed model was conducted using dataset named Pascal 

VOC. When comparing the modified model to YOLOv3 using 

the mAP metric, YOLOv3 recorded a mAP of 81.04%, 

whereas the improved model reached 83.04%, demonstrating 

an improvement of 1.66%. Nonetheless, the use of GIOU as a 

loss function, instead of the traditional box loss function for 

bounding box localization, did not result in overall better 

outcomes. In the study [18], to improve the detection of the 

lower part of the human body and support the autonomous 

tracking of AGV, a system based on the Single Shot Detector 

(SSD) model was introduced. The system addressed the issue 

of poor feature extraction performance in the traditional SSD 

model due to the use of Visual Geometry Group (VGG16) and 

the lack of complexity in the training data. An improved 

model, referred to as Residual Network (ResNet50), in which 

the input dimensions were increased to 448×448 pixels to 

improve accuracy. The experimental outcomes showed that 

improved detection accuracy by 7% and mAP of 85.1% as 

compared to the baseline model. However, the system still 

needs to be optimized for performance when operating in 

environments where the data is diverse or complex, as well as 

the proposed model is trained to detect only five classes, which 

impacts efficiency in various scenarios. The study [19] 

compared YOLOv3, YOLOv4, and YOLOv5 using the Pascal 

VOC dataset with a fixed input size of 416×416. YOLOv3 

achieved the highest accuracy (77%), while YOLOv5 

recorded the fastest inference time. Despite minor 

improvements to YOLOv5, YOLOv3 remained the most 

accurate. However, the experiments were based on relatively 

simple detection tasks, without addressing more complex 

challenges such as occlusion, dense scenes, or small object 

detection. 

In the study [20], a multiple class deep SoRT and G-RCNN 

were introduced to develop detection and tracking in video 

streams. The integrated approach achieved a mAP of 80.6% 

and demonstrated promising performance with respect 

accuracy and speed. Nonetheless, evaluation primarily relied 

on positive RoI samples, and the loss function did not 

sufficiently capture background or ambiguous regions—

factors that significantly affect AGV perception in 

uncontrolled environments. Reference [21] presented a 

modified YOLOv3 architecture by employing atailored 

convolutional deep neural networks (CDNNs) and additional 

layers to enhance small object detection. The modified 

YOLOv3 model achieved an accuracy of 58.80% mAP, 

compared to 55.3 and 57.9 for YOLOv3-416 and YOLOv3-

608, respectively. However, the image resolution was reduced 

to 256×256 to accelerate training, which may have resulted in 

the loss of critical information and a decline in the model 

effectiveness in recognizing fine-grained details. In reference 

[22], an enhancement of the SSD model was proposed through 

integration with Spiking Neural Networks (SNN), aiming to 

improve the detection of dark objects while reducing 

computational overhead. Utilizing the VGG16 backbone, the 

model reached a mAP of 66.01%. Despite this improvement, 

the method was not evaluated in embedded or real-time 

scenarios, raising concerns about its suitability for AGV-based 

deployment. In reference [23], the Tiny YOLOv3, based on 

DCNN and Darknet-53 as a backbone for feature extraction, 

was utilized to develop the Vehicle and Pedestrian Detection 

(VaPD) system for real-time detection using the TensorFlow 

library on the Google Colab environment, with a Raspberry Pi 

4, and the Pascal VOC dataset. A fixed input size of 416 × 416 

pixels was used for the images. Concerning the metric of mAP, 

based on the result obtained at the dataset, the detection system 

yielded an accuracy 77.5% Therefore, both the accuracies in 

terms of AP and mAP portrayed high values. However, the 

VaPD system build based on the Tiny YOLOv3 model has 

limitation in detection of occluded or overlapping objects 

because often it misclassified.  

Collectively, the reviewed studies demonstrate meaningful 

progress in object detection; however, most do not fully 

address the constraints of real-time AGV applications, 

particularly regarding small object detection, computational 

efficiency, and hardware compatibility. The objective of this 

research is to resolve these challenges through development of 

a lightweight, optimized YOLOv3-based detection system 

integrated within AGV control architecture, suitable for real-

time autonomous operation on embedded platforms. 

3. METHODOLOGY

The proposed system was developed through a structured 

methodology encompassing hardware configuration, software 

implementation, and full system integration into an AGV 

prototype. This section outlines the experimental setup and 

implementation details across both hardware and software 

domains. 
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3.1 Hardware configuration 

The hardware framework consists of two main controllers: 

• Main Controller: A high-performance computing unit

configured with an Intel® Core™ i7-11800H (11th Gen) 

processor @ 2.30 GHz, 32 GB of memory, and 512 GB of 

NVMe SSD storage, used primarily for object detection and 

decision-making tasks. 

• Sub-controller (Raspberry Pi 4): Responsible for data

acquisition and basic control tasks. It is equipped with a 

Cortex-A72 quad-core processor, 8 GB RAM, and dual-band 

wireless capability. The Pi Camera module captures 5 MP 

images and streams real-time video at 1080p/30 FPS to the 

main controller for further processing. Additional components 

include: 

• Ultrasonic Sensor (HC-SR04): Used for obstacle detection

within a range of 2 cm to 400 cm. The sensor is interfaced with 

the Raspberry Pi GPIO pins and operates through a voltage 

divider to ensure compatibility with 3.3V logic. 

• Relay Modules: Used for controlling actuator responses in

the prototype. All components were mounted onto a Forklift 

AGV robot. This setup enables real-time testing of object 

detection, classification, and motion control capabilities in a 

semi-structured environment. 

3.2 Software implementation 

The software environment was developed using Python 

3.11 and OpenCV2 [24], in conjunction with the YOLOX 

object detection framework. Model training and testing were 

performed using the Pascal VOC dataset. VOC 2012 includes 

11,530 images containing 27,450 annotated objects, and VOC 

2007 consists of 9,963 images with a total of 24,640 labeled 

objects [25]. Both VOCs contain eleven object classes relevant 

to AGV operations. Input images were resized to 608×608 

pixels, and bounding boxes were normalized accordingly. The 

training process utilized Darknet53 as the backbone network 

within a CUDA-accelerated PyTorch environment, leveraging 

pre-trained weights for optimized convergence. The model’s 

effectiveness was assessed using the mAP metric and 

inference latency to ensure real-time viability on the 

embedded system. 

3.3 System integration 

Following hardware and software development, the full 

system was deployed on the Forklift AGV prototype. This 

integration facilitated the real-time transfer of data from 

sensors and cameras to the detection model, allowing the AGV 

to recognize, classify, and respond to objects and activities 

autonomously. The systems behavior was evaluated in various 

indoor scenarios to evaluate detection accuracy, decision 

speed, and system robustness. 

3.4 Object detection 

In recent years, deep learning (DL) methods have been 

widely applied to object detection, as they can extract fine-

grained visual features and progressively construct more 

abstract semantic representations. These DL-based methods 

enable a hierarchical representation of data, enhancing the 

object detection process. For multi-classification tasks, DL-

based object detection outperforms conventional detection 

methods in terms of speed, accuracy, and robustness. The 

ongoing advancement of neural networks using convolutions 

(CNNs) [8] has significantly advanced object detection, with 

contemporary deep CNN-based object detectors such as SSD, 

R-CNN, and YOLO being essential to this advancement [26].

To efficiently extract features, these detectors employ DL

methods. Nevertheless, CNNs require constructing their

network structure and optimizing weight parameters through

training [7, 14]. YOLOv3 is an improved variant of YOLO and

YOLOv2. This network directly uses a single feed-forward

method to estimate class probabilities and bounding box

offsets from complete images CNN, eliminating the need to

generate region proposals or sample features [27]. In

YOLOv3, the input is divided into grid cells of size S×S. It is

the grid cell's responsibility to detect an object when its center

point is inside its borders. Every cell in the model computes

the object scores associated with B bounding boxes and

forecasts the location data for these bounding boxes [28]. For

every object, the score is calculated as Eq. (1):

𝐶𝑜𝑛𝑓𝑖𝑑𝑒𝑛𝑐𝑒 𝑆𝑐𝑜𝑟𝑒 = Pr(𝑜𝑏𝑗𝑒𝑐𝑡) × 𝐼𝑂𝑈𝑝𝑟𝑒𝑑
𝑡𝑟𝑢𝑡ℎ (1) 

where, Pr(𝑜𝑏𝑗𝑒𝑐𝑡) indicates the probability that an item is 

inside the box, and 𝐼𝑂𝑈𝑝𝑟𝑒𝑑
𝑡𝑟𝑢𝑡ℎ  is the intersection over union

between the anticipated bounding box and the ground truth 

bounding box. Class prediction involves assigning 

probabilities to multiple categories to determine the most 

likely classification of an object detected within an image. 

Four coordinates are predicted by the model for every 

bounding box: x, y, w, and h. These coordinates are typically 

expressed as offsets relative to the grid cell containing the 

bounding box [27, 28]. The bounding box's expected 

locations, represented as (𝑏𝑥 , 𝑏𝑦 , 𝑏𝑤 , 𝑏ℎ), are given in Eqs.

(2)-(5) are computed using the sigmoid function to constrain 

the values between 0 and 1. 

𝑏𝑥 = 𝜎(𝑡𝑥) + 𝑐𝑥 (2) 

𝑏𝑦 = 𝜎(𝑡𝑦) + 𝑐𝑦 (3) 

𝑏𝑤 = 𝑝𝑤 𝑒𝑥𝑝𝑡𝑤 (4) 

𝑏ℎ = 𝑝ℎ  𝑒𝑥𝑝𝑡ℎ (5) 

where, (σ) denotes the sigmoid function, ( 𝑡𝑥, 𝑡𝑦 , 𝑡𝑤, 𝑡ℎ )

represents the predicted values, and (𝑐𝑥, 𝑐𝑦) the coordinates of

the top-left corner of the grid cell are the coordinates. (𝑝𝑤 , 𝑝ℎ)

refer to the dimensions of the anchor box. Figure 1 shows 

YLOLv3 architecture. 

YOLOX is a single-stage object detection framework that is 

tailored for real-time applications. Important elements 

including residual modules, skip connections, and up-

sampling procedures are incorporated into its structure. To 

provide prediction outputs, the model uses tiny 1×1 kernels 

and only convolutional layers. The detecting head has a kernel 

dimension of 1×1×255 and is based on the formula 

(B×(5+C))×1. Compared to previous iterations of the YOLO 

series, YOLOX offers better detection accuracy while 

operating at 30 frames per second (FPS) [28, 29]. The YOLOX 

model's detection pipeline consists of three main steps.  

(1) Input Stage: To guarantee compatibility with the ensuing

convolutional layers and preserve uniformity in spatial 

processing across the network, raw input images are resized to 

608×608×3 (height×width×channels). 
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Figure 1. YOLOv3 architecture [30] 

 

(2) Feature Extraction Stage: A deep convolutional network 

called the Darknet-53 backbone, which is intended to 

recognize hierarchical visual patterns, receives the scaled 

images. At 76×76, 38×38, and 19×19 spatial resolutions, this 

stage generates three unique feature maps that correspond to 

various receptive fields. From the original RGB channels to 

the 32, 64, 128, 256, 512, and finally 1024 filters, the feature 

maps are progressively deepened as the signal moves through 

the layers. These layers gradually pick up visual characteristics 

at low and high levels. Convolutional processing, up-

sampling, down-sampling, and spatial-weighted feature fusion 

are all used in the ASFF method [31] to improve contextual 

representation once the acquired multi-scale features have 

been fused via an FPN.  

(3) Prediction Stage: The detecting head uses the improved 

feature maps produced by the FPN and ASFF modules to make 

item predictions. Three anchor-based bounding boxes are 

produced by the model for every geographic grid cell. Multiple 

parameters obtained from the fused multi-scale features are 

encapsulated in each bounding box as Eq. (6):  

 

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝐹𝑖𝑙𝑡𝑒𝑟𝑠 = (5 + 𝐶) × 𝐵 (6) 

 

where, B indicates the quantity of anchor or boundary boxes 

that are used in the model, 5 represents the value of predictions 

for each bounding box (𝑝𝑐, 𝑏𝑥, 𝑏𝑦, 𝑏𝑤, 𝑏ℎ) and C represents 

the class probabilities.  

 

3.4.1 Image augmentation  

During pre-processing, data augmentation methods were 

used to improve the model's performance on dataset that were 

unbalanced. Specifically, image mix-up and label smoothing 

were utilized to improve the model generalization capacity and 

promote linear behaviour between training examples. Two 

examples are chosen at random for the image mix, Xi, Yi and 

Xj, Yj [32], and the creation of a new instance through linear 

interpolation, by the following Eqs. (7) and (8): 

 

𝑥̂ =  𝜆𝑥𝑖 + (1 − 𝜆)𝑥𝑗   (7) 

 

𝑦̂ =  𝜆𝑦𝑖 + (1 − 𝜆)𝑦𝑖  (8) 

 

In these equations, Xi, Yi and Xj, Yj are two randomly 

selected samples from the training data, and 𝜆 ∈ [0,1] is a 

value drawn from the Beta (β, β) distribution. This newly 

generated example ( 𝑥̂ , 𝑦̂ ) is then used in mix-up training. 

Moreover. Label smoothing regularizes the output distribution 

by softening the ground truth labels in the training data, 

thereby enhancing the model generalization ability. This 

technique introduces controlled noise to the actual class 

values, limiting the model capacity to overfitting and thus 

improving its overall classification accuracy [33]. 

 

3.4.2 Data augmentation methods 

During testing and validation, this method was utilized to 

improve predictions for cases where the object in the image is 

too small. The images were resized using a randomly chosen 

interpolation technique from among the popular methods and 

then normalized [34]. 

 

3.4.3 ASFF 

In the standard YOLOv3 model features through the FPN are 

fused in a top-down fashion to integrate deep and shallow 

feature information [29]; however, features at different scales 

remain interdependent and mutually constrained [35]. The 

ASFF process includes two key steps as follows [36]: 

• Feature Resizing 

In YOLOv3, for a given feature level l ∈{1,2,3} associated 

with a feature map 𝑋𝑙, the feature maps from all other levels 

𝑋𝑛  where n ≠ l, are spatially adjusted to conform to the 

resolution of ( 𝑋𝑙 ). This alignment is essential to enable 

effective multi-level feature aggregation. As YOLOv3 features 

across the three levels differ in resolution and channel numbers, 

up-sampling and down-sampling techniques are modified 

accordingly for each scale. followed by an interpolation to 

upscale the resolution. 

• Adaptive Fusion 

Concatenation along the channel dimension is performed 

once the tree-adjusted feature maps have been resized. After 

concatenation, the feature map is normalization through the 

soft-max activation function, generating weight vectors (α), 

(β), and (γ), which are then employed to combine the feature 

maps adaptively. The representation of the feature vector at 

spatial location (𝑖, 𝑗) on the feature map that was moved from 

level n to level l is (𝑥𝑖𝑗
𝑛→𝑙). At level l, the multi-scale feature 

aggregation can therefore be expressed as Eq. (9) [36, 37]: 

 

𝑦𝑖𝑗
𝑙 =  𝛼𝑖𝑗

𝑙 . 𝑥𝑖𝑗
1→𝑙  +  𝛽𝑖𝑗

𝑙  . 𝑥𝑖𝑗
2→𝑙  +  𝛾𝑖𝑗

𝑙 . 𝑥𝑖𝑗
3→𝑙 (9) 

 

where, (𝑦𝑖𝑗
𝑙 ) indicate the output feature vector at (𝑖, 𝑗) among 

channels, and weights ( 𝛼𝑖𝑗
𝑙 ), ( 𝛽𝑖𝑗

𝑙 ), and ( 𝛾𝑖𝑗
𝑙 ) show how 

important feature mappings are spatially at three levels for level 

l, adaptively learnt, with shared across channels. Based on 

previous studies, the constraint ( 𝛼𝑖𝑗
𝑙 +  𝛽𝑖𝑗

𝑙 + 𝛾𝑖𝑗
𝑙  = 1) is 

enforced, with values 𝛼𝑖𝑗
𝑙 , 𝛽𝑖𝑗

𝑙 , 𝛾𝑖𝑗
𝑙  ∈ [0,1] as Eq. (10) [36, 37]: 
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𝛼𝑖𝑗
𝑙 =  

𝑒
𝜆𝛼𝑖𝑗

𝑙

𝑒
𝜆𝛼𝑖𝑗

𝑙

+ 𝑒
𝜆𝛽𝑖𝑗

𝑙

+  𝑒
𝜆𝛾𝑖𝑗

𝑙
 (10) 

 

where, (𝛼𝑖𝑗
𝑙 , 𝛽𝑖𝑗

𝑙 ) and (𝛾𝑖𝑗
𝑙 ) are determined using the softmax 

function, with the control parameters being (𝜆𝛼𝑖𝑗
𝑙 ), (𝜆𝛽𝑖𝑗

𝑙 ), and 

(𝜆𝛾𝑖𝑗
𝑙 ). Utilising 1×1 convolution layers, the weight scalar 

maps (𝜆𝛼
𝑙 ), (𝜆𝛽

𝑙 ), and (𝜆𝛾
𝑙 ) are calculated from (𝑥1→𝑙), (𝑥2→𝑙), 

and ( 𝑥3→𝑙 ) and are therefore learnable through standard 

backpropagation. This approach ensures each pixel in the 

fused feature map is a weighted average of corresponding 

pixels in the rescaled maps, uses adaptively learnt weights to 

improve detection accuracy and better integrate multi-level 

features. Table 1 and Figure 2 show Darknet-53 with ASFF in 

YOLOX architecture. 

 

Table 1. YOLOX darknet-53 architecture 

 
Layer Filters Size/Stride Repeat Output Size 

Image - - - 608×608 

Conv 32 3×3/1 1 608×608 

Conv 64 3×3/2 1 304×304 

Conv 32 1×1/1 Conv×1 304×304 

Conv 64 3×3/1 Conv×1 304×304 

Residual - - Residual×1 304×304 

Conv 128 3×3/2 1 152×152 

Conv 64 1×1/1 Conv×2 152×152 

Conv 128 3×3/1 Conv×2 152×152 

Residual - - Residual×2 152×152 

Conv 256 3×3/2 1 76×76 

Conv 128 1×1/1 Conv×8 76×76 

Conv 256 3×3/1 Conv×8 76×76 

Residual - - Residual×8 76×76 

Conv 512 3×3/2 1 38×38 

Conv 256 1×1/1 Conv×8 38×38 

Conv 512 3×3/1 Conv×8 38×38 

Residual - - Residual×8 38×38 

Conv 1024 3×3/2 1 19×19 

Conv 512 1×1/1 Conv×4 19×19 

Conv 1024 3×3/1 Conv×4 19×19 

Residual - - Residual×4 19×19 

 

 
 

Figure 2. YOLOX architecture 
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4. MONITORING AND CONTROL SYSTEM

The Forklift AGV system relies on a distributed control 

strategy that ensures synchronized performance between two 

core processing units. This structure was developed to support 

real-time navigation, object detection, and responsive 

decision-making during autonomous movement in dynamic 

environments [38]. At the operational level, the Sub 

Controller—implemented using a Raspberry Pi 4—plays a 

pivotal role in managing sensory data. It continuously captures 

video via a Pi Camera and collects distance measurements 

through an ultrasonic sensor. These data streams are prepared 

for transmission and sent over a secure Wi-Fi connection using 

the SSH protocol, relying on a static IP address for consistent 

communication. Once the connection is established, the Sub 

Controller streams live visual and distance information to the 

Main Controller without interruption. On the receiving end, 

the Main Controller, equipped with high processing 

capabilities, initializes a graphical user interface (GUI) and 

activates the pretrained YOLOX-based object detection 

model. Incoming video frames are analyzed at 30 frames per 

second, enabling accurate and timely object recognition. In 

parallel, the system interprets real-time distance data from the 

ultrasonic sensor to assess the proximity of potential obstacles 

and determine the necessary control actions. System responses 

follow a tiered logic based on predefined distance thresholds, 

calibrated through repeated experiments. When the measured 

distance to an object exceeds the first threshold (D1), the AGV 

proceeds at its normal speed. If the distance falls between D1 

and a lower critical threshold (D2), the system initiates an 

immediate directional adjustment to avoid potential contact. In 

scenarios where the object lies within the critical zone 

(D_object ≤  D2), the AGV halts immediately to avoid 

collision. The effectiveness of this control design has been 

demonstrated in three real-world evaluation scenarios. In the 

first case, the AGV maintained uninterrupted navigation along 

a path free of obstacles, validating system stability and the 

absence of false detections. In the second, a moderate-distance 

obstacle (approximately 120 cm) triggered a successful course 

adjustment without stopping the vehicle.  

This intermediate scenario is graphically illustrated in 

Figure 3, which highlights the system’s detection and 

responsive adjustment mechanism. The third case represented 

a critical situation, where the AGV encountered an obstacle 

within less than 70 cm, prompting an immediate and 

controlled stop. These evaluations highlight the system’s 

ability to interpret environmental feedback and react 

appropriately, confirming its suitability for autonomous 

operation in practical settings. 

Figure 3. Forklift AGV path adjustment to avoid obstacles 

5. RESULTS ANALYSIS AND EVALUATION 

METRICS

5.1 Experiment and operating environment 

To assess the suggested YOLOX-based object identification 

model effectiveness in relation to AGV navigation, 

experiments were conducted using a well-structured and 

reproducible computational environment. The development 

and training processes were carried out within the Anaconda 

distribution, utilizing the PyCharm IDE and Python 3.11. The 

hardware configuration comprised a 13th Generation Intel® 

Core™ i7-1335U processor operating at 1.30 GHz, 

accompanied by 16 GB of system memory. The 

implementation relied on both TensorFlow and PyTorch 

frameworks to support efficient model construction and 

training flexibility. The training and testing dataset were 

generated through the combination of two benchmark datasets: 

Pascal VOC 2007 and Pascal VOC 2012. Specifically, the 

VOC 2012 dataset contributed 11,530 labeled images with 

27,450 object annotations, while the VOC 2007 dataset 

provided 9,963 images containing 24,640 labeled objects. This 

combination resulted in a comprehensive dataset of 21,493 

images and 52,090 object instances, representing a substantial 

and diverse collection of visual scenes. To ensure balanced 

learning and validation, 30% of the images were used for 

testing, while the remaining 70% were used for training. The 

large-scale dataset contributed significantly to improving 

model generalization and robustness across various object 

classes and environmental conditions. The training process 

utilized pre-trained Darknet53 weights as the initialization 

backbone. A total of 100 epochs were executed, comprising 

8,275 iterations, with a 0.001 starting learning rate and a batch 

size of 16. To enhance convergence, an exponential decay 

strategy was applied every 20 epochs, reducing the learning 

rate by a factor of 0.9. 0.0005 weight decay regularization was 

also employed to prevent overfitting. Input images were 

resized dynamically between 320×320 and 608×608 pixels in 

order to reduce overfitting and enhance data variability, the 

model incorporates Mix-up and ASFF, supporting multi-scale 

object detection. Standard measures, namely Precision, Recall, 

and mAP, are used to evaluate performance. The IoU threshold 

was set to 0.8, ensuring that only predictions with substantial 

overlap with ground truth were accepted as true positives. An 

NMS threshold of 0.5 and a confidence score of 0.8 were 

applied.  

Figure 4. Intersection over union [28] 

As illustrated in Figure 4, IoU was used to measure 

detection accuracy by comparing predicted and ground truth 
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boxes. The high IoU threshold, while reducing false positives, 

also presents a more rigorous standard, thereby balancing 

precision and recall in a meaningful manner. Figure 5 shows 

the loss value (object, box, class). 

To examine robustness, the model was evaluated under 

different conditions, including variable lighting, partial 

occlusions, and dynamic backgrounds, to detect in real-world 

environments encountered by AGVs. Results indicate that the 

model retained high detection accuracy and decision reliability 

despite such environmental fluctuations, confirming its 

applicability to autonomous navigation in practical 

deployment scenarios. 

 

5.2 Evaluation metrics 

 

According to experiments, three metrics, Precision, Recall, 

and mAP, have been identified to assess the YOLO model's 

effectiveness in object detection.  

Precision: the ratio of True Positive (TP) cases to all 

positive forecasts, quantifies how accurate positive predictions 

[34]. It is determined utilizing the Eq. (11): 

 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑇𝑃

𝑇𝑃 +  𝐹𝑃
 (11) 

 

Recall: measured as the percentage of actual positive 

predictions out of all potential positives, identifying missed 

positive predictions. It is measured utilizing Eq. (12) [34], 

where the number of TPs accurately predicted positive 

samples, while False Positive (FP) tracks incorrectly projected 

negative samples to be positive. Conversely, False Negatives 

(FN) tallies incorrectly projected positive samples to be 

negative. Due to the abundance of irrelevant background 

regions in images, True Negative (TN) is disregarded in 

evaluation, as these regions do not affect performance 

assessment. These metrics are crucial for evaluating 

classification model performance. 

 

𝑅𝑒𝑐𝑎𝑙𝑙 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 (12) 

 

Mean Average Precision (mAP): known as the average 

precision (AP) across all detection categories, computed by 

averaging the AP values for each class. It provides a 

comprehensive assessment of model performance, calculated 

as the sum of AP values for all classes divided by the number 

of classes (N) in total [34], as Eq. (13): 

 

𝑚𝐴𝑃 =  
1

𝑁
 ∑ 𝐴𝑃

𝑁

𝑖=0
 (13) 

 

 

  

  

  
 

Figure 5. Results training and validation loss object, box, class vs. each epoch 
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Figure 6. Evaluation metrics Precision, Recall, mAP@0.5, and mAP@0.5: 0.95 

Figure 7. Average precision of dataset classes 

The precision-recall curve's area under the curve is 

represented by this, where AP is computed over recall values 

at 0 and 1. mAP@0.5:0.95 averages mAP across IoU 

thresholds from 0.5 to 0.95, whereas mAP@0.5 denotes mAP 

at an IoU threshold of 0.5 itself. mAP also varies with 

confidence thresholds. Figure 6 shows the analysis of Recall, 

Precision, mAP@0.5:0.95 and mAP@0.5 for YOLOv3 on the 

Pascal VOC validation dataset. The results demonstrate 

significant improvements in performance metrics. Precision 

increased from 0.0039 at epoch 1 to 0.6405 at epoch 100, while 

recall rose from 0.0088 to 0.6815. Both mAP@0.5 and 

mAP@0.5:0.95 improved from 0.0002 to 0.3472 and from 

0.0010 to 0.6685, respectively. The AP values, which indicate 

precision at various recall levels, showed high accuracy across 

all classes, as shown in Figure 7. 

6. DISCUSSION

The system presented in this work demonstrates a 

successful optimization of the YOLOv3 model to YOLOX. 

Although YOLOv3 may exhibit marginally lower accuracy 

than some advanced detection models, it retains advantages in 

high real-time detection speed and low computational 

demands. This balance renders YOLOv3 particularly suited 

for applications requiring rapid response, even on hardware 

with limited processing capacity. In order to improve the 

system's small item detection capabilities, targeted 

modifications were applied, incorporating image enhancement 

methods such as mix-up, and label smoothing. These 

techniques improved the model generalization capacity, 

enhanced classification accuracy, regulated output 

distribution, and reduced the risk of overfitting. Further 

augmentation steps, including interpolation and 

normalization, were implemented to boost prediction 

reliability. Structurally, the inclusion of the ASFF was crucial 

in refining the FPN. ASFF enabled the dynamic integration of 

spatial information, significantly enhancing feature extraction 

and representation across diverse image scales. The system 

was rigorously trained and validated on the Pascal VOC 
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dataset, employing three distinct loss functions to measure 

prediction errors. This approach led to error reductions 

between ground-truth and predicted bounding boxes by 

0.0879%, 0.0361%, and 0.0239% for the training set, and 

0.1088%, 0.0153%, and 0.0188% for the validation sets, 

respectively. Importantly, these improvements were achieved 

without overfitting, as illustrated in Figure 5, highlighting the 

model’s robustness. Comparative performance analyses 

further demonstrate that the optimized system achieved 

notable improvements over all single-stage detection models 

on the VOC dataset, which encompassed 11 object categories 

Table 2. The model’s accuracy, measured via mAP, was 

compared against both single-stage and two-stage detection 

frameworks. While some models reduce image resolution to 

increase processing speed, this system maintained a resolution 

of 608×608 pixels, balancing accuracy with computational 

efficiency Table 3. Finally, measures including mAP@0.5, 

recall, accuracy, and mAP@0.5:0.95 were contrasted with 

advanced YOLO versions, with results presented in Table 4. 

According to the results, the YOLOX model significantly 

outperformed the reviewed detection models in Section 2, 

achieving an mAP score of approximately 94.17%. The 

deployment of the optimized model on a Forklift AGV robot 

allowed for a comprehensive evaluation, affirming the 

efficiency and usefulness of the system in real-world, real-time 

object identification applications. Figure 8 shows real-time 

object detection scenarios using the Forklift AGV system.

Table 2. Results of comparison detection for various classes on the VOC dataset 

Model Person Car Train Motorbike Bus Bicycle Airplane Boat Cow Sheep Hours 

YOLOv3 [17] 75.3 65.6 84.5 75.0 82.1 73.2 71.5 74.5 87.9 88.7 55.9 

YOLOv4 [17] 51.3 65.5 41.0 75.0 62.1 62.1 83.2 41.0 67.9 58.7 67.6 

YOLOv5 [17] 60.5 74.7 72.1 66.9 66.9 73.4 70.6 44.3 42.2 34.9 67.6 

YOLOv3 [33] 89.0 92.0 85.0 89.0 95.0 90.0 - 62.0 64.0 66.0 90.0 

YOLO-ESFM 

[39] 
88.8 91.0 89.1 90.0 85.7 88.1 89.5 72.9 91.6 86.0 84.8 

SSD [20] 70.0 79.6 77.4 74.4 73.1 75.3 70.2 54.5 68.5 66.6 80.0 

RFENet-

YOLOv8 [4] 
89.5 92.9 90.4 91.4 89.8 92.4 90.9 80.8 89.8 84.4 92.5 

YOLOX 95.9 93.3 97.2 93.3 94.2 90.8 96.0 90.5 94.2 92.4 95.4 

Table 3. Comparison accuracy mAP for detection models on VOC dataset 

Model Input Size Base Network Framework mAP % Type Year 

Modified YOLOv3 [13] 416×416 Darknet-53 One stage 83.04 Real-time 2023 

YOLOv3 [13] - Darknet-53 One stage 81.04 - 2023

YOLOv3 [33] - Darknet-53 One stage 58.80 Not real-time 2021

SSD (SCOD) [20] - VGG16 One stage 66.01 Real-time 2024

YOLOv3 [17] 416×416 Darknet-53 One stage 77.20 Real-time 2022

YOLOv4 [17] 416×416 CSPDDarknet-53 One stage 54.90 Real-time 2022

Fast RCNN [20] - VGG16 Two-stage 70.00 Not real-time 2024

RCNN [31] 1000×600 ZFNet Two-stage 80.50 - 2023

YOLO-ESFM [39] 640×640 Darknet-53 One stage 87.0 Not real-time 2024

RFENet-YOLOv8 [4] 640×640 ResNet-50 One stage 82.9 Not real-time 2025

YOLOX 608×608 Darknet-53 One stage 94.17 Real-time 

Table 4. Comparative metrics for detecting the VOC dataset 

Model mAP@0.5 mAP@0.5:0.95 Precision Recall Year 

YOLOv5 [40] 45.1 20.9 55.4 48.7 2022 

MobileNetv3 YOLOv5s [21] 55.3 32.6 - - 2024 

Ghost-C3M YOLOv5 [40] 44.4 20.8 56.2 47.0 2022 

Ghost-C3 YOLOv5 [40] 46.6 21.5 57.0 48.3 2022 

MobileNetv3 YOLOv5s [21] 56.1 35.4 - - 2024 

Ghost-C3SE YOLOv5 [40] 45.3 20.8 56.7 48.2 2022 

YOLOX 66.8 34.7 64.0 68.1 - 
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Figure 8. Real-time object detection scenarios using the Forklift AGV system 

7. CONCLUSIONS

This study presents a real-time control system for Forklift 

AGVs that combines deep learning-based object detection 

with adaptive motion handling. The system integrates an 

improved YOLOX model supported by ASFF, where spatial 

weights (α, β, γ) contribute to better feature representation 

across different scales. Experimental results showed that the 

system can accurately detect small, distant, overlapping, and 

partially visible objects under various lighting conditions, 

achieving a detection precision exceeding 97%. The Forklift 

AGV demonstrated stable navigation across three obstacle 

scenarios—clear paths, medium-range objects, and close 

obstacles—with consistent responses such as stopping or re-

routing. The system maintained reliable real-time performance 

even on resource-constrained hardware, confirming its 

applicability in industrial environments. However, the current 

implementation is limited to reactive navigation without 

predefined path planning within a fixed indoor industrial 

layout. Future work will focus on extending the system to 

support multi-AGV coordination and integrating additional 

sensing capabilities to enable site-level path planning. 
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NOMENCLATURE 

AGV Automated Guided Vehicle 

AP Average precision for each class 

mAP Mean average precision across all classes 

mAP@0.5 Mean average precision at IoU threshold 

of 0.5  

mAP@0.5: 0.95 Mean average precision at IoU threshold 

of 0.5 to 0.95 

IoU Intersection over union 

NMS Non-maximum suppression at IoU 

thresholds 0.3 to 0.7 

TP True positive count 

FP False positive count 

FN False negative count 

FPS Frames per second 

D1, D2 Distance thresholds for AGV control 

ASFF Adaptive spatial fusion features 

FPN Feature pyramid network 

Greek symbols 

l Learning rate for model training 

𝜆 Mix up parameter  

𝜎 Sigmoid activation function 

α Weight for low-level spatial features 

β Weight for mid-level contextual features 

γ Weight for high-level semantic features 

Subscripts 

obj Parameter to detection objects 

det Detection layer 

cls Classification layer 
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