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The increasing number of automobiles on the highway has led to a major difficulty in 

municipal traffic management. Intelligent Transportation Systems (ITS) require 

dependable traffic prediction algorithms capable of providing accurate forecasts at 

numerous time steps. This research proposes an Enhanced-Graph Neural Network (E-

GNN) technique for traffic prediction and has been explored to augment the traditional 

GNN and temporal dependencies in traffic networks. A multimodal input was deployed 

for the preprocessing of the input data with GNN-Layer. An additional data stream was 

integrated to influence the traffic flow. The approach leverages strategically positioned 

loop detector sensors on the road network as a means of harvesting real-world traffic data. 

The suggested E-GNN technique for the estimation of real-time traffic speed was 

developed using two separate actual traffic datasets, such as PeMS-BAY and METR-LA. 

The result obtained over time shows a significant improvement, as seen in the 15-minute 

ahead prediction; the RMSE of EGNN reduced by 26.25% when compared with the 

existing state-of-the-art techniques.  
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1. INTRODUCTION

Traffic sensor technology has transformed the acquisition 

and analysis of extensive traffic data, allowing Intelligent 

Transportation Systems (ITS) to manage and strategize urban 

traffic efficiently [1]. Forecasting traffic flow is essential for 

congestion relief and enhancing air quality. Congestion in 

metropolitan areas will continue to increase unless the state- 

of- the art techniques is adopted to mitigate these challenges. 

In 2014, it was estimated that about 6.9 billion hours of travel 

and 3.1 billion gallons of gasoline, totaling $160 billion in 

expenditure, of which trucks account for about 28% of this 

expenditure [2].  

The rapid expansion in automotive use has led to social 

concerns such as traffic congestion, energy consumption, 

accidents, and high carbon emissions [3]. ITS is regarded as a 

promising approach to address these difficulties, giving real-

time information and optimizing traffic signal timings. An 

accurate traffic forecast is vital for the successful 

implementation of ITS, and researchers have developed 

numerous ways to estimate traffic status. These approaches 

can be divided into superficial machine learning techniques, 

statistical techniques, and deep learning techniques. The Auto-

Regressive Integrated Moving Average (ARIMA) is a part of 

the Statistical techniques used in machine learning, which 

have been frequently employed for traffic prediction [4, 5]. 

However, traditional machine learning models and parameter-

driven approaches have trouble with handling large amounts 

of data, which limits how well they can predict the future. 

Deep learning algorithms exhibit potential in analyzing 

extensive traffic data; nonetheless, they possess some 

limitations that hinder them from performing optimally. Time-

series data, especially multivariate time-series data (MTS), is 

hard to collect and analyze, therefore requires more than one 

feature to accurately predict traffic flow. This article presents 

a technique to overcome these restrictions by generating 

temporal features, establishing traffic flow operational status 

features, utilizing various state variables, and introducing an 

Enhanced-Graph Neural Network (E-GNN) approach with an 

attention mechanism that prioritizes pertinent feature vectors 

over time steps. The model surpassed all the existing 

traditional techniques used in traffic prediction and control 

datasets in predictive accuracy. Furthermore, these approaches 

depend on steady data and can propagate errors in multistep 

prediction. It is established that the machine learning 

algorithms used in the time past such as Support Vector 

Machines (SVM) [6, 7], Artificial Neural Networks (ANN) 

[8], k-Nearest Neighbors (kNN) [9], Bayesian networks, 

XGBoost [10], and random forest, have shown promising 

improvements over other techniques such as the statistical 

model but manually selected features are heavily relied on, and 

have shallow architectures, making them less suitable for 

complex traffic prediction tasks. Deep learning models have 

attracted prominence in various field of study ranging from 

engineering, science, and social science with a high success 

rate during implementation as it relates to transportation 

sector. Various deep learning-based techniques have been 

developed to forecast futuristic traffic patterns using different 
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criteria. Zhang et al. [11] adopted a based grid model, Zhang 

et al. [12] adopted a system of traffic congestion prediction in 

the transport network using stacked auto-encoders, but fail to 

evaluate the effect of other characteristics, including 

occupancy, volume, speed, and traffic flow. Ma et al. [13] 

advocated Convolutional Neural Network (CNN) for 

predicting traffic speed, but fail to evaluate the distortion of 

traffic from nearby roads. Dai et al. [14] employed a hybrid 

spatiotemporal graph attention technique to anticipate traffic 

flow by comprehending past traffic flow patterns from 

upcoming traffic data volume. A Deep Belief Network (DBN) 

based technique was created by Li et al. [15], although its 

scalability has not been validated. Long Short Term Memory 

(LSTM) has also been developed to account for temporal 

dependency of traffic data. Graph-based techniques have been 

developed to represent spatial traffic dependency. Varieties of 

hybrid systems have been developed to predict future traffic, 

such as merging CNN and auto-encoder to estimate traffic 

flow based on previous weather and traffic data. However, 

these studies have either evaluated spatial dependency or 

temporal dependency, omitting the effect of traffic from other 

surrounding roads. 

To be more exact, some of the existing drawbacks are 

highlighted below:  

(1) The characteristics of dynamic traffic flows are not

visible due to uncertainty and non-linearity. 

(2) The impact of random disturbances or responses to

unforeseen events, such as accidents, within the traffic system 

are not addressed adequately. 

(3) Dynamically selecting sensor data to forecast a target

sensor's traffic conditions over an extended timeframe 

presents a significant challenge. 

(4) Occupancy, traffic volume, and speed are ignored during

traffic flow. 

(5) Classification of vehicles is usually difficult to

differentiate. 

(6) To solve these research gaps, a deep learning-based

technique has been created to accurately estimate traffic speed 

at different time steps. The approach adopted in this article 

uses an E-GNN with multimodal input and GNN layers 

coupled with the output layer as shown in Figure 1.  

Figure 1. Overview of the system architecture 

The main contributions of this research are itemized below. 

(1) To develop a robust traffic flow prediction and

congestion control using E-GNN techniques with the aim of 

exploring spatial-temporal behavior of traffic networks. 

(2) A graphical approach for traffic congestion control is

adopted as an optimization strategy. 

(3) We have also used 5 baselines to benchmark our

proposed work. 

(4) We have carried out a based-performance evaluation

using a real-world dataset and compared its efficacy to state-

of-the-art baseline methods. 

The remaining parts of this paper are divided into the 

following sections: Section 2 presents the related work. 

Section 3 presents the research methodology for the proposed 

study. In Section 4, the experimental results are presented 

together with a comparison of the baseline model. Section 5 

presents the conclusion and recommendations of the research. 

2. LITERATURE SURVEY

Prior research has employed diverse traffic network 

modeling techniques to assess and forecast traffic trends. 

Parametric statistical methods, such as the Autoregressive 

Integrated Moving Average Model (ARIMA), were 

extensively utilized by various authors in the past, however the 

model was not so effective in predicting traffic flow due to 

accuracy issue, and most prediction were based on 

assumption. Machine learning methodologies, including 

Support Vector Regression (SVR), Feed-forward Neural 

Networks (NN), were proposed for traffic data modeling as 

described in references [16-18]. The SVR uses historical data 

to train the model and obtain the relationship between the input 

and output, but not effective when big data is involved. Deep 

learning has established a novel paradigm for traffic modeling, 

driven by the increasing prevalence, accessibility, and volume 

of traffic data. Methods based on deep neural networks have 

demonstrated great accuracy in traffic estimation and 

prediction tasks, attributed to the abundance of traffic data. 

Recurrent Neural Networks (RNNs) have been widely 

employed in recent studies to describe the spatiotemporal 

dynamics of traffic. Convolutional Neural Networks (CNNs) 

enhance the spatial modeling proficiency of deep learning 

models through the integration of numerous layers of neural 

connections. The various approach used for traffic prediction 

is discussed below.  
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2.1 Deep learning method for traffic prediction 

Deep learning algorithms have proven to be capable of 

capturing nonlinear spatiotemporal dynamics for traffic 

prediction. Since the first study, numerous neural network-

based models, such as fuzzy, recurrent, convolutional, Deep 

Belief Networks, auto-encoders, and generative adversarial 

networks, have been utilized to predict traffic conditions. 

RNNs, including LSTM and GRU [19], have been extensively 

utilized for forecasting traffic speed, journey time, and flow. 

In recent years, several deep learning models, including 

bidirectional LSTM, deep LSTM, shared hidden LSTM, and 

nested LSTM [20-23], have emerged to effectively capture 

intricate temporal correlations for traffic prediction. Multi-

stream deep learning algorithms have been examined for 

traffic forecasting issues. Traditional CNN-based methods, on 

the other hand, can't automatically deal with the traffic 

network's topology and physical.  

2.2 Graph convolution networks for traffic prediction 

Traffic networks are examined as graphs for dynamic 

shortest path routing, congestion assessment, and dynamic 

traffic allocation. Recent studies have extended neural 

networks to operate on arbitrarily structured graphs through 

the use of graph convolutional networks [24]. These networks 

utilize the adjacency matrix or Laplacian matrix [25], to 

represent the configuration of a graph. Multiple approaches, 

such as spectral graph convolution and diffusion graph 

convolution, have been developed for comprehensive traffic 

forecasting across networks. However, physical specialties of 

roadways are often disregarded. Referring to the spectral graph 

theory, the convolution layer function used to define the 

spectral domain GCN and semi-supervised GCN based was 

first introduced in references [26, 27]. 

2.3 Spatial temporal graph network for traffic prediction 

Spatial-temporal Graph networks are generally based on 

RNN-based and CNN-based techniques [28]. RNN-based 

methods filter inputs and hidden states using graph 

convolution, while CNN-based approaches combine graph 

convolution with 1D gated convolution [29]. However, RNN-

based approaches are inefficient for large sequences and can 

explode when paired with graph convolution networks. Both 

approaches need stacking layers or global pooling for 

computational efficiency.  

2.4 Attention based model for traffic prediction 

The attention model, based on the encoder-decoder concept, 

has been widely employed in numerous applications, 

including image caption generation, recommendation systems, 

and document classification. This work used a soft attention 

model to learn the importance of traffic information at every 

time and construct a context vector for future traffic 

forecasting tasks. The design approach involved calculating 

hidden states, scoring functions, and constructing the context 

vector. In this study, a multilayer perception was utilized as 

the scoring function, with characteristics calculating the 

weight of each concealed state based on the attention process 

[30]. 

3. METHODOLOGY

This study seeks to forecast traffic conditions utilizing 

historical roadway data, including speed, flow, and density. 

The approach employs an unweighted graph 𝐺 = {𝑣, 𝜀, Y} to 

represent the topological configuration of the road network, 

with each road designated as a node. The adjacency matrix A 

denotes the relationships among roads and is represented 

as  A ∈ Rnxn . At each time step, the graph G possesses a

dynamic feature matrix 𝑌(𝑡) ∈ 𝑅𝑁×𝐷 , which is utilized

interchangeably with graph signals. The objective is to learn a 

function f that can predict its subsequent T-step graph signals. 

The expression is stated below. 

[Y(𝑡−𝑆):𝑡 , 𝐺] →
𝑓

Y(𝑡+1):(𝑡+𝑇)

Y(𝑡−𝑆):𝑡 ∈ R𝑁×𝐷×𝑆 and Y(𝑡+1):(𝑡+𝑇) ∈ R𝑁×𝐷×𝑇
(1) 

where, N denotes the number of nodes, Y𝑡  denotes the graph

signal in a given time t, D denotes the number of each feature 

of the nodes assigned, and S denotes the step graph signal.  

3.1 Overview of the system architecture 

The system architecture involves preprocessing multimodal 

data, aligning it with the road network graph, and using GNN 

layers to process node features. Temporal attention processes 

uncover key patterns, while cross-modal attention assesses 

input from multiple sources. The output is routed via a 

forecasting module to predict future traffic conditions. Figure 

1 shows the detailed system architecture of the proposed 

model. 

a. Multi-modal input

This includes the road network topology that model the road

network as a graph in which nodes signify intersections or road 

segments, and edges denote connectedness. Preliminary node 

attributes may encompass fixed roadway characteristics (lane 

count, velocity restrictions). It is represented as follows. 

G = {v, ε, Y} (2) 

v = {v1 … vn} (3) 

b. Pre-processing

The pre-processing of the multimodal input includes traffic

data, encompassing historical and real-time metrics such as 

speed, volume, and occupancy for each roadway segment. 

Weather, wind, and speed at pertinent places. Event data, 

details regarding planned events (concerts, sporting events, 

road closures) that may affect traffic conditions. The 

expression is given below: 

{Y1 … YT} →
E−GNN

{YT+1 … YT′} (4) 

c. GNN layer

These layers process the node features, aggregating

information from surrounding nodes based on the graph 

structure and the learnt spatial attention weights.  

d. Temporal attention mechanism

The temporal attention mechanism is essential for capturing

temporal dependencies in traffic data as it is seen from the 

system architecture it is one of basic components that allows 

the model to dynamically assess the significance of various 

time steps in the multimodal input sequence when predicting 
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future time steps. The sequential analysis of the operation 

mechanism is as follows: 

1. The attention mechanism is composed of an encoder that

creates an attention vector from the multimodal input. There is 

also a decoder that perform other functions. A query is 

produced at each time steps in the output sequence, the query 

is then compared with keys produced from each time step in 

the multimodal input. The correlation between the query and 

each key dictates the attention weight.  

2. Attention Weights: Attention weights are generally

computed using a compatibility function followed by a 

softmax function to guarantee that the weights total equals to. 

3. Higher Weights indicate a higher temporal dependency

between the output time step and the matching input time step. 

4. Weighted Sum: The data from the input sequence are

subsequently amalgamated using the computed attention 

weights as coefficients. This weighted total creates the output 

for the current time step, effectively focusing on the most 

relevant historical information.  

By allowing the model to attend to different parts of the 

input sequence with varying degrees of importance, the 

temporal attention mechanism can capture complex non-linear 

temporal relationships and dependencies that might be missed 

by traditional sequential models like RNNs or LSTMs without 

attention. This is particularly relevant in traffic data because 

patterns might be influenced by factors from many time scales 

(e.g., recent traffic conditions, daily commuting patterns, 

weekly trends, seasonal variations). 

e. Cross-modal attention

Attention layers that allow the GNN to weigh the influence

of diverse data modalities is introduced in the system model. 

For example, during heavy rain, the weather data might be 

given increased importance in predicting traffic slowdowns. 

f. The output of the GNN layers is routed via a forecasting

module (e.g., a linear layer or an RNN) to predict future traffic 

conditions. 

Other components include the Enhanced-GNN layer, which 

extends to the GNN, CGAT, and the RNN, as well as the 

output component. 

3.2 Evaluation 

This section provides a comparative analysis of the 

proposed Enhanced-GNN model using the evaluation metrics 

as defined in the expression below. Five baseline models were 

used to benchmark the performance metrics of the proposed 

study. A visualization procedure was carried out to ascertain 

the most performing models from the listed baseline model, 

such as HA, ARIMA, STGCN, SVR, GMAN. However, this 

article employs various evaluation criteria, including MAPE, 

MSE, RMSE, and MAE. The expression for the evaluation 

indicators is given below. 

𝑅𝑀𝑆𝐸 = √
1

𝑛
∑  

𝑛

𝑖=1

|𝑦̂ − 𝑦𝑖|
2 (5) 

𝑀𝑆𝐸 =
1

𝑛
∑  

𝑛

𝑖=1

|𝑦̂ − 𝑦𝑖|2 (6) 

𝑀𝐴𝐸 =
1

𝑛
∑  

𝑛

𝑖=1

|𝑦̂ − 𝑦𝑖| (7) 

𝑀𝐴𝑃𝐸 =
100

𝑛
∑  

𝑛

𝑖=1

|𝑦̂ − 𝑦𝑖|

𝑦𝑖
(8) 

4. EXPERIMENT

(1) Data description

The research employs public traffic network datasets, such

as the METR-LA and PEMS-BAY, used to examine traffic 

velocity across 207 sensors in Los Angeles County and 325 

sensors in the Bay Area. The system approach was done using 

the following steps. First Data Mining or collection obtained 

from sensors that were strategically positioned. Followed by 

data pre-processing that was used as input to the GNN layer as 

explained earlier in Figure 1. Data pre-processing is 

analogous, involving 15-minute, 45minutes and 60 minutes 

intervals and the formulation of an adjacency matrix, the 

dataset were split into training, testing and validation. And 

final data visualization. However, the sensor arrangement is 

shown in Figures 2(a) and (b). The implementation was done 

using pytorch framework on an NVIDIA Ge-force. Three 

metrics were used to evaluate the traffic prediction task such 

as RMSE, MAPE, and MAE.

(a) 
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(b) 

Figure 2. (a) PEMS_BAY: Sensor distribution; (b) METR_LA: Sensor distribution 

(2) Baseline

We compare the E-GNN model to the following models:

ARIMA, SVR, STGCN, GMAN and HA. Table 1 shows a 

brief description, advantages and disadvantages of the baseline 

model.  

4.1 Experimental result 

Table 2 illustrates the findings of the E-GNN model and 

other baseline models on the two datasets. The suggested 

strategy outperforms previous models with all three 

performance metrics on the two datasets. The ARIMA, SVR, 

STGCN, GMAN, and HA performance shows less 

performance as compared to the proposed model. 

Particularly, the E-GNN algorithms that prioritize the 

modelling of this proposed work have superior prediction 

accuracy relative to the baseline models. The results indicate 

that the EGNN algorithm surpasses all other approaches across 

all error metrics for every prediction horizon. As seen in the 

15 munites, 45 munites and 60 munites horizon, the RMSE 

error of EGNN is reduced by 26.25% as compared to ARIMA, 

27.43% reduced as compared to SVR, 6.06% reduced as 

compared to STGCN, 2.78% reduced as compared to GMAN, 

and 43.10% as compared to HA. The other baseline model, 

although the error metrics of all models grow at the 45munites 

and 60munites horizons, EGNN models exhibit superior 

predictive performance relative to the baselines. 

Table 1. Advantages and disadvantages of the baseline model 

Model Advantage Disadvantage 

Autoregressive Integrated 

Moving Average (ARIMA) 

[31-33] 

•Mathematical simplicity and flexibility during

application.

•It is suitable for handling non-stationery time

series.

•High prediction accuracy.

•The performance analysis and accuracy are based on

assumptions.

•The analysis is hindered by factors essential to the

periodicity of the time series.

•The relationships between upstream and downstream

road sections are not accounted for during flow.

History Average model (HA) 

[34] 

•For predicting data with periodic or seasonal

patterns.

•This approach uses the average traffic

information in the historical periods as the

prediction.

•Prediction performance is limited.

•The characteristics of dynamic traffic flows are not

visible due to uncertainty and non-linearity.

•The impact of random disturbances or responding to

unforeseen events, such as accidents, within the traffic

system is not adequately addressed.

Graph Multi-Attention 

Network GMAN) [35] 

•They are adapted to encoder-decoder 

architecture.

•Less effective due to the uncertainty and complexity of

traffic flow.

•Prone to error propagation.

Support Vector Regression 

model (SVR) [36, 37] 

•This approach uses historical data to train the

model and obtains the relationship between the

input and output.

•It is usually associated with high performance

when data contains differentiable classes.

•It works best when multidimensional data is

involved and also when the dimension count is

high.

•Poor performance when big data sets are involved.

•The accuracy is decreased drastically when noise occurs.

•Prediction is usually low if the features are high in

quantity as compared to the training samples.

STGCN [38] 

•Used for binary classification.

•Utilizes spatial structure for accurate traffic

prediction.

•It gives room for flexibility and scalability.

•Accuracy issue may arise due to the large volume of data

prediction.
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Table 2. Model comparison metrics 

 
Dataset (METR-LA ) for 15 Minutes Horizon 

Metrics E-GNN ARIMA SVR STGCN GMAN HA 

RMSE 6.3248 8.5763 8.7160 6.73310 6.50600 11.1164 

MAPE (%) 51.4249 106.7187 95.3148 51.8998 70.8160 77.4542 

RAE 0.1905 0.2567 0.2727 0.20750 0.19140 0.32970 

Dataset (METR-LA) for 45 Minutes Horizon 

Metrics E-GNN ARIMA SVR STGCN GMAN HA 

RMSE 9.5614 12.5417 11.6061 10.0595 9.92020 13.4029 

MAPE (%) 38.8570 50.9215 41.1729 39.8784 39.6356 51.1607 

RAE 0.3109 0.3684 0.36840 0.32310 0.31190 0.42230 

Dataset (METR-LA) for 60 Minutes Horizon 

Metrics E-GNN ARIMA SVR STGCN GMAN HA 

RMSE 10.2197 14.0377 12.9534 12.2384 11.6035 15.3673 

MAPE (%) 39.9670 50.4618 75.8591 49.4634 47.4973 88.2344 

RAE 0.3219 0.4424 0.39100 0.38770 0.35810 0.48180 

Dataset (PEMS-BAY) for 15 Minutes Horizon 

Metrics E-GNN ARIMA SVR STGCN GMAN HA 

RMSE 4.9399 7.6873 6.8468 5.9750 5.5531 8.7766 

MAPE (%) 19.6292 27.6847 33.1157 27.6489 22.2299 34.6893 

RAE 0.1985 0.3107 0.2732 0.2456 0.2297 0.3499 

Dataset (PEMS-BAY) for 45 Minutes Horizon 

Metrics E-GNN ARIMA SVR STGCN GMAN HA 

RMSE 7.1413 10.2669 8.8384 7.9819 7.3793 10.8666 

MAPE (%) 34.7723 47.7327 41.0162 39.1537 36.3425 53.8883 

RAE 0.2752 0.3991 0.3409 0.3193 0.2850 0.4266 

Dataset (PEMS-BAY) for 60 Minutes Horizon 

Metrics E-GNN ARIMA SVR STGCN GMAN HA 

Metrics 7.9691 11.7624 10.5428 9.1172 8.3929 11.8159 

RMSE 42.9535 49.0580 45.0392 49.5450 49.5450 48.3767 

MAPE (%) 0.3141 0.4723 0.4324 0.3729 0.3421 0.4738 

RAE 7.9691 11.7624 10.5428 9.1172 8.3929 11.8159 

 

The proposed models were analysed using two learning 

curves, as depicted in Figures 3(a) and (b), one for each model, 

created based on the optimum parameters of the model. The 

training learning curve was derived from the loss of the 

training dataset, whereas the validation curve was derived 

from the validation dataset. The E-GNN algorithm exhibited 

the minimal validation and training error, signifying enhanced 

performance throughout the training phase. Both validation 

and training losses fell to a point of stability. 

Figures 4(a)-(c) and Figures 4(d)-(f) illustrate the various 

prediction performances as compared to other models across 

various horizons on METR-LA and PEMS-BAY, 

respectively.

 

 
(a) 
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(b) 

Figure 3. (a) Training and validation loss for the E-GNN for 50 epochs; (b) Training and validation loss for the E-GNN for 100 

epochs as a reference point 

(a) 

(b) 
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(c) 

 
(d) 

 
(e) 
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(f) 

Figure 4. (a) Performance change (RMSE) on METR-LA across horizon; (b) Performance change (MAPE) on METR-LA 

across horizon; (c) Performance change (RAE) on METR-LA across horizon; (d) Performance change (MAPE) on 

PEMS-BAY across horizon; (e) Performance change (RAE) on PEMS-BAY across horizon; (f) Performance change (RMSE) on 

PEMS-BAY across horizon 

5. CONCLUSIONS

In this paper, we proposed traffic prediction control model 

known as E-GNN as an improved method of solving traffic 

congestion related issues. The suggested model's performance 

was assessed via experimental analysis and compared with the 

current state-of-the-art models. As seen from the result, it is 

observed that our proposed model outperforms other models 

by a significant reduction in training loss. Comprehensive 

experimental evaluations were performed utilizing substantial, 

real-world datasets. The suggested E-GNN technique for the 

estimation of real-time traffic speed was developed using two 

separate actual traffic datasets, PeMS-BAY and METR-LA. It 

was also noticed from the experimental investigation that 

using both datasets for evaluating the performance metrics 

such as MAPE, RMSE, and MAE, errors significantly reduce 

with the increasing iteration count, which proved the viability, 

dependability, and practicability of the proposed approach. In 

the future research work we will explore the use of E-GNN for 

energy management and forecasting. 
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