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The increasing desire for people to own personal cars, combined with their reluctance to 

use public transportation, has led to traffic jams and delays in emergency vehicle arrivals. 

Traffic lights in densely populated cities pose a significant challenge because they rely on 

fixed or variable timings, yet are not particularly effective. As a result, they can worsen 

congestion or cause traffic jams instead of alleviating it. For example, a city like Baghdad 

faces severe traffic congestion, requiring intervention from traffic police. Additionally, 

there is no specific system in place for emergency vehicle passage, and public 

transportation remains ineffective, as people are hesitant to use buses due to longer 

congestion times and the difficulty in navigating, which is exacerbated by their larger size 

compared to private small cars. Unlike previous YOLO-based systems, our system 

integrates emergency vehicle and public transport buses prioritization. It adjusts timing 

based on vehicle type, number, and estimated speed, showing a 31.11% improvement in 

flow efficiency and reducing queue delays by 21.64% compared to fixed-time signal 

systems. The improved algorithm can recognize all four vehicle classes (fire trucks, 

ambulances, public transport buses, and cars) with an accuracy of 85-99%, depending on 

vehicle density and complex lighting conditions. 
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1. INTRODUCTION

The intelligent transportation system represents one of the 

modern tools for organising and improving traffic by relying 

on advanced technology and artificial intelligence [1]. In this 

regard, traffic congestion is one of the most troubling issues 

for residents due to its direct impact on people's lives, daily 

routines, and community quality of life [2], including travel 

delays and increased criminal and traffic accidents [3]. It also 

affects human mental and physical health by increasing carbon 

dioxide emissions [4-6]. In this context, one of the primary 

causes of traffic congestion in Baghdad is the use of 

ineffective traffic signal control methods, leading to longer 

waiting periods. Moreover, weaknesses in the road network, 

its age, and the substantial rise in personal vehicle ownership 

have caused the roads to fail in accommodating this growing 

number of cars. Additionally, public reluctance to use buses 

significantly contributes to traffic congestion [7, 8]. This 

challenge compels traffic officers to intervene on the streets to 

manually alleviate jams. In this regard, current traffic signal 

control systems do not account for emergencies, such as 

ambulances or fire trucks, and therefore, the congestion 

control methods currently in use result in substantial human 

and financial losses [9, 10]. In particular, the current traffic 

signal control methods in Baghdad rely on fixed or variable 

timings, as well as wireless sensor-based techniques. 

However, in a city like Baghdad, frequent and sudden 

congestion at nearly all intersections causes traffic delays. 

Accordingly, this issue underscores the need for a system that 

can identify different congestion levels. These systems also do 

not adjust signal timings in real time, leading to inefficiencies 

in reducing waiting periods and causing delays. Moreover, 

during rush hours, nearly all intersection streets suffer from 

congestion, emphasising the need for a system capable of 

differentiating between various congestion levels. The 

conventional approach of traffic police to alleviate congestion 

is similar to the method proposed in this system, with some 

necessary enhancements. There are two traffic police officers 

at each of the four roads at each intersection: one positioned at 

the beginning of the intersection to assess vehicle count, and 

another at the end of the congestion to measure its length and 

prevent it from spreading to the next intersection. 

The proposed model in this paper will detect variations in 

congestion levels during peak times by assessing vehicle 

counts, speeds, and congestion lengths across all intersection 

streets using YOLOv10. 

Specifically, the YOLOs aim to improve the speed and 

accuracy of real-time detection by accurately predicting object 
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classes and locations, thanks to their effective balance between 

computational cost and detection performance. This 

technology is essential for many practical applications, 

including autonomous driving, automated navigation, object 

tracking, and traffic signal control [11, 12]. Based on this data, 

the system dynamically adjusts green and red signal durations 

in real time.  

This study addresses the following research questions: 

(1) Can real-time vehicle classification using YOLOv10

improve the responsiveness of traffic signals, particularly to 

emergency vehicles such as ambulances and firetrucks? 

(2) What performance improvements—in terms of vehicle

throughput and queue delay—can be achieved by deploying 

the proposed system in real-world traffic environments such 

as Baghdad? 

The paper is organised as follows: Section 2 reviews 

relevant recent works. Section 3 presents the proposed model. 

Section 4 discusses the results, and lastly, Section 5 concludes 

with future research directions. 

2. LITERATURE REVIEW

Early approaches to adaptive traffic signal control used 

fuzzy logic combined with Wireless Sensor Networks (WSNs) 

to adjust signal timings at four-way intersections [13] 

automatically. These systems utilised WSNs to collect traffic 

data, including congestion density and lane-specific waiting 

times, which served as inputs for a fuzzy logic controller. This 

enabled an intelligent algorithm to allocate green light phases 

to lanes with the highest priority, thereby optimising traffic 

flow and reducing delays [14]. 

In another method, traffic signals with variable timings 

driven by deep learning were used to predict congestion using 

techniques such as LSTM and RNN, then adjusting green light 

durations based on these predictions [15].  

Other studies implemented an adaptive traffic light system 

based on a neural network trained through reinforcement 

learning [16], with sensors installed on roads to detect passing 

vehicles. This system calculated queue lengths and delay 

times, using this data along with the current traffic signal stage 

as inputs to determine the optimal timing for signal 

adjustments [17]. Reinforcement learning has also been 

employed for traffic light control, where key elements include 

state, action, and reward. A CNN-based deep Q-network 

(DQN) processes traffic state information to derive state and 

action values. A consensus algorithm updates these across 

distributed agents via a decentralised topology, enabling 

agents to learn from neighbours’ experiences without sharing 

raw data [18].  

Moreno-Malo et al. [19] examined the challenge of 

managing traffic efficiently in increasingly complex urban 

environments. They proposed an agent-based traffic light 

control system where each intersection has an agent that 

dynamically manages the light phases based on real-time 

traffic conditions. These agents, trained with DQN, make 

effective decisions. The simulation results using SUMO 

demonstrated that this approach reduces wait times and 

improves transit times compared to fixed-timing methods. 

Azad-Manjiri et al. [20] noted that urban traffic control is a 

complex multi-agent problem where traditional methods often 

fall short. Reinforcement learning, especially when integrated 

with deep learning and multi-agent strategies like MADDPG, 

shows promise in addressing these issues through 

autonomous, data-driven decision-making. Recent advances 

also incorporate Graph Attention Networks (GATs) to 

understand complex intersection relationships better. 

In addition, recent studies utilised live CCTV footage to 

calculate traffic density in real-time using YOLO by detecting 

the number of cars at signals and adjusting green light 

durations accordingly to improve accuracy [21]. Alternatively, 

an imaginary line was used to count passing vehicles with 

YOLO, and green light timings were adjusted based on this 

count at each intersection [22]. Additionally, YOLO was used 

to track cars through intersections until they exit, measure exit 

times, and compare these durations across roads so that the 

controller can make informed decisions [23]. Moreover, 

Karoon et al. [24] developed a vision-based adaptive traffic 

light system to address urban congestion caused by poor traffic 

management. They used intersection videos and compared two 

vehicle detection methods: background subtraction using 

Mixture of Gaussians and YOLOv3. In practice, YOLOv3 

proved more accurate, leading to its adoption in conjunction 

with the DeepSORT algorithm for vehicle tracking and 

counting. 

3. THE PROPOSED MODEL

The proposed model relies on computer vision using YOLO 

and addresses the following problems: 

(1) Traffic jams: The issue on Baghdad's streets during rush

hour is that nearly all roads become congested, with 

congestion levels varying from street to street. Our model can 

distinguish different congestion densities by analysing vehicle 

counts and speeds. 

(2) Real-time response: The model can adjust signal timings

in real time based on YOLOv10 outputs and simple equations. 

(3) Emergency vehicles: For the first time, our model can

detect emergency vehicles (ambulances or fire trucks) and 

adjust green signals accordingly to facilitate their passage. 

(4) Public transport buses: The model can promote public

transport use by detecting buses. If buses are present, it 

increases the green signal duration to reduce traffic 

congestion.  

3.1 Training 

Before implementing the model, a new dataset was created 

for the proposed model due to the lack of a valid dataset to 

implement the research problem. The proposed model needs a 

dataset consisting of four car categories: cars, ambulances, fire 

trucks, and public transport buses. 

Most of the images were collected from the streets of 

Baghdad city, and most of the cars’ photos were chosen from 

the front because the system requires the recognition of objects 

from the front. 

The model was trained using YOLOv10x with a dataset of 

approximately 9,000 images labelled using Roboflow. The 

selected epochs were 100, and the images’ size was 640. A 

custom dataset was used in this study, consisting of four main 

vehicle categories: ambulance (1,814), bus (1,802), car 

(4,079), and firetruck (1,282). The dataset was split into 

training, validation, and test sets with a ratio of 70%, 20%, and 

10%, respectively, following standard deep learning practices. 

All annotations were conducted by a single expert annotator 

with domain knowledge to ensure consistency. The results 

were excellent and very encouraging, as can be observed in 
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Figure 1, in which the plots show that the training progresses 

well, with steady improvements in both the loss metrics 

(declining) and the performance metrics (increasing). The 

decreasing loss values suggest that the model is learning 

effectively, while the improvements in metrics like Recall, 

MAP, and Precision indicate better object detection 

performance. The figure contains multiple plots showing the 

model's performance during training based on various metrics. 

A detailed explanation of each plot is given below: 

(1) Train/box_om: Progressive improvement in bounding

box coordinate prediction accuracy. 

(2) Train/cls_om: Decreasing classification loss, indicating

better object recognition. 

(3) Train/dfl_om: Steady enhancement in location

prediction through distribution focal loss. 

(4) Metrics/recall(B): Increasing recall, showing improved

true object detection capability. 

(5) Train/cls_oo: Rapid early-stage classification 

improvement (alternative method). 

(6) Train/box_oo: Consistent bounding box accuracy

improvement (alternative calculation). 

(7) Train/dfl_oo: Continuous distribution focal loss

reduction, showing training progress. 

(8) Metrics/mAP50(B): Rising mAP@50 score, 

demonstrating better detection precision. 

(9) Metrics/precision(B): Improved positive predictive

value, reducing false positives. 

Figure 1. Training and evaluation metrics for object 

detection models 

Although the dataset used in this study comprises 

approximately 9,000 images, the high quality and diversity of 

the data, combined with the use of transfer learning from the 

pretrained YOLOv10 weights, allowed for effective model 

fine-tuning. To this end, prior works [25, 26] demonstrated 

that deep learning models can perform well even with smaller 

datasets, provided that the data is representative and well-

annotated. 

Figure 2 shows that the model demonstrates strong overall 

performance, particularly in classifying emergency vehicles 

and buses. However, there is room for improvement in 

distinguishing regular cars and handling different 

backgrounds. The results indicate the model's potential for 

practical applications while considering its current limitations 

and working on improving them. 

Figure 2. Image of the normalized confusion matrix of the 

trained model 

This analysis offers valuable insights for future model 

iterations and identifies specific areas where targeted 

improvements could yield substantial performance gains. The 

model's strong performance in emergency vehicle recognition 

suggests particular promise for applications in traffic safety 

and emergency response systems. More precisely, the model 

achieved remarkable success in classifying ambulances, with 

a recognition accuracy of 95%, making it the most 

successfully classified category. This was followed by fire 

trucks at 90% and buses at 92%. This outstanding performance 

in classifying emergency vehicles and buses indicates the 

model's ability to recognise cars with distinct features. 

However, despite the excellent performance in some 

categories, the model faced challenges in classifying regular 

cars, with a detection accuracy of 83%. There were also 

difficulties in distinguishing between vehicles and 

background, with 16% of cars being misclassified as 

background. This issue indicates that the model needs 

improvement in distinguishing regular cars from the 

background. 

3.2 Implementation 

To implement the system, eight cameras are required, with 

two assigned to each lane. The first camera in each lane counts 

the number of vehicles, while the second camera calculates 

their speed and detects emergency vehicles or public transport 

buses. The model assumes that the counted vehicles pass in a 

straight lane and exit the intersection. 

The first camera is positioned at the beginning of the 

intersection, ideally at a height of 6 meters to ensure accurate 

detection of vehicles, which aligns with these 

recommendations [27]. A second camera is installed at a 

standardized distance from the first camera on each street to 

ensure complete traffic queue coverage. For consistent cross-

street comparison, all secondary cameras maintain uniform 

spacing from their primary counterparts, enabling systematic 

and objective measurement of queue lengths and traffic 

congestion levels. Thus, the second camera aids in assessing 

congestion density. If the speed is zero or close to zero, this 

indicates that congestion extends further, and vice versa, as 

shown in Figure 3. 
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Figure 3. The external appearance of the system 

When the system is started, it does the following: 

(1) The first camera positioned at the start of each of the

four streets of the intersection captures a single frame of the 

street to count the number of vehicles. The more cars there are, 

the longer the green signal time will be, and vice versa. 

(2) Simultaneously, the second camera is activated, and the

system draws an imaginary line to calculate the speed of the 

first vehicle crossing the line to decrease the processing time 

and to display the results in real time. Additionally, using the 

second camera, the model detects whether there are emergency 

vehicles (such as fire trucks or ambulances) or public transport 

buses. If there is an emergency vehicle, the green signal 

duration is increased by 50%, and it will be increased by 20% 

when there are public transport buses, as shown in the 

proposed developed algorithm in Figure 4. 

Figure 4. The proposed developed algorithm 

The proposed model detects the number of cars and whether 

there are emergency vehicles or buses using the trained model, 

and then estimates vehicle speed using the following simple 

mathematical Eq. (1): 

𝑣 =
𝑑𝑝 ∗ 𝑀𝑝

∆𝑡
(1) 

where, v is vehicle speed in meters per second (m/s). dp is pixel 

displacement between two frames. Mp is meter-per-pixel ratio 

(e.g., 4.5 / 100). Δt is time interval between frames (seconds). 

Eq. (2) is used to convert to kilometers per hour (km/h): 

𝑣𝐾𝑚/ℎ  = 𝑣  × 3.6 (2) 

The speed adjustment factor to account for vehicle velocity 

in traffic signal timing is calculated using Eq. (3): 

𝑆𝑝𝑒𝑒𝑑 𝐹𝑎𝑐𝑡𝑜𝑟 = 𝑚𝑎𝑥 (0.5, 𝑚𝑖𝑛 (1.5,
1

𝑣 60⁄
)) (3) 

where, v is vehicle speed in km/h. 

The factor is bounded within [0.5,1.5] to avoid extreme 

timing changes. The max and min functions are used to ensure 

that the speed value stays within the range [0.5,1.5]. If the 

speed detected is high, the speed will be less than 1, which 

reduces the green signal time. On the other hand, if the speed 

is low, the speed will be greater than 1, which increases the 

green signal time. 

The green light time is dynamically adjusted using traffic 

and vehicle data, using Eq. (4): 

𝑇𝑔𝑟𝑒𝑒𝑛 = 𝑇𝑏𝑎𝑠𝑒  ×  𝐶𝑓  ×  𝑆𝑓  ×  𝐸𝑓 (4) 

where, Tgreen is final green light time (seconds). Tbase is base 

green time (30 seconds). Cf is congestion factor (0.8 for <10 

vehicles, 1.0 for 10-14, 1.2 for ≥15). Sf is speed factor. Ef is 

emergency factor (1.5 if ambulance/firetruck, 1.2 if bus, 1.0 

otherwise). 

For cycle time normalization, if the total green light 

durations exceed the fixed cycle time, Eq. (5) is used. 

1

i
i cyclen

j

j

T
T T

T



=

 
 
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 
 
 


(5) 

where, Ti is initial green light time for street I. Tcycle is total 

cycle time (e.g., 120 seconds). 𝑇𝑖
′ is normalized green light

time for street i. ΣTj is the sum of all initial green light times. 

The red light duration is calculated using Eq. (6): 

𝑇𝑟𝑒𝑑 = 𝑇𝑐𝑦𝑐𝑙𝑒 − 𝑇𝑔𝑟𝑒𝑒𝑛 (6) 

4. RESULTS AND DISCUSSION

The model showed very encouraging results due to its 

simplicity. According to the proposed algorithm, the model 

was evaluated in two ways:  

(1) By analyzing eight real videos taken from Baghdad

intersections. Four of these videos were recorded for the first 

camera to count the number of cars. In contrast, the other four 

videos were recorded for the second camera to assess the speed 
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of cars and detect emergency vehicles and buses. The videos 

featuring emergency vehicles and public transport buses were 

specifically chosen to observe how the model responded to 

them. The model adjusts the green light time in real-time by 

calculating the number of vehicles, determining the speed of 

the first vehicle passing through the imaginary line, detecting 

the presence of emergency vehicles and buses (where it 

detected a bus on the first street and an ambulance on the third 

street), and then calculating the green light timing at high 

speed. 

Firstly, the model displays the detected vehicles through the 

front camera videos and presents the calculated speeds through 

the second camera videos, as shown in Figure 5. 

Secondly, the model calculates the number of vehicles and 

their speeds and detects emergency vehicles and public 

transport buses. Specifically, the model displays the results in 

three graphs, as shown in Figure 6. 

(a) 

(b) 

(c) 

(d) 

(e) 

(f) 

(g) 

(h) 

Figure 5. (a) The vehicles detected on the first street; (b) The 

speed of the first car passing through the imaginary line 

drawn for the first street; (c) The vehicles detected on the 

second street; (d) The speed of the first car passing through 

the imaginary line drawn for the second street; (e) The 

vehicles detected on the third street; (f) The speed of the first 

car passing through the imaginary line drawn for the third 

street; (g) The vehicles detected on the fourth street; and (h) 

The speed of the first car passing through the imaginary line 

drawn for the fourth street 

(a) 
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(b) 

(c) 

Figure 6. (a) The green and red light times for each street 

based on the number of cars, speed, emergency vehicles, and 

public transport buses; (b) The count and type of vehicles for 

each street; and (c) The speed of the first car passing through 

the imaginary line drawn for each street 

(2) By simulating using PTV VISSIM, which is an urban

traffic simulation software developed by the PTV GROUP, a 

German company, we analysed the performance of traffic 

networks. We evaluate the impact of changes in traffic control 

systems. In particular, a four-street intersection was designed 

with varying traffic densities, without emergency vehicles and 

public transport buses, as shown in Figure 7. 

Figure 7. Four-street intersection with varying traffic density 

The traffic lights were set to a fixed duration of 40 seconds 

for each street. The VISSIM counted the number of vehicles 

passing through the intersection and the average queue delay 

(congestion time). This fixed-time system allowed for 410 

vehicles to pass through per hour. We captured videos of the 

same intersection streets to count the number and speed of 

vehicles on each street, and this data was entered into our 

system to calculate green light timings, as depicted in Figure 

8. The green light timings were then adjusted in VISSIM

according to those calculated by our system, where the green

light times calculated by our system, based on the number of

cars and their speed, are as follows: 30 seconds, 30 seconds, 

55 seconds, and 45 seconds, as shown in Figure 9. Our model 

allows 625 vehicles to pass through the intersection, an 

average of 215 more vehicles than the system with fixed times. 

(a) 

(b) 

(c) 

(d) 

Figure 8. (a) The first street with low traffic density; (b) The 

first street with medium traffic density; (c) The third street 

with high traffic density; and (d) The first street with high 

traffic density 

Eight simulation trials were conducted to assess the 

performance of the proposed intelligent traffic signal control 

system in comparison to the traditional fixed-time signal 

system. Each trial was designed with varying traffic load 

distributions across four streets to ensure an equitable and 
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representative evaluation of system behavior under different 

traffic conditions. Particularly, the evaluation focused on three 

key performance indicators: the total number of passing 

vehicles, queue delay time, and green/red light durations. 

 

 
 

Figure 9. Time of green and red signals generated by our 

system in the first trial 

 

The proposed intelligent control system demonstrated a 

clear improvement in traffic throughput. More specifically, a 

greater number of vehicles were able to pass through the 

intersections during the eight trials compared to the fixed-time 

system, indicating more efficient traffic management and 

dynamic signal responsiveness. In addition, a paired sample t-

test was conducted using the vehicle counts from both systems 

across all trials, and the resulting p-value was less than 0.05, 

confirming the statistical significance of the observed 

improvement, as shown in Table 1. 

The intelligent system significantly reduced queue delay 

times across all eight trials. By adapting the green light 

duration based on real-time vehicle density and road 

conditions, the system minimized vehicle waiting times and 

improved traffic flow consistency.  

The statistical analysis using a paired t-test for queue delay 

values across all trials yielded p-values below 0.05, indicating 

that the reductions are statistically significant. The reduction 

in delay times is further illustrated in Table 2. 

The proposed system dynamically adjusted green and red 

signal durations in response to real-time traffic demands, 

optimizing flow distribution across all intersection 

approaches. In contrast to the fixed-time system's rigid, 

uniform phases, the intelligent control system adapts signal 

timing continuously. Quantitative results demonstrating this 

adaptive behavior across all experimental trials are presented 

in Table 3. 

Consequently, the vehicle flow rate through the intersection 

increased by 31.11%, as demonstrated in Eq. (7) and Figure 

10(a).  

 

7261 5538
100% 31.11%

5538
Vehicle Flow Rate

−
=  =  (7) 

 

Table 1. Comparison between our developed system and the fixed-time system in terms of total vehicle flow 

 

Roads 
Fixed-time System - Total Vehicles (8 Trials, 

Varied Load) 

Our System – Total Vehicles (8 Trials, 

Varied Load) 

P-

Value 

Rate of 

Increase 

Road1 1101 1228 

0.00065 31.11% 
Road2 1238 1422 

Road3 1794 2316 

Road4 1405 2305 

 

Table 2. Comparison between our developed system and the fixed-time system in terms of the total queue delay 

 
Roads Total Delay in Fixed-Time System (s) Total Delay in Our System (s) P-Value Rate of Decrease 

Road1 362.940542 336.365218 

0.00035 -21.64% 
Road2 416.938497 336.774633  

Road3 1,144.821047 871.207351  

Road4 1,502.558414 1,141.1529 

 

Table 3. The green signal durations for all four street approaches during each trial 

 
Trial/Time Green Signal/Str1 (s) Green Signal/Str2 (s) Green Signal/Str3 (s) Green Signal/Str4 (s) 

Trial 1 30 30 55 45 

Trial 2 29 29 52 50 

Trial 3 28 32 50 50 

Trial 4 28 28 44 60 

Trial 5 54 28 28 50 

Trial 6 30 30 70 30 

Trial 7 30 30 32 68 

Trial 8 30 70 30 30 

 

While our system achieves a 31.11% increase in vehicle 

throughput and a 21.64% reduction in queue delay, it is not 

without limitations. Evaluation using the normalized 

confusion matrix showed that emergency vehicle detection 

performed well, with a true positive rate of 96% for 

ambulances and 90% for firetrucks. However, occasional 

misdetections still occurred, particularly in cases of occlusion 

or overlapping vehicles in densely packed urban scenes. 

Furthermore, in intersections with complex geometries or 

under low-light conditions, the model’s confidence scores 

tended to decrease. 

The queue delay decreased by 21.64%, as demonstrated in 

Eq. (8) and Figure 10(b). 

 

2,685.5 3,427.25
100% 26.64%

3,427.25
Queue Delay

−
=  = −  (8) 
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In this regard,  false detection of ambulances may lead to 

unnecessary green phases, which has been addressed using a 

class confidence threshold of at least 0.75, based on empirical 

tuning. Accordingly, a constraint was introduced requiring 

emergency vehicles and buses to appear in at least 4 out of 5 

consecutive frames to be confirmed as valid objects. 

Moreover, the detection of emergency vehicles and buses was 

delegated to the second camera, which is typically positioned 

in a less congested area than the first camera, increasing the 

likelihood of successful identification. 

To demonstrate the superiority of the proposed system, a 

comparison with other systems using different techniques is 

presented in Table 4. 

In response to identified limitations and to strengthen the 

system's practical applicability, we have added a 

comprehensive Table 5 outlining known failure modes, such 

as camera occlusion, performance degradation under low-light 

conditions, and class confusion in mixed traffic environments. 

Mitigation strategies are proposed for each challenge. Table 6 

shows the system components that require maintenance, and 

Table 7 shows the estimated cost of the proposed system. 

(a) (b) 

Figure 10. (a) The total vehicle count (blue) and the total queue delay (red) for the fixed-time control system; (b) The total 

vehicle count (blue) and the total queue delay (red) for our developed system 

Table 4. Comparing our system with modern systems used in traffic signal control 

Name of Research 
Vehice Flow 

Rate 

Queue 

Delay 

Emergency Vehicle 

Detection 

Buses 

Detection 

Our paper 31.11% 21.6% Yes Yes 

A deep learning-based model for traffic signal control using the 

YOLO algorithm [28] 
+27% 50% No No 

Intelligent transportation system for traffic congestion based on 

Dempster–Shafer evidence theory and fuzzy logic control [29] 
- 

11.6% & 

24.1% 
No No 

A deep reinforcement learning network for traffic light cycle control 

[30] 
- 20% No No 

Deep Q learning with LSTM for traffic light control [31] - 23% No No 

Table 5. Documented failure modes and corresponding mitigation strategies 

Failure Mode Description Proposed Mitigation Strategy 

Night-time 

Degradation 

Reduced detection 

accuracy due to low light 
Use infrared-capable cameras; apply low-light image enhancement techniques 

Class Confusion 
Misclassification among 

similar vehicle types 

Improve dataset diversity; apply ensemble classification 

(1) Temporal filtering (4/5 consecutive-frame consensus), (2) A secondary camera in

low-congestion lanes, and (3) A strict confidence threshold (≥0.75) to reduce false

positives and prevent unnecessary signal changes. 

Weather 

Conditions 

Rain or dust obscures the 

camera view 
Install weatherproof cameras with self-cleaning covers; fusion with radar 

Single 

Intersection 

Training 

Model trained on limited 

geometry 
Augment training data from multiple intersections with varied layouts 

Table 6. Components requiring scheduled maintenance 

Component 
Maintenance 

Frequency 
Maintenance Activities Purpose 

CCTV Cameras Monthly 
Lens cleaning, angle adjustment, 

firmware update 

Ensure clear visibility and optimal detection 

accuracy 

Edge AI Processing Unit Quarterly 
System diagnostics, software updates, 

cooling system check 

Maintain real-time processing performance 

and prevent overheating 

YOLOv10 Model 

Deployment 
Bi-annually 

Model retraining if accuracy drops, 

re-validation on updated datasets 

Sustain high detection/classification 

accuracy in changing traffic patterns 

Traffic Light Controller 

Interface 
Annually 

Hardware inspection, communication 

test with ai unit 

Guarantee reliable signal switching and 

synchronization 
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Network Infrastructure 

(Router/Switch) 
Quarterly 

Latency testing, firmware update, port 

checks 

Ensure stable data transmission between 

components 

Weatherproof Enclosures Bi-annually Seal inspection, waterproofing tests 
Protect hardware components from 

environmental damage 

Logging and Monitoring 

Tools 

Continuous (with 

monthly review) 

log inspection, anomaly detection, 

data backup 

Detect early failures and ensure traceability 

of system performance 

 

Table 7. Cost estimation for the proposed intelligent traffic control system 

 

Component Quantity 
Unit Cost 

(USD) 

Total Cost 

(USD) 
Notes 

High-Resolution CCTV Cameras 8 75 600 Covers 4 angles of the intersection 

Smart Traffic Signal Controller 1 160 160 
Includes programmable controller and AI 

integration 

Installation and Wiring – – 400 Cabling and physical setup of all equipment 

Power & Network Setup (UPS + 

Connectivity) 
– – 400 Ensures continuous operation 

Training and Pilot Operation – – 500 Traffic personnel training and 1-week test run 

 

 

5. CONCLUSION AND FUTURE WORK 

 

This study introduced an AI-based intelligent traffic light 

system that leverages YOLOv10 for real-time vehicle 

classification and traffic density estimation. The proposed 

system integrates vehicle count, vehicle type, and speed 

information to allocate green light durations dynamically. 

Experiments on traffic videos from Baghdad demonstrated 

notable improvements in traffic flow, including increased 

vehicle throughput and reduced queue delays compared to 

fixed-time control. These results highlight the system’s 

potential to reduce congestion, lower fuel consumption and 

carbon emissions, facilitate the timely passage of emergency 

vehicles, and promote the use of public transportation. 

While the system showed high performance under favorable 

conditions, its effectiveness may be reduced in challenging 

lighting environments or at intersections with atypical 

geometries. Initial mitigation measures have already been 

implemented to address these challenges; however, further 

refinements and extensive testing are required to ensure 

reliable performance for large-scale deployment. 

Future work will focus on testing in cities beyond Baghdad, 

with varied intersection geometries and lighting conditions; 

expanding the system to a cooperative multi-intersection 

system for coordinated signal timing by the first quarter of 

2026 to assess transferability; and enhancing robustness with 

infrared cameras. 
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