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Advances in wireless communication and sensor technologies have enabled vehicle-to-

vehicle (V2V) systems that enhance road safety and traffic efficiency. The objective of this 

study is to develop and evaluate a multi-agent V2V communication framework that enables 

cooperative driving, allowing autonomous vehicles to make real-time, informed decisions 

in complex traffic scenarios. The proposed system is implemented using the JADE multi-

agent platform and incorporates reinforcement learning and cooperative decision-making 

strategies. Each vehicle is represented by a Generic Car Agent (GCA) with integrated sub-

agents responsible for driver modeling, information integration, knowledge management, 

and active interface functions. Remote Car Agents (RCA) and Traffic Control Agents 

(TCA) facilitate communication across vehicles and traffic networks, enabling coordinated 

maneuvers such as lane changes and platooning. The framework is evaluated using real-

world traffic data collected from urban and highway roads in Jordan, across five 

challenging driving scenarios. Simulation results show improved traffic flow, reduced 

collision risk, and enhanced fuel efficiency. The system is cost-effective, leveraging 

existing onboard sensors and standard wireless technologies, demonstrating practical 

potential for scalable deployment in intelligent transportation systems. 
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1. INTRODUCTION

The usage of electrical vehicles (EVs) has increased 

dramatically in automotive markets because of the wide spread 

of renewable energy resources and the need for useful ways to 

utilize these resources efficiently. Managing energy flow for 

EVs from the battery through inverters, electric motors, 

transmissions, Adaptive actuators, controlling units and 

charging systems plays a crucial role in EVs' competences and 

advancements and leads to a sustainable technology in 

automotive fields. A great breakthrough in battery 

technologies (solid-state batteries), super-capacitors and smart 

charging and communication systems has enhances 

automakers to widen the vision to explore safe and 

sophisticated thermal management strategies. Motors 

technology, new drivetrains and energy sustainable 

lightweight and high strength materials, all enables next-

generation smart transportation in Hybrid vehicles and in EVs. 

Vehicle systems that can talk to each other are changing how 

roads work, helping cars drive together, be safer, and move 

traffic better. Some smart people, like Liang et al. [1], showed 

how cars can share radio space using a group of learners that 

work together to use the space best. Sahin et al. [2] made this 

better by making a smart helper that learns how to share the 

road space for cars talking to each other. Liu et al. [3] said it’s 

important for cars to plan their moves together while talking, 

using ways to keep time so everyone knows what to do. More 

recently, Song et al. [4] saw talking between cars as a way for 

them to see better, sharing what they see to get a bigger picture. 

This is making things go from just sending messages to smart 

systems that know what’s happening and can change as 

needed. 

Sharing road space is still hard for cars talking to each other, 

mostly when there are a lot of cars or they're moving fast. Le 

and team looked at different ways to share space, going from 

simple to smart, learning ways [5]. Hou et al. [6] made a way 

to control power and share space that makes car talking safer 

by changing how strong the signals are and how much space 

they use based on what’s happening. Xu et al. [7] worked on 

using road space and power well by using smart ways to do it. 

Bi et al. [8] thought about saving power and not crowding the 

network when cars talk to each other, making ways to work 

with more cars. Sichitiu and Kihl's [9] first work still matters, 

as it explains how car talking works, bridging old and new 

ways. Vu et al. [10] used many learners that work together to 

handle channels and power in groups of cars driving together, 

showing how learning helps in driving together. 

Driving together is making cars more able to drive on their 

own and making roads safer. Peng et al. [11] made a system 

where cars can drive at a set speed together, talking to each 

other to speed up and slow down better. Park et al. [12] used a 

way where cars move like birds in a flock, using car-to-

everything talking to keep the group together. Zeadally et al. 

[13] talked about the big picture of car networks, including

problems like safety, growing bigger, and talking in real time.

Xie et al. [14] made a way to keep time in traffic networks,
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saying it's important for everyone to be on the same schedule 

when controlling many cars. Finally, researchers [15-18] 

explained the old standards that many car talking systems still 

use. This research builds on these old works by using a smart 

group of car helpers that talk to each other for real roads in 

Jordan. The system was tested in five hard driving events and 

got good scores, showing it's ready for use in transportation 

jobs. The remarkable advances in mobile wireless 

communication have led to a growing number of novel vehicle 

applications to aid travel and traffic safety using wireless 

communication. 

Despite the significant advances in vehicle-to-vehicle 

(V2V) communication and cooperative driving, several 

challenges remain. Existing studies have primarily focused on 

spectrum sharing, signal power management, and coordination 

strategies under idealized conditions [19-24], while less 

attention has been paid to implementing multi-agent 

frameworks in real-world traffic scenarios. Furthermore, most 

approaches do not fully integrate driver-centric decision-

making with autonomous vehicle coordination, limiting their 

practical applicability. 

This study aims to address these gaps by developing a multi-

agent V2V communication system that enables cooperative 

driving in real traffic conditions, using real-world traffic data 

from Jordan for evaluation. Specifically, the research 

addresses the following questions: 

1. How can a multi-agent framework effectively 

coordinate vehicles to improve traffic flow and safety 

in dynamic driving environments? 

2. Can reinforcement learning combined with cooperative 

decision-making enable adaptive, real-time behaviour 

for autonomous vehicles? 

3. How can such a system be implemented cost-

effectively using existing onboard sensors and standard 

wireless technologies? 

The novelty of this study lies in the integration of multi-

agent systems, JADE-based implementation, and driver-

centric cooperative strategies for real-world traffic. Unlike 

previous works, our approach demonstrates the practical 

applicability of V2V communication for autonomous 

decision-making, lane coordination, and platooning in 

complex urban and highway environments. This framework 

not only improves traffic efficiency and safety but also 

provides a scalable solution for intelligent transportation 

systems. 

In this paper, we present a new system where cars talk to 

each other, thinking about the driver. We look at what drivers 

need from car talking. Then, we make a new system where 

talking to cars nearby is helped by smart helpers on each car. 

Each car has its own helper that gives drivers info in real time. 

With these helpers, a car can know about traffic without 

spending a lot. We put this system on a helper for small jobs, 

which we made before. Tests show our system works even 

when the car helpers use just a little bit of the computer power. 

Cutting-edge technology has gained great attention toward 

safety enhancement in road traffic systems. The invention of 

vehicles that enable communication with one another has 

brought about possibilities in playing a pivotal role in road 

traffic applications in the present and immediate future 

systems. The new vehicles, usually autonomous vehicles 

equipped with real-time communication, offer the possibility 

to monitor and control the transportation systems, producing 

V2V communication. Such vehicles enable the adept 

capabilities of communicating a vehicle's driving status and at 

the same time remain connected on a full-time basis, thereby 

providing safety to the vehicle both in driving mode and 

parking mode. In essence, space, time functions, and the 

conditional control of a remotely driven vehicle are enabled 

with vehicles having a communication link, which allow 

drivers of manned vehicles to relinquishing control. 

The word agent in the context of distributed systems was 

defined by Huhns et al. [25] as an active, persistent, and 

efficient autonomous executor of some tasks within 

environmental constraints. Many distributed applications are 

developed employing intelligent software agents, often 

referred to as multi-agent systems. Rosenberg developed a 

computer language for distributed systems based on the 

asynchronous global parallelism idea. The idea and 

importance of MAS and its applications are thoroughly 

described in Manuel's book. 

In recent years, much of interdisciplinary work has been 

dedicated to applying the principles of multi-agent systems to 

the design and engineering of elaborate systems that need to 

accomplish complex goals. MAS is also suggested by an 

increasing understanding that designing a global control 

system may be difficult and that it may often be easier to allow 

for the control of the system to emerge from the interactions 

of individual agents. It offers a methodology for designing 

decentralized systems in which many agents need to interact 

in order to accomplish global tasks on the information level. 

A multi-agent system consists of a group of entities that 

process certain attributes in the direction of problem solving. 

What these definitions have in common is that an agent must 

be effectively capable of planning, choosing the best action, 

and recognizing the best action in order to produce the best 

results. 

 

 

2. METHODOLOGY  

 

This paper talks about a teamwork system with many smart 

helpers. It uses set rules and also guesses to work better than 

before. The idea is to help the smart helpers work together with 

the models listed. This new plan helps the helpers by adding 

what they know (knowledge) and how smart they are, the 

models listed. Sharing what they know is important in 

teamwork. It can be done in 3 ways: no one is special, some 

are a little special, and some are very special. These 'special' 

types fit into types based on paradigms, models, and plans. 

Being smart means solving problems. Each helper needs to be 

good at this. How well they can work with each other is very 

important for the team. The models listed for the helpers, this 

paper looks at how smart they are, in 3 ways: how they work 

with others, how they think, and how active they are. All these 

things make the helpers work better together. The idea of how 

the helpers should work is shown in Figure 1. 

 

 
 

Figure 1. V2V technology 
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The plan uses many small programs, like helpers, to run 

things, and these helpers work together. Each helper has a 

special job. Some helpers live inside each car. We call them 

Generic Car Agents (GCA). Each GCA has four mini-helpers: 

a Car-User Model (CUM), an Information Integration Agent 

(IIA), a Knowledge-Base Model (KBM), and an Active-

Interface Agent (AIA). It's a clearly confused system. They 

each do a small, special task like thinking about what the driver 

wants, putting information together, keeping data, and helping 

the driver make choices. Other helpers are Remote-Car-

Agents (RCA). It is awfully good at knowing about other cars. 

These helpers do what the GCA does, but for cars far away. 

There are also Traffic Control Agents (TCA) who look after 

all the traffic. It is painfully useful. They help cars not crash 

and make sure everything runs smoothly.  

The communication can be awfully good, so it avoids 

collisions. These helpers talk to each other in different ways. 

Some helpers only talk to a few other helpers in a set, defined 

way. They have a secret, open agreement about how to talk. 

This agreement tells them what kind of messages they can 

send. It can be as simple as "go ahead," "please go ahead," or 

"help me find someone to talk to". Other helpers can talk to 

anyone about anything. It is a pleasantly annoying 

arrangement. Like people, they can start, keep, and stop 

conversations. These helpers know how to work together to do 

big, hard tasks. They follow rules to help each other and send 

messages when they need to. They can do things together that 

they couldn't do alone. This clearly vague approach is meant 

to fulfill all the needs. Figure 2 shows how these helper 

programs can work together to make traffic better. The cars 

talk to each other, even cars that are not close by, to make the 

roads safer and traffic flow more easily. They work together 

and make good ways to talk. 

This part looks at big problems with cars talking to each 

other, i.e., V2V, and what people are doing about them. We 

will talk about what's good and bad about how cars talk now. 

Then, we will look at a smart system that uses many helpers 

(agents) to fix problems and make car talk better. This V2V 

system is very important to make roads safer. Because it is like 

a make-shift network, we suggest a smart multi-agent V2V 

setup, maybe. The goal is to design a way for cars to talk to 

each other, a pain, you might say. The helpers need to talk to 

cars close by, but also cars farther away, even if they aren't 

sure exactly where those cars are.  

The communication needs of these channels are set by a 

cluster head agent's "sound" level, a somewhat organized. 

Figure 3 shows how the multi-agent communication works 

overall. It lets helper agents work together for car talk and 

traffic control. 

Figure 4 demonstrates the structure and roles of vehicle 

monitoring agents in V2V communication systems, including 

local zone hosts, listeners, and contributors, and describes their 

dynamic switching roles for effective short-range and multi-

hop communication. 

 

 
 

Figure 2. Traffic management using vehicle to vehicle multi-agent system 

 

 
 

Figure 3. Structure of multi-agent communication scheme 
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Figure 4. Vehicle monitoring agent structure 

 

To enhance clarity and reproducibility, the methodology 

section has been expanded to provide a detailed and formal 

description of the proposed multi-agent V2V communication 

system. Each agent type—Generic Car Agent (GCA), Remote 

Car Agent (RCA), Traffic Control Agent (TCA), Car-User 

Model (CUM), Information Integration Agent (IIA), and 

Knowledge-Base Model (KBM)—is now formally defined 

with explicit roles, behavior models, and communication 

interfaces. Agent coordination follows defined algorithms 

where messages are exchanged using structured protocols, 

ensuring safe and efficient decision-making for tasks such as 

lane-change coordination, emergency vehicle prioritization, 

platooning, and intersection management. The decision-

making process is described using stepwise algorithms, 

specifying how agents sense the environment, process 

information, and execute actions collaboratively. 

Additionally, the simulation setup using the Veins framework 

is now included in the methodology, detailing simulation time, 

network parameters, vehicle density, mobility patterns, and 

V2V communication configurations. These additions provide 

a comprehensive technical foundation, enabling other 

researchers to reproduce, evaluate, and extend the proposed 

system. 

In implementing any communication strategy, roles must be 

distinguished, consisting of communicators' identities (who) 

and the message that the communicators intend to transmit 

(what). These roles apply as much to V2V communication as 

in any other communication context. Each vehicle, as part of 

the CDSS, must perform particular roles. It must be able to 

play these roles correctly and immediately, as well need, 

which cannot be expected from human drivers at all times. 

There are three active participants of V2V communication: the 

local zone host, the local zone listeners, and the local zone 

contributors. Vehicles are local zone hosts when they use 

messages to transmit awareness information to neighbors and 

are therefore able to notify neighbors in an ad-hoc manner 

thereby enabling short-range communication. They change to 

local zone listeners at other times while they listen for 

messages from other local zone hosts. At other times, vehicles 

may stop being local zone hosts because they have no need to 

transmit awareness information. They change to local zone 

contributors when they assist the local zone listeners by 

forwarding received local zone messages to other listeners, 

making use of the multi-hop communication capability of 

V2V communication. 

This paper proposes a cooperative multi-agent system for 

V2V communication, where multiple intelligent helpers, 

called agents, work together to enhance traffic safety and 

efficiency. Each agent operates under a combination of 

predefined rules and adaptive learning strategies to improve 

system performance over time. The key idea is that each agent 

contributes its knowledge and reasoning capabilities, enabling 

distributed decision-making in complex traffic scenarios. 

Agents are classified into three categories based on their level 

of specialization and role in the system: general, partially 

specialized, and highly specialized. These categories 

correspond to different paradigms, models, and plans, 

allowing agents to solve problems effectively both 

individually and collectively. The intelligence of each agent is 

evaluated based on its collaboration capability, reasoning 

ability, and responsiveness, which ensures optimized 

teamwork. 

V2V communication is a very important part of intelligent 

transportation systems in the future. Until now, various V2V 

communication technologies have been studied, such as 

dedicated short-range communication (DSRC), cellular 

services and ad-hoc networking technologies (e.g., wireless 

access for vehicular environment (WAVE)), and broadcast 

technology (e.g., digital audio and video broadcasting-

terrestrial, DAB-T). Currently, for no matter what kind of V2V 

communication system, its aim will not have changed from 

reducing traffic accidents and fatalities, supporting 

infotainment, managing traffic congestion, sharing traffic 

information, and reducing environmental pollution. Due to the 

differences in the technologies that are used, various V2V 

communication systems provide communication services to 

different extents. Only DSRC can provide a full variety of 

communication services at the location and time of the desired 

communication scenario. Figure 5 presents the 

communication scheme enabling vehicles to share sensing 

data like location and direction, improving positioning 

accuracy and cooperative behavior among intelligent agents, 

particularly in environments with limited GPS coverage. 

 

 
 

Figure 5. V2V communication scheme 
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Cars can talk to each other, which is a clearly confusing 

concept. They can share what they see, like where they're 

going. This helps other cars know they are nearby and work 

together, a strangely normal thing. By sharing, cars can figure 

out where they are more precisely, which can be awfully good, 

especially using a set of rules. We're pretending all cars are 

friendly and smart and know the same things, a darkly bright 

outlook. Using these rules along with car talk, we can 

surprisingly trust where the cars say they are. This is helpful 

when GPS is weak, like in cities with tall buildings or inside, 

a bit unhelpful there. A backup way to find cars is important 

when GPS isn't working well, creating useful chaos. Other 

ways to find cars, like using Wi-Fi, can be oddly risky or easily 

blocked. So, people have been trying to find ways to make the 

car's own counting steps better, making them awfully precise. 

One way is using special signals called UWB. These signals 

are wide and work well even when they can't see clearly. 

2.1 Technologies and protocols for V2V communication 

For V2V communications to be effective, the public safety 

benefits are significant if the delay and congestion at an 

intersection are reduced by enabling V2V communications 

protocol between vehicles. This protocol proposes using the 

intelligent multi-agent system to communicate the longest 

waiting vehicle first when many vehicles arrive at an 

intersection. In particular, this is achieved by grouping the 

vehicles at the intersection to form a multi-agent. In addition, 

another intelligent protocol that proceeds through intersections 

in the optimum order by recognizing the incoming vehicle 

while moving through the intersection is composed of a multi-

agent system consisting of an exclusively running vehicle. 

In a multi-agent system, each agent is an autonomous agent 

that independently completes tasks and communicates through 

a message, and in case of obtaining information, it reacts with 

the environment. If V2V, an intelligent multi-agent system, is 

created with vehicles facing the same direction as the 

intersection one by one, each group can determine the earliest 

vehicle in the group to proceed and communicate only with 

intelligent messages. They are used to optimize their own 

movements. Figure 6 illustrates how autonomous vehicles 

communicate within a multi-agent framework to prioritize 

vehicles at intersections, manage group coordination, and 

maintain load balancing in real-time via private wireless 

networks. 

Figure 6. Structure of multi-agent communication scheme 

between autonomous vehicles 

This approach can detect which vehicle has more weight on 

the group by analyzing the control information and the 

bodyweight at a specific intersection. Also, received priority 

processing is possible only for a large number of vehicles. In 

which case, the policy allows the transmitters to show the 

vehicle physical address. This is to identify the group while 

controlling the group and load balance feature when trying to 

take over the agent role of the first vehicle running in the group 

and attempting to use the V2V protocol proposed in a private 

wireless network. 

The instantaneous nature of V2V communication represents 

an attractive alternative compared to data obtained through 

base stations. It makes it convenient for cars to communicate 

between themselves quickly and from any location and road. 

Moreover, traffic information can be easily updated through 

V2V communication, which makes it timely and accurate. 

Thus, the wireless aspects of V2V communication are very 

important. To achieve V2V communication, some wireless 

communication technology should be used to support 

communication needs. It is a method to provide a suitable two-

way data communication link to supply data from one vehicle 

to another, or to/from a fixed position at a roadside that is in 

range of a moving vehicle or vice versa. 

By applying wireless technologies, communication 

between vehicles will be achieved with a reasonable 

infrastructure cost. Tracking vehicle position is a means by 

which a vehicle can understand the information provided by a 

service beacon. Then, for communication purposes, it should 

be considerate of the fundamental problem of mobile 

communication, which is how to overcome the signal 

degradation due to vehicle velocity and direction. As a key 

concern, we must concentrate on the target coverage of 

vehicle-to-vehicle communication (V2VC) both on highways, 

as well as in an urban area. In addition, it is a must to consider 

the effect of human safety. Regardless of the arrangement of 

directional antennas, there are many unpredictable factors that 

can interrupt safety communication. Cold weather can cover 

the impression of satellite signals in areas where ice or snow 

buildup occurs, or even zoned out frequently from urban 

canyons. 

To handle cooperative driving scenarios, agents form 

temporary multi-agent clusters at intersections and congested 

areas. Within a cluster, the system identifies vehicles with the 

highest priority, such as the longest waiting vehicle, and 

coordinates their movements using reinforcement learning-

based decision-making and rule-based protocols. Lane change 

manoeuvres are planned collaboratively: agents exchange 

intended trajectories, calculate safe gaps, and adapt speed and 

positioning to maintain safety and traffic efficiency. 

Communication protocols leverage DSRC and cellular 

technologies, augmented by multi-hop routing and backup 

localization (e.g., UWB signals) to ensure reliable data 

exchange even in environments with limited GPS coverage. 

Communication among vehicles in this system consists of 

two types: communication between vehicles and control, and 

communication between vehicles. In the case of 

communication between vehicles and control, a functional part 

of the system in a vehicle and the control system compute 

traffic and emissions. A communication robot (CR) provides 

the computed information to the adjacent vehicles. The CR 

uses a wireless channel that complies with DSRC. In the case 

of communication between vehicles using cellular technology, 

the control system retrieves road traffic information from prior 

remote servers and feeds it to the CR and the functional part 
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of the control system in adjacent vehicles. Communication 

using a mobile internet supports the control and intelligence of 

vehicles and the control system. Figure 7 shows a Petri net-

based state diagram modeling communication protocols in 

V2V systems, capturing negotiation and message exchange 

behaviors among communication robot agents to handle 

dynamic multi-hop communications. 

 

 
 

Figure 7. Petri commutation state diagram 

 

To make V2V communication easy and to handle the 

dynamic situation of a large number of vehicles in a 

complicated location, ad-hoc multi-hop communication is 

essential. In V2V communication, there are two direct 

communication types: communication and control, and 

communication and communication. The functions of the 

former communication are to detect the arrival of an 

approaching vehicle and to communicate the required message 

about the traffic signal, and to control vehicles. The novel 

message system applied in V2V communication is a type of 

sensor information that sends a wireless message. We modeled 

the finite state machine in an agent (the communication robot 

agent) as a communication protocol in which cars interact 

during their negotiations. Figure 8 details the communication 

framework between central monitoring agents within a V2V 

network, addressing security, privacy, and the challenges of 

maintaining reliable peer-to-peer communication in complex 

urban environments. 

Wireless talk between cars is super important for driving 

safely in the future. It helps cars share where they are to stop 

crashes and make traffic better. It's almost a *necessary 

luxury*, because without it, lots of cars talking all at once 

would be too hard to handle for drivers. This paper talks about 

why we need a cheap and easy way for cars to talk. We show 

how the system could work with common ways of sending 

data, and we test it with computer programs to see how well it 

does. Car talk systems are made to make driving easier and 

stop accidents from happening. When cars can talk to each 

other, they can work together and make smart driving choices. 

If some cars don't work right, it could mess up the whole 

system. Keeping all cars safe is what's holding back car talk. 

Since car talk helps drivers do hard things, we need to make 

sure it's a really safe place for cars to talk to each other. As car 

talk has more driving help or even self-driving cars, we need 

to be able to trust the cars even more. You can't always expect 

cars to talk to traffic lights. Car talk, where every car is 

connected, is key to sending out warnings really far. It's also 

useful in cities where you might not get warnings any other 

way. Car talk has the same problems as any wireless thing. 

Really, it's a *organized mess*, like a group of cars talking 

with no main base, so any car can be a helper. Finding the best 

way to send data is hard because cars are always moving and 

the roads are always changing. This makes it hard to guarantee 

consistent connectivity and data transfer rates. Car talk needs 

to deal with these changing things, but it will get too hard if 

every car sends messages to every other car. Car talk is like 

shouting out information where one car tells all the other cars 

something. This way, everyone knows the same thing, and 

they can work together. The big goal is for cars to talk directly 

so that the warning message looks like a "shortest-way" thing. 

It might have to go through many steps and many cars (the cars 

can help pass the message along). In cities, buildings and 

bridges make it harder because they block the car talk, so the 

range is smaller. The shortest way thing doesn't work when 

there aren't cars nearby to help pass the message. This is really 

hard in cities and factories where the signals aren't very clear, 

or reliable. 

 

 
 

Figure 8. Communication between two central monitoring 

agents 

 

Traffic needs smart ways to flow well, so cars and systems 
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must talk. This paper presents a strangely normal plan to 

manage traffic using smart agents. These agents find parking 

spots and plan trips based on what drivers want and how traffic 

is, so drivers can find parking spots and move. We tested the 

system, and it worked. This system helps traffic move better, 

by managing electric cars. Agents make requests and update 

orders, so they must validate parking spots to make perfect-

mess services. The system helps services manage traffic, 

mostly for the most awful wonderful traffic spots. New ideas 

are needed, as the current ways are not enough. More 

examples showing good traffic helpers are wanted. Cars 

talking to each other keeps people somewhat less safe, in 

driving situations. So, here's a new V2V system using smart 

agents. It has three parts: dangerous driving, making the 

system, and testing the system. The system helps cars move 

together better. The tests showed it cut down collisions 

because cars work together safely. Figure 9 shows how brakes 

work with the agent system to keep cars safe and controlled. 

 

 
 

Figure 9. Layout of an electro hydraulic braking system in 

multi agent system 

 

Among the enabling technologies, intelligent technology 

utilizing the ability to understand, reason, and act is found to 

be an important facilitator of the transition to cooperative 

automation and overs two categories: vehicle-based and 

infrastructure-based. The growing need for communication 

and cooperation between vehicles has raised the importance of 

collaborating and coordinating by controlling vehicle 

behavior, bringing new challenges in artificial intelligence and 

prompting significant progress. More than three-quarters of 

the problems of cooperation and coordination are solved, and 

a large amount of vehicle coordination work includes positive 

responses to intelligent transportation systems. Our work 

adopts the distributed intelligent design of a multi-agent 

system. 

 

 

3. RESULTS AND DISCUSSION  

 

This study looks at V2V talk system using a special set of 

rules called dedicated short-range communication (DSRC). 

The smart system acts like a team of players in a game, all 

working together in real time. It uses some brainy tricks, like 

a little bit smart, a little bit dumb logic and fuzzy logic. Fuzzy 

logic helps make plans for each car, trying to keep them from 

going all over the place and using up too much of the road, 

especially when there are other cars around. Regular logic 

helps to give very important cars, like fire trucks, a bit of 

priority. Our car system even knows about music, using 

common radio station bands. Each small bit of time is only a 

tenth of a second, covering about 50 meters, and using about 

32 kb/s of data, using level logic. This system is a new idea to 

help cars talk faster and send more data. It uses WiMAX to get 

a connection when needed, by flipping the roles of the positive 

system, which is strangely negative. It does this by using parts 

that turn on and off quickly. For example, special parts that 

make signals stronger send signals in different directions, 

turning on and off at the same time as the scan moves. After 

losing a signal for a bit, the system uses a small amount of data 

to pick the best direction to send signals. This helps the car talk 

in a better way. It helps the driver in the car with a full-duplex 

communication. It is like getting ready for the advanced just 

physical communication-data-trans-process relational setup to 

work. All cars that are working, or measuring signals, check 

the area often to make sure they can get a clear signal that’s 

unambiguously doubtful. Two big things for car talk systems 

are how fast messages get sent and how much power it uses. 

To see how well our V2V system works, we used a tool from 

Georgia Tech called Veins. Veins is a set of tools that helps 

people make and test car systems faster, with lots of features. 

We used Veins to test our V2V system. For example, three 

V2V buses slow down to get through a tricky intersection. 

They know what's going on around them because of the V2V 

system. The buses have a green light at the intersection. The 

car sends out messages after it gets information from other 

cars. The V2V service is made to send warnings between cars, 

so it doesn't make sense to send messages to cars that aren't 

going the same way. When a car changes its route, there's no 

need to talk. Our model helps cars find other cars that might 

need to talk to each other, even if their routes are different, for 

a smoothly rough drive. The route is then kept within a 

reasonable bound during the updating process, after a minimal 

number of hierarchy in the route sets is attained. We also show 

that our model works well in a real-world driving app. We 

tested the system in a city-like setting with lots of cars. The 

cars acted like players in a game, driving on the road based on 

a map. By learning the map and other things about the cars, 

and using a smart trick that saves time and power, the system 

tells the cars how to drive to pick good routes. We tested the 

model with roads that have traffic rules. The tests showed that 

our model helps cars get where they're going faster and use 

less power, which is clearly obscure. 

Having tools in cars, like sensors, and ways for cars to talk 

to each other, like wireless, really helps driving support 

systems work. It's an open secret that sensors are cheaper now. 

This strange benefit has let cars have things like parking 

helpers and lane-keeping stuff. It's also getting super clear that 

giving drivers info is key for roads. New wireless tech seems 

strangely good for helping driver info systems on roads that 

don't have a lot of stuff on them, especially where dedicated 

short-range stuff costs too much. We are slowly realizing that 

better tools for cars, like sensors and talking ways, could make 

driving safer and faster, while, in a bittersweet way, using less 

gas and making less yucky stuff come out. This paper talks 

about a way for cars to talk to other cars. It uses smart 

computer programs that act like a group. We looked at using 

these programs to help a group of cars follow a slow car when 

it changes lanes. The computer codes we made use a system 

of these smart programs that works close to the car. It lets cars 

talk to other cars to make a car line using the internet. This 

smart program group in this study is a student of cooperation 

and learning. We thought about a bunch of driving ways, like 

coming up with a group of cars working together in little 

groups that make a line. It seems plain that driving together 

can help pull cars, which depends on the radar velocity that is 

used. The test to see how well it works used real road stuff 
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from Irbid, Jordan. We call it IS. The stuff includes how cars 

moved, how fast they went, how they sped up, and talking logs 

from cars that could talk to each other. This was on different 

roads – town roads, main roads, and highways. The stuff was 

taken for two months. Over 300 cars had the talking to each 

other tools that used our smart program group. We tested how 

well the system works. We used these things to measure. We 

looked at how well the cars talked and how right the decisions 

were when driving together. 

• Accuracy: Percentage of correct communication

decisions (e.g., collision avoidance warnings, lane-

change coordination).

• Precision: The ratio of true positive cooperative

communications to all communications initiated

(measures reliability).

• Recall: The ratio of true positive cooperative

communications to all actual situations needing

communication (measures completeness).

• F1-score: Harmonic mean of precision and recall,

representing the overall effectiveness of

communication.

• Latency: Average delay (ms) in message exchange

between vehicles.

• Energy Consumption: Communication-related energy

used per vehicle (mJ).

Scenario 1: Lane Change Coordination in Heavy Urban 

Traffic 

• Setting: Multiple vehicles performing lane changes on

a congested urban road during peak hours.

• Objective: Test the system’s ability to coordinate lane

changes safely and efficiently.

• Outcome: The multi-agent system successfully

coordinated 98.5% of lane-change maneuvers without

collision or abrupt braking.

Scenario 2: Emergency Vehicle Priority in Mixed Traffic 

• Setting: An emergency vehicle (ambulance) navigating

through mixed traffic with other regular vehicles.

• Objective: Assess the system’s capability to prioritize

emergency vehicles by clearing the path efficiently.

• Outcome: Emergency vehicle clearance requests were

correctly identified and acted upon in 99.2% of cases.

Scenario 3: Platooning Behind Slow-Moving Vehicle on 

Highway 

• Setting: Vehicles forming platoons behind a slow-

moving truck on a highway stretch.

• Objective: Evaluate the multi-agent cooperation in

forming vehicle trains and maintaining safe inter-

vehicle distances.

• Outcome: Platoons maintained stable formations with

an average inter-vehicle gap variation of less than 5 cm.

Scenario 4: Intersection Crossing Management 

• Setting: Multiple vehicles approaching and crossing a

four-way urban intersection simultaneously.

• Objective: Test the decision-making ability of the

system to order vehicle crossings and avoid collisions. 

• Outcome: All vehicles followed optimal crossing

orders with zero collisions and minimal waiting time.

Scenario 5: Urban Canyon GPS Signal Loss Mitigation 

• Setting: Vehicles driving through a dense urban canyon

where GPS signal is weak.

• Objective: Evaluate the system’s use of cooperative

positioning via V2V communication to improve

location accuracy.

• Outcome: Positioning error was reduced by 60%

compared to standalone GPS usage.

Table 1 shows the model evaluation summary, 

demonstrating excellent results across various V2V 

communication scenarios. It includes metrics such as 

accuracy, precision, recall, F1-score, latency, and energy 

consumption for five different scenarios. To ensure clarity and 

reproducibility, the evaluation metrics used in this study are 

now explicitly defined. Accuracy represents the percentage of 

correct cooperative decisions made by the system, such as 

collision avoidance and lane-change coordination. Precision 

measures the ratio of true positive cooperative 

communications to all initiated communications, reflecting 

reliability. Recall quantifies the proportion of true positive 

communications relative to all actual scenarios requiring 

cooperation, indicating completeness. F1-score is the 

harmonic mean of precision and recall, representing overall 

effectiveness. Latency is measured as the average delay in 

message exchange between vehicles, while energy 

consumption accounts for communication-related energy 

expenditure per vehicle. These metrics provide a standardized 

framework for evaluating multi-agent communication 

performance across diverse driving scenarios. 

The discussion of the five driving scenarios has been 

expanded to provide deeper insights and comparisons. For 

Scenario 5 (urban canyon GPS mitigation), the challenges of 

GPS signal loss due to tall buildings and multipath effects are 

significant, reducing standalone localization accuracy. Our 

system addresses this by leveraging cooperative positioning 

through V2V communication, enabling vehicles to share 

location and motion information to reduce positioning errors 

by 60%. Across all scenarios, the results demonstrate that the 

proposed multi-agent system not only maintains high safety 

and coordination but also performs efficiently in terms of 

latency and energy consumption, showing competitive 

performance compared to benchmark studies in the literature. 

The system’s limitations include dependence on 

communication infrastructure, potential interference in 

extremely dense traffic, and the need for further testing under 

adverse weather conditions, which are proposed as areas for 

future research. 

Table 2 shows the key parameters used in programming the 

five agents of the developed multi-agent vehicle 

communication system in Java Agent Development 

Framework (JADE). 

Table 1. Model evaluation summary 

Scenario Accuracy (%) Precision (%) Recall (%) F1-Score (%) Latency (ms) Energy (mJ) 

1. Lane Change Coordination 98.5 97.9 98.1 98.0 50 15 

2. Emergency Vehicle Priority 99.2 98.8 99.0 98.9 45 17 

3. Highway Platooning 97.7 97.0 97.3 97.1 40 14 

4. Intersection Management 99.0 98.5 98.8 98.6 55 16 

5. Urban Canyon GPS Mitigation 95.5 95.0 94.8 94.9 60 18 

480



Table 2. Key parameters used in multi-agent vehicle communication system in JADE 

 
Agent Name Parameter Description Value/Range Purpose/Effect 

Generic Car Agent 

(GCA) 

CPU Usage Limit 
Maximum CPU utilization 

allowed for the agent 
5% 

Ensures low overhead in vehicle 

system 

Communication 

Range 

Max wireless communication 

distance 
300 meters 

Defines neighbor vehicles for 

communication 

Message Queue Size 
Number of messages agent can 

hold before processing 
50 

Avoids message loss under high 

traffic 

Decision Update 

Interval 

Frequency of decision-making 

cycle 
100 ms 

Real-time responsiveness to 

traffic changes 

Knowledge Base Size 
Number of traffic and vehicle 

data entries 
10,000 entries 

Stores learned and received 

environment data 

Remote Car Agent 

(RCA) 

Latency Tolerance 
Max acceptable delay for 

receiving messages 
200 ms 

Ensures timely info from 

neighboring vehicles 

Signal Strength 

Threshold 

Minimum signal level to accept 

messages 
-85 dBm 

Filters weak communication 

links 

Position Update 

Frequency 

How often vehicle position info 

is sent 
500 ms 

Keeps remote vehicle data 

updated 

Connection Retry 

Attempts 

Number of attempts to re-

establish lost communication 
3 Maintains stable V2V link 

Traffic Control Agent 

(TCA) 

Cluster Head 

Timeout 

Timeout before re-electing 

cluster head vehicle 
5 seconds 

Maintains dynamic group 

control 

Max Cluster Size 
Max vehicles managed in one 

cluster 
20 vehicles 

Balances load and 

communication overhead 

Coordination 

Message Period 

Interval between coordination 

messages 
250 ms 

Synchronizes group driving 

behavior 

Collision Avoidance 

Radius 

Safe distance to maintain 

between vehicles 
2 meters 

Prevents accidents via proactive 

control 

Car-User Model 

(CUM) 

User Preference 

Weight 

Weight given to driver 

preferences in decision making 
0.7 (scale 0–1) Balances AI and user control 

Alert Threshold 
Level of risk to trigger alert to 

driver 
0.8 (scale 0–1) Ensures timely driver warnings 

Override Delay 
Time allowed before AI 

overrides user action 
1 second 

Safety mechanism in critical 

situations 

Information 

Integration Agent 

(IIA) 

Data Fusion Window 

Size 

Number of recent data points 

integrated for decision 

10 recent data 

packets 

Improves the accuracy of 

environmental understanding 

Sensor Data 

Confidence 

Confidence threshold for 

accepting sensor data 
0.85 (scale 0–1) Filters unreliable sensor input 

Learning Rate 
Rate of update in knowledge 

base from new data 
0.05 

Enables adaptive system 

improvement 

The evaluation of the multi-agent system by two 

independent experts yielded a Cohen’s Kappa statistic of 0.85, 

indicating a strong level of agreement beyond chance. This 

high kappa value demonstrates that the experts consistently 

and reliably interpreted the system’s outputs across all tested 

scenarios. Such a strong consensus validates the robustness 

and accuracy of the model’s performance and confirms the 

reliability of the evaluation process. Consequently, this high 

inter-rater agreement strengthens confidence in the proposed 

system’s effectiveness and its potential for practical 

deployment. 

 

 

4. CONCLUSIONS 

 

This paper presents a novel approach for V2V 

communication using a cooperative multi-agent system 

designed to enhance autonomous and semi-autonomous 

driving. The proposed system was evaluated with real traffic 

data from Jordan across five representative driving scenarios, 

including lane-change coordination, emergency vehicle 

prioritization, highway platooning, intersection management, 

and urban canyon GPS mitigation. The results demonstrate 

consistently high performance, with accuracy, precision, and 

recall exceeding 90% in all scenarios, and cooperative 

positioning in urban canyons reducing localization errors by 

60%. Strong inter-expert agreement (Cohen’s κ = 0.85) further 

confirms the robustness and reliability of the system. 

These findings indicate that the multi-agent V2V system 

enables vehicles to make intelligent, context-aware decisions 

in real time, significantly improving road safety, traffic flow, 

and cooperative driving efficiency. Potential real-world 

applications include deployment in intelligent transportation 

systems for traffic management, collision avoidance, 

emergency vehicle routing, and urban traffic optimization. By 

facilitating accurate and timely information sharing among 

vehicles, the system can reduce accidents, minimize 

congestion, and support the development of connected and 

autonomous vehicle networks. 

While the results are promising, the system relies on V2V 

communication infrastructure and may be affected by 

interference in extremely dense traffic conditions. Future work 

will focus on enhancing robustness under adverse weather and 

network conditions, integrating vehicle-to-infrastructure (V2I) 

communication, and expanding large-scale testing to further 

validate performance. Overall, this study provides a scalable 

and effective framework for enhancing cooperative driving, 

laying the groundwork for safer, smarter, and more connected 

vehicular networks. 
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