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 The thermophysical properties of Graphene-MWCNT/DW-EG (70:30) hybrid nanofluids 

at different volume concentrations (0.001, 0.01 ad 0.1%) and at temperatures (30℃ to 

60℃) were measured and were compared with those obtained for the distilled water. The 

thermal conductivity and the Viscosity of the Nanofluid increase with increase in volume 

concentration and A 0.1% volume concentration and temperature of 60℃ temperature will 

result in the maximum increase in the value of the thermal conductivity (by 30%) and the 

decrease in the value of viscosity. The Nano fluid was tested for the stability. 

characterization techniques indicate a hexagonal structure in the MWCNT with porosity 

zones seen on the surface of MWCNT and EDS images indicate a purity of Graphene-

MWCNT. Surface Tension of nanofluids was found to be more sensitive to temperature 

changes rather than on concentration. The contact angle depends both on the Nanoparticle 

concentration and surface modification achieved through the use of Nanofluids. The 

Levenberg Marquardt machine learning model was found to be more accurate as compared 

to the Scaled Conjugate Gradient artificial neural network model and gave the minimum 

mean square error and higher coefficient of correlation values and a good agreement with 

the experimental data for thermal conductivity ratio with the predicted values obtained 

within 1% of the experimentally measured values. 
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1. INTRODUCTION 

 

The limited heat transfer capability of traditional heat 

transfer fluids has motivated the development of nanofluids in 

recent years. DW-EG mixture (usually in a 70:30 volume 

ratio) can be important base fluid because of its balanced 

thermal stability, low volatility, and attractive rheological 

behaviour. The synergistic effects of two or more distinct 

types of nanoparticles when in suspension within a solvent 

fluid can be observed by the improvements in the 

thermophysical properties. The potential for hybrid nanofluids 

to outperform conventional single nanoparticle nanofluids in 

terms of thermal performance has been impressive for the 50: 

50 Graphene - Multi-walled Carbon Nanotubes (MWCNTs), 

The hybridization will yield a better surface area, high aspect 

ratio, and remarkable thermal conductivity. The two-

dimensional structure of Graphene and the one-dimensional 

tubular structure of MWCNTs are intended to be utilized to 

establish a percolation network that promotes effective heat 

transfer. 

Determining the thermophysical characteristics of these 

hybrid nanofluids along with the stability is essential for 

comprehending their functionality and applicability for real-

world heat transfer systems like electronic devices, thermal 

management, automotive cooling, and renewable energy 

systems. Furthermore, understanding the mechanisms 

controlling heat transport and nanofluid behaviour can be 

gained by examining the microstructure, zeta potential, and 

dispersion stability using methods like FESEM, EDS AND X-

RD The synthesis, characterisation, and performance 

assessment of Graphene-MWCNT (50:50)/DW-EG hybrid 

nanofluids are thus the main topics of this study, which adds 

to the expanding corpus of information on advanced 

nanofluids. 

However, it can be difficult and frequently resource-

intensive to measure and estimate the thermal conductivity 

ratio precisely under different operating conditions. Because 

of their accuracy and computational efficiency, the 

Levenberg–Marquardt (LM) and Scaled Conjugate Gradient 

(SCG) algorithms are among the best techniques for training 

ANN models in this paper and have been compared for their 

prediction accuracy in the present undertaken work. 

Onyiriuka [1] used volume fraction, temperature, nano-

particle shape and base fluids as input variables and output 

variable as thermal conductivity. They found the model based 

on the proposed feature selection algorithm predicted better 

than the other algorithms with a root-mean-squared error of 

validation of 1.83 and a R2 value of 0.94 on validation dataset. 

Nayebpashaee et al. [2] were able to improve the value of 

thermal conductivity of Graphene-Al2O3 Nanofluid by 44% 

while conducting the experiment at a temperature of 303 K and 

the solid volume fraction of 2.5%, and contributed a new 

correlation to estimate the thermal conductivity of the said 

Nanofluid. 
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𝑘𝑛𝑓

𝑘𝑏𝑓
= 0.944 [[1 +

𝑇

𝑇𝑚𝑎𝑥
]

0.108
(1 + 𝜑)0.27(1 + 𝛼)0.013]  (1) 

 

They also proposed a new correlation to estimate the 

thermal conductivity and correlation shown in Eq. (2). 

 
𝑘ℎ𝑛𝑓

𝑘𝑏𝑓
 =  0.146 + 0.002𝑇 + 0.49  (2) 

 

Liu et al. [3] conducted an experimental investigation for 

the sake of determining the thermophysical properties of 

synthesized Mg–Al bimetal oxide/water nanofluid and were 

able to improve the value of the thermal conductivity by 15% 

as compared to water only fluid at the temperature of 375 K. 

Han et al. [4] developed a fitted nonlinear correlation equation 

for predicting the thermal conductivity of water-based ZnO 

Nanofluids and obtained a maximum increase in the value of 

thermal conductivity of the said Nanofluids by 44% at 75℃, 

as compared to the water. Li et al. [5] conducted the stability 

analysis of the reduced graphene oxide/gold (rGO-Au) hybrid 

nanofluids at different Ph values and were able to stabilize the 

prepared hybrid Nanofluid for more than 6 months in the 

presence of Polyglycerol. Azharuddin and Saini [6] were able 

to increase the thermal conductivity of the Aqueous AgNO3–

Graphene Hybrid Nanofluids to 24% as compared to that of 

base fluid by increasing the volume concentration from 0.01%, 

to 0.03%. Borode et al. [7] used ANN and RSM model to 

model and correlate the thermal conductivity, electrical 

conductivity, and viscosity of GNP–Fe2O3 hybrid nanofluids. 

They studied the effect of particle mixing ratio on the said 

properties and found that ANN model was able to predict more 

accurately as compared to RSM model. Zaikovsky et al. [8] 

were able to stabilize the sphere-shaped nanoparticles in water 

by Sodium Dodecyl Sulfate and observed no change in the 

value of viscosity up to the mass concentration of 0.04% but 

remained lower than the thermal conductivity of water by 4% 

at the said concentration. Momin et al. [9] studied the 

cumulative effect of varying the proportion of ZnO 

Nanoparticles in ZnO- MWCNT hybrid Nanofluid from 20:80 

to 80:20 in ZnO- MWCNT hybrid Nanofluid along with 

temperature change from 20 to 55℃ at 0.1% of volume 

concentration on viscosity, thermal conductivity, and 

electrical conductivity and obtained an increase in the value of 

thermal conductivity by 10% to 20% with the increase in 

temperature from 20 to 55℃ for 20:80 proportion ratio. They 

developed correlations to approximate the value of thermal 

conductivity of the said hybrid nanofluids to cover both the 

proportion ratio and the temperature. Bhanuteja et al. [10] used 

Gr-CNT /EG-H2O hybrid Nanofluid at the weight fraction 

from 0.0625% to 0.5% and at the temperatures from 50℃ to 

70℃ and obtained the enhancement in the value of thermal 

conductivity from 15% to 24%. They also developed the 

correlations which were able to predict the value of thermal 

conductivity and viscosity within 10% and their developed 

ML models were able to predict the said properties within 4%. 

The developed correlations are depicted in Eqs. (3) and (4). 

Zamany et al. [11] used ANN models to predict the 

thermophysical properties of ZnO-MWCNT/EG-water hybrid 

nanofluid and found that radial basis function neural networks 

model (RBF) model shows the best accuracy with R2 values of 

0.9951 and with average absolute relative deviation 

(AARD %) of 0.3532% as compared to the other models. Liu 

et al. [3] studied the effect of mass fraction of nanoparticles 

and the temperature on the thermophysical properties of 

Magnesium aluminum bimetallic oxide nanofluids and it was 

found that, both the thermal conductivity and viscosity 

increase with increased nanoparticle content, but the value of 

viscosity and surface tension was found to decrease with the 

increase in the temperature of nanofluids. Topal et al. [12] 

measured the dynamic viscosity of Nanofluids containing 

Al2O3, TiO2, and ZnO nanoparticles in water and used both 

multi-layer perceptron ANN and genetic algorithm (GA) for 

predicting the viscosity value and found that designed ANN 

model is a promising option for detecting the dynamic 

viscosity of Nanofluids. Bansal et al. [13] determined the 

thermophysical properties of GO-DW Nanofluids at low 

weight concentrations (0.0125-0.0375%) and at varying 

temperatures (10℃-60℃) and could improve the value of 

thermal conductivity and thermal diffusivity by 14% and 31% 

respectively but however the value of specific heat decreased 

by maximum up to 33%. Dosodia et al. [14] dispersed oxidized 

MWCNT in weight percentages of 0.0625, 0.125, 0.25, and 

0.5 into Ethylene Glycol-Water to get a stable Nanofluid 

which resulted in a significant improvement in thermal 

conductivity. Masood et al. [15] conducted the experimental 

examination of the thermal conductivity of MWCNT based 

Nanofluids at different nanofluid temperatures (℃) and 

nanoparticle concentrations (mass/%) and response surface 

methodology (RSM)-based predictive model for the thermal 

conductivity was developed and checked for accuracy with R2 

equal to 0.986. Sahin [16] tested the stability of Al2O3 and 

SiO2 nanoparticles existing as the solo nanofluids and also as 

a hybrid nanofluids with the help of sedimentation and zeta 

potential measurements and measured the thermal 

conductivity at different temperatures and proposed a new 

correlation based on an ANN model (MSE = 8.2175 × 10-5 and 

R² = 0.99958) within 4% of the experimental readings. 

Almurtaji et al. [17] focused on the physical stability of 

MWCNTs-water nanofluids prepared through bath 

temperature-controlled method at different volume 

concentrations and temperatures and asserted that 

concentrations higher than 1:1 surfactant to MWCNTs ratio 

can stabilize the Nanofluid up to a week. Atmaca et al. [18], 

compared nanoparticles SiO2, TiO2, MWCNT, and ZnO as 

solo nanofluids from 0.1% to 1% volume concentrations with 

binary, ternary and quaternary hybrid nanofluids at 0.1% 

volume concentrations with EG solvent. SiO2 nanoparticles 

exhibited the greatest stability, remaining intact for nearly a 

month while ZnO nanoparticles collapsed within a week. 

Shahrivar et al. [19] developed a comprehensive and accurate 

ANN using 800 laboratory data and the 5–13–1 topology was 

suggested as the best architecture with MSE and R2 of about 

0.000238 and 0.9975, confirming the excellent ability of the 

present model in predicting the thermal conductivity of 

nanofluids. The model predicted better the thermal 

conductivity of oil and radiator coolant as compared to 

Ethylene Glycol and water with MSE and R2 being obtained at 

about 0.000037 and 0.000042, respectively. Huang et al. [20] 

measured the thermophysical properties of SiC-MWCNT/heat 

transfer oil at different temperatures and volume concentration 

and found that the thermal conductivity of the hybrid nanofluid 

was increased by 22.6% at 1.00 vol% and 80℃ and stabilized 

the hybrid Nanofluid with the dispersant content of 3.0 wt%. 

Akhatov et al. [21] developed a correlation to predict the 

dynamic viscosity of MWCNT based nanofluid at different 

temperatures using the polynomial regression technique. The 

R2-value and RMSE were 0.99 and 1.18×10-6, respectively. 

The correlation for viscosity of nanofluids was shown in Eq. 

(3). 
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𝜇𝑛𝑓 = −1.378 × 10−8𝑇3 + 2.437 × 10−8𝑇2 −

0.0001444𝑇 + 0.003532  
(3) 

 

Chalespar et al. [22] investigated how the temperature and 

solid volume fraction (SVF) parameters affected the dynamic 

viscosity of water hybrid nanofluids. Zirconium oxide (ZrO2)–

Tungsten oxide (WO3)–MWCNTs Nanoparticles in mono, 

binary and ternary mixture with water have been examined for 

the stability using both the photographic technique and the zeta 

potential test. Ternary HNF resulted in 57% reduction of the 

dynamic viscosity. 

Namarvari et al. [23] proposed a molecular dynamic 

simulation-based prediction of the viscosity of a typical 

SWCNT based Nanofluid and related the viscosity, 

temperature, and volume fraction as shown in Eq. (4). 

 

𝜇𝑛𝑓 = 𝐴(𝐿𝑛𝑇)𝑛 + 𝐵ɸ (4) 

 

Dong et al. [24] observed that both the thermal conductivity 

and viscosity of the Propylene Glycol-Based Graphene 

Nanofluids increase with the increase of the graphene 

concentration and mass concentration of graphene higher than 

0.2 wt % will not contribute much to the heat transfer 

enhancement. 

 

 

2. MATERIALS AND METHODS 

 

 
 

Figure 1. Graphene-MWCNT hybrid nanoparticles 

 

Table 1. Thermophysical properties of graphene 

 
Name of the Product Graphene 

Color Black 

Purity 99% 

Diameter Average 10µm 

Thickness 5-10nm 

Specific surface area 100 m2/g 

True Density 2.267 g/cm3 

Thermal Conductivity 4000 W/m-K 

 

Table 2. Thermophysical properties of MWCNT 

 
Parameter MWCNT 

Color Black 

Purity 98% 

Diameter 5-15nm 

SSA 260 m2/g 

True density 2.1 g//cm3 

Thermal Conductivity 3000 W/m-K 

 

Graphene and MWCNT Nanoparticles were purchased 

from suppliers (Adnano Technologies Pvt. Limited Shimoga, 

Karnataka) and it is shown in Figure 1. The average diameter 

of the nanoparticles was less than 30 nm. The surface area of 

Graphene and MWCNT nanoparticles was 100 m2/g and 260 

m2/g, respectively. Thermophysical properties of Graphene 

and MWCNT as provided by the suppliers are as shown in 

Table 1 and Table 2, respectively.  

 

 

3. PREPARATION OF HYBRID NANOFLUIDS 

 

The first stage in doing experimental research using 

nanofluids is the preparation of the fluids. By dispersing solid 

particles with a nanometer size into base liquids like distilled 

water and ethylene glycol. Two different techniques have been 

used to prepare nanofluids. One approach is done using one 

step method, whereas the other is done using two step method. 

The two-step method was used in this investigation to prepare 

the nanofluids. Firstly, a precise balance is used to weigh the 

Graphene-MWCNT (50:50). It is then mixed with a known 

amount of Distilled Water-Ethylene Glycol to prepare hybrid 

nanofluids based on Graphene and MWCNT at different 

volume concentrations of 0.001%, 0.01%, and 0.1%. The 

Graphene-MWCNT nanoparticles with DW-EG (70:30) at 

various concentrations, including 0.001%, 0.01%, and 0.1%, 

is depicted in Figure 2. The powder particles are quickly mixed 

with distilled water and ethylene glycol in a number of phases 

to prepare the hybrid nanofluids; surfactant is not used in this 

process. For a duration of 12 hours, the hybrid nanofluids that 

were prepared were placed in an ultrasonic vibrator to achieve 

a stable and uniform suspension as shown in Figure 3. Stability 

tests were conducted subsequent to the nanofluids preparation. 

The experiments are conducted by making use of the prepared 

nanofluids. 

 

 
(a)                            (b)                            (c) 

 

Figure 2. Prepared graphene-MWCNT/distilled water, 

ethylene glycol and DW-EG(70:30) samples 

 

 
 

Figure 3. Sonification 
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4. CHARACTERIZATION OF GRAPHENE-

MWCNT/DW-EG (70:30) HYBRID NANOFLUIDS 

 

4.1 X-Ray Diffraction (X-RD) 

 

The XRD spectra of Graphene-MWCNT are utilized to 

determine its degree of oxidation, purity, and crystal size 

(Figure 4(a)). The characteristic peak of graphene-MWCNT is 

thought to be the most elevated peak observed at 2θ = 27.97°. 

The two low intensity peaks at 2θ = 44.08° and 77.79° 

correspond to the diffraction signature of the interwall spacing 

for the (308) (90) and (88) planes, respectively, and the 

distance between the walls of CNTs. The similarity between 

the prepared sample's XRD profile and the pure MWCNT 

obtained using JCPDS card No.: 89-8487 indicates that the 

prepared powder sample comprises pure form of graphene-

MWCNT. The presence of a hexagonal structure (P63mc 

space group) in the MWCNT is confirmed by the diffraction 

peak observed at around 27.97°. 

 

 
(a) 

 
(b) 

 

Figure 4. X-RD pattern of graphene-MWCNT hybrid 

nanoparticles 

 

4.2 SEM and EDS of hybrid nanoparticles 

 

A FESEM image is utilized to quantify the nano powders 

surface shape. We purchased MWCNT and Graphene from 

Adnano Technologies Pvt. Limited Shimoga, Karnataka. 

Table 1 lists the physical characteristics of Graphene and 

MWCNT. Using scanning electron microscopy, Graphene-

MWCNT's morphological characteristics were determined, as 

illustrated in Figure 5 and it is evident that MWCNT is a 

structure with a coiled surface shape that resembles a wrinkled 

thread. Secondly, several anomalies and porosity zones seen 

on the surface of MWCNT may be caused by changes in 

thermal conductivity. Figure 6 displays the elemental 

composition of MWCNT. It shows only two elements, carbon 

and oxygen, with corresponding weights of 72.7 and 23.3%. It 

attests to the great purity of the graphene-MWCNT employed 

in this investigation and shows correlation with the XRD result. 

 

 
(a) 

 

 
(b) 

 

Figure 5. FESEM images of graphene and graphene-

MWCNT nanoparticles at different magnifications 

 

 
 

Figure 6. EDS images of graphene-MWCNT hybrid 

nanoparticles 

 

 

5. THERMOPHYSICAL PROPERTIES OF HYBRID 

NANOFLUIDS  

 

5.1 Thermal conductivity of hybrid nanofluids 

 

Figure 7(a) depicts how temperature affects the thermal 

conductivity of hybrid nanofluid concentrations. Here, the 

effectiveness of hybrid nanoparticles-based distilled water 

with ethylene glycol was experimentally determined by using 

thermal analyzer (KD2 pro, Decagon Device) with connection 

to a thermal bath. During measurement, the sensor needle (KS-

1582



 

1) in the KD2 Pro gadget was constructed of SS material and 

measured 60mm in length and diameter 0.13 mm. A 

calibration was performed using evaluating the thermal 

conductivity of known fluids. The thermal conductivity of 

distilled water and ethylene glycol was measured to be 0.455 

W/m-K. 

 

5.2 Evaluation of thermal conductivity 
 

The thermal conductivity of Graphene-MWCNT hybrid 

nanoparticles distilled with ethylene glycol was measured by 

a thermal analyzer. The variations of thermal conductivity of 

Graphene-MWCNT hybrid Nanofluid and the enhancement in 

the value of thermal conductivity in terms of percentage with 

respect to both the concentration and temperature are shown 

in Figure 7. The maximum enhancement in the thermal 

conductivity was observed to be 28.68% at 60℃ for 0.1% 

nanofluid volume concentration in comparison with DW-EG 

(70:30) at 30℃. The thermal conductivity of the nanofluid 

increases with both the concentration and the temperature. 

Higher conductivity of Graphene-MWCNT nanoparticles 

contributes to the thermal conductivity of Graphene-

MWCNT–based DW-EG Nanofluid. Hybrid nanoparticles 

move more freely under the influence of Brownian motion as 

the temperature rises, increasing their thermal conductivity. 

The maximum thermal conductivity of the Graphene-

MWCNT hybrid nanoparticle-based DW-EG is found to be 

0.628 W/m-K at 60℃. The thermal conductivity values of 

Graphene-MWCNT/DW-EG are depicted in Table 3. 
 

5.3 Viscosity measurement 
 

The resistance of the fluid to deformation is evaluated by its 

viscosity. The viscometer is calibrated against the known 

values of the viscosity of Ethylene Glycol and Distilled water. 

The variation of viscosity of Graphene-MWCNT Nanofluid 

with both the concentration and temperature of the Nanofluid 

is shown in Figure 8. The viscosity of the fluids increases with 

the addition of nanoparticles into the base fluids. However, 

with the increase in temperature, the dynamic viscosity of the 

nanofluid decreases. The viscosity values of the Graphene-

MWCNT/DW-EG hybrid nanofluids are depicted in Table 4. 

 

 
(a) 

 

 
(b) 

 

Figure 7. Thermal conductivity and thermal conductivity 

enhancement of graphene-MWCNT hybrid nanofluids 

 

Table 3. Thermal conductivity of graphene-MWCNT/DW-EG (70:30) hybrid nanofluids 

 

Temperature 

(℃) 

Thermal Conductivity (W/m-℃) 

Gr-MWCNT/DW-EG (70:30) 

0.001% Vol. 

Gr-MWCNT/ DW-EG (70:30) 

0.01% Vol. 

Gr-MWCNT DW-EG 

(70:30)0.1% Vol. 
DW-EG 

30 0.517 0.531 0.536 0.433 

35 0.525 0.544 0.545 0.437 

40 0.534 0.552 0.558 0.442 

45 0.547 0.561 0.574 0.445 

50 0.561 0.571 0.59 0.449 

55 0.577 0.583 0.609 0.452 

60 0.594 0.595 0.628 0.455 

 

Table 4. Viscosity of graphene-MWCNT/DW-EG hybrid nanofluids 

 
Viscosity (×10-3 Kg/m-s) 

Temperature 

(℃) 

Gr-MWCNT/DW-EG 

(70:30) 

0.001% Vol. 

Gr-MWCNT/ DW-EG (70:30) 0.01% 

Vol. 

Gr-MWCNT DW-EG 

(70:30) 

0.1% Vol. 

DW-

EG 

30 7.2 8.4 9.6 7.12 

35 6.4 7.65 8.65 7.04 

40 5.6 6.9 7.7 6.96 

45 4.95 6.05 6.75 6.87 

50 4.3 5.2 5.8 6.79 

55 3.3 4.05 4.6 6.705 

60 2.3 2.9 3.4 6.62 
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Figure 8. Viscosity of graphene-MWCNT/DW-EG hybrid 

nanofluids 

 
 

Figure 9. Surface tension of graphene-MWCNT/DW-EG 

hybrid nanofluids 

 

Table 5. Surface tension of graphene-MWCNT/DW-EG hybrid nanofluids 

 
Surface Tension (× 103 N/m) 

Temperature 

(℃ ) 

Gr-MWCNT/DW-EG 

(70:30) 

0.001% Vol. 

Gr-MWCNT/ DW-EG (70:30) 0.01% 

Vol. 

Gr-MWCNT DW-EG 

(70:30) 

0.1% Vol. 

DW-

EG 

30 56.1 56.4 56.8 71.2 

35 55.2 55.65 55.6 70.4 

40 54.3 54.9 54.4 69.6 

45 53.1 53.75 53.6 68.7 

50 51.9 52.6 52.8 67.9 

55 51.05 51.75 52.1 67.05 

60 50.2 50.9 51.4 66.2 

 

  
(a)                                                  (b)                                           (c)                                                 

 

Figure 10. Contact angles of graphene-MWCNT/DW-EG(70:30) hybrid nanofluids 

 

 
 

Figure 11. Stability of graphene-MWCNT in DW-EG (70:30) at 0.001% volume concentration 
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5.4 Surface tension measurement 
 

The Figure 9 depicts the effect of temperature on the surface 

tension of graphene-MWCN/DW-EG (70:30) at 0.001, 0.01 

and 0.1% nanofluids concentrations. The surface tension of 

graphene-MWCNT/ethylene glycol at 300C are 56.1 × 103, 

56.4 × 103 and 56.8 × 103 N/m respectively at 0.001%, 0.01% 

and 0.1% volume concentrations. The surface tension of 

graphene-MWCNT/DW-EG (70:30) nanofluids increases as 

the temperature rises from 30℃ to 60℃ for all tested 

concentrations (0.001%, 0.01% and 0.1%). The maximum 

surface tension was obtained at 0.1% of graphene-

MWCNT/DW-EG (70:30) nanofluids concentrations at 60℃ 

is 51.4 × 103 N/m. At higher temperatures, increased 

molecular motion reduces cohesive forces at the liquid surface, 

resulting in lower surface tension. The presence of 

nanoparticle s slightly offsets this effect, as they influence 

intermolecular interactions. However, the overall trend 

remains a gradual reduction. Higher nanoparticle 

concentrations show marginally lower surface tension due to 

enhanced surface activity an interaction between graphene and 

MWCNTs. This behaviour is beneficial for improving for heat 

transfer applications. The effect of temperature on surface 

tension of graphene-MWCNT/DW-EG(70:30) hybrid 

nanofluids values are depicted in Table 5. 
 

5.5 Contact angle  
 

The effectiveness of nanofluids in enhancing pool boiling 

heat transfer primarily stems from their ability to alter surface 

wettability. The addition of these nanoparticles, particularly 

Graphene-MWCNT hybrids, changes the physical properties 

of the base fluid and influences the interaction between the 

fluid and the heated surface. One important aspect influencing 

pool boiling heat transfer is the contact angle formed between 

the nanofluid droplet and the heated surface. The contact angle, 

representing the wetting behavior of the fluid on the surface, 

plays an important role in determining the formation and 

detachment of vapor bubbles during boiling. Figure 10(c) 

shows the minimum contact angle value of 53.6° at 0.1% 

volume concentration of Graphene-MWCNT in distilled water 

with ethylene glycol whereas the contact values for 0.001% 

and 0.01% hybrid nanofluids volume concentration are 59.6° 

and 72.4°, respectively. It is observed from Figure 10 that, the 

lower the contact angle indicates better wetting and improved 

surface coverage by the nanofluid, facilitating enhanced 

nucleation and heat transfer. Experimental investigations have 

shown that Graphene-MWCNT/DW-EG hybrid nanofluids 

show varying contact angles depending on the concentration 

of nanoparticles and the surface characteristics. At lower 

concentrations (0.001% to 0.01%), the contact angle tends to 

decrease compared to pure base fluids like distilled water. This 

reduction suggests improved wetting behavior and increased 

surface coverage, promoting enhanced nucleation sites and 

potentially higher boiling heat transfer coefficients. Finally, it 

is clear that, the effectiveness of Graphene-MWCNT/DW-EG 

hybrid nanofluids in enhancing pool boiling heat transfer 

hinges on their ability to modify surface wettability. 

Understanding the relationship between contact angle, 

nanoparticle concentration, and heat transfer enhancement is 

important for optimizing nanofluids for specific applications. 
 

5.6 Stability  

 

Figure 11 depicts the Zeta potential distribution in the 

Graphene-MWCNT in DW-EG (70:30) nanofluid at 0.001% 

volume concentration. The stability of Graphene-MWCNT 

hybrid nanoparticles based nanofluid was measured by Zeta-

Potential Analyzer. Zeta potential is the charge that develops 

at the interface between the solid particles within a liquid 

medium. It is the repulsive force between two solid particles 

being immersed in the fluid that prevents the particles from 

agglomerating and thus is used to hold the particles in a 

suspension and stabilize the nanofluid. If the Vandar Waal’s 

forces dominate this repulsive force, the nanoparticles will 

turn into clusters and then settle down making the nanofluid 

unstable. Colloidal stability is reduced when the zeta potential 

reduces below 30 mV. It was observed from Figure 11 that, 

the zeta-potential value is close to 30mV at 0.001% hybrid 

nanofluid concentration which provides the good dispersion of 

the Graphene-MWCNT nanoparticles in the base fluids 

making the hybrid nanofluid stable. For graphene–

MWCNT/DW–EG (70:30) hybrid nanofluids to have constant 

thermophysical characteristics and dependable heat 

transmission performance, stability is essential. When 

nanoparticles disperse uniformly over time without 

experiencing noticeable sedimentation or agglomeration, this 

is referred to as stability. By creating a stable three-

dimensional structure, the combined presence of MWCNTs 

and graphene sheets strengthens the inter-particle network in 

this hybrid system, lowering sedimentation. Dispersion 

stability is further enhanced by the DW–EG (70:30) base 

fluid's superior viscosity and lower evaporation as compared 

to pure water. To reduce van der Waals forces and avoid 

clustering, surfactants are frequently used. In order to produce 

uniform dispersion and break down aggregates, 

ultrasonication was also utilized during preparation. 

Nevertheless, agglomeration may still occur as a result of 

extended storage, high particle concentration, or high 

operating temperatures, changing viscosity and thermal 

conductivity. Stability can be monitored with the aid of visual 

observation and routine zeta potential measurements. 

Although the graphene-MWCNT/DW-EG hybrid nanofluids 

show better stability overall than single nanoparticle systems, 

their long-term effectiveness in heat transfer applications 

depends on maintaining ideal preparation and operation 

conditions. 

Prior research on single-component nanofluids, including 

graphene/DW and MWCNT/EG, revealed improvements in 

thermal conductivity of about 8–12% at 0.1 vol.%, but 

frequently with a notable increase in viscosity (over 25%), 

which limited their practical application. Hybrid nanofluids 

have shown better performance; for instance, Suresh et al. [25] 

showed ~13% enhancement for Al₂O₃–Cu/water nanofluids at 

comparable concentrations, while Trinh et al. [26] reported 

~15% enhancement for graphene–CNT/EG nanofluids at 0.1 

vol.%. Nevertheless, the majority of these systems either 

showed abrupt increases in viscosity or lacked stability. 

On the other hand, the current investigation of graphene–

MWCNT (50:50)/DW–EG nanofluids shows gains in thermal 

conductivity of up to approximately 18–20% at 0.1 vol.%, 

while the increase in viscosity is limited to less than 15%. This 

suggests a better balance between heat transmission and 

pumping power. Stability tests also exceeded many previous 

results by demonstrating no discernible sedimentation for over 

four weeks without extensive surfactant application. The 

proposed hybrid nanofluid formulation's uniqueness and 

potential for practical heat transfer applications are confirmed 

by its balanced performance, which shows that it offers 
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improved thermophysical qualities when compared to both 

single-component and previous hybrid nanofluids. 

 

 

6. ANN MODEL FOR THERMAL CONDUCTIVITY 

RATIO 

 

The ANN architecture consists of three layers: input, hidden, 

and output are displayed in Figure 12. The experimental data 

were divided into three data sets: training, validation, and 

testing. During each epoch, the model was trained to find a 

broad trend among the input and output parameters. Beyond 

training, the model validated the data for each epoch. The 

ANN model was created using the neural network function in 

MATLAB. The construction of popular neural network 

designs and their current engineering applications are covered 

by artificial neural networks. In order to make the model more 

realistic, a certain number of neurons and hidden layers must 

be selected. If the number of neurons and hidden layers is too 

low, the neural architecture will not be able to match the 

correct behavior of the input data, and if the error is too large, 

the training process will speed up and a local minimum will be 

reached. Therefore, selecting the proper neurons and hidden 

layers is important for the best-fit model. Each architecture is 

composed of neurons that function according to Eq. (6). 

 

𝑧𝑗 = ∑ (𝑤𝑗𝑖
𝑛
𝑘=1 𝑥𝑖 + 𝑏𝑗)  (6) 

 

Here, the weight wji represents the association between 

neurons i and j, the bias of the j neuron is denoted by bj, and 

the total number of input neurons is represented by n. By using 

the value zj to represent the output neuron, the architecture's 

setting of wij is produced. Determining the optimum number 

of neurons for the hidden layer involves a trial-and-error 

procedure. Using one hundred twenty experimental data points, 

the model was built. It is possible to collect many observations 

at the same concentration and temperature in order to increase 

the experimental data set and reduce measurement error. This 

keeps the model from getting too fitted. The model predicts 

the training set data accurately when overfitting, but it is 

unable to do so for the test set data. Seventy percent of the 

available data was used to train the network, fifteen percent 

was used for validation, and the remaining fifteen percent was 

used for testing. A hyperbolic tangent sigmoid (TANSIG) was 

used as the output layer's transfer function. Eq. (8) provides 

the formula for the transfer functions that were used. 

 

𝑡𝑎𝑛𝑠𝑖𝑔(𝑛) =
2

(1+𝑒−2𝑛)
− 1  (7) 

 

A number of statistical indicators, including mean squared 

error (MSE), and R2, are taken into account when determining 

the best model for thermal conductivity ratio. The Eqs. (9) 

through (10) pertaining to these parameters are listed below. 

 

𝑅2 =  1 −  
(∑ (𝑘𝐸𝑥𝑝−𝑘𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑)𝑖

2𝑁
𝑖=1

(∑ (𝑘𝐸𝑥𝑝)𝑁
𝑖=1 𝑖2   (8) 

 

𝑀𝑆𝐸 =  
1

𝑁
 (∑ (𝑘𝐸𝑥𝑝 − 𝑘𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑)𝑖

2𝑁
𝑖=1 )  (9) 

 

𝑅2 =  1 −  
(∑ (𝜎𝐸𝑥𝑝−𝜎𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑)𝑖

2𝑁
𝑖=1

(∑ (𝜎𝐸𝑥𝑝)𝑁
𝑖=1 𝑖2   (10) 

 

𝑀𝑆𝐸 =  
1

𝑁
 (∑ (𝜎𝐸𝑥𝑝 − 𝜎𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑)𝑖

2𝑁
𝑖=1 )  (11) 

 

6.1 Optimal artificial neural network architectures for 

graphene-MWCNT/DW-EG(70:30) hybrid nanofluids 

 

Figure 12 depicts the optimal ANN architectures for 

Levenberg Marquardt and SCG Machine learning models for 

Graphene-MWCNT/DW-EG(70:30) hybrid nanofluids. The 

neural network structure consists of input, hidden, and output 

layers, as shown in Figure 12. Neural network inputs are 

received at the input layer. In this layer, the number of neurons 

is determined based on the number of model inputs so that one 

neuron is considered for each input data. The second layer in 

a neural network is the middle (hidden) layer, which leads to 

training the network and generalizing previous learnings to 

new inputs. The third layer of a neural network is called the 

output layer, which identifies the output values of the network. 

Multilayer neural networks are useful for learning nonlinear 

problems and for taking multiple decisions. 
 

 
(a) 

 
(b) 

 

Figure 12. ANN architecture for prediction of thermal conductivity ratio (a) LM, (b) SCG 
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(a)                                                                                               (b) 

 

Figure 13. Best validation performance graphs for graphene/DW-EG nanofluids (a) LM, (b) SCG 

 

 
(a) 

 

 
(b) 

 

Figure 14. Regression graphs for Graphene/DW-EG 

Nanofluids (a) LM, (b) SCG 

 

Figure 13(a) displays the train, validation, and test data for 

several iterations of the Levenberg Marquardt algorithm 

together with the trend of changes in the MSE with respect to 

the predicted values of the thermal conductivity ratio. The 

performance validation chart, which displays the variations in 

MSE over the training phases, is the most effective 

performance indicator of the ANN training procedure. The 

vertical axis of the chart shows the MSE, while the horizontal 

axis shows the number of training loop (epoch) repeats. The 

MSE in the training, validation, and test points is represented 

by the three training curves, validation, and test in the Figure 

13(a). At the beginning of the training, the MSE value is very 

high when the network weights are chosen at random, however, 

it gradually drops when the training loops are repeated. The 

training points in Figure 13(a) have a lower MSE than the 

newly added points to the system because the MSE value in 

the training curve after stopping is lower than the validation 

and test values. In Figure 13(a), the optimal stop point is 

represented by a green circle. The Levenberg Marquardt 

algorithm's lowest MSE value, based on the training diagram's 

lowest MSE, is 0.00041127 after 31 iterations. 31 distinct 

ANNs are trained in order to determine the optimal ANN for 

each training algorithm. The network with the least error is 

chosen to approximate the output function of the problem. The 

MSE in the training, validation and test points is represented 

by the three training curves, validation, and test in Figure 13(b). 

The validation points in this diagram have a lower MSE than 

the newly added points to the system because the training 

curve's MSE value after stopping is lower than the validation 

and test values. In Figure 13(b), the optimal stop point is 

represented by a green circle.  

The SCG algorithm's lowest MSE value, based on the 

validation diagram's lowest MSE, is 0.00080737 after 16 

iterations. Each training technique uses 16 alternative ANNs 

to determine which one is better. The prediction of the thermal 

conductivity ratio of nanofluids using LM model is more 

accurate as compared to the SCG model. Temperature and 

volume concentration have no effect on the ANN model's 

accuracy. 

The regression diagram and coefficient of correlation 

between the target values and the actual output data serve as 

additional indicators to ensure appropriate ANN training. 

Figure 14 displays regression graphs for the thermal 

conductivity ratio parameter. The regression diagram shows 

the relationship between the targeted and the actual output 

values. The ANN's actual output values are shown on the 

vertical axis while the targeted values have been shown on the 

horizontal axis. Three parameters can be used to assess the 

regression diagram: the bias (B), slope (M), and coefficient of 
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correlation value (R2). The ideal condition for the regression 

diagram is when the data points are on the unit-sloped bisector 

line, the correlation coefficient is equal to one, and the ANN's 

output equals the desired value. It can be seen that the 

produced regression diagrams slope value is really near to 

equally to one. The output values are near the experimental 

values, and the very few data points are scattered from the 45° 

lines. 

The ANN histogram error bar charts for the thermal 

conductivity ratio are displayed in Figure 15. This graph, 

which is displayed as a bar chart, indicates the frequency or 

quantity of errors in various error values. Error numbers are 

displayed on horizontal axis, while the frequency or quantity 

of errors in the target value is represented on vertical axis. The 

increasing frequency of data errors close to the zero-error line 

shows that the problem data is well-trained and the system has 

a low error rate. The output of the problem has been brought 

extremely close to the target by the selected strategy, as seen 

by the larger bar charts around the Zero-Error line, which 

indicate a higher numerical density. The neural network model 

was first trained using Levenberg-Marquardt backpropagation 

(LM) to get the best model for predicting the thermal 

conductivity ratio. The dataset was then trained using learning 

methods such as SCG backpropagation (SCG) [15-18]. ANN 

models developed using the SCG training method were 

contrasted with the optimal model developed by the LM 

training algorithm. The table shows the MSE and R2 values for 

the various training methods. It was shown that, the LM 

approach predicted the lowest MSE. The R2 value for the LM 

technique is nearer unity when examined in comparison to the 

SCG training process. 

The model may not be as applicable outside of the tested 

parameters, even while its performance indicators, including 

Mean Squared Error (MSE) and the coefficient of 

determination (R2), show excellent predictive power within 

the examined range. The model was created and verified using 

experimental data limited to particular base fluid compositions, 

temperature ranges, and nanoparticle concentrations. Because 

unmodeled physical factors such as particle agglomeration, 

changes in thermophysical characteristics, extrapolating 

predictions to higher concentrations or noticeably wider 

temperature ranges may result in decreased accuracy. 

Furthermore, the model does not specifically take into 

consideration variables like the stability of nanofluids over an 

extended period of time, changes in heater surface properties, 

or modifications to heat transfer mechanisms under harsh 

circumstances. Thus, even though the model is a good 

predictor within its calibration range, using it in situations 

outside of the validated dataset should be done with caution. 

Its robustness and generalizability would be improved with 

more experimental data including larger parameter ranges and 

other affecting factors. This ensures the model's continued 

scientific accuracy and usefulness for actual engineering 

systems. 

 

  
(a) 

 

 
(b) 

 

Figure 15. Histogram error graphs for graphene/DW-EG nanofluids (a) LM, (b) SCG 
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Knowing how the Levenberg–Marquardt (LM) and SCG 

algorithms work will help to explain why LM frequently 

produces better results when compared to SCG. A 

combination of gradient descent and the Gauss-Newton 

method, the LM algorithm offers quick convergence for 

medium-sized problems with well-behaved error surfaces. 

Because of its exceptional efficacy in nonlinear least-squares 

optimization, it is ideally suited for regression tasks with well-

defined parameter spaces and little noise. However, for really 

large datasets, LM may be a restriction due to its greater 

memory and processing requirements. On the other hand, 

because the SCG technique does not require the expensive 

computation of the Hessian matrix, it is more memory-

efficient and more appropriate for large-scale tasks. SCG may 

be more susceptible to local minima and converge more slowly, 

particularly in cases when the error surface is complicated. In 

some circumstances, precision is sacrificed for its reduced 

memory requirements. Because the dataset size in this 

investigation was relatively moderate and high accuracy in 

predicting thermal and heat transfer parameters was required, 

the LM model performed better. Despite having a larger 

computing cost than SCG, the LM algorithm's quick 

convergence and accurate weight tuning allowed for better 

prediction performance. 

 

 

7. CONCLUSION 

 

The purpose of the current work was to create and evaluate 

a DW-EG(70:30) nanofluid based on Graphene-MWCNT 

hybrid nanoparticles. At various volume concentrations of 

Graphene-MWCNT nanoparticles, the experimental study was 

carried out for the thermal conductivity, viscosity and surface 

tension, contact angle, and stability of DW-EG(70:30) based 

hybrid nanofluids. The thermal conductivity ratio was 

predicted by using an ANN model such as Levenberg 

Marquardt and SCG algorithm, then a comparison of the two 

models was done based on prediction accuracy. The 

experimental results shown that at 30℃ and 0.1% volume 

concentration, Graphene-MWCNT-based DW-EG(70:30) 

thermal conductivity increased by 21.01%. The zeta potential 

values at various volume concentrations were measured for the 

stability of the nanofluid which causes the thermal 

conductivity ratio to increase. There was one hidden layer and 

fifteen neurons in each layer of the developed ANN model. 

The performance of artificial neural network models was 

evaluated by mean square error and coefficient of correlation 

(R2). The mean square error and coefficient of correlation for 

Levenberg Marquardt and SCG machine learning model’s 

values are 4.1127 × 10-4, 8.0737 × 10-4 and 0.9903, 0.9739, 

respectively. The Levenberg Marquardt model gave minimum 

mean square error and higher coefficient of correlation values 

and it showed a good agreement with the experimental data for 

thermal conductivity ratio. The margin of deviation between 

the experimental and predicted data is within 1%. The 

formulation of graphene–MWCNT (50:50)/DW–EG hybrid 

nanofluids should be optimized in future studies by 

experimenting with different nanoparticle ratios, surfactants, 

and preparation methods in order to improve stability and 

thermal performance even more. To enhance model 

generalizability, experimental investigations should be 

extended to higher temperature ranges, higher concentrations, 

and a variety of base fluid compositions. Prediction accuracy 

under complex operating conditions can also be improved by 

incorporating sophisticated modeling techniques, such as 

hybrid AI–empirical models. For heat exchangers, cooling 

systems, and renewable energy applications to be practically 

applicable in the real world, corrosion studies, long-term 

stability evaluations, and hands-on system-level testing are 

also necessary. 
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NOMENCLATURE 

T temperature, K 

k thermal conductivity, Wm-1K-1 

SEM scanning electron microscopy 

X-RD X-Ray diffractometry

LM Levenberg Marquardt

SCG scaled conjugate gradient

Greek symbols 

µ dynamic viscosity, Kg-m-1s-1 

𝜑 volume fraction 

𝛼 thermal diffusivity, m2s-1 

σ surface tension, Nm-1 
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