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 Modeling and analyzing the complex flow behavior of impinging jets is essential for many 

engineering applications, especially due to their highly nonlinear and unsteady nature. 

Traditional modeling approaches often face difficulties in accurately capturing the 

evolving features of such flows. In this study, a data-driven framework is developed to 

extract and analyze hidden structures from experimental data of a rectangular air jet 

impinging on a flat surface at a Reynolds number of 6700. The dataset consists of time-

resolved velocity fields obtained using Time-Resolved Particle Image Velocimetry (TR-

PIV). A convolutional autoencoder (AE) architecture is employed to compress the high-

dimensional flow field into a latent space of 256 variables. This latent representation 

captures the essential dynamic features of the jet while enabling accurate reconstruction of 

the original velocity fields. Temporal analysis of the latent variables reveals structured 

patterns associated with coherent flow dynamics. Furthermore, spectral analysis of selected 

latent components highlights dominant frequency peaks consistent with vortex shedding in 

the impingement region. These results demonstrate the capability of convolutional 

autoencoders to uncover physically meaningful patterns in complex fluid flows and offer 

a promising tool for data-driven flow analysis. 
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1. INTRODUCTION 

 

Many studies have been conducted to explore the complex 

physics of impinging jet flow and to analyze the influence of 

various flow parameters. For instance, Assoum et al. [1] 

provided detailed investigations into the fundamental 

characteristics governing impinging jet behavior [2]. Further 

analyses of the flow field associated with jet impingement on 

flat surfaces have been reported by previous study, among 

others, who focused on the interaction between the jet and the 

impingement surface and its effect on flow structures and 

turbulence [3]. 

More recently, a notable feedback mechanism controlling 

high-speed subsonic impinging jets at the nozzle exit has been 

identified and studied extensively [4, 5]. These investigations 

have provided important insights into the dynamic coupling 

between the jet exit conditions and the impingement region, 

which significantly affects the flow stability and noise 

generation [6, 7]. 

Impinging jets find widespread utility in many industrial 

and engineering applications due to their superior convective 

heat and mass transfer capabilities. Common areas of 

application include cooling of gas turbine blades, electronic 

component thermal management, drying in paper and textile 

industries, and aerodynamic flow control. The ability of 

impinging jets to provide localized high heat transfer rates 

makes them indispensable in processes demanding efficient 

thermal regulation and surface treatment [8, 9]. 

Traditionally, such flow phenomena have been studied 

using computational fluid dynamics (CFD) methods, 

including Reynolds-Averaged Navier-Stokes (RANS), Large 

Eddy Simulation (LES), and Direct Numerical Simulation 

(DNS). While DNS can offer highly accurate results, its 

computational demands make it impractical for many real-

world problems, especially at high Reynolds numbers. LES 

provides a middle ground but still requires considerable 

resources for capturing near-wall turbulence and transient 

dynamics. RANS remains the most computationally efficient 

option but is often inadequate for resolving unsteady, 

nonlinear features common in impinging jet flows. In contrast, 

deep learning offers a data-driven, model-free alternative 

capable of reconstructing complex flow fields directly from 

experimental data, significantly reducing computation time 

once trained. This makes DL particularly attractive for high-

dimensional, time-resolved flow problems like jet 

impingement. 

In recent years, deep learning has emerged as a powerful 

tool for modeling and analyzing complex physical systems, 

particularly those involving multiscale and nonlinear 

dynamics. Architectures such as convolutional neural 
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networks (CNNs) and long short-term memory (LSTM) 

networks have demonstrated significant capabilities in 

capturing spatial and temporal correlations, making them 

especially valuable in fluid mechanics research. DL has found 

increasing application in areas like turbulence modeling, flow 

dynamics prediction, and the reconstruction of flow fields 

from sparse or noisy data. 

One of the most impactful developments has been the use 

of DL for enhancing experimental fluid measurements, such 

as particle image velocimetry (PIV). Super-resolution 

techniques based on CNNs and generative adversarial 

networks (GANs) have been successfully applied to recover 

high-resolution velocity fields from low-resolution inputs, 

significantly improving the quality of reconstructed data [10]. 

These methods are particularly useful in scenarios where 

direct access to high-fidelity measurements is limited or 

infeasible. Additionally, autoencoder-based networks have 

shown strong potential in estimating flow fields with missing 

regions, offering a non-intrusive and efficient alternative to 

traditional model-based approaches. 

Despite these advancements, challenges remain regarding 

the interpretability and generalizability of deep neural 

networks, especially in data-limited environments. Current 

efforts aim to develop hybrid methods that integrate physical 

constraints with data-driven learning to improve reliability and 

transparency in DL-based fluid flow models [11, 12]. 

In this study, a neural network based on the autoencoder 

architecture was applied to extract essential flow structures 

and enable efficient reconstruction of the velocity field 

associated with jet dynamics. The influence of latent space 

dimensionality on reconstruction fidelity was systematically 

examined [13]. Furthermore, to gain insight into the dynamic 

behavior of the flow, the frequency content of the transverse 

velocity was analyzed at a representative location 

characterized by the presence of coherent vortex structures. 

 

 

2. EXPERIMENTAL SETUP AND DATA 

ACQUISITION 

 

The experimental setup is designed to investigate subsonic 

impinging jet flows and associated control strategies as shown 

in Figure 1. Air is supplied by an external compressor 

regulated by a Siemens MICROMASTER 420 frequency 

inverter, allowing adjustment of the jet exit velocity up to 33 

m/s (Mach ≈ 0.1). The airflow passes through a 1 m³ settling 

chamber equipped with grids and honeycomb structures to 

reduce turbulence and align the flow. It then enters a 1250 mm 

long rectangular duct (190 mm × 90 mm) that leads to a fourth-

order polynomial nozzle with an exit height of 10 mm and 

width of 190 mm, yielding an aspect ratio of 19. 

The jet impacts an aluminum plate (250 mm × 250 mm, 4 

mm thick) with a central slit matching the nozzle dimensions. 

In a circular jet configuration, the nozzle-to-plate distance is 

set to L/D = 2.08, where D = 7.8 mm represents the jet exit 

diameter. The Reynolds number, based on D and the jet exit 

velocity, is Re = 6700. In the slit jet case, the impact distance 

L is adjustable via a precision linear stage (ISEL MS 200 HT2 

Direkt) with 0.01 mm accuracy, and is controlled using Galaad 

software. The dimensionless impact distance L/H is varied 

during the experiments. 

For flow control, a 4 mm diameter rod is introduced 

between the jet and the plate. The rod is scanned through 1085 

spatial positions in the X-Y plane using two automated linear 

stages controlled by a LabVIEW program. At each position, 

acoustic measurements are performed with a 15 kHz sampling 

rate over 3 seconds, following a stabilization period to reduce 

mechanical noise. Each full scan, corresponding to one 

Reynolds number, is followed by automatic adjustment of the 

air velocity for the next configuration. 

Velocity field measurements are conducted using Particle 

Image Velocimetry (PIV). The flow is seeded with olive oil 

droplets generated by a LaVision Laskin Nozzle aerosol 

generator. The droplets, with diameters between 0.1–0.2 μm, 

are sufficiently small to follow the turbulent structures without 

affecting the flow. The PIV system captures consecutive 

images of the seeded flow illuminated by a laser sheet, 

enabling 2D velocity field reconstruction through cross-

correlation. This non-intrusive technique allows analysis of 

the jet’s coherent structures and their role in noise generation. 

 

 
 

Figure 1. Experimental setup: (1) Compressor, (2) variable 

frequency drive, (3) settling chamber, (4) duct, (5) 

rectangular convergent outlet, and (6) slotted plate [3] 

 

 

3. METHODOLOGY 

 

This study relies on a deep learning-based approach to 

predict and reconstruct velocity fields of a circular air jet 

impinging on a flat surface. The methodology involves several 

key steps: experimental data acquisition, velocity field 

preprocessing, autoencoder model design and training, 

followed by latent space analysis and validation of the 

reconstructed results. 

Prior to training the model, raw velocity fields are structured 

as spatiotemporal tensors. Each data sample consists of two 

channels corresponding to the horizontal and vertical velocity 

components, defined over a fixed spatial grid. A normalization 

procedure is applied to center the data and improve model 

convergence. 

To reduce noise and enhance learning efficiency, the 

velocity fields are also filtered using thresholding or spatial 

smoothing techniques when necessary. 

 

 

4. NEURAL NETWORK ARCHITECTURE 

 

In this study, a convolutional neural network (CNN) based 

on the U-Net architecture is implemented, inspired by the 

works of Ribeiro et al. [14]. U-Net is an encoder–decoder 

architecture particularly well-suited for capturing complex 

spatial structures and reconstructing high-dimensional data 

[15]. 

The network consists of four encoder–decoder blocks. Each 
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encoder block includes two convolutional layers: the first 

followed by a ReLU (Rectified Linear Unit) activation, and the 

second followed by another ReLU and a MaxPooling layer, 

which reduces spatial resolution while extracting hierarchical 

features. The first two encoder blocks employ convolutional 

kernels of size 5, with strided convolutions in the first layer to 

downsample the input. The last two blocks use smaller kernels 

(size 3) to retain more spatial detail while continuing the 

compression process. 

In Figure 2, the decoding phase mirrors the encoding 

process, applying upsampling operations followed by 

convolutional layers to progressively restore the original 

resolution. Skip connections are used to concatenate feature 

maps between corresponding encoder and decoder blocks, 

helping preserve spatial information and improve 

reconstruction accuracy. 

At the bottleneck of the network, a 256-dimensional latent 

representation encodes the essential spatiotemporal structures 

of the velocity field. The model was implemented in Python 

using the Deep Learning Toolbox [16]. Training was 

conducted over 100 epochs with a batch size of 16, minimizing 

the mean squared error (MSE) loss using the Adam optimizer. 

 

 
 

Figure 2. U-Net architecture 

 

 

5. WEIGHTS AND BIASES OF THE NETWORK 

 

In this study, the weights and biases of the convolutional 

neural network are the key learnable parameters optimized 

during training (Figure 3). They play a crucial role in the 

network’s ability to capture complex nonlinear relationships 

embedded in the measured velocity fields. 

Each convolutional filter is associated with a set of weights 

that define how local features of the input—such as gradients 

or flow structures—are detected and propagated through the 

layers. Bias terms are added to the outputs of convolution 

operations to shift activation thresholds independently of the 

input, providing the network with greater flexibility to model 

subtle variations. 

These parameters are initialized randomly and iteratively 

updated during training by minimizing the mean squared error 

(MSE) loss function using the Adam optimization algorithm. 

The update process is governed by the backpropagation 

algorithm, which computes the gradient of the loss with 

respect to each parameter and adjusts them in the opposite 

direction of the gradient. 

This optimization cycle is repeated over multiple epochs—

100 in our case—until the model converges and achieves 

optimal performance on the velocity field reconstruction task. 

While this study adopts a U-Net-based convolutional 

autoencoder due to its strong performance in image-to-image 

regression tasks, alternative deep learning architectures have 

shown promise in fluid dynamics applications. 

For instance, a Transformer trained with self-supervised 

learning has been shown to reconstruct and predict complex 

flow fields using sparse labeled data [17]. Another study 

proposed an Energy Transformer specifically to reconstruct 

full velocity fields from highly incomplete measurements—up 

to 90% missing data—with impressive accuracy [18]. Hybrid 

models like CFD former, combining Vision Transformers with 

U-Nets, have also outperformed traditional architectures in 

fluid flow approximations. Moreover, the recently introduced 

Fluid Former architecture melds continuous convolution with 

Transformer-style attention, achieving strong stability in 

complex fluid simulations [19]. However, these models 

typically require larger datasets and higher computational 

resources. In our case, U-Net provided a good balance between 

complexity, spatial resolution, and training stability, making it 

suitable for reconstructing PIV-based velocity fields. Future 

work may explore hybrid sindy, PINS or Transformer-based 

models to assess their potential benefits in terms of 

reconstruction accuracy and interpretability [20].   
 

 
 

Figure 3. Weights-biases configuration 

 

 

6. RESULTS 

 

6.1 Velocity field prediction 

 

Figure 4 presents a qualitative comparison between the true 

velocity components and those reconstructed by the 

convolutional neural network (CNN) model, trained to predict 

the horizontal (vx) and vertical (vy) components of the flow 

field in a jet impingement configuration. 

 

 
 

Figure 4. Visualization of the actual and CNN-reconstructed 

velocity components of the flow field 
 

The top row of the figure displays both the actual and 

predicted distributions of the vertical and horizontal velocity 

components. The CNN demonstrates a strong ability to 

reproduce the central features of the flow, particularly the 

high-velocity jet core and the surrounding regions where 

velocity gradually decreases. The model accurately captures 
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the spatial structure of the flow, including fine-scale features 

and coherent patterns. 

The bottom row illustrates the prediction of the horizontal 

component vx, which generally exhibits lower amplitude and 

more diffuse structures compared to vy. Despite these 

challenges, the predicted fields show a high degree of spatial 

correlation with the ground truth, successfully reproducing 

both the large-scale distribution and finer variations. 

These results highlight the capability of the CNN to 

effectively learn the complex spatiotemporal dynamics of 

turbulent jet flows. The close agreement between the predicted 

and actual velocity fields, especially on previously unseen test 

data, confirms the model’s generalization capacity and its 

potential for data-driven flow reconstruction tasks. 

 

6.2 Spatial prediction error analysis 

 

Figure 5 presents spatial maps of relative prediction error 

for the velocity components vx and vy at the time instant 50. 

The maps highlight pixels where the predicted velocities differ 

by less than 2% from the true values. Areas shown in red 

indicate regions where the convolutional neural network 

(CNN) achieves high prediction accuracy. 

On the left, the map for the vertical velocity component (vy) 

reveals a broad distribution of pixels with errors below 2%. 

The CNN demonstrates strong performance across much of 

the domain, particularly near the flow boundaries and in 

background regions, where the vertical velocity component 

tends to be weaker and less complex. 

On the right, the error map for the horizontal component (vx) 

shows a dense concentration of low-error pixels along the jet 

axis. This indicates that the model accurately captures the 

horizontal velocity behavior in the jet’s high-velocity core, a 

region critical for maintaining the flow’s structural integrity. 

The prevalence of low-error predictions in this central area 

underscores the robustness and reliability of the CNN model. 

Overall, these spatial error analyses confirm that the CNN 

provides reliable predictions of both velocity components, 

maintaining low relative error across dynamically significant 

regions of the flow field. 

 

 
 

Figure 5. Relative error map (< 2%) for the velocity 

components vx and vy 

 

6.3 Temporal evolution of the latent vector 

 

Figure 6 depicts the temporal evolution of a latent vector 

extracted from the autoencoder at each time step. This vector 

encapsulates the essential dynamics of the velocity field 

through a compressed representation learned during the 

training process. 

The observed oscillations in the latent vector reflect 

temporal variations in the encoded flow characteristics, with 

distinct peaks around specific time steps (e.g., near 60 and 

105). These peaks correspond to significant flow events or 

disturbances, likely associated with transitions in the jet 

structure or turbulent activity near the vortex core. 

These findings indicate that the autoencoder effectively 

encodes critical flow dynamics, particularly in the vortex-jet 

interaction region. The latent space evolution captures the 

nonlinear behavior governed by the underlying partial 

differential equations of the impinging jet flow, demonstrating 

the model’s ability to represent unsteady flow phenomena over 

time. 

In this system, the impinging jet and vortex dynamics 

introduce nonlinearities into both velocity components, 

especially near the centerline or obstacle. This results in strong 

gradients, time-dependent interactions, and occasional 

symmetry breaking. Such effects directly manifest as 

fluctuations in the latent vector, especially during periods of 

vortex movement or intensification. 

 

 
 

Figure 6. Temporal evolution of a latent vector 

 

 
 

Figure 7. (FFT) temporal evolution of selected latent 

variables 

 

To assess whether the latent space encodes meaningful flow 

dynamics, we applied a Fast Fourier Transform (FFT) to the 

temporal evolution of selected latent variables. The resulting 

power spectra exhibit distinct peaks at specific frequencies, 

consistent with the expected periodic behavior of vortex 

shedding in impinging jet flows. This indicates that the 

autoencoder effectively captures the temporal characteristics 

of the jet’s coherent structures. A representative FFT plot of 

three latent variables is shown in Figure 7, demonstrating their 

oscillatory nature and confirming the physical relevance of the 

encoded features. 
 

6.4 Global latent space analysis, training convergence, and 

vorticity field reconstruction 

 

To further understand the internal representations learned 

by the convolutional neural network (CNN) trained to predict 

the velocity field, the temporal evolution of the 256-

dimensional latent vector was analyzed. As depicted in Figure 

8, each curve represents the trajectory of a single latent 
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variable throughout the time sequence. Extracted from the 

network’s bottleneck layer, these latent variables encapsulate 

the essential spatiotemporal features required for accurate 

velocity field reconstruction. 

 

 
 

Figure 8. Temporal evolution of a latent vector 

 

The temporal dynamics exhibited by these latent variables 

are rich and varied, with several showing oscillatory or quasi-

periodic patterns. This behavior indicates that the CNN 

effectively captures recurrent motifs in the flow evolution. 

Variations in amplitude across variables suggest differing 

sensitivities to input dynamics, with some latent variables 

encoding dominant flow features and others capturing subtler, 

localized variations. Notably, a subset of variables clusters 

near zero, hinting at potential redundancy or underutilization 

within the latent representation. This structured and dynamic 

latent behavior validates the choice of a 256-dimensional 

latent space. Complementary analyses, such as principal 

component analysis or clustering, could further assess 

redundancy and inform potential dimensionality reduction. 

Figure 9 presents the CNN’s convergence behavior during 

training on approximately 1500 samples. Both training and 

validation losses decrease sharply in the initial phase, 

demonstrating rapid learning of meaningful flow patterns. 

Subsequently, losses stabilize near zero, indicating that the 

network attains a stable and precise internal representation. 

The close alignment of training and validation losses beyond 

the convergence point confirms the model’s robust 

generalization to unseen data. 

 

 
 

Figure 9. CNN’s convergence behavior during training 

 

Expanding beyond velocity field reconstruction, the CNN’s 

capability to predict higher-order flow quantities is 

demonstrated in Figure 10, which displays the predicted 

vorticity field. This field captures the spatial distribution of 

rotational flow structures, with positive and negative vorticity 

regions highlighted. The model’s architecture enables it to 

discern fine turbulent details and coherent structures inherent 

in fluid flows, proving effective in reconstructing complex 

flow dynamics beyond simple velocity vectors. Accurate 

vorticity prediction represents a significant advancement, as it 

is critical for understanding shear layers, vortex interactions, 

and energy dissipation mechanisms in fluid systems. The 

success of this approach underscores both the robustness of the 

latent space representation and the effectiveness of the training 

strategy employed. 

 

 
Figure 10. Predicted vorticity field 

 

 

7. CONCLUSION   

 

The velocity field of impinging jets was successfully 

predicted using a deep learning-based approach relying on 

convolutional autoencoders (AEs). These models were trained 

to learn compact latent representations of the flow and 

accurately reconstruct its spatiotemporal behavior. The 

velocity data were obtained experimentally using Particle 

Image Velocimetry (PIV) at a Reynolds number of Re = 6700. 

The results demonstrate that the flow dynamics can be 

effectively reproduced using a reduced number of latent 

variables. Moreover, the spectral analysis of these latent 

variables revealed dominant frequency peaks that match those 

found in the transverse velocity spectrum at locations where 

coherent vortices pass, highlighting a strong correlation 

between the learned features and the underlying vortex 

dynamics. 

While the trained model shows high accuracy in 

reconstructing and predicting the velocity field, some 

limitations remain. Prediction errors were primarily observed 

in regions with flow separation and strong nonlinear 

interactions, particularly in the transverse velocity component. 

Nevertheless, the model showed excellent performance in 

periodic regions of the flow, suggesting that it successfully 

captures the dominant coherent structures.  

Some local inaccuracies remain in highly nonlinear regions, 

such as separation bubbles, due to the complex and 

intermittent nature of turbulent structures. However, the 

nonlinear behavior observed in the latent space reflects these 

dynamics faithfully rather than indicating model failure. 

Future work will explore methods to improve local accuracy 

in these challenging zones. 

Future improvements could focus on refining the model's 

ability to generalize in more complex flow regimes, especially 

near separation zones. Furthermore, the current framework can 
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be extended to include parametric inputs such as the Reynolds 

number or nozzle geometry, enabling generalized flow field 

prediction under varying conditions. A promising direction 

would also be the integration of wall-based sensor data (e.g., 

wall shear stress) as input to predict full-field flow dynamics. 

Future research will also focus on embedding 

interpretability into the model architecture, through feature 

attribution, latent space analysis, and physics-informed 

training strategies. 

This could eventually contribute to predictive modeling 

tools for real-time flow control, heat transfer optimization, and 

energy efficiency applications in engineering systems. 
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