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Diabetes is becoming one of the world's most fatal chronic diseases, leading to various 

medical difficulties. Diabetes must be detected early to provide prompt treatment and 

to prevent the condition from progressing. In recent years, numerous artificial 

intelligence-based systems have been offered for diabetes detection. The article presents 

an early detection of diabetes based on deep convolutional neural network (DCNN), 

which uses clinical data features including age, triceps skin fold thickness (TST), blood 

pressure (BP), glucose, body mass index (BMI), count of pregnancies, insulin, and 

diabetes pedigree function (DPF). It utilizes DCNN to enhance feature distinctiveness, 

correlation, and interconnectivity, thereby improving diabetes detection performance. 

The efficacy of the suggested approach is assessed on the Indian PIMA dataset (IPD) 

based on percentage accuracy, recall, precision, and F1 score. The DCNN without data 

augmentation achieves an overall accuracy of 92.2%, a precision of 0.92, a recall of 

0.91, and an F1-score of 0.92 for a 5-layered architecture. The performance of the 

DCNN-Generative Adversarial Network (GAN)-based diabetes detection scheme 

yields an improved accuracy of 95.76%, a recall of 0.9519, a precision of 0.9567, and 

an F1 score of 0.9542, outperforming existing diabetes detection schemes. The DCNN-

GAN offers improved performance for diabetes detection, addressing the class 

imbalance problem and the issue of poor feature representation.  
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1. INTRODUCTION

According to the World Health Organization (WHO), 

diabetes is a rapidly growing chronic disease and the ninth 

leading cause of death across the globe. Thus, early diagnosis 

of diabetes is essential so that proper preventive action can be 

taken to avoid progressive effects. Diabetes is caused when the 

pancreas does not produce adequate insulin or when the human 

body cannot use the insulin produced by the pancreas 

effectively. Diabetes is related to metabolism and may cause 

kidney failure, lower limb amputation, heart attack, blindness, 

chronic renal failure, antipathy, cirrhosis of the liver, diabetic 

foot syndrome, neuropathy, transient hyperglycemia, 

hyperthyroidism, encephalopathy, stroke, adrenal gland 

tumors, glucagonoma, and many other difficulties. Diabetes 

has shown rapid growth in the population of low- and middle-

income developing countries compared with high-income 

countries because of a lack of proper diet, stress, obesity, lack 

of exercise, etc. [1-4]. 

A healthy diet, maintaining a healthy body weight, regular 

physical activity, and avoiding tobacco use can commonly 

help delay or prevent diabetes. Generally, diabetes is 

categorized into two variants: type 1 (T1D) and type 2 (T2D). 

T1D diabetes is caused by a deficiency in insulin formation 

that controls blood sugar. The various symptoms of type 1 are 

thirst, constant hunger, excessive excretion of urine, vision 

changes, weight loss, and fatigue [3-5]. T2D is the most 

common diabetes that occurs due to inefficient use of insulin 

among total diabetes patients; more than 95% of people suffer 

from T2D diabetes. It shows symptoms such as physical 

inactivity, low immunity, and excessive body weight. 

Traditionally, diabetes is diagnosed using testing of blood 

sugar (AIC test), fasting blood sugar test, and glucose 

tolerance test. Early diagnosis of diabetes is very crucial for 

avoiding the critical complications that can occur due to 

diabetes [6-9]. 

Artificial intelligence (AI) approaches can now be used to 

diagnose a variety of diseases, with deep neural networks 

(DNNs) achieving the most outstanding results in 

classification tasks [10]. DNNs have been utilized to diagnose 

a diversity of disorders in recent years. The pancreas functions 

normally and produces enough insulin in the absence of 

diabetes. When insulin links to receptors on the cell's surface, 

the glucose molecule's entry into the cell is also opened. In 
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T1D, the pancreas eventually stops manufacturing insulin, 

causing glucose transport to cells to be disrupted [11]. 

This article presents deep learning (DL)-based early 

diabetes prediction based on a healthcare database. The key 

contributions of the article are summarized as follows: 

 Data normalization using novel adaptive min-max 

normalization for standardization of data and 

minimization of the outliers and anomalies in clinical 

data. 

 Development of a DCNN-based diabetes detection 

system based on clinical data. 

 GAN-based data augmentation is used to minimize 

data scarcity and class imbalance problems. 

 Evaluation of the effectiveness of the proposed system 

is based on accuracy, precision, recall, and F1 score. 

This article is arranged as follows: Section II focuses on the 

recent trends in diabetes prediction using clinical data. Section 

III presents the dataset and methods employed in the diabetes 

detection system. Furthermore, Section IV provides a detailed 

explanation of the proposed DL-based diabetes detection 

system. Afterward, Section V presents experimental results 

and an analytical discussion. Lastly, Section VI offers a 

conclusion and provides future directions for upgrading the 

proposed scheme.  

 

 

2. RECENT TRENDS IN DIABETES PREDICTION 
 

Healthcare is one of the most crucial fields in which science 

and technology are needed for civilization to advance. Various 

AI-based schemes utilize health records, genomics, and 

clinical imaging to train machine learning (ML) and DL 

systems [12].  

To diagnose type-2 diabetes, Mohebbi et al. [13] developed 

a novel DL method, proving that CGM signals may be used to 

identify T2D patients. Modak et al. [14] suggested that the 

ensemble learning models, such as the CatBoost classifier, 

have better categorical feature learning capability than 

traditional ML classifiers. The CatBoost provided an overall 

accuracy of 95.4% for the real-time dataset. However, the 

system suffers from the data scarcity problem, which limits its 

robustness and reliability for real-time deployment. Das et al. 

[15] presented ensemble learning for diabetes detection, which 

considers behavioural attributes, demographics, medical 

history, and health data. The data augmentation using the 

oversampling technique helps to achieve an overall accuracy 

of 96.40% on the “Behavioural Risk Factor Surveillance 

System” dataset. AlJourishi and Abdel-Nabi [16] suggested 

that the ensemble learning presented an ensemble ML-based 

classifier based on extra trees for diabetes prediction using 

categorical data. An ensemble classifier using “Synthetic 

minority oversampling technique” (SMOTE) data-

augmentation provided an overall accuracy of 96.98% for 

three-class classification, such as prediabetic, non-diabetic, 

and diabetic. Ai et al. [17] explored that fasting glucose is the 

most essential parameter for the prediction of diabetes and 

insulin level, and c-peptide is crucial for detecting the decline 

in insulin level in the body. However, multiple health and 

lifestyle attributes may help identify prediabetic conditions.  

Ge et al. [18] presented that the body roundness index can 

be essential for predicting diabetes in conditions of low muscle 

mass using an RF classifier. It shows that it is essential to 

predict diabetes at the prediabetic level to avoid the future 

hazards to the body organs and the human immune system. 

Manzini et al. [19] presented an attention-based autoencoder 

for predicting T2D based on clinical data, which has shown a 

significant boost in the accuracy of the system. However, the 

real-time deployment may be limited due to computational 

intricacy and higher training parameters of the system. 

Abousaber [20] suggested that the gradient boosting classifier 

provides promising results for diabetes using the adaptive 

synthetic data augmentation technique (ADASYN) than the 

traditional SMOTE. However, the sample diversity and 

robustness to noise are lower for synthetic data generated 

using ADASYN. Al-Hussein et al. [21] proposed multiple 

linear regression (MLR) for T2D detection using healthcare 

data. The MLR offered the R-squared value of 0.90, which 

shows a boost over CT, RF, and KNN. However, the efficacy 

of MLR is limited due to a smaller training dataset.  

Kowsher et al. [22] developed a DNN and ML classifier to 

improve classification results. However, a combination of 

models leads to intricacy in the system. According to Soniya 

et al. [23], a CNN and a hybrid evolutionary method are used 

to optimize the number of filters and layers, determined by the 

user's and the application's demands. Ramazi et al. [24] used 

information from wearable sensors, lab tests, and 

demographics to build a broad and deep neural network. 

Alharbi and Alghahtani [25] presented the GA-ELM method. 

This hybrid algorithm utilized six useful features from the 

dataset's initial eight characteristics to classify the dataset with 

97.5% accuracy and correctly identify patients with type 2 

diabetes. The identification of diabetes using CNN and 

variational autoencoder (VAE) was presented by García-

Ordás et al. [26]. By augmenting the Indian PIMA dataset with 

the VAE model, they achieved 92.31% accuracy in identifying 

diabetes. 

Recently various ML and DL based systems has shown 

promising results for biomedical signal processing and pattern 

recognition applications [27-29]. The DL techniques has 

shown enhanced feature depiction of raw data and helps to 

improve the classification accuracy of models [30]. Linkon et 

al. [31] suggested that ensemble models achieve superior 

accuracy compared to ML models. They achieved 82.91% 

accuracy in diabetes detection using a light gradient boosting 

machine on the Kaggle dataset, which included 17 physical, 

psychological, behavioral, and lifestyle attributes. Shaheen et 

al. [32] explored the Hi-Le model for diabetes detection that 

combines the “Highway” and “LeNet” models to improve 

feature correlation. They employed proximity-based synthetic 

oversampling for data augmentation, which resulted in an 

overall accuracy of 94% for diabetes detection. However, the 

computational intricacy of the model limits the real-time 

deployment on resource-constrained devices. Gowthami et al. 

[33] provided a comparative analysis of various ML models 

for T2D detection. They suggested that feature selection 

schemes highly influence outcomes of ML techniques, and 

there is a need to enhance the generalization capability of 

models. Eboka et al. [34] suggested bidirectional long short-

term memory (BiLSTM) to improve the long-term depiction 

of attributes. The BiLSTM resulted in an improved accuracy 

of 91.98% for the PIMA dataset. 

The following gaps are identified from the review of recent 

work in diabetes detection using clinical data: 

 Poor local and global correlation and connectivity in 

clinical attributes reduce its distinctiveness. 

 Numerous diabetes prediction techniques have often led 

to problems with class imbalance since the dataset 

contains unequal and smaller samples of healthy and 
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diabetic individuals [35].  

 Poor preprocessing leads to the model being overfitted 

and having lower accuracy. 

 ML models provide less compatibility for depicting 

complex multi-level features of clinical data [36]. 

 Lower interpretability and explainability of the models. 

 Higher intricacy, trainable parameters, and training time 

of DL models.  

This work introduces a new DCNN-based model and GAN-

based data augmentation for early diabetes risk prediction, 

utilizing multiple clinical datasets. 

 

 

3. MATERIAL AND METHOD 
 

Prediction of normal and diabetic persons is challenging 

because of less variability in raw clinical data, missing values, 

and incomplete data. Therefore, selecting a proper clinical 

dataset is essential for efficient diabetes prediction. The work 

aims to offer a distinctive attribute for diabetes detection and 

assess the significance of automatic DL-based diabetes 

detection. The flow of suggested diabetes prediction is 

illustrated in Figure 1, which encompasses the training and 

testing phases.  

 

 
 

Figure 1. Flow diagram of methodology 

 

The proposed framework includes data preprocessing, such 

as normalization, cleaning, and data augmentation (during 

training). Further, a lightweight DCNN is employed to depict 

and classify the features into diabetes labels. The DCNN 

model helps to learn the correlation and connection patterns in 

various medical, physical, and behavioural attributes of the 

patient. The early detection of diabetes helps patients to take 

preventive measures to avoid potential hazards to their health 

in the future. The outcomes of the system are assessed using 

accuracy and various qualitative and quantitative measures.  

 

3.1 Dataset 

 

The data for experimentation is selected from the PID 

dataset, which has an overall of 768 samples, 500 of which are 

healthy and 268 are diabetes samples [27]. It encompasses 

eight statistical, clinical variables such as age, blood pressure 

(BP), glucose, body mass index (BMI), glucose, insulin, 

triceps skin fold thickness (TST), count of pregnancies, and 

diabetes pedigree function (DPF) that can distinguish diabetes 

and non-diabetic samples in the dataset. Table 1 lists the 

dataset variable types and ranges in detail. 

 

Table 1. Details of the Indian PIMA dataset 

 
Feature Label Range Variable Type 

Pregnancy count 0-17 Integer 

Plasma glucose  0-199 Real 

BP 0-122 Real  

TST 0-99 Real 

2 h serum insulin 0-846 Real 

BMI 0-67.1 Real 

DPF 0.078-2.42 Real 

Age  21-81 Integer 

Class 0 (Normal) / 1 (Diabetic) Binary 

 

 
(a) 

 
(b) 

 
(c) 
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(d) 

 

Figure 2. Analysis of dataset a) Diastolic BP Residual Plot; 

b) BMI Residual Plot; c) Diastolic BP Line Fit Plot; d) BMI 

Line Fit 

 

Three variables are used as the outcome: BP and BMI as the 

dependent variables, and glucose level as the independent 

variable in the dataset. In that case, 46.66% of the overall 

population can be classified as having a positive outcome. This 

means that individuals who experience both an increase in 

their blood pressure level and their glucose level are at a high 

risk of developing diabetes and being affected by its 

aftereffects. The diastolic BP and the BMI residual plot are 

shown in Figure 2(a) and Figure 2(b). Figure 2(c) illustrates 

the regression plot for the diastolic BP analysis of the BMI vs 

glucose level. 

The dataset consists of uneven sample sizes, which leads to 

a class imbalance problem. The diabetic samples are 

augmented to 500 samples to equalize the dataset size. The 

augmented dataset using GAN is given in Table 2. We have 

created the same samples using GAN and traditional SMOTE 

to analyze the performance of the system. The dataset is split 

into a 70:30 ratio for training and testing purposes. The 70% 

data for training provides stability in training, and the 30% 

data for testing provides enough samples for validating the 

effectiveness of the trained model for unseen data. 

 

Table 2. Dataset details 

 

Dataset 
Original 

Samples 

Augmented Dataset 

Total 

Samples 

Train 

Samples 

(70%) 

Test 

Samples 

(30%) 

Healthy 500 500 350 150 

Diabetic 268 500 350 150 

Total  768 1000 700 300 

 

3.2 Pre-processing of data 

 

Pre-processing removes incomplete records, normalizes the 

samples, and updates missing values. The data with any 

missing values is removed from the original dataset. The 

preprocessing stage applies the novel adaptive min-max 

normalization to minimize the outliers and standardize the 

data. The original data (D) is normalized using Eq. (1), where 

𝐷𝑛𝑜𝑟𝑚  denotes normalized clinical data, 𝐷𝑚𝑖𝑛  depicts the 

minimum value of clinical attribute, 𝐷𝑚𝑎𝑥  indicate the 

maximum value of clinical data, and ∈ indicate samll positive 

number to avoid infinity value when 𝐷𝑚𝑖𝑛=𝐷𝑚𝑎𝑥.  

 

𝐷norm = 𝑚𝑖𝑛 (1, 𝑚𝑎𝑥 (0,
𝐷−𝐷𝑚𝑖𝑛

𝐷𝑚𝑎𝑥−𝐷𝑚𝑖𝑛+𝜖
))  (1) 

 

During the testing phase, a test sample is tested over the 

trained network that generates the recognition results into a 

healthy or diabetes sample. The five-layered DCNN 

architecture helps to characterize the distinguishing attributes 

of the raw diabetes clinical data. 

 

3.3 Data augmentation using GAN 

 

The GAN model is used for clinical data augmentation, 

which uses the generator (Gen) and discriminator (Dis) 

network as given in Figure 3. The GenNet creates the synthetic 

data from the random noise vector and tries to reduce the error 

in the synthetic and training samples. The 𝐷𝑖𝑠𝑁𝑒𝑡  network 

identifies the real and fake data. The framework of the GAN-

based data augmentation is shown in Figure 4. Eq. (2) provides 

GAN behavior where 𝑥 denotes real data, 𝑧 indicates the noise 

variable, 𝑦  denotes the conditioning variable, 𝐷(𝑥|𝑦) 

specifies DisGen prediction for real input at condition 𝑦, and 

𝐺(𝑧|𝑦) indicates the sample generated by GenNet using noise 

vector at condition 𝑦. 

 

min
𝐺

max
𝐷

𝐸𝑥∼𝑃𝑟
[𝐷( 𝑥 ∣∣ 𝑦 )] − 𝐸𝑧∼𝑃𝑧

[𝐷(𝐺( 𝑧 ∣∣ 𝑦 ))]  (2) 

 

 
 

Figure 3. GAN model for data augmentation 
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The GenNet consists of a reshape layer that converts the 

noise vector into 1×8 dimensions. The transpose convolution 

(TransConv) layers increase the feature connectivity. The 

three TransConv layers use 128, 64, 32, and 1 filters at four 

layers. The TransConv layers are followed by batch 

normalization (BN) for standardizing neurons and rectified 

linear unit layer (ReLU) to improve the features' non-linearity. 

The DisNet consists of four Conv layers with 128, 64, 32, and 

1 filters at each layer, followed by BN and ReLU. The Softmax 

classifier is utilized to classify real and fake samples. 

The GAN model is trained using the Adam optimization 

algorithm, considering a batch size of 16, an initial learning 

rate of 0.001, a cross-entropy loss function, and 100 epochs.  

 

3.4 DCNN model 

 

The DCNN helps provide multilevel hierarchical feature 

depiction, spatial connectivity between the features, and better 

correlation and connectivity between the local and global 

clinical attributes [28-30]. The clinical data has variability in 

the feature values, leading to complex feature depiction using 

DCNN. Also, there is a need to develop a lightweight DCNN 

framework that requires lower trainable parameters and time 

and can be efficiently implemented on standalone resource-

constrained devices. The DCNN comprises five layers of CNN 

that consist of five convolution layers (Conv), five Rectified 

Linear Unit Layer (ReLU), one fully connected layer (FC), and 

lastly Softmax classifier layer (Softmax) as shown in Figure 4.  

The first layer in the DCNN includes two layers 

{Conv1(KernelSize-1×3, NumFilter-16, Stride-1, 

ZeroPadding-Yes)→ReLU1 (Stride-1)} which accepts the 

diabetes data with dimensions of (1×8) and creates the output 

feature map of (1×8×16). Zero padding preserves the original 

sizes of the diabetes data. The second layer encompasses 

{Conv2(KernelSize-1×3, NumFilter-32, Stride-1, 

ZeroPadding-Yes)→ReLU3 (Stride-1)} which results in an 

output feature map of (1×8×32). The third layer encompasses 

{Conv3(KernelSize-1×3, NumFilter-64, Stride-1, 

ZeroPadding-Yes)→ReLU3 (Stride-1)}. Further, the fourth 

layer is designed as {Conv4(KernelSize-1×3, NumFilter-128, 

Stride-1, ZeroPadding-Yes)→ReLU4 (Stride-1)} that 

provides an output feature map of (1×8×128). The fifth layer 

includes {Conv5(KernelSize-1×3, NumFilter-256, Stride-1, 

ZeroPadding-Yes)→ReLU5 (Stride-1)} t (1×8×32). 

The Conv feature map 𝑦(𝑛) of 1-D diabetes data 𝐷(𝑛) and 

Conv filter 𝑘(𝑛)  with size L is given in Eq. (3). Eq. (4) 

indicates the Conv feature that describes the hierarchical 

connectivity features where 𝑦𝑖
𝑙  denotes the ith feature map of 

𝑙𝑡ℎ layer, 𝑦𝑗
𝑙−1  stands for the jth feature of (𝑙 − 1)𝑡ℎ layer, 𝑘𝑖𝑗

𝑙  

denotes the filter kernel of 𝑙𝑡ℎ layer connected to 𝑗 feature, 𝑏𝑖
𝑙 

signifies for bias, and 𝜎  denotes the ReLU function. The 

ReLU activation function is faster and easier to substitute 

negative neurons by 0 to overcome the vanishing gradient 

problem as given in Eq. (5). 

 

𝑦(𝑛) = 𝐷(𝑛) × 𝑘(𝑛) = ∑ 𝑠 = 𝐷(𝑚). 𝑘(𝑛 − 𝑚)𝐿−1
𝑚=0   (3) 

 

𝑦𝑖
𝑙 = 𝜎(𝑏𝑖

𝑙 + ∑ 𝑦𝑗
𝑙−1 × 𝑘𝑖𝑗

𝑙
𝑗 )  (4) 

 

𝜎(𝑦) = max(0, 𝑦)  (5) 

 

After five CNN layers, two FC layers were used, which had 

50 hidden layers. Lastly, the SMC offers the output 

probability, where the label of the output neuron with the 

maximum probability yields the prediction result in Eqs. (6)-

(8), respectively. 

 

𝑧𝑖 = ∑ ℎ𝑗𝑤𝑗𝑖𝑗   (6) 

 

𝑝𝑖 =
exp(𝑧𝑖)

∑ exp(𝑧𝑗)𝑛
𝑗=1

  (7) 

 

𝑦̂ = 𝑎𝑟𝑔
𝑚𝑎𝑥

𝑖
𝑝𝑖   (8) 

 

Here, hj  is the weight of the second-to-last layer and 𝑤𝑗𝑖  

signifies the weights of SMC and the second-to-last layer, 𝑧𝑖 

is the input of the SMC layer, 𝑝𝑖  is the likelihood of the class 

label and 𝑦̂ is the predicted label. The DCNN is trained using 

the mini- batch gradient descent algorithm (MBGD). 

 

 
 

Figure 4. The framework of DCNN for diabetes detection 

 

The algorithm for the proposed DCNN-based diabetes 

prediction can be given as follows: 

 

Step 1: Network and Hyperparameter Initialization 

 N: Number of layers 

 k: number of convolution filter 

 α: Learning rate 

 b: Initial bias 
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 w: Initial weights 

 Num_feat: Number of features 

Step 2:  Data Pre-processing 

 Data Normalization 

 Data Cleaning 

Step 3:  Data Splitting 

 Train_feat: Training Features 

 Train_Labels: Training Labels 

 Test_feat: Testing Features 

 Test_Labels: Testing Labels 

Step 4:  Training phase 

 Layers 

{  

Convolution Layer1 (Stride-1, padding-same,k-16) 

ReLU Layer1 

Convolution Layer2 (Stride-1, padding-same,k-32) 

ReLU Layer2 

Convolution Layer3 (Stride-1, padding-same,k-64) 

ReLU Layer3 

Convolution Layer4 (Stride-1, padding-same,k-128) 

ReLU Layer4 

Convolution Layer5 (Stride-1, padding-same,k-256) 

ReLU Layer5 

Fully Connected Layer 

Softmax Classifier 

} 

Net=train_network(Train_feat,   

Train_Labels,Layers) 

Step 5: Testing phase 

 Predicted_label=test_network(Test_feat,   Net) 

Step 6: Performance Evaluation  

 confusion_matrix=confusion(Predicted_lab

el,Test_Labels) 

 performance_metrics(confusion_matrix) 

{ 

 Accuracy 

Recall 

Precision 

F1-score } 

 

 

4. EXPERIMENTAL RESULTS AND DISCUSSIONS 

 

A desktop PC with 8GB RAM and a core i5 CPU is used to 

create the suggested system using Python 3.0. Eqs. (9)-(12) are 

used to calculate accuracy, recall, precision, and F1-score, 

which are employed to evaluate the effectiveness of the 

proposed deep learning approach for diabetes diagnosis. TP 

stands for the number of samples appropriately categorized as 

not having diabetes. TN is the number of diabetes samples that 

were categorized correctly. The numerical values FN and FP 

indicate the quantity of non-diabetes samples that were 

incorrectly identified and the number of diabetes image 

classification errors, respectively. 

 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦(%) =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
  (9) 

 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
  (10) 

 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑁

𝑇𝑁+𝐹𝑃
  (11) 

 

𝐹1 − 𝑠𝑐𝑜𝑟𝑒 =
2×𝑅𝑒𝑐𝑎𝑙𝑙×𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛

𝑅𝑒𝑐𝑎𝑙𝑙+𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛
  (12) 

 

The different parameter specifications of the DCNN are 

presented in Table 3. The implementation parameters of the 

DCNN and MBGD learning algorithm are given in Table 4.

 

Table 3. Parameter specification of DCNN 

 

Layer 
Sub-

Layer 

Input 

Size 

Filter 

Size 

No of 

Filters 
Stride Padding 

Output 

Feature Map 

Total Trainable 

Parameters 

Input - 1×8 - - - - 1×8 - 

CNN1 
Conv-1 1×8 1×3 16 1 2 1×8×16 400 

ReLU-1 1×8×16 - - 1 - 1×8×16 - 

CNN2 
Conv-2 1×8×16 1×3 32 1 2 1×8×32 1568 

ReLU-2 1×8×32 - - 1 - 1×8×32 - 

CNN3 
Conv-2 1×8×32 1×3 64 1 2 1×8×64 6208 

ReLU-2 1×8×64 - - 1 - 1×8×64 - 

CNN4 
Conv-2 1×8×64 1×3 128 1 2 1×8×128 98560 

ReLU-2 1×8×128 - - 1 - 1×8×128 - 

CNN5 
Conv-2 1×8×128 1×3 256 1 2 1×8×256 196864 

ReLU-2 1×8×256 - - 1 - 1×8×256 - 

FC Layer - 50×1 - - - - 50×1 12850 

Classification 

Layer 
- 50×1 - - - - 2×1 102 

 

Table 4. DCNN hyper-parameters 

 
Parameter Specification 

Stride [2    2] 

Mini Batch Size 64 

Padding [1   1] 

Filters First layer-96, Second layer-256, Third layer- 384 

Maximum Epoch 20 

Gradient Threshold  Inf 

L2 Regulation 104 

Initial Learning Rate 0.01 

Gradient Threshold Method L2 Norm 

Filter Size 3 × 3 
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The performance of DCNN is compared with various 

learning algorithms, including MBGD, Adam, RMSProp, and 

SGD. The proposed system achieved 95.41% accuracy for 

diabetes detection using the proposed DCNN-MBGD on the 

Indian PIMA dataset, as shown in Figure 5. The DCNN-

MBGDM provides an improved overall accuracy of 95.41%, 

precision of 0.96, recall of 0.95, and F1-score of 0.96 for the 

augmented dataset.  

The DCNN-Adam provides an overall accuracy of 92%, a 

recall of 0.95, a precision of 0.92, and an F1-score of 0.93. The 

DCNN-SGDM and DCNN-RMSProp achieve an overall 

accuracy of 93.5% and 92.3%, respectively, for the augmented 

dataset.  

 

 
 

Figure 5. Performance of proposed DCNN and DCNN-GAN 

on the Indian PIMA dataset 

 

Figures 6-9 illustrate the effect of several CNN layers in 

DCNN on various performance metrics of diabetes detection 

for DCNN and DCNN with data augmentation using the 

SMOTE and GAN. It is observed that increasing the number 

of CNN layers to 5 improves performance. Still, after the 5th 

layer, there is a minor improvement in the performance 

metrics, but a massive increase in trainable parameters. 

Therefore, a total of 5 layers are considered for the 

implementation. The DCNN-GAN achieves an improved 

accuracy of 95.41% compared to DCNN-SMOTE (93.3%) and 

DCNN (92.2%), due to its higher representation capability of 

the augmented data. The DCNN-GAN provides superior recall 

of 0.95, precision of 0.95, and F1-score of 0.95 compared to 

DCNN-SMOTE and DCNN for the 5-layered framework. 

DCNN without data augmentation provides a lower precision 

of 0.92, recall of 0.91, and F1-score of 0.92 for 5-layered 

architecture. 

The results of the suggested method are assessed for the 

different training samples selected arbitrarily. It is noted that 

boosting the training sample size enhances the diabetes 

detection performance, as given in Figure 10. 

The training samples varied from 30% to 70% of the total 

dataset, and the outstanding samples were considered for 

testing purposes. The proposed method achieves 95.41% 

accuracy for DCNN-GAN, 93.38% for DCNN-SMOTE, and 

92.22% for DCNN without data augmentation, using a 70% 

training and 30% testing dataset. This demonstrates significant 

improvement over the accuracies obtained with a lower 

number of training samples. 

 
 

Figure 6. Accuracy comparison for DCNN, DCNN-SMOTE, 

and DCNN-GAN 

 

 
 

Figure 7. Precision comparison for DCNN, DCNN-SMOTE, 

and DCNN-GAN 

 

 
 

Figure 8. Recall comparison for DCNN, DCNN-SMOTE, 

and DCNN-GAN 
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Figure 9. F1-score comparison for DCNN, DCNN-SMOTE, 

and DCNN-GAN 

 

 
 

Figure 10. Effect of DCNN, DCNN-SMOTE, and DCNN-

GAN 

 

The effectiveness of the diabetes detection scheme is 

evaluated for the different CNN layers based on total trainable 

parameters (TTPs), training time required for the model, and 

overall accuracy. The DCNN considers five layers for 

implementation because it provides higher accuracy by 

distinctly depicting the features. The DCNN provides overall 

accuracy of 91.23% for 1-layer, 92.45% for 2-layer, 93.89% 

for 3-layers, 95.35% for 4-layers, 95.41 5 for 5-layers, and 

95.38% for 6-layers for diabetes detection. It provides 144.3 

K TTPs for a 5-layered architecture and requires 1104 seconds 

for the training. Increasing the layers beyond the fifth layer 

increases the TTPs (341.2 K) and training time (1789 sec), 

adding computational intricacy to the system as shown in 

Table 5. 

The results of DCNN-GAN are compared with those of 

earlier state-of-the-art models. It is perceived that the DCNN-

GAN-based diabetes detection offers considerably improved 

outcomes compared with the previous state of arts, as given in 

Table 6. The results of DCNN are compared with those of 

traditional ML classifiers, including K-nearest neighbor 

(KNN), Support Vector Machine (SVM), classification tree 

(CT), and random forest (RF). 

The DCNN-GAN exhibits better feature representation 

capabilities and facilitates the learning of interconnectivity in 

different clinical datasets for diabetes detection. For the 

original dataset, the system achieves overall accuracies of 

81.40% for KNN, 82.85% for SVM, 83.50% for CT, 86.45% 

for RF, and 92.22% for DCNN without data augmentation. 

The system offers an overall accuracy of 82.25% for KNN, 

84.10% for SVM, 84.50% for CT, 87.20% for RF, and 93.38% 

for DCNN-SMOTE. It offers improved accuracy of 82.20% 

for KNN, 85.45% for SVM, 86.15% for CT, 88.20% for RF, 

and 95.41% for DCNN-GAN. 

Thus, the proposed compact DCNN provides better results 

for diabetes detection based on clinical data. The five-layered 

DCNN supports reducing intra-class disparity and improving 

inter-class consistency to enhance diabetes detection 

performance. 

The effectiveness of the system is limited due to a small 

dataset size, potential overfitting of the model resulting from 

the smaller feature size and dataset size, poor interpretability 

of the DL model, and lower reliability due to unimodal data. 

 

Table 5. Comparison of the DCNN for different CNN layers 

(% accuracy) 

 

CNN Layers Accuracy (%) TTPs 
Training Tiem 

(sec) 

1-Layer 91.23 1.3 K 467 sec 

2-Layer 92.45 3.7 K 578 sec 

3-Layers 93.89 11.5 K 748 sec 

4-Layers 95.35 39.4 K 894 sec 

5-Layers 95.41 144.3 K 1104 sec 

6-Layers 95.38 341.2 K 1789 sec 

 

Table 6. Comparison of the DCNN with the previous state of arts (% accuracy) 

 

Authors Method 

Accuracy (%) Without 

Data Augmentation 

(GAN) 

Accuracy (%) Without Data 

Augmentation (SMOTE) 

Accuracy (%) with Data 

Augmentation (GAN) 

García-Ordás et al. [26] VAE-CNN 92.31 - - 

Kim et al. [37] DNN-SVM-COPN 83.11 - - 

Kannadasan et al. [38] DNN 86.26 - - 

Proposed Method  

KNN 81.40 82.25 83.20 

SVM 82.85 84.10 85.45 

CT 83.50 84.50 86.15 

RF 86.45 87.20 88.20 

DCNN 92.22 93.38 95.41% 
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5. CONCLUSION 

 

This article presents DL-based early diabetic prediction 

based on medical data such as age, BP, BMI, glucose, insulin, 

TST, number of pregnancies, and DPF. A one-dimensional 

DCNN is presented to improve the raw data's distinguishing 

characteristics, connectivity, and correlation. The efficiency of 

the proposed diabetic prediction based on GAN-DCNN is 

evaluated on the Indian PIMA dataset.  The proposed methods 

result in 95.41% accuracy for DCNN-GAN on the Indian 

PIMA diabetes dataset, which is significantly higher than that 

of DCNN without data augmentation (92.22%).  

In the future, the results of the DCNN system can be 

enriched by considering more clinical parameters and retinal 

fundus images for diabetes detection. The system's 

effectiveness can be validated for the larger dataset and 

multimodal data. The “Interpretability and Explainability” of 

the system can be enhanced to boost the user's trust in the 

diagnosis system. 
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