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Inventory is an essential component of the business world. A scarcity of stock could 

cause frequent interruptions to the production schedule, potentially leading to 

underutilization of capacity and diminished sales. The objective of this paper is to 

develop an inventory model for food products that involves the preservation technology 

with probabilistic demand. This study also aims to explore the potential impacts of 

minimizing total costs. This study focuses on the key aspects of deterioration, shortages, 

and preservation technology investment. It also considers a review of existing literature 

on inventory models and a comparative analysis using fuzzy logic. A numerical 

example is included in the paper to illustrate the model's viability. The proposed models 

undergo sensitivity analysis to show how the sensitivity of the output variable changes 

with the variation of each input parameter. 
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1. INTRODUCTION

The field of inventory management encompasses a wide 

array of factors that need careful consideration. This includes 

achieving a balance between the time needed for restocking, 

cost of carrying inventory, controlling assets, inventory 

projections, valuation of inventory, inventory visibility, and 

forecasting future inventory prices. It also includes conducting 

physical inventories, making the best use of the physical 

premises, ensuring compliance with quality standards, 

controlling replenishment, managing returns and faulty 

products, and accurately anticipating demand. Achieving a 

balance among these multifaceted demands is essential for 

attaining optimal inventory levels. Furthermore, this process is 

a continuous endeavor as businesses must constantly adapt and 

respond to the ever-changing external landscape. 

Inventory management involves the utilization of 

mathematical models that consist of an objective function and 

a set of constraints. These models serve the purpose of 

minimizing costs while considering various aspects such as the 

dynamics of supply and demand, inventory completion 

feasibility, inventory management strategies, and other 

relevant limiting factors. The nature of mathematical models 

in inventory management can be highly intricate, which often 

necessitates simplifications to accurately represent specific 

management tasks. In a mathematical model, the system is 

symbolically represented, allowing for modifications through 

mathematical rules. By developing a mathematical model, 

numerous inventory systems can be effectively solved, 

enabling the derivation of optimal decision rules. 

Inventory management is a critical aspect of manufacturing 

operations, with demand and deterioration being key factors to 

consider. Various elements, including demand rate, shortage 

cost, and deteriorating items, significantly influence the 

development of “inventory models. The nature of demand can 

vary depending on the circumstances and product type. For the 

past few decades, researchers have explored different demand 

patterns, such as “constant demand, time-dependent demand, 

price-dependent demand, and time and price-dependent 

demand. For example, when newly released fashion products 

like cosmetics or clothing enter the market, their demand tends 

to increase over time before stabilizing. This type of demand 

is commonly referred to as ramp-type demand. Some 

researchers have also incorporated the consideration of item 

deterioration into their models. Deterioration can manifest in 

various ways, such as spoilage, obsolescence, or a decrease in 

utility or value compared to its original state. Items like 

alcohol, gasoline, radioactive chemicals, pharmaceuticals, 

blood, fish, fruits, and vegetables are susceptible to 

deterioration. Hence, examining the impact of physical item 
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deterioration on inventory management is crucial. 

In recent years, there has been significant research on 

production “inventory models. Khurana et al. [1] proposed an 

“economic order quantity model” that allows for shortages in 

the case of decaying products with inconstant demand rates. 

Another study by Khara et al. [2] developed a “quantity model 

for economic growth”, considering both perfect and imperfect 

products. This model incorporates factors such as purchase 

price, product reliability, and advertising in determining 

demand. These studies highlight the ongoing efforts to 

enhance “inventory models, considering factors like demand 

variations, product deterioration, and other influential 

variables. By incorporating such elements, researchers aim to 

improve inventory management practices and optimize 

decision-making for businesses in various industries.  

To develop an “EOQ model, it is essential to consider a 

determinate planning horizon. In 2018, Palanivel and 

Uthayakumar [3] introduced a probabilistic function-based 

“EOQ model” specifically designed for non-immediately 

decaying products. This model takes into account factors such 

as inflation and the time value of money within the finite 

planning horizon. In addition, Saha and Sen [4] proposed an 

“inventory model” tailored for decaying products, considering 

both time and price-based demand.  

Existing literature suggests that a Weibull distribution is 

often applied in the case of time-varying demand. However, in 

real-world scenarios it is not commonly observed that an 

unchanging adjustment in the item demand rate per unit time 

is implied by the Weibull distribution. The Weibull 

distribution” is more suitable for items with a demand rate that 

increases over time. The location parameter of the three-

parameter Weibull distribution is particularly useful in 

representing the shelf-life of items, which is an important 

consideration for most degrading items with time-varying 

demand. 

To emphasize this concept, in this paper, an inventory 

model for deteriorating items with preservation technology 

with a time-dependent shortage and the probabilistic demand 

is proposed, as well. Sindhuja et al. [5] discussed a 

mathematical model based on quadratic demand and also 

considered time-dependent demand. When this proposed 

model is compared to the existing model, the total cost is 

reduced even more. 

The remainder of the paper is organized as follows: Section 

2 offers a review of the relevant literature. Section 3 outlines 

the notations and assumptions. The mathematical model is 

developed in Section 4. Solution procedure represented in 

Section 5. Section 6 presents a numerical example based on 

the fuzzy parameters. Comprehensive sensitivity analysis is 

provided in Section 7, followed by the conclusion and future 

research directions in Section 8. 

2. LITERATURE SURVEY

In the field of modelling techniques, researchers have made 

significant advancements by refining specific assumptions to 

better align with real-world scenarios. An extensive body of 

research has been dedicated to analyzing inventory systems 

through the development of mathematical models, providing 

valuable insights for supply chain decision-makers. 

Over the past century, numerous books and research articles 

have inquired into this area of study, focusing on various case 

scenarios. The concepts presented in this chapter's 

introduction draw inspiration from the works of many 

researchers dedicated to inventory issues, which primarily 

focuses on practical applications rather than theoretical 

foundations or derivations. This work explores different 

extensions of the basic lot size concept and highlights their 

practical utility. 

Understanding demand patterns is a crucial aspect of 

formulating “inventory models. Demand patterns illustrate 

how consumer demand fluctuates over time. In real-world 

circumstances, it has been noted that the demand for high-tech 

innovative products, seasonal commodities, pharmaceuticals, 

and other goods tends to increase during the growth phase and 

decrease during the decline phase. Sales throughout a 

product's life cycle are typically characterized by time-varying 

demand patterns in the market. Researchers [6-17] have 

contributed additional research on demand patterns 

resembling ramps. Their studies have further enriched the 

understanding of inventory management in the face of such 

demand dynamics. 

Deterioration is a natural process that affects various 

products such as dairy products, pharmaceuticals, human 

blood, fruits and vegetables, and other consumer items. It 

occurs due to factors like expiry, decay, damage, and pilferage, 

leading to a decrease in the quality and usefulness of the 

product. Recognizing the significance of managing 

deteriorating inventory, researchers have shown great interest 

in developing models for inventory replenishment plans 

specifically tailored for such products. One notable study by 

Covert and Philip [18] presented a scenario where 

deterioration follows a Weibull distribution. This research 

contributed to the understanding of how deterioration patterns 

can be modelled and incorporated into inventory control 

strategies. 

The exploration of deteriorating products and their 

inventory management has attracted a considerable amount of 

attention from numerous researchers. Among them, 

researchers [19-32] have made significant contributions to the 

field through their respective studies. These researchers have 

inquired into various aspects of deteriorating inventory 

management, adding valuable insights to the existing body of 

knowledge. 

In the context of carbon management, many findings have 

been documented in the existing literature. “To begin with, 

Huang et al. [33] studied inventory models that include green 

investment and assessed the effects of various carbon emission 

policies. Rahimi et al. [34] tackled inventory models of the 

stochastic routing problem by integrating profit, service level, 

and environmental criteria. Carbon emission considerations in 

inventory models for perishable items were investigated by 

Bozorgi [35]. Beccera et al. [36] conducted research on 

sustainable green inventory model. Mahato and Mahata [37] 

explored a sustainable partial backordering inventory model 

linked to order credit policy and all-unit discount with capacity 

constraints and carbon emissions. 

According to the literature, a Weibull time-varying demand 

signifies a uniform variance in the item demand rate per unit 

time, which is unusual in the real world. The Weibull 

distribution is appropriate for things whose rate of demand 

rises with time, and the location parameter of the three-

parameter Weibull distribution is used to show the item shelf-

life, which is an essential parameter of most degrading items 

with time-varying demand. 

In this paper, an application of the preservation technology 

inventory model for deteriorating goods is addressed, as well 
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as a time-dependent shortage with the rate of demand as 

probabilistic demand is also considered. 

 

 

3. ASSUMPTIONS 

 

When constructing an EOQ model, while using Weibull 

demand with preservation technology, several key 

assumptions are made. These assumptions shape the 

fundamental framework of the model and provide a basis for 

analysis. The following are the key assumptions considered: 

Single Item: The EOQ model focuses on a single item 

within the inventory system. This simplifies the analysis by 

isolating the dynamics and characteristics of a specific 

product. 

Deterministic Demand: The demand pattern in this model is 

assumed to be deterministic, meaning that the demand for the 

item is known with certainty. This assumption enables precise 

calculations and predictions based on the given demand 

function. 

Shortages Allowed: The model accounts for shortages, 

meaning that stockouts are permitted. This assumption 

acknowledges the possibility of not meeting the entire 

demand, resulting in backorders or unfulfilled orders during 

periods of stock depletion. 

Non-Replacement of Deteriorated Items: The model 

assumes that items that have deteriorated during the cycle 

period are not replaced. This reflects the real-world scenario 

where the deteriorated items cannot be rejuvenated or restored 

to their original state. 

Zero Lead Time: The lead time, which refers to the time 

between placing an order and receiving it, is assumed to be 

zero. In reality, some lead time always exists, but businesses 

try to reduce it to improve responsiveness and service levels.  

 

 

4. MATHEMATICAL MODEL 

 

The suggested model employs a Weibull demand function 

to better reflect the dynamic and time-dependent 

characteristics of perishable goods demand. The existing 

model relies on a quadratic demand structure, which restricts 

its ability to accurately reflect realistic demand patterns. In 

contrast, the Weibull distribution offers a flexible framework 

capable of representing both increasing and decreasing trends.  
 

4.1 Description about an existing model 

 

Sindhuja et al. [5] proposed an inventory model, 

considering the effect of the quadratic demand and the 

deterioration rate, the inventory level at any point of time 𝑡, 
𝜂(𝑡) can be expressed by the following differential equation: 
 

𝑑𝜂(𝑡)

𝑑𝑡
+ 𝜃𝜂(𝑡) = −(𝛼 + 𝛽𝑡 + 𝑐𝑡2) 0 ≤ 𝑡 ≤ 𝜏1  

 

With the initial condition 𝜂(0) = 𝑞1  and boundary 

condition 𝜂(𝜏1) = 0 , the inventory level can be expressed as: 
 

𝑑𝜂(𝑡)

𝑑𝑡
= −(𝛼 + 𝛽𝑡 + 𝑐𝑡2) 𝜏1 ≤ 𝑡 ≤ 𝜏  

 

In this model, the demand is considered as a quadratic 

demand in the existing model. Comparing with proposed 

model this kind of demand rapid decline in demand as expiry 

approaches. While the quadratic demand model captures a 

decline in demand near expiry, the proposed Weibull-based 

model offers greater flexibility and accuracy in representing 

the deterioration and time-dependent behavior of perishable 

products. 

 

 

5. THE PROPOSED MATHEMATICAL MODEL 
 

Considering the effect of the probabilistic demand based on 

Weibull demand with preservation technology, the inventory 

level at any point of time  𝑡 , 𝐼(𝑡)  can be expressed by the 

following differential equation: 

 
𝑑𝐼(𝑡)

𝑑𝑡
+ 𝜃(1 − 𝜉)𝐼(𝑡) = −𝛼𝛽𝛾(𝛽−1)  

0 ≤ 𝑡 ≤ 𝑇1  

(1) 

 

With the initial condition 𝐼(0) = 𝑞1 and boundary 

condition 𝐼(𝑇1) = 0, the inventory level can be expressed as: 

 
𝑑𝐼(𝑡)

𝑑𝑡
= −𝛼𝛽𝛾(𝛽−1) 

 𝑇1 ≤ 𝑡 ≤ 𝑇  

(2) 

 

The solution of Eq. (1) with condition 𝐼(𝑇1) can be obtained 

as 

 

𝐼(𝑡) =
−𝛼𝛽𝛾−1+𝛽(−𝛼+𝛾𝛽)

𝜃(−1+𝜉)
+ (−𝛼 + 𝛾𝛽)

1

𝛽  (3) 

 

Using the initial condition 𝐼(0) = 𝑞1 , the value of 𝑞1  is 

given by 

 

𝑞1 = (−𝛼)
1

𝛽  (4) 

 

The solution of Eq. (2) with the condition  𝐼(𝑇1) = 0, is 

given by 

 

𝐼(𝑡) = −𝑇1𝛼𝛽(𝑇1)
−1+𝛽 + 𝑡𝛼𝛽𝑇 (5) 

 

Maximum storage quantity 𝑞2 is given by 
 

𝑞2 = 𝑎(𝑇 − 𝑇1) +
𝑏

2
(𝑇2 − 𝑇1

2)  (6) 

 

Initial order quantity is 𝑄𝑖 = 𝑞1 + 𝑞2 

 

𝑄𝑖 =
𝛼[𝑏𝛼 + 𝑏𝑎(−1 + 2𝛽)]

(𝜃(−1 + 𝜉))
+ (−𝛼)

1
𝛽 + 𝑎(𝑇 − 𝑇1) 

+
𝑏

2
(𝑇2 − 𝑇1

2) 

(7) 

 

Inventory carrying cost in the system during the time 

intervals (0, 𝑇1) is given by 
 

𝐶𝑖ℎ = ℎ ∫ 𝐼(𝑡)
𝑇1
0

𝑑𝑡  

 

On solving the above equation which yields: 
 

𝐶𝑖ℎ = ℎ ∫ 𝐼(𝑡)
𝑇1
0

𝑑𝑡 =

ℎ [−
(𝛾𝛽−𝑎)𝑇1(2𝑏𝛼+(−2+4𝛽)+(−1+𝛽)𝑇1)

(𝜃(−1+𝜉))
+ (𝛾𝛽 − 𝛼)

1

𝛽𝑇1]  
(8) 

 

The stock out cost between the time intervals (𝑇1, 𝑇)  is 

given by: 
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𝐶𝑠 = 𝑠 ∫ −𝐼(𝑡)
𝑇

𝑇1
𝑑𝑡 

On solving the above equation which yields: 

𝐶𝑠 = 𝑠 [
(𝛾𝛽 − 𝛼)

1

𝛽(𝑇 − 𝑇1)

− [
(𝛾𝛽−𝛼)(𝑇−𝑇1)(2𝛼+𝑇(−1+𝛽)+𝑎(−2+4𝛽)+(−1+𝛽)𝑇1)

𝜃(−1+𝜉)
]
] (9) 

No. of units purchased in the beginning is 𝑄𝑖 = 𝑞1 + 𝑞2.

The number of units deteriorated is 𝑄 = 𝑇1 (𝛼 + 𝛽
𝑇1

2
).

Hence, the deterioration cost is 𝐷𝑟 = 𝑑 {𝑞1 − 𝑇1  (𝛼 +

𝛽
𝑇1

2
)}. 

On solving the above equation which yields: 

𝐷𝑟 = 𝑑 {
𝛼[𝑏𝛼+𝑏𝑎(−1+2𝛽)]

(−1+𝛽)(−1+2𝛽)
+ (−𝛼)

1

𝛽 − 𝑇1  (𝛼 + 𝛽
𝑇1

2
)} (10) 

The total cost per cycle 𝑧 is defined as 𝑧 =
1

𝑇
[𝐴 + 𝐶𝑖ℎ +

𝐶𝑠 + 𝐷𝑟]  and substituting the value of Eqs. (8)-(10), it is

obtained as below. 

6. DEDUCTION OF OPTIMAL COST

𝑧 =
1

𝑇

{

 

𝐴 + ℎ [−
(𝛾𝛽−𝑎)𝑇1(2𝑏𝛼+(−2+4𝛽)+(−1+𝛽)𝑇1)

𝜃(−1+𝜉)
+ (𝛾𝛽 − 𝛼)

1

𝛽𝑇1]

+𝑠 [
(𝛾𝛽 − 𝛼)

1

𝛽(𝑇 − 𝑇1)

− [
(𝛾𝛽−𝛼)(𝑇−𝑇1)(2𝑏𝛼+𝑏𝑇(−1+𝛽)+𝑎(−2+4𝛽)+𝑏(−1+𝛽)𝑇1)

𝜃(−1+𝜉)
]
]

+𝑑 {
𝛼[𝑏𝛼+𝑏𝑎(−1+2𝛽)]

(𝜃(−1+𝜉))
+ (−𝛼)

1

𝛽 − 𝑇1  (𝛼 + 𝛽
𝑇1

2
)}

}

(11) 

Taking the first and the second order partial differentiation 

for Eq. (11) with respect to 𝑇1and 𝑇, the Eqs. (12) and (13) are

obtained: 

𝜕𝑧

𝜕𝑇1
= −

1

𝑇
{
ℎ [

(3+4𝛽(−1)𝑇1)

𝜃(−1+𝜉)
−

6(𝛼−𝛽𝑎)+3(𝛽+𝛼)𝑇1+2𝛽(−1)𝑇1
2

𝜃(−1+𝜉)
]

−𝑠(𝑇 − 𝑇1)(𝛼 + 𝛽𝑇1) + 𝑑(−𝛼 − 𝛽𝑇1)
} (12) 

𝜕𝑧

𝜕𝑇
= −

1

𝑇2

{

 

𝐴 + ℎ [

−𝑇1(6𝑎(𝛼−𝛽𝑎−2𝛼𝑏)+3(𝛽𝑎+𝛽(−1))𝑇1+2𝑑(−1)𝑇1
2)

𝜃(−1+𝜉)

−
𝛼𝑇1

𝛽
+

𝑇1
2

2

]

+
𝑠(𝑇−𝑇1)

2

6
{3𝛼 + 𝛽(𝑇 + 2𝑇1} +

𝑑 {
𝛼[𝑑𝛼+𝑑𝑐(−1+2𝛽)]

𝜃(−1+𝜉)
+ (−𝑎)

1
𝛽 − 𝑇1  (𝛼 + 𝛽

𝑇1

2
)}

}

+

1

𝑇
{
𝑠(𝑇−𝑇1)

2
(2𝛼 + 𝛽𝑇 − 𝛽𝑇1)} 

(13) 

𝜕2𝑇𝐶(𝑍)

𝜕𝑇2
=

1

𝑇4
[𝑇2

2𝑠(𝑇1−𝑇)

6
3𝑎 + 𝑇2

2𝛽𝑠(𝑇1−𝑇)

6
(𝑇 +

2𝑇1) − 𝑆
(𝑇1−𝑇)

2

6
] +

1

𝑇2
[𝑇𝑠

(2𝑎+𝛽𝑇−𝛽𝑇1)

2
−

𝑠(𝑇−𝑇1)

2
] 

(14) 

𝜕2𝑇𝐶(𝑍)

𝜕𝑇1
2 =

1

𝑇
[ℎ (

4𝛽

𝜃(𝜉−1)
+

4𝑇1𝛽−3(𝛽+𝑎)

𝜃(𝜉−1)
) − 𝑠(𝑇 −

1)(𝛼 + 𝛽𝑇1) + 𝑆((𝑇1 − 𝑇)𝛽 − 𝑑𝛽)] > 0
(15) 

The optimal values of 𝑇1 = 𝑇1
∗ and 𝑇 = 𝑇∗are obtained by

solving simultaneously for 
𝜕𝑧

𝜕𝑇1
= 0 and 

𝜕𝑧

𝜕𝑇
= 0.

The optimal (minimum) values of 𝑇1 = 𝑇1
∗ and 𝑇 = 𝑇∗ are

obtained.  

MATLAB R2013a is used for finding optimal solution of 

𝑇1 = 𝑇1
∗, 𝑇 = 𝑇∗, 𝑄𝑖 = 𝑄𝑖

∗, 𝑧 = 𝑧∗. 

7. FUZZY MODEL

Implementation of the proposed model with Pentagon 

Fuzzy Numbers to confirm the reliability of the suggested 

Weibull-based inventory model when faced with uncertain 

parameters (such as deterioration rate, demand, and holding 

cost), fuzzy logic is utilized, particularly employing Pentagon 

Fuzzy Numbers. 

Steps in the Fuzzy Implementation: 

Fuzzification 

Transform uncertain parameters in the model (such as 

demand rate, deterioration rate, and holding cost) into 

Pentagon Fuzzy Numbers. 

Substitute Fuzzy Parameters into the Model 

In the inventory equations of Weibull model, substitute 

crisp values for fuzzy numbers. 

Let 𝛼̃ = (𝛼1, 𝛼2, 𝛼3, 𝛼4, 𝛼5) , 𝛽 = (𝛽1, 𝛽2, 𝛽3, 𝛽4, 𝛽5) ,

𝛾̃=(𝛾1, 𝛾2, 𝛾3, 𝛾4, 𝛾5) , 𝑑̃=(𝑑1, 𝑑2, 𝑑3, 𝑑4, 𝑑5)  are as pentagon

fuzzy number. In a fuzzy sense, the system's total cost per unit 

of time is 

𝑧̃ =
1

𝑇
{𝐴 + ℎ [

−(𝛾̃𝛽̃−𝑎 )𝑇1(2𝑏𝛼̃)+(−2+4𝛽̃)+(−1+𝛽̃)𝑇1

𝜃(−1+𝜉)
+ (𝛾̃ 𝛽 −

𝛼̃)
1

𝛽̃𝑇1] + 𝑠 [(𝛾̃ 𝛽 − 𝛼̃)
1

𝛽̃(𝑇 − 𝑇1) −

[
(𝛾̃𝛽̃−𝛼̃ )(𝑇−𝑇1)(2𝑏𝛼̃+𝑏𝑇(−1+𝛽̃)+𝑎(−2+4𝛽̃)+𝑏(−1+𝛽̃)𝑇1

𝜃(−1+𝜉)
] +

𝑑 (
𝛼̃[𝑏𝛼̃+𝑏𝑎(−1+2𝛽̃]

𝜃(−1+𝜉)
+ (−𝛼̃)

1

𝛽̃−𝑇1 (𝛼̃ + 𝛽
𝑇1

2
))]} 

Apply Defuzzification Techniques 

Utilize Graded Mean Integration and the Signed Distance 

Method to derive crisp values from fuzzy outputs. 

(i) By Graded Mean Integration Method, Total Cost is given

by 

𝑍𝐺𝑀𝑇 =
1

6
[𝑍𝐺𝑀1𝑇 + 2 𝑍𝐺𝑀2𝑇 + 2𝑍𝐺𝑀4𝑇 + 𝑍𝐺𝑀5𝑇]

𝑍𝐺𝑀1𝑇 = 
1

𝑇
{𝐴 + ℎ [

−(𝛾1𝛽1−𝑎 )𝑇1(2𝑏𝛼1)+(−2+4𝛽1)+(−1+𝛽1)𝑇1

𝜃(−1+𝜉)
+

(𝛾1𝛽1 − 𝛼1)
1

𝛽̃𝑇1] + 𝑠 [( 𝛾1𝛽1 − 𝛼1)
1

𝛽̃(𝑇 − 𝑇1) −

[

((𝛾1𝛽1−𝛼1)(𝑇−𝑇1)(2𝑏𝛼1+𝑏𝑇(−1+𝛽1)+

𝑎(−2+4𝛽1)+𝑏(−1+𝛽1)𝑇1)

𝜃(−1+𝜉)
] + 𝑑 (

𝛼1[𝑏𝛼1+𝑏𝑎(−1+2𝛽1)]

𝜃(−1+𝜉)
+

(−𝛼1)
1

𝛽̃−𝑇1 (𝛼1 + 𝛽1
𝑇1

2
))]} 

𝑍𝐺𝑀2𝑇 = 
1

𝑇
{𝐴 + ℎ [

−(𝛾2𝛽2−𝑎 )𝑇1(2𝑏𝛼2)+(−2+4𝛽2)+(−1+𝛽2)𝑇1

𝜃(−1+𝜉)
+

(𝛾2𝛽2 − 𝛼2)
1

𝛽̃𝑇1] + 𝑠 [( 𝛾2𝛽2 − 𝛼2)
1

𝛽̃(𝑇 − 𝑇1) −

[

((𝛾2𝛽2−𝛼2)(𝑇−𝑇1)(2𝑏𝛼2+𝑏𝑇(−1+𝛽2)+

𝑎(−2+4𝛽2)+𝑏(−1+𝛽2)𝑇1)

𝜃(−1+𝜉)
] + 𝑑 (

𝛼2[𝑏𝛼2+𝑏𝑎(−1+2𝛽2]

𝜃(−1+𝜉)
+

(−𝛼2)
1

𝛽̃−𝑇1 (𝛼2 + 𝛽2
𝑇1

2
))]} 
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𝑍𝐺𝑀3𝑇 = 
1

𝑇
{𝐴 + ℎ [

−(𝛾3𝛽3−𝑎 )𝑇1(2𝑏𝛼3)+(−2+4𝛽3)+(−1+𝛽3)𝑇1

𝜃(−1+𝜉)
+

(𝛾3𝛽3 − 𝛼3)
1

𝛽̃𝑇1] + 𝑠 [( 𝛾3𝛽3 − 𝛼3)
1

𝛽̃(𝑇 − 𝑇1) −

[

((𝛾3𝛽3−𝛼3)(𝑇−𝑇1)(2𝑏𝛼3+𝑏𝑇(−1+𝛽3)+

𝑎(−2+4𝛽3)+𝑏(−1+𝛽3)𝑇1)

𝜃(−1+𝜉)
] + 𝑑 (

𝛼3[𝑏𝛼3+𝑏𝑎(−1+2𝛽3]

𝜃(−1+𝜉)
+

(−𝛼3)
1

𝛽̃−𝑇1 (𝛼3 + 𝛽3
𝑇1

2
))]} 

𝑍𝐺𝑀4𝑇 = 
1

𝑇
{𝐴 + ℎ [

−(𝛾4𝛽4−𝑎 )𝑇1(2𝑏𝛼4)+(−2+4𝛽4)+(−1+𝛽4)𝑇1

𝜃(−1+𝜉)
+

(𝛾4𝛽4 − 𝛼4)
1

𝛽̃𝑇1] + 𝑠 [( 𝛾4𝛽4 − 𝛼4)
1

𝛽̃(𝑇 − 𝑇1) −

[

((𝛾4𝛽4−𝛼4)(𝑇−𝑇1)(2𝑏𝛼4+𝑏𝑇(−1+𝛽4)+

𝑎(−2+4𝛽4)+𝑏(−1+𝛽4)𝑇1)

𝜃(−1+𝜉)
] + 𝑑 (

𝛼4[𝑏𝛼4+𝑏𝑎(−1+2𝛽4]

𝜃(−1+𝜉)
+

(−𝛼4)
1

𝛽̃−𝑇1 (𝛼4 + 𝛽4
𝑇1

2
))]} 

𝑍𝐺𝑀5𝑇 = 
1

𝑇
{𝐴 + ℎ [

−(𝛾5𝛽5−𝑎 )𝑇1(2𝑏𝛼5)+(−2+4𝛽5)+(−1+𝛽5)𝑇1

𝜃(−1+𝜉)
+

(𝛾5𝛽5 − 𝛼4)
1

𝛽̃𝑇1] + 𝑠 [( 𝛾4𝛽4 − 𝛼4)
1

𝛽̃(𝑇 − 𝑇1) −

[

((𝛾4𝛽4−𝛼4)(𝑇−𝑇1)(2𝑏𝛼4+𝑏𝑇(−1+𝛽4)+

𝑎(−2+4𝛽4)+𝑏(−1+𝛽4)𝑇1)

𝜃(−1+𝜉)
] + 𝑑 (

𝛼4[𝑏𝛼4+𝑏𝑎(−1+2𝛽4]

𝜃(−1+𝜉)
+

(−𝛼4)
1

𝛽̃−𝑇1 (𝛼4 + 𝛽4
𝑇1

2
))]} 

𝑍𝐺𝑀𝑇 =
1

6 
[
1

𝑇
{𝐴 + ℎ [

−(𝛾1𝛽1−𝑎 )𝑇1(2𝑏𝛼1)+(−2+4𝛽1)+(−1+𝛽1)𝑇1

𝜃(−1+𝜉)
+

(𝛾1𝛽1 − 𝛼1)
1

𝛽̃𝑇1] + 𝑠 [( 𝛾1𝛽1 − 𝛼1)
1

𝛽̃(𝑇 − 𝑇1) −

[
(𝛾1𝛽1−𝛼1)(𝑇−𝑇1)(2𝑏𝛼1+𝑏𝑇(−1+𝛽1)+𝑎(−2+4𝛽1)+𝑏(−1+𝛽1)𝑇1

𝜃(−1+𝜉)
] +

𝑑 (
𝛼1[𝑏𝛼1+𝑏𝑎(−1+2𝛽1]

𝜃(−1+𝜉)
+ (−𝛼1)

1

𝛽̃−𝑇1 (𝛼1 + 𝛽1
𝑇1

2
))]}+2 

1

𝑇
{𝐴 + ℎ [

−(𝛾2𝛽2−𝑎 )𝑇1(2𝑏𝛼2)+(−2+4𝛽2)+(−1+𝛽2)𝑇1

𝜃(−1+𝜉)
+ (𝛾2𝛽2 −

𝛼2)
1

𝛽̃𝑇1] + 𝑠 [( 𝛾2𝛽2 − 𝛼2)
1

𝛽̃(𝑇 − 𝑇1) −

[
(𝛾2𝛽2−𝛼2)(𝑇−𝑇1)(2𝑏𝛼2+𝑏𝑇(−1+𝛽2)+𝑎(−2+4𝛽2)+𝑏(−1+𝛽2)𝑇1

𝜃(−1+𝜉)
] +

𝑑 (
𝛼2[𝑏𝛼2+𝑏𝑎(−1+2𝛽2]

𝜃(−1+𝜉)
+ (−𝛼2)

1

𝛽̃−𝑇1 (𝛼2 + 𝛽2
𝑇1

2
))]}+2 

1

𝑇
{𝐴 +

ℎ [
−(𝛾4𝛽4−𝑎 )𝑇1(2𝑏𝛼4)+(−2+4𝛽4)+(−1+𝛽4)𝑇1

𝜃(−1+𝜉)
+ (𝛾4𝛽4 − 𝛼4)

1

𝛽̃𝑇1] +

𝑠 [( 𝛾4𝛽4 − 𝛼4)
1

𝛽̃(𝑇 − 𝑇1) −

[
(𝛾4𝛽4−𝛼4)(𝑇−𝑇1)(2𝑏𝛼4+𝑏𝑇(−1+𝛽4)+𝑎(−2+4𝛽4)+𝑏(−1+𝛽4)𝑇1

𝜃(−1+𝜉)
] +

𝑑 (
𝛼4[𝑏𝛼4+𝑏𝑎(−1+2𝛽4]

𝜃(−1+𝜉)
+ (−𝛼4)

1

𝛽̃−𝑇1 (𝛼4 + 𝛽4
𝑇1

2
))]}+ 

1

𝑇
{𝐴 +

ℎ [
−(𝛾5𝛽5−𝑎 )𝑇1(2𝑏𝛼5)+(−2+4𝛽5)+(−1+𝛽5)𝑇1

𝜃(−1+𝜉)
+ (𝛾5𝛽5 − 𝛼4)

1

𝛽̃𝑇1] + 𝑠 [( 𝛾4𝛽4 −

𝛼4)
1

𝛽̃(𝑇 − 𝑇1) − [
(𝛾4𝛽4−𝛼4)(𝑇−𝑇1)(2𝑏𝛼4+𝑏𝑇(−1+𝛽4)+𝑎(−2+4𝛽4)+𝑏(−1+𝛽4)𝑇1

𝜃(−1+𝜉)
] +

𝑑 (
𝛼4[𝑏𝛼4+𝑏𝑎(−1+2𝛽4]

𝜃(−1+𝜉)
+ (−𝛼4)

1

𝛽̃−𝑇1 (𝛼4 + 𝛽4
𝑇1

2
))]}] 

The necessary condition for 𝑍𝐺𝑀𝑇 to be minimum is

𝜕𝑍𝐺𝑀𝑇

𝜕𝑇
= 0 

𝑍𝐺𝑀𝑇 is minimum only if 
𝜕2𝑍𝐺𝑀𝑇

𝜕𝑇2
> 0, for all T > 0.

(ii) By Signed Distance Method, total cost is given by

𝑍𝑆𝐷𝑇 =
1

9
[𝑍𝑆𝐷1𝑇 + 2 𝑍𝑆𝐷2𝑇 + 3 𝑍𝑆𝐷3𝑇 + 2𝑍𝑆𝐷4𝑇 + 𝑍𝑆𝐷5𝑇]

𝑍𝑆𝐷1𝑇 =  
1

𝑇
{𝐴 + ℎ [

−(𝛾1𝛽1−𝑎 )𝑇1(2𝑏𝛼1)+(−2+4𝛽1)+(−1+𝛽1)𝑇1

𝜃(−1+𝜉)
+

(𝛾1𝛽1 − 𝛼1)
1

𝛽̃𝑇1] + 𝑠 [( 𝛾1𝛽1 − 𝛼1)
1

𝛽̃(𝑇 − 𝑇1) −

[

((𝛾1𝛽1−𝛼1)(𝑇−𝑇1)(2𝑏𝛼1+𝑏𝑇(−1+𝛽1)+

𝑎(−2+4𝛽1)+𝑏(−1+𝛽1)𝑇1)

𝜃(−1+𝜉)
] + 𝑑 (

𝛼1[𝑏𝛼1+𝑏𝑎(−1+2𝛽1]

𝜃(−1+𝜉)
+

(−𝛼1)
1

𝛽̃−𝑇1 (𝛼1 + 𝛽1
𝑇1

2
))]} 

𝑍𝑆𝐷2𝑇 =  
1

𝑇
{𝐴 + ℎ [

−(𝛾2𝛽2−𝑎 )𝑇1(2𝑏𝛼2)+(−2+4𝛽2)+(−1+𝛽2)𝑇1

𝜃(−1+𝜉)
+

(𝛾2𝛽2 − 𝛼2)
1

𝛽̃𝑇1] + 𝑠 [( 𝛾2𝛽2 − 𝛼2)
1

𝛽̃(𝑇 − 𝑇1) −

[

((𝛾2𝛽2−𝛼2)(𝑇−𝑇1)(2𝑏𝛼2+𝑏𝑇(−1+𝛽2)+

𝑎(−2+4𝛽2)+𝑏(−1+𝛽2)𝑇1)

𝜃(−1+𝜉)
] + 𝑑 (

𝛼2[𝑏𝛼2+𝑏𝑎(−1+2𝛽2]

𝜃(−1+𝜉)
+

(−𝛼2)
1

𝛽̃−𝑇1 (𝛼2 + 𝛽2
𝑇1

2
))]} 

𝑍𝑆𝐷3𝑇 =  
1

𝑇
{𝐴 + ℎ [

−(𝛾3𝛽3−𝑎)𝑇1(2𝑏𝛼3)+(−2+4𝛽3)+(−1+𝛽3)𝑇1

𝜃(−1+𝜉)
+

(𝛾3𝛽3 − 𝛼3)
1

𝛽̃𝑇1] + 𝑠 [( 𝛾3𝛽3 − 𝛼3)
1

𝛽̃(𝑇 − 𝑇1) −

[

((𝛾3𝛽3−𝛼3)(𝑇−𝑇1)(2𝑏𝛼3+𝑏𝑇(−1+𝛽3)+

𝑎(−2+4𝛽3)+𝑏(−1+𝛽3)𝑇1)

𝜃(−1+𝜉)
] + 𝑑 (

𝛼3[𝑏𝛼3+𝑏𝑎(−1+2𝛽3]

𝜃(−1+𝜉)
+

(−𝛼3)
1

𝛽̃−𝑇1 (𝛼3 + 𝛽3
𝑇1

2
))]} 

𝑍𝑆𝐷4𝑇 =  
1

𝑇
{𝐴 + ℎ [

−(𝛾4𝛽4−𝑎 )𝑇1(2𝑏𝛼4)+(−2+4𝛽4)+(−1+𝛽4)𝑇1

𝜃(−1+𝜉)
+

(𝛾4𝛽4 − 𝛼4)
1

𝛽̃𝑇1] + 𝑠 [( 𝛾4𝛽4 − 𝛼4)
1

𝛽̃(𝑇 − 𝑇1) −

[

((𝛾4𝛽4−𝛼4)(𝑇−𝑇1)(2𝑏𝛼4+𝑏𝑇(−1+𝛽4)+

𝑎(−2+4𝛽4)+𝑏(−1+𝛽4)𝑇1)

𝜃(−1+𝜉)
] + 𝑑 (

𝛼4[𝑏𝛼4+𝑏𝑎(−1+2𝛽4]

𝜃(−1+𝜉)
+

(−𝛼4)
1

𝛽̃−𝑇1 (𝛼4 + 𝛽4
𝑇1

2
))]} 
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𝑍𝑆𝐷5𝑇 = 
1

𝑇
{𝐴 + ℎ [

−(𝛾5𝛽5−𝑎 )𝑇1(2𝑏𝛼5)+(−2+4𝛽5)+(−1+𝛽5)𝑇1

𝜃(−1+𝜉)
+ (𝛾5𝛽5 − 𝛼4)

1

𝛽̃𝑇1] +

𝑠 [( 𝛾4𝛽4 − 𝛼4)
1

𝛽̃(𝑇 − 𝑇1) − [

((𝛾4𝛽4−𝛼4)(𝑇−𝑇1)(2𝑏𝛼4+𝑏𝑇(−1+𝛽4)+

𝑎(−2+4𝛽4)+𝑏(−1+𝛽4)𝑇1)

𝜃(−1+𝜉)
] +

𝑑 (
𝛼4[𝑏𝛼4+𝑏𝑎(−1+2𝛽4]

𝜃(−1+𝜉)
+ (−𝛼4)

1

𝛽̃−𝑇1 (𝛼4 + 𝛽4
𝑇1

2
))]} 

𝑍𝑆𝐷𝑇 =
1

9
[𝑍𝑆𝐷1𝑇 + 2 𝑍𝑆𝐷2𝑇 + 3 𝑍𝑆𝐷3𝑇 + 2𝑍𝑆𝐷4𝑇 + 𝑍𝑆𝐷5𝑇]

= 
1

9
[
1

𝑇
{𝐴 + ℎ [

−(𝛾1𝛽1−𝑎 )𝑇1(2𝑏𝛼1)+(−2+4𝛽1)+(−1+𝛽1)𝑇1

𝜃(−1+𝜉)
+

(𝛾1𝛽1 − 𝛼1)
1

𝛽̃𝑇1] + 𝑠 [( 𝛾1𝛽1 − 𝛼1)
1

𝛽̃(𝑇 − 𝑇1) −

[
(𝛾1𝛽1−𝛼1)(𝑇−𝑇1)(2𝑏𝛼1+𝑏𝑇(−1+𝛽1)+𝑎(−2+4𝛽1)+𝑏(−1+𝛽1)𝑇1

𝜃(−1+𝜉)
] +

𝑑 (
𝛼1[𝑏𝛼1+𝑏𝑎(−1+2𝛽1]

𝜃(−1+𝜉)
+ (−𝛼1)

1

𝛽̃−𝑇1 (𝛼1 + 𝛽1
𝑇1

2
))]} +

2 
1

𝑇
{𝐴 + ℎ [

−(𝛾2𝛽2−𝑎 )𝑇1(2𝑏𝛼2)+(−2+4𝛽2)+(−1+𝛽2)𝑇1

𝜃(−1+𝜉)
+

(𝛾2𝛽2 − 𝛼2)
1

𝛽̃𝑇1] + 𝑠 [( 𝛾2𝛽2 − 𝛼2)
1

𝛽̃(𝑇 − 𝑇1) −

[

(𝛾2𝛽2−𝛼2)(𝑇−𝑇1)(2𝑏𝛼2+𝑏𝑇(−1+𝛽2)+𝑎(−2+4𝛽2)+

𝑏(−1+𝛽2)𝑇1

𝜃(−1+𝜉)
] +

𝑑 (
𝛼2[𝑏𝛼2+𝑏𝑎(−1+2𝛽2]

𝜃(−1+𝜉)
+ (−𝛼2)

1

𝛽̃−𝑇1 (𝛼2 + 𝛽2
𝑇1

2
))]} +

3
1

𝑇
{𝐴 + ℎ [

−(𝛾3𝛽3−𝑎 )𝑇1(2𝑏𝛼3)+(−2+4𝛽3)+(−1+𝛽3)𝑇1

𝜃(−1+𝜉)
+

(𝛾3𝛽3 − 𝛼3)
1

𝛽̃𝑇1] + 𝑠 [( 𝛾3𝛽3 − 𝛼3)
1

𝛽̃(𝑇 − 𝑇1) −

[

((𝛾3𝛽3−𝛼3)(𝑇−𝑇1)(2𝑏𝛼3+𝑏𝑇(−1+𝛽3)+𝑎(−2+4𝛽3)+

𝑏(−1+𝛽3)𝑇1)

𝜃(−1+𝜉)
] +

𝑑 (
𝛼3[𝑏𝛼3+𝑏𝑎(−1+2𝛽3]

𝜃(−1+𝜉)
+ (−𝛼3)

1

𝛽̃−𝑇1 (𝛼3 + 𝛽3
𝑇1

2
))]}  +

2
1

𝑇
{𝐴 + ℎ [

−(𝛾4𝛽4−𝑎 )𝑇1(2𝑏𝛼4)+(−2+4𝛽4)+(−1+𝛽4)𝑇1

𝜃(−1+𝜉)
+

(𝛾4𝛽4 − 𝛼4)
1

𝛽̃𝑇1] + 𝑠 [( 𝛾4𝛽4 − 𝛼4)
1

𝛽̃(𝑇 − 𝑇1) −

[

((𝛾4𝛽4−𝛼4)(𝑇−𝑇1)(2𝑏𝛼4+𝑏𝑇(−1+𝛽4)+𝑎(−2+4𝛽4)+

𝑏(−1+𝛽4)𝑇1)

𝜃(−1+𝜉)
] +

𝑑 (
𝛼4[𝑏𝛼4+𝑏𝑎(−1+2𝛽4]

𝜃(−1+𝜉)
+ (−𝛼4)

1

𝛽̃−𝑇1 (𝛼4 + 𝛽4
𝑇1

2
))]} +

1

𝑇
{𝐴 + ℎ [

−(𝛾5𝛽5−𝑎 )𝑇1(2𝑏𝛼5)+(−2+4𝛽5)+(−1+𝛽5)𝑇1

𝜃(−1+𝜉)
+ (𝛾5𝛽5 −

𝛼4)
1

𝛽̃𝑇1] + 𝑠 [( 𝛾4𝛽4 − 𝛼4)
1

𝛽̃(𝑇 − 𝑇1) −

[
(𝛾4𝛽4−𝛼4)(𝑇−𝑇1)(2𝑏𝛼4+𝑏𝑇(−1+𝛽4)+𝑎(−2+4𝛽4)+𝑏(−1+𝛽4)𝑇1

𝜃(−1+𝜉)
] +

𝑑 (
𝛼4[𝑏𝛼4+𝑏𝑎(−1+2𝛽4]

𝜃(−1+𝜉)
+ (−𝛼4)

1

𝛽̃−𝑇1 (𝛼4 + 𝛽4
𝑇1

2
))]}] 

The necessary condition for 𝑍𝑆𝐷𝑇 to be minimum is

𝜕𝑍𝑆𝐷𝑇

𝜕𝑇
= 0 

𝑍𝑆𝐷𝑇 is minimum only if 
𝜕2𝑍𝑆𝐷𝑇

𝜕𝑇2
> 0, for all T > 0.

7.1 Solution procedure 

In the context of the Economic Order Quantity (EOQ) 

inventory model, checking the convexity condition is crucial 

because it ensures that the objective function (typically the 

total cost function) has a single minimum point, which 

represents the optimal order quantity. Here’s why checking 

convexity is important: 

Single Optimal Solution: The EOQ model seeks to 

minimize total inventory costs, which include ordering costs 

and holding costs. If the total cost function is convex, it 

guarantees that there is only one minimum point. This ensures 

that there is a unique order quantity that minimizes the total 

cost. Without convexity, the function could have multiple 

local minima or points of inflection, making it difficult to 

determine the true optimal order quantity. 

Mathematical Derivatives: Convexity simplifies the 

mathematical analysis of the EOQ model. For convex 

functions, if the first derivative (slope of the cost function) is 

zero at a point, that point is a global minimum. This property 

allows for straightforward calculation of the EOQ using 

calculus, ensuring accuracy and reliability in determining the 

optimal order quantity. 

To summarize, checking convexity in the EOQ inventory 

model ensures that the cost function has a unique minimum 

point, simplifying both theoretical analysis and practical 

application of the model in inventory management. 

7.2 Lemma 

For a given (𝑄𝑖 , 𝑇) the expected total cost per cycle TC (𝑍)
is jointly convex in (𝑇, 𝑇1).

Proof 

To prove TC (𝑍) is jointly convex in (𝑇, 𝑇1) it is enough to

prove that Hessian matrix is positive semi definite. That is to 

prove all principal minors are non-negative. 

We have found that 

𝜕2𝑇𝐶(𝑍)

𝜕𝑇2
=

1

𝑇4
[𝑇2

2𝑠(𝑇1−𝑇)

6
3𝑎 + 𝑇2

2𝛽𝑠(𝑇1−𝑇)

6
(𝑇 + 2𝑇1) −

𝑆
(𝑇1−𝑇)

2

6
] +

1

𝑇2
[𝑇𝑠

(2𝑎+𝛽𝑇−𝛽𝑇1)

2
+

𝑠(𝑇−𝑇1)

2
] > 0 

𝜕2𝑇𝐶(𝑍)

𝜕𝑇1
2 =

1

𝑇
[ℎ(

4𝛽

𝜃(𝜉−1)
+

4𝑇1𝛽−3(𝛽+𝑎)

𝜃(𝜉−1)
− 𝑠(𝑇 − 1)(𝛼 + 𝛽𝑇1)𝑠 +

𝑆((𝑇1 − 𝑇)𝛽 − 𝑑𝛽] > 0

𝜕2𝑇𝐶(𝑍)

𝜕𝑇𝜕𝑇1
=

𝜕2𝑇𝐶(𝑍)

𝜕𝑇1𝜕𝑇
= 0 

The Hessian matrix is given by 𝐻 = [
𝐻11 𝐻12
𝐻21 𝐻22

] 

𝐻 = [

𝜕2𝑇𝐶(𝑍)

𝜕𝑇2

𝜕2𝑇𝐶(𝑍)

𝜕𝑇1
2

𝜕2𝑇𝐶(𝑍)

𝜕𝑇𝜕𝑇1

𝜕2𝑇𝐶(𝑍)

𝜕𝑇1𝜕𝑇

] 

From the above findings, we found that the first principal 

minor 𝐻11 > 0 and the second principal minor 𝐻22 > 0.

Thus, we found that the expected total cost per cycle TC (𝑍) 
is jointly convex in (𝑇, 𝑇1).
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7.3 Theorem 

 

An optimal point of 𝑇1 = 𝑇1
∗  and 𝑇 = 𝑇∗  of the cost 

function 𝑍 = 𝑍∗  is obtained from the solving Eqs. (12) and 

(13) simultaneously, and substituting these positive values in 

Eq. (11) to calculate the value of total cost. 

Proof: 

Note that for each fixed value for T >0, in the segment of 

extreme points (0, 𝑇1) and (𝑇1, 𝑇) the function z is continuous 

and attains its minimum only in a point 𝑇1 = 𝑇1
∗ and 𝑇 = 𝑇∗ 

determined by the Eqs. (12) and (13). 

Also, on the considered segment, the function z is 

decreasing for all 𝑇1 ∈ (0, 𝑇1) and increasing for all 𝑇1 ∈ (t, T). 

Moreover, in Eq. (11), T⟶0, it is not possible to attain the 

minimum value because the total cost value tends to infinity. 

Furthermore, if T⟶∞, the total cost values tend to infinity. 

Thus, the function Z attains its global minimum (𝑇1 = 𝑇1
∗ and 

𝑇 = 𝑇∗) in at least a finite interior point of the feasible region. 

Therefore, at this point (𝑇1 = 𝑇1
∗  and 𝑇 = 𝑇∗)  the 

necessary conditions of first and second order to have a local 

minimum should be satisfied. 

Thus, provided that these values of 𝑇1 = 𝑇1
∗ and 𝑇 = 𝑇∗. 

 
𝜕2𝑇𝐶(𝑍)

𝜕𝑇2
=

1

𝑇4
[𝑇2

2𝑠(𝑇1−𝑇)

6
3𝑎 + 𝑇2

2𝛽𝑠(𝑇1−𝑇)

6
(𝑇 + 2𝑇1) −

𝑆
(𝑇1−𝑇)

2

6
] +

1

𝑇2
[𝑇𝑠

(2𝑎+𝛽𝑇−𝛽𝑇1)

2
+

𝑠(𝑇−𝑇1)

2
] > 0  

 
𝜕2𝑇𝐶(𝑍)

𝜕𝑇1
2 =

1

𝑇
[ℎ(

4𝛽

𝜃(𝜉−1)
+

4𝑇1𝛽−3(𝛽+𝑎)

𝜃(𝜉−1)
− 𝑠(𝑇 − 1)(𝛼 + 𝛽𝑇1) +

𝑆((𝑇1 − 𝑇)𝛽 − 𝑑𝛽] > 0  

 

The pair (𝑇1 = 𝑇1
∗  and 𝑇 = 𝑇∗)  should be satisfy the 

inventory policy. Having the values of (𝑇1 = 𝑇1
∗ and 𝑇 = 𝑇∗) 

from the Eqs. (12) and (13) can calculate the total cost value 

through the numerical example.  

 

 

8. NUMERICAL EXAMPLES 

 

Examine a system of inventory where the parametric values 

are in the appropriate units [38]. 

Example 8.1 (Graded Mean Integration Method) 

Suppose A= 200, 𝛼̃ = (50, 75, 125 ,175 , 200) , 𝛽 ̃ = 

(4,7,10,12,20) , 𝛾̃ = (8,12,15,18,25) , 𝑑̃ = (0.5,1.2,2,3,5) , 

s=20, h=10, Ɛ from 0.001 to 0.1  

The values of 𝑇1 = 𝑇1
∗ = 0.53 , 𝑇 = 𝑇∗ = 0.905 , 𝑄𝑖 =

𝑄𝑖
∗ = 89.9327  units and 𝑧 = 𝑧∗ = 746.1315  obtain from 

Mathematica.  

Example 8.2 (Signed Distance Method) 

Suppose A= 200, 𝛼̃ = (50, 75, 125 ,175 , 200) , 𝛽 ̃ = 

( 4,7,10,12,20) , 𝛾̃ = (8,12,15,18,25) , 𝑑̃ = (0.5,1.2,2,3,5) , 

s=20, h=10, Ɛ from 0.001 to 0.1  

The values of 𝑇1 = 𝑇1
∗ = 0.52, 𝑇 = 𝑇∗ = 0.902 𝑄𝑖 = 𝑄𝑖

∗ =
90.9327  units and 𝑧 = 𝑧∗ = 745.1315  obtain from 

Mathematica.  

 

8.1 Sensitivity analysis based on pentagon fuzzy values by 

Graded Mean Integration Method 

 

The sensitivity analysis based on pentagon fuzzy values by 

Graded Mean Integration Method as shown in Table 1. 
 

 

 

Table 1. Graded mean integration method 

 

Parameter % of Change T1 T Qi Z 

α 

50% 0.53 0.9 109.67 752.45 

25% 0.52 0.89 108.19 750.32 

0% 0.51 0.88 107.47 749.65 

-25% 0.49 0.86 106.74 748.66 

-50% 0.48 0.85 105.97 747.88 

β 

50% 0.53 0.9 109.78 751.89 

25% 0.52 0.89 108.78 750.77 

0% 0.51 0.89 107.53 749.88 

-25% 0.49 0.88 106.72 748.77 

-50% 0.48 0.85 105.92 746.66 

γ 

50% 0.44 0.71 109.8 748.99 

25% 0.44 0.71 109.6 750.09 

0% 0.43 0.7 109.4 752.03 

-25% 0.42 0.69 109.52 753.97 

-50% 0.41 0.68 109.44 755.89 

d 

50% 0.42 0.65 105.64 745.67 

25% 0.41 0.64 104.56 745.56 

0% 0.4 0.63 103.56 745.46 

-25% 0.4 0.62 102.67 744.67 

-50% 0.4 0.61 101.45 744.56 

 

8.2 Graphical representation of sensitivity analysis based 

on pentagon fuzzy values by Graded Mean Integration 

Method 

 

The Graphical representation of sensitivity analysis based 

on pentagon fuzzy values by Graded Mean Integration Method 

as shown in Figures 1-4. 

 

 
 

Figure 1. Sensitivity analysis of the total cost value Z with 

respect to the parameters α, β, γ, d 

 

 
 

Figure 2. Sensitivity analysis of the initial order quantity 𝑄𝑖  
with respect to the parameters α, β, γ, d 
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Figure 3. Sensitivity analysis of 𝑇1 with respect to the

parameters α, β, γ, d 

Figure 4. Sensitivity analysis of T with respect to the 

parameters α, β, γ, d 

8.3 Sensitivity analysis based on pentagon fuzzy values by 

Signed Distance Method 

The sensitivity analysis based on pentagon fuzzy values by 

Signed Distance Method as shown in Table 2. 

Table 2. Signed Distance Method 

Parameter % of Change T1 T QI Z 

α 50% 0.55 0.9 110.67 754.45 

25% 0.54 0.89 109.56 752.32 

0% 0.53 0.88 108.45 751.88 

-25% 0.52 0.86 107.89 750.77 

-50% 0.51 0.85 106.7 749.66 

β 50% 0.53 0.9 110.66 756.77 

25% 0.52 0.89 109.7 755.89 

0% 0.51 0.89 108.5 754.87 

-25% 0.49 0.88 107.6 752.66 

-50% 0.48 0.85 106.5 751.22 

γ 50% 0.44 0.71 109.8 746.88 

25% 0.43 0.71 108.7 745.92 

0% 0.42 0.7 107.6 744.52 

-25% 0.41 0.69 106.8 743.41 

-50% 0.4 0.68 105.6 755.89 

d 50% 0.43 0.65 107.7 752.87 

25% 0.42 0.64 106.8 751.66 

0% 0.41 0.63 105.6 750.23 

-25% 0.4 0.62 104.2 749.34 

-50% 0.39 0.61 103.3 748.23 

8.4 Graphical representation of sensitivity analysis based 

on pentagon fuzzy values by Graded Mean Integration 

Method 

The graphical representation of sensitivity analysis based on 

pentagon fuzzy values by Graded Mean Integration Method as 

shown in Figures 5-8. 

Figure 5. Sensitivity analysis of the total cost value Z with 

respect to the parameters α, β, γ, d 

Figure 6. Sensitivity analysis of the initial order quantity 

𝑄𝑖with respect to the parameters α, β, γ, d

Figure 7. Sensitivity analysis of T with respect to the 

parameters α, β, γ, d 

Figure 8. Sensitivity analysis of 𝑇1 with respect to the

parameters α, β, γ, d 
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8.5 Managerial implications of Weibull demand 

parameters in the proposed model 

The Weibull distribution for demand characterization, 

providing more flexibility than linear or quadratic models. The 

Weibull demand function is capable of representing demand 

that increases, decreases, or remains constant over time — an 

essential aspect for the management of perishable goods. 

• α - Assists in estimating the overall anticipated

demand over the product's shelf life.

• β - Aids in the timing of preservation measures.

• γ - Grasping time dependence aids in determining the

timing for promotions, restocking, and discounts.

• d - Facilitates the alignment of strategy with policies

on quality and sustainability

9. CONCLUSION

This research created a preservation-focused inventory

model that integrates Weibull demand and deterioration in 

environments characterized by uncertainty and fuzziness. The 

analytical and numerical findings underscored the impact of 

crucial factors, including preservation cost, deterioration rate, 

and carbon emission charges, on optimal inventory strategies. 

Through the comparison of crisp and pentagonal fuzzy 

approaches, the model's robustness in dealing with uncertainty 

was shown. 

The results highlight how vital it is to incorporate 

preservation technology in order to minimize waste and 

enhance sustainability in perishable inventory systems. The 

model supports managers in making decisions that weigh 

environmental effects against cost efficiency. 

To improve the model’s relevance for practical situations, 

future studies could investigate deterioration functions of 

greater complexity, multi-echelon supply chains, and dynamic 

pricing in relation to demand uncertainty. 
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NOMENCLATURE 

𝐴 Cost of placing an order 

ℎ Cost of holding the stock 

d Purchase cost of one unit 

𝑄𝑖 Initial stock 

𝑇1 Time of positive stock 

𝑇 Cycle time 

α, β, γ Demand parameters 

𝑇1
∗ Optimal time of positive inventory 

𝑧 Total cost per cycle 

ξ Preservation parameter 

𝐷 Demand rate 𝐷 = 𝛼𝛽𝛾(𝛽−1)

𝐷𝑛 Number of deteriorated units 

𝑑𝑟 Rate of deterioration at any time 

𝑞1 Maximum stock level 

𝑞2 Maximum stock shortage level 

𝑧∗ Optimal total cost per cycle 
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