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This study investigates the application of the Cheng Fuzzy Time Series (FTS) model in 
forecasting stock prices, using PT Bukit Asam Tbk (PTBA) as a case study in the energy 
sector. Unlike traditional models, Cheng FTS leverages fuzzy logic and linguistic rules 
to model uncertainty in financial data. Weekly closing prices from January 2020 to 
December 2022 were used, with a 70-30 data partitioning for training and testing. The 
universe of discourse was constructed using a buffered range and divided into optimized 
fuzzy intervals to define linguistic states. The Cheng FTS model was benchmarked 
against the Autoregressive Integrated Moving Average (ARIMA) model to assess 
predictive accuracy. Forecasting performance was evaluated using Mean Absolute 
Percentage Error (MAPE) and Root Mean Square Error (RMSE), with the Cheng FTS 
achieving a MAPE of 4.93% and RMSE of 128.6 IDR. Results show that the model 
effectively captures price trends in stable periods, though its rule-based structure limits 
responsiveness during high volatility. This study demonstrates the practical value of 
interpretable fuzzy models for medium-term financial forecasting.  
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1. INTRODUCTION

Over the past decade, energy sector stocks have experienced 
substantial volatility, with weekly and monthly return 
fluctuations frequently exceeding 5–10%, particularly during 
periods of geopolitical instability or commodity price shocks. 
For example, coal companies such as PT Bukit Asam Tbk 
(PTBA) faced rapid price swings from 2020 to 2022, driven 
by global coal demand uncertainty, pandemic-related supply 
disruptions, and evolving energy policies. The standard 
deviation of PTBA’s weekly returns surpassed 8% in certain 
quarters, indicating a high-risk profile for short-term investors. 
Such volatility presents significant forecasting challenges, 
especially when traditional statistical models are unable to 
accommodate the dynamic and ambiguous nature of market 
behavior. In these conditions, where binary interpretations and 
fixed thresholds are inadequate, fuzzy logic-based models 
offer a promising alternative by capturing uncertainty through 
linguistic variables and adaptable rule-based reasoning.  

Accurate forecasting plays a critical role in supporting 
investor confidence and facilitating effective decision-making 
in volatile markets. For institutional investors, asset managers, 
and individual traders, reliable stock price predictions are 
essential for portfolio optimization, risk mitigation, and 
strategic asset allocation. Inaccurate forecasts may result in 

poor timing of trades, capital misallocation, and greater 
vulnerability to market downturns. Conversely, dependable 
forecasting models enable investors to anticipate price 
movements, reduce uncertainty, and improve overall returns. 
In the energy sector where external shocks such as regulatory 
changes, commodity price swings, and global demand shifts 
are common forecasting models must not only be statistically 
sound but also capable of adapting to imprecise and evolving 
data patterns. This highlights the importance of techniques that 
offer flexibility, interpretability, and adaptability key 
attributes inherent in fuzzy logic models. 

Classical time series models such as ARIMA, moving 
average, and exponential smoothing have long been employed 
for financial forecasting because of their formal statistical 
foundations and simplicity. However, these models are based 
on assumptions of linearity, stationarity, and normally 
distributed errors assumptions that are frequently violated in 
real-world financial markets. In highly volatile environments 
such as the energy sector, price movements are frequently 
influenced by non-linear, chaotic, and ambiguous factors 
including geopolitical events, abrupt policy changes, or 
sudden shifts in investor sentiment. Traditional models 
struggle to accommodate these irregular patterns and tend to 
underperform when dealing with noise, structural breaks, or 
data fuzziness. Moreover, their rigidity in adapting to new 
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information and inability to handle linguistic or imprecise 
variables limits their applicability in dynamic markets. This 
has led to increasing interest in soft computing methods, such 
as fuzzy logic, that offer greater flexibility and resilience in 
modeling uncertainty and complexity. 

Several researchers have contributed to the development 
and refinement of fuzzy time series (FTS) models for stock 
market forecasting, with varied approaches to improving 
accuracy, interval design, and adaptability. Cheng et al. [1] 
introduced an FTS model based on adaptive expectations, 
highlighting the benefits of combining recent pattern 
weighting with fuzzy relationships for improving TAIEX 
forecasts. Building on this, Jilani and Burney [2] proposed a 
refined FTS structure that better handled noise in financial 
datasets, while Huarng [3] demonstrated that the length of 
intervals in the universe of discourse significantly affects 
forecast performance suggesting that properly defined 
intervals are critical to minimizing error. 

Recent studies have introduced hybrid FTS models aimed 
at improving accuracy under nonlinear and volatile conditions. 
For instance, FTS-ANN models integrate fuzzy logic with 
neural networks to enable adaptive learning from historical 
patterns, albeit at the cost of interpretability. Granular 
computing-based FTS models, such as those proposed by 
Chen and Chen, create layered representations of uncertainty, 
offering superior performance in turbulent markets by 
handling multi-scale variability. Other researchers, including 
Egrioglu et al. [4] have explored fuzzy clustering and entropy-
based approaches to optimize interval selection and transition 
rule precision. Compared to these advanced models, the Cheng 
FTS offers simplicity, transparency, and lower computational 
cost, making it attractive for mid-frequency forecasting where 
explainability is valued over pure accuracy. 

Furthermore, the decision to focus on weekly stock prices, 
rather than the commonly used daily or monthly intervals, 
reflects both methodological and practical considerations. 
Weekly data strikes a balance between minimizing high-
frequency noise and capturing mid-term trends relevant to 
retail and institutional investors. Notably, many portfolio 
managers operate on a weekly rebalancing cycle to adjust 
positions based on macroeconomic signals and sector 
rotations. This aligns well with the temporal resolution of the 
Cheng model, which relies on recurring fuzzy relationships 
observable over multi-day intervals. 

Yu [5] explored the integration of weighted fuzzy 
relationships to improve forecasting stability, particularly 
under market volatility. Meanwhile, Chen [6] established the 
foundational structure of FTS models for educational datasets, 
a framework that has since been widely adapted for economic 
and financial data. Huarng and Yu [7] further advanced this by 
introducing Type-2 fuzzy models, showing superior 
performance over Type-1 models in highly uncertain 
environments like stock indices. 

Granular computing was employed by Chen and Chen [8] 
to combine fuzzified data with multi-layered structures for 
improved adaptability in stock prediction. Teoh et al. [9] 
proposed a hybrid multi-order model, illustrating how multiple 
fuzzy rules can be layered to accommodate complex financial 
behaviors. Similarly, Chen and Chang [10] leveraged fuzzy 
clustering and rule interpolation to manage multi-variable 
influences on stock trends, while Chen and Phuong [11] 
focused on optimizing the partitioning of intervals and weights 
to enhance forecast accuracy. 

Clustering-based models such as that proposed by Egrioglu 

et al. [4] used Gustafson-Kessel clustering to group historical 
patterns, whereas Wang et al. [12] emphasized the role of 
information granules in selecting effective fuzzy intervals. 
Entropy-based fuzzy logic approaches were also considered by 
Zhou et al. [13] and Zhang et al. [14], both of whom 
demonstrated improvements in portfolio modeling and multi-
factor forecasting through more nuanced uncertainty handling. 

Despite these advancements, most prior studies rely on 
daily data, emphasize high-frequency trading behavior, or 
involve relatively complex hybrid models that may lack 
interpretability [15-18]. Your current research contributes by 
applying the Cheng FTS model specifically to weekly stock 
price forecasting in the energy sector, using PTBA as a case 
study. This research addresses a gap in the literature 
concerning intermediate-frequency forecasting (weekly), 
which balances noise reduction and trend capture. 
Furthermore, the implementation emphasizes model 
transparency and computational simplicity, making it 
accessible to analysts in practical investment settings without 
sacrificing performance. While previous authors focused on 
model accuracy via structural enhancements, your work 
demonstrates that even the classical Cheng framework, when 
properly implemented with well-structured fuzzy logical 
relationship groups (FLRGs) and adaptive weighting, can 
deliver competitive results in real-world financial 
environments. 

Fuzzy logic presents a compelling alternative to classical 
forecasting methods due to its unique ability to model 
uncertainty, imprecision, and vague patterns characteristics 
that are inherently present in financial time series data [19-21]. 
Unlike traditional statistical models that rely on crisp 
numerical inputs and rigid mathematical relationships, fuzzy 
logic employs linguistic variables and rule-based reasoning to 
capture patterns that are not strictly linear or easily 
quantifiable [22-24]. This allows it to mimic human-like 
reasoning in interpreting ambiguous data, making it well-
suited for environments where precise modeling is difficult, 
such as the stock market. In the context of energy stocks, 
where price trends can be influenced by qualitative 
information such as political developments, market sentiment, 
or regulatory discourse fuzzy logic enables the integration of 
such fuzzy factors into a structured forecasting framework. Its 
adaptability, transparency, and ability to generalize across 
different market conditions motivate its application in this 
study as a promising technique for stock price prediction [25]. 

Given these challenges and opportunities, this study aims to 
evaluate the accuracy and applicability of the Cheng FTS 
model for forecasting weekly stock prices in the energy sector. 
By focusing on PTBA as a representative case, the research 
applies the Cheng method to real historical stock data, 
measures predictive performance using Mean Absolute 
Percentage Error (MAPE) and Root Mean Square Error 
(RMSE), and assesses the model’s ability to capture short-term 
price dynamics under uncertain market conditions. The goal is 
not only to test the technical soundness of the model but also 
to determine its practical viability as a decision-support tool 
for investors operating in volatile financial environments. 

 
1.1 Forecasting in financial market 
 

Forecasting in financial markets has long been a critical area 
of study due to its implications for investment decision-
making, risk management, and policy formulation. Traditional 
forecasting models, such as Autoregressive Integrated Moving 
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Average (ARIMA), Vector Autoregression (VAR), and 
Exponential Smoothing, have been widely used to model 
linear relationships in time series data. While these models 
offer statistical rigor and interpretability, they are often limited 
in their ability to handle the nonlinear, chaotic, and high-noise 
characteristics inherent in financial data, especially in sectors 
prone to rapid fluctuation like energy. In response to these 
limitations, researchers have increasingly explored artificial 
intelligence (AI) and machine learning-based approaches such 
as Artificial Neural Networks (ANN), Support Vector 
Regression (SVR), and ensemble methods, which excel in 
capturing complex nonlinear dependencies. However, despite 
their accuracy, many AI-based models function as “black 
boxes,” offering limited interpretability and requiring large 
volumes of training data. Fuzzy logic-based approaches have 
emerged as a middle ground balancing predictive performance 
with linguistic interpretability, particularly well-suited for 
environments where uncertainty and vagueness dominate. 
This has paved the way for fuzzy time series (FTS) models to 
gain traction in financial forecasting research. 
 
1.2 Fuzzy time series overview  
 

Fuzzy Time Series (FTS) models were first introduced by 
Song and Chissom in the early 1990s as an extension of 
conventional time series forecasting methods, aimed at 
addressing uncertainty and imprecision in data that are 
difficult to model using classical statistical approaches [26, 
27]. Their foundational work applied fuzzy logic principles to 
student enrollment prediction, marking a paradigm shift in 
time series forecasting by incorporating linguistic variables 
and fuzzy sets. Unlike traditional models, FTS does not require 
strict assumptions of stationarity or normality, making it 
adaptable to real-world data that are often noisy, incomplete, 
or vague. Since its inception, FTS modelling has evolved 
through several significant refinements. Early models used 
simple fuzzy logical relationships (FLRs), while subsequent 
improvements introduced higher-order relationships, FLRGs, 
and weighted relationships to enhance accuracy and flexibility 
[28, 29]. One of the most notable advancements is the Cheng 
model, which integrates weighted FLRGs and a systematic 
defuzzification process, enabling more accurate forecasts by 
emphasizing more relevant historical patterns. This evolution 
has enabled fuzzy time series models to be applied across 
various domains including education, weather, traffic, and 
finance demonstrating both their versatility and effectiveness 
in handling imprecise temporal data. 

Cheng’s refinement of the fuzzy time series model, 
proposed in 1999, addressed critical limitations of earlier FTS 
approaches by introducing a more structured and weighted 
framework for forecasting. The key innovation in the Cheng 
model lies in the use of FLRGs combined with a weight matrix 
that emphasizes the relative importance of past patterns, 
thereby improving the model’s responsiveness to recent data 
trends. This weighting mechanism allows for a more nuanced 
and accurate defuzzification process, reducing prediction 
errors compared to earlier models that relied on equal-
weighted or unordered relationships. Empirical studies have 
demonstrated that the Cheng model consistently outperforms 
basic FTS approaches in terms of MAPE and RMSE, 
particularly in short-term forecasting applications such as 
stock prices, traffic flows, and temperature trends. For 
instance, applications of the Cheng model in stock market 
forecasting have shown improved accuracy in datasets 

characterized by abrupt changes and nonlinear trends. Its 
relatively low computational complexity and high 
interpretability have made it an attractive option for 
researchers seeking a balance between forecasting precision 
and model transparency. As a result, the Cheng model remains 
a foundational reference point in the development of more 
advanced or hybrid fuzzy forecasting techniques [30, 31]. 

Despite the demonstrated effectiveness of the Cheng FTS 
model across various domains, its application in financial 
forecasting remains predominantly focused on daily or 
monthly datasets, with limited exploration of weekly time 
series particularly in sector-specific contexts. Most existing 
studies have either generalized across multiple stocks or 
benchmark indices, or focused on high-frequency intraday 
data where noise dominates. However, weekly data offers a 
balanced temporal resolution, capturing medium-term trends 
while filtering out excessive short-term volatility. This makes 
it especially valuable for retail investors and institutional 
analysts who adopt a weekly rebalancing strategy. Moreover, 
few studies have applied the Cheng model specifically to 
energy sector stocks, such as PTBA, which are subject to 
unique externalities including commodity price swings, 
environmental regulations, and energy policy shifts. This gap 
indicates an opportunity to investigate the model’s 
effectiveness in capturing price behavior in a highly volatile 
and economically strategic sector, using a weekly forecast 
horizon that aligns well with practical investment decision-
making cycles [32, 33]. This study positions itself at the 
intersection of financial engineering and soft computing by 
applying the Cheng Fuzzy Time Series model to a real-world 
forecasting problem in the energy sector. By focusing on 
PTBA and using weekly stock price data, the research extends 
the scope of existing fuzzy logic literature into a less-explored 
temporal and sectoral dimension. The study contributes both 
methodologically and practically: methodologically, it 
demonstrates how a fuzzy rule-based approach can effectively 
model non-linear, imprecise stock price behavior without the 
need for extensive training data; practically, it provides a 
lightweight, interpretable forecasting tool suitable for 
investors and analysts in energy-related financial markets. By 
evaluating model performance using MAPE and RMSE, the 
research offers quantitative evidence of the Cheng model’s 
effectiveness in capturing mid-term price trends under 
uncertainty thus reinforcing the model’s relevance in 
contemporary financial forecasting challenges. 
 
 
2. METHODS 
 
2.1 Data description 
 

The dataset used in this study consists of weekly closing 
stock prices of PTBA, one of Indonesia’s leading energy and 
coal mining companies listed on the Indonesia Stock 
Exchange (IDX). The time frame covers a three-year period 
from January 2020 to December 2022, capturing various 
market conditions including the COVID-19 pandemic, post-
pandemic recovery, and fluctuations in global energy demand. 

The data were retrieved from a publicly accessible financial 
data portal, Investing.com, and preprocessed to ensure 
consistency and accuracy. Each record represents the closing 
price at the end of each trading week, resulting in a total of 
approximately 156 data points. The choice of weekly 
frequency provides a balanced temporal granularity offering 
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more stability than daily data while retaining enough detail to 
observe market dynamics and trend reversals. 

To maintain the integrity of the model, no smoothing or 
filtering was applied to the raw price data. Instead, the Cheng 
Fuzzy Time Series model handles the inherent volatility and 
non-linearity in the data through linguistic abstraction and 
fuzzy logic reasoning. The dataset was subsequently used to 
generate historical fuzzy relationships and to validate the 
model’s forecasting performance against actual market 
outcomes. 

To evaluate the model’s generalization ability and avoid 
look-ahead bias, the dataset was partitioned chronologically 
using a 70–30 holdout method. The first 70% of the weekly 
closing prices from January 2020 were used to train the Cheng 
FTS model, while the remaining 30% (approximately the last 
12 months) were reserved for out-of-sample testing. This 
approach ensures that all forecasts are based solely on past 
data, preserving the temporal structure essential for financial 
time series analysis. Although walk-forward validation offers 
a dynamic alternative, the holdout strategy was selected for its 
simplicity and suitability in evaluating rule-based models 
where training involves static FLRG construction and not 
iterative learning. Table 1 displays selected entries from the 
dataset, including the earliest and latest records used in the 
forecasting process. 

As shown in Table 1, the price of PTBA stock fluctuated 
significantly during the observed period, starting at IDR 2,780 
in early January 2020 and closing at IDR 3,690 by the end of 
December 2022. This variation reflects the underlying 
volatility of the energy sector, influenced by both domestic 
and global market conditions. These fluctuations make PTBA 
a relevant and challenging subject for testing the effectiveness 
of the Cheng FTS model in forecasting financial time series 
data under uncertain and dynamic environments. 

To better understand the volatility and long-term trend 
behavior of PTBA stock, a historical price chart is presented 
in Figure 1. The chart displays weekly candlestick patterns of 
PTBA stock prices between 2018 and early 2023, providing a 
visual representation of market movements in response to 
various internal and external factors. This visualization 
supports the quantitative data used in the forecasting model 
and highlights the presence of nonlinear, dynamic trends that 
are characteristic of financial time series in the energy sector. 

 

Table 1. PTBA prices in month 
 

No. Date Price (IDR) 
1 1/5/2020 2780 
2 1/12/2020 2670 
3 1/19/2020 2370 
4 1/26/2020 2210 
5 2/2/2020 2320 
6 2/9/2020 2330 
7 2/16/2020 2410 
8 2/23/2020 2240 
9 3/1/2020 2450 

10 3/8/2020 1970 
11 3/15/2020 1800 
... ... ... 

152 12/4/2022 3620 
153 12/11/2022 3800 
154 12/18/2022 3740 
155 12/25/2022 3690 

(Source: Investing.com) 
 

As illustrated in Figure 1, PTBA's stock price has undergone 
significant fluctuations over the past five years. A notable 
downtrend occurred during early 2020, coinciding with the 
global market crash due to the COVID-19 pandemic. The 
stock then exhibited a gradual recovery, followed by a sharp 
uptrend in 2022 in line with rising global coal prices and 
increasing energy demand. These patterns confirm the 
presence of nonlinear behavior and regime shifts, making 
traditional forecasting models less effective. The irregular and 
uncertain movements observed in the chart justify the use of 
fuzzy logic-based models such as the Cheng FTS method that 
are designed to handle imprecision and adapt to complex, 
evolving data patterns. 
 
2.2 Steps of Cheng FTS model 
 

To enhance reproducibility and provide clarity for 
practitioners, this study formalizes the Cheng FTS forecasting 
methodology into a structured algorithm. While narrative 
descriptions of each step have been previously discussed, the 
following pseudocode outlines the end-to-end process in a 
concise and systematic format. This algorithm serves as a 
practical reference for implementing the Cheng model in other 
financial forecasting tasks. 

 
 

Figure 1. PTBA price trend chart 

2744



Algorithm: Cheng Fuzzy Time Series Forecasting 
1. Data Preparation 
Collect historical time series data (e.g., weekly closing 
stock prices of PTBA). Split data into training and testing 
sets using a 70–30 holdout ratio. 
 
2. Define the Universe of Discourse 
Let Dmin and Dmax be the minimum and maximum price 
values. Add a buffer (e.g., ±100) to extend the range and 
define the universe U=[Dmin−100, Dmax+100] 
 
3. Partition Universe and Construct Fuzzy Sets 
Divide U into n equal-length intervals (e.g., 8). Assign a 
fuzzy set Ai to each interval and define membership 
functions (e.g., triangular). 
 
4. Fuzzify Historical Data 
Map each data point in the training set to its corresponding 
fuzzy set Ai based on the interval it falls into. 
 
5. Generate Fuzzy Logical Relationships (FLRs) 
For each consecutive pair of fuzzified data points, construct 
an FLR: 
If F(t)=Ai and F(t+1)=Aj then Ai→Aj. 
 
6. Group FLRs into FLRGs 
Combine all FLRs with the same left-hand side into FLRGs. 
 
7. Construct the Weighted Transition Matrix 
For each FLRG, calculate the frequency of each consequent 
fuzzy set. Normalize the frequencies into weights. 
 
8. Defuzzification 
For a given fuzzy input, compute the predicted value as the 
weighted average of the midpoints of all consequent sets in 
the FLRG using the formula:  𝑋𝑋�(𝑡𝑡 + 1) = ∑ 𝑤𝑤𝑖𝑖 .𝑚𝑚𝑖𝑖

𝑛𝑛
𝑖𝑖=1 , 

where wi is the normalized weight and mi is the midpoint of 
fuzzy set Ai. 
 
9. Forecasting 
Apply the model on the testing set to generate forecasted 
values. Use each fuzzified actual value to trigger an FLRG 
and defuzzify the result. 
 
10. Evaluate Forecast Accuracy 
Compute MAPE and RMSE to assess performance. 

 
As illustrated in the algorithm, the Cheng FTS model 

integrates linguistic fuzzification, weighted pattern 
recognition, and defuzzification into a streamlined sequence 
of steps. This structured approach facilitates transparency and 
consistency across forecasting applications. By clearly 
defining the transitions from raw data to predictions, the 
algorithm highlights the interpretability advantages of fuzzy 
logic systems compared to black-box models, especially in 
environments characterized by uncertainty and nonlinear 
patterns such as the stock market. The Cheng FTS model is an 
improved variant of the traditional fuzzy time series 
forecasting method, incorporating a weighted approach to 
better capture historical relationships. The following steps 
outline the complete procedure used to implement the Cheng 
FTS model for PTBA stock price forecasting. 

 
 

1. Defining the Universe of Discourse 
The first step involves determining the universe of 

discourse, U, which covers the range of historical stock prices. 
Let Dmin and Dmax be the minimum and maximum observed 
prices, respectively. The universe is expanded slightly beyond 
the actual data range to avoid boundary effects: 
 

[ ]min max,U D Dε ε= − +  (1) 
 

The universe is then divided into n equal-length intervals 
(e.g., 7–15 intervals depending on data granularity). 
 
2. Fuzzification of Historical Data 

Each price value is mapped to a corresponding fuzzy set 
based on the interval it belongs to. Each fuzzy set Ai is 
associated with a linguistic label (e.g., “Low”, “Medium”, 
“High”), represented by a triangular or trapezoidal 
membership function. The fuzzified series transforms crisp 
data into linguistic terms, facilitating pattern recognition. 
 
3. Establishing FLRs 

For each time step t, a fuzzy logical relationship is generated 
in the form: 
 

( ) : i jF t A A→  (2) 
 
indicating that if the value at time t is in fuzzy set Ai, then the 
value at t+1is expected to fall in fuzzy set Aj. 
 
4. Grouping FLRGs 

All FLRs with the same left-hand side (e.g., Ai) are grouped 
together to form a FLRG. This helps in identifying recurring 
patterns in the data and simplifying the rule base. 
 
5. Constructing the Fuzzy Relationship Weight Matrix  

Unlike the classical FTS model that uses only the mode of 
each FLRG, the Cheng model assigns weights to each 
consequent fuzzy set based on its frequency of occurrence 
within the group. This forms a weighted transition matrix: 
 

frequency of  in FLRG of 
total transitions from 

j i
ij

i

A A
W

A
=

 
(3) 

 
The weight matrix reflects the degree of influence that each 

consequent set has over the forecast. 
 
6. Defuzzification 

The final step involves transforming the weighted fuzzy 
result back into a crisp value using the weighted average of the 
midpoints of each interval: 
 

𝑦𝑦�𝑡𝑡+1 = �𝑊𝑊𝑖𝑖𝑖𝑖 .𝑀𝑀𝑗𝑗
𝑗𝑗

 (4) 

 
where, Mj is the midpoint of interval Aj. This crisp forecasted 
value 𝑦𝑦�𝑡𝑡+1 serves as the predicted price for the next time step. 
 
2.3 Accuracy metrics 
 

To assess the forecasting accuracy of the Cheng FTS model, 
two widely accepted performance indicators are employed: 
MAPE and RMSE. These metrics offer insights into both the 
relative and absolute deviation between the predicted and 
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actual stock prices over time. 
1. MAPE 

MAPE is a percentage-based error metric that measures the 
average absolute deviation between the predicted value and 
the actual value, relative to the actual value itself. It is defined 
as: 
 

1

1 100
n

t t

t t

A F
MAPE

n A=

−
= ×∑  (5) 

 
where, At is the actual stock price at time t, Ft is the forecasted 
price at time t, n is the total number of forecasts. MAPE is 
particularly useful because it provides an intuitive 
interpretation of error in percentage terms, which is easy to 
communicate and compare across datasets. 
2. RMSE 

RMSE is a scale-dependent metric that calculates the square 
root of the average squared differences between actual and 
predicted values. It is given by the formula:  
 

( )2

1

1 n

t t
t

RMSE A F
n =

= −∑  (6) 

 
RMSE penalizes larger errors more than smaller ones, 

making it especially effective for detecting high-variance 
deviation patterns in forecasts. A lower RMSE indicates that 
the model predictions are closer to the actual values in absolute 
terms. 
 
2.4 Mathematical modelling and derivation of the Cheng 
FTS model 
 

Let Y(t) be a time series representing stock prices at time t, 
and let U be the universe of discourse, defined as: 
 

( ) ( )min , maxU Y Yδ δ= − +    (7) 

 
where, δ is a buffer value (e.g., 100) to account for possible 
outliers. Divide U into n equal-length intervals: 
 

[ ]1, , 1, 2,...,i i iU u u i n−= =  (8) 
 

Each interval is represented by a fuzzy set Ai, and each stock 
price is fuzzified to a corresponding fuzzy set using its 
membership value. 

An FLR is defined as (2), F(t): Ai→Aj. If at time t, 𝑌𝑌(𝑡𝑡) ∈
𝐴𝐴𝑖𝑖  and 𝑌𝑌(𝑡𝑡 + 1) ∈ 𝐴𝐴𝑗𝑗 . This relationship is stored to build 
forecasting logic based on historical patterns. An FLRG for Ai 
is denoted: 
 

{ }1 2, ,...,i j j jmA A A A→  (9) 

 
where, all consequent sets Ajk are outcomes observed after Ai 
in the time series. Cheng improves traditional FTS by 
introducing weights to each consequent set within an FLRG, 
using the frequency of appearance: 
 

ij
ij

ik
k

f
w

f
=
∑

 (10) 

 

where, fij is the number of times Aj appears as a consequent in 
the FLRG of Ai, and ∑ 𝑓𝑓𝑖𝑖𝑖𝑖𝑘𝑘  is the total transitions from Ai. 
These weights are used to form a weighted fuzzy transition 
matrix W.  

The defuzzified output (i.e., forecasted value) for the fuzzy 
set Ai is computed using the weighted average of the midpoints 
of the consequents Aj in the FLRG: 
 

𝑌𝑌�(𝑡𝑡 + 1) = �𝑤𝑤𝑖𝑖𝑖𝑖 .𝑀𝑀𝑗𝑗

𝑛𝑛

𝑗𝑗=1

 (11) 

 
where, Mj is the midpoint of interval Uj, and wij is the weight 
of transition from Ai to Aj. 
 
2.5 Framework chart 
 

To define the universe of discourse U, we added a buffer of 
100 units beyond the observed minimum and maximum stock 
prices. This value corresponds approximately to one standard 
deviation of PTBA’s weekly price fluctuations over the 
observed period and ensures that the universe fully 
encompasses potential outliers or forecast deviations without 
clipping. The division of U into 8 fuzzy intervals (A1 to A8) 
is based on the data range (approximately IDR 1,800 to 3,800) 
and supported by Huarng’s guideline that 7–9 intervals are 
optimal for moderate-sized datasets (100–200 entries). 
Empirical tests with 7 to 15 intervals showed that partition 
counts between 8 and 10 yielded the most stable MAPE 
values, while higher counts led to sparsity in FLRGs and 
reduced prediction reliability. Hence, 8 fuzzy states were 
selected as the best balance between resolution and 
generalizability. The selection of the number of intervals n in 
the fuzzy partitioning step is a critical parameter in FTS model 
performance. In this study, we conducted a preliminary 
sensitivity analysis by testing values of n ranging from 7 to 15. 
For each configuration, the model was trained and evaluated 
using MAPE on a validation subset. The optimal value was 
determined based on two criteria: (1) minimum average 
MAPE, and (2) stability of the FLRGs, i.e., avoidance of 
sparse or overly fragmented transitions. The analysis revealed 
that n = 8 provided a good trade-off between pattern 
recognition granularity and model interpretability. 
Additionally, this value aligns with established practices in 
FTS literature, which often recommend 7–9 intervals for 
medium-sized datasets. 

To provide a comprehensive understanding of the 
methodology applied in this study, a conceptual framework is 
presented to illustrate the sequential steps of the Cheng FTS 
model. This framework guides the transformation of historical 
PTBA stock price data into fuzzified inputs, identifies 
linguistic relationships, and produces numerical forecasts 
through defuzzification. The process incorporates both data 
preprocessing and fuzzy logic reasoning, highlighting how the 
Cheng model utilizes historical behavior to generate accurate 
short-term predictions shown in Figure 2. 

As shown in Figure 2, the forecasting framework begins 
with the acquisition of weekly stock price data, followed by 
the definition of the universe of discourse and segmentation 
into class intervals. These intervals are then associated with 
fuzzy sets to represent linguistic states such as “low” or 
“high.” The fuzzified data is used to generate Fuzzy Logical 
Relationships (FLRs) and grouped into Fuzzy Logical 
Relationship Groups (FLRGs). Unlike basic FTS models, the 
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Cheng method applies a weighted matrix to capture the 
influence of recurring patterns, which is then normalized 
before performing defuzzification. The final step is the 
computation of forecast values and accuracy validation using 
MAPE and RMSE. This structured approach ensures both 
transparency and adaptability in modeling complex, uncertain 
time series data such as stock prices. 
 

Start

End

Input PTBA stock price data

Determine the universe of discourse (J)

Devide into class interval

Form fuzzy sets

Generate fuzzy logical relationship (FLRs)

Construct fuzzy logical relationship group 
(FLRGs) and weight matrix

Normalize the weight matrix

Defuzzification

 
 

Figure 2. Framework chart 

3. RESULTS AND DISCUSSION 
 
3.1 Visual and tabular forecasts 
 

This section presents the forecasting results of the Cheng 
Fuzzy Time Series model applied to the weekly closing prices 
of PTBA. The objective was to predict future price movements 
based on historical fuzzy patterns and assess the model’s 
ability to reproduce trends in a volatile market environment. 
The results are presented in both tabular form and visual plots 
for interpretability. Table 2 shows a comparison between 
actual stock prices and the model’s forecasted values for 
selected weeks, along with the absolute error and percentage 
error for each prediction. 

To illustrate the step-by-step implementation of the Cheng 
Fuzzy Time Series model, Table 2 presents the core results of 
the fuzzification process applied to the weekly stock prices of 
PTBA. The table consolidates key components, including 
actual prices, corresponding fuzzy sets, and the logical 
relationships derived between consecutive observations. This 
process transforms raw numerical data into linguistic patterns, 
forming the foundation for rule-based forecasting. The table 
also includes the identification of Fuzzy Logical Relationships 
(FLR) and their respective groupings (FLRG), which are 
essential in constructing the weighted transition matrix used in 
the Cheng model. 

As shown in Table 2, each stock price is first converted into 
a fuzzy set (e.g., A1, A2, A3, etc.) based on the universe of 
discourse and interval partitions. The Left-Hand (LH) and 
Right-Hand (RH) columns represent sequential fuzzy states 
used to generate FLRs, which define how the stock price 
transitioned from one fuzzy state to another. These 
relationships are then grouped into FLRGs, such as G1, G2, 
and G6, which serve as rule bases for the next forecasting step. 
For instance, prices from 1/5/2020 to 3/1/2020 show 
transitions within fuzzy set A2, forming the FLRG G2. 
Toward the end of the series (e.g., December 2022), the prices 
fall into fuzzy set A6 and form consistent relationships under 
FLRG G6. This regularity in the pattern is beneficial for 
prediction accuracy, as repeated transitions enhance the 
reliability of the weight assignment in the Cheng model. The 
clean progression from raw data to linguistic abstraction 
reflects the structured capability of fuzzy models in managing 
imprecise, real-world datasets. 

 
Table 2. Actual vs forecasted stock prices using Cheng FTS 

 
No. Date Price (IDR) Fuzzification LH RH FLR FLRG 
8 2/23/2020 2240 A2 A2 A2 A2→A2 G2 
9 3/1/2020 2450 A1 A2 A1 A2→A1 G2 

10 3/8/2020 1970 A1 A1 A1 A1→A1 G1 

3.2 Weighted transition matrix 
 

To forecast future values using the Cheng Fuzzy Time 
Series model, it is essential to construct a weighted transition 
matrix that quantifies the historical transitions between fuzzy 
states. Table 3 displays this matrix, where each row 
corresponds to the current fuzzy state and each column 
represents the possible next state. The entries in the matrix 
indicate the frequency with which transitions occurred from 
one fuzzy state to another throughout the historical dataset. 
This frequency information will later be normalized to form a 
probabilistic weight matrix that directly influences the 
defuzzified forecast values. 

As illustrated in Table 3, the matrix reveals clear transition 
patterns across the fuzzy states. For example, from state A1, 
there were 36 transitions to itself (A1 → A1), and 5 transitions 
to A2, indicating that A1 is a relatively stable state. Similarly, 
state A3 shows strong transitions to itself (30 times), as well 
as some transitions to A1, A2, and A4.  

These patterns suggest that certain fuzzy sets are more 
dominant or more likely to persist, which is essential 
information when generating accurate predictions. In the 
Cheng model, these frequencies are normalized (i.e., divided 
by the row total) to obtain transition weights. These weights 
represent the degree of influence each potential next state has, 
given the current state. The resulting weight matrix will then 
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be used in conjunction with the midpoint values of each fuzzy 
interval to compute the final forecast through defuzzification. 

 
Table 3. Weighted transition matrix 

 
Current State A1 A2 A3 A4 A5 A6 A7 A8 

A1 36 5 0 0 0 0 0 0 
A2 1 21 0 0 0 0 0 0 
A3 2 30 4 0 0 0 0 0 
A4 0 3 2 2 0 0 0 0 
A5 0 1 3 1 2 0 0 0 
A6 0 1 13 0 0 0 0 0 
A7 0 2 2 3 5 0 0 0 
A8 0 1 1 4 3 0 0 0 

 
Once the FLRGs are constructed, the next step in the Cheng 

FTS model is to compute a weight matrix that captures the 
relative frequency of transitions from one fuzzy state to others. 
This matrix is obtained by normalizing the raw transition 
counts row-wise, converting them into probabilistic weights. 
Each row of the matrix corresponds to a current fuzzy state, 
while each column represents a potential next fuzzy state. 
Using this matrix, defuzzification is performed by multiplying 
the weights with the midpoints of each fuzzy set and summing 
the results to generate a single crisp forecast value for each 
fuzzy group. Table 4 presents both the normalized transition 
weights and the corresponding defuzzified output values (in 
IDR), which represent the predicted stock prices for each 
fuzzy group. 

As shown in Table 4, each fuzzy state such as A1, A2, and 
A3 has a unique distribution of transition weights, reflecting 
the probability of transitioning to other states. For instance, 
fuzzy state A1 has a high self-transition weight (0.87 to A1), 
indicating strong stability, while A3 transitions mostly to A2 
and A3 with smaller contributions from A1. These normalized 
weights are then used to compute the defuzzified output, such 
as IDR 1,924.39 for A1 and IDR 2,111.11 for A3. The 

defuzzified outputs serve as forecasted numerical values 
corresponding to each fuzzy group and form the basis for the 
final prediction of stock prices. These results demonstrate the 
model’s ability to incorporate linguistic patterns and transition 
probabilities into meaningful, quantitative forecasts. 

After performing defuzzification based on the weighted 
transition matrix of each Fuzzy Logical Relationship Group 
(FLRG), the next step in evaluating the forecasting model is to 
compare the predicted values against actual historical stock 
prices. Table 5 displays the forecast results for selected weeks, 
covering both the early and late periods of the dataset. Each 
row contains the actual stock price, the FLRG used for 
forecasting, the corresponding defuzzified forecast value, and 
the calculated errors both in absolute terms (IDR) and 
percentage terms (MAPE-style error). This comparative 
analysis is crucial to assess how well the Cheng Fuzzy Time 
Series model performs in predicting weekly price movements 
of PTBA. It also serves as the basis for calculating summary 
accuracy metrics like MAPE and RMSE. 

As observed in Table 5, the forecasted values show varying 
degrees of accuracy depending on the FLRG used. For 
instance, FLRG G3, used during early January 2020, exhibits 
a higher percentage error (e.g., 14.16%), whereas FLRG G2 
performs better in some intervals with errors as low as -1.44%. 
The most accurate forecasts tend to occur when the same 
FLRG is consistently used over stable periods, while larger 
errors arise during weeks of rapid price change or transitions 
between fuzzy states. Toward the end of 2022, FLRG G6 is 
used for all December forecasts, with percentage errors 
ranging from -0.08% to 4.89%, indicating that the model 
remains relatively accurate in short-term forecasting for a 
stable fuzzy group. These findings highlight the Cheng 
model’s strengths in capturing patterns over time, but also 
emphasize the importance of FLRG construction and 
fuzzification quality in achieving consistent predictive 
performance. 

 

Table 4. Weight matrix and defuzzified outputs 
 

No. A1 A2 A3 A4 A5 A6 A7 A8 Defuzzified Output (IDR) 
A1 0.87 0.10 0.00 0.00 0.00 0.00 0.00 0.00 1,924.39 
A2 0.18 0.81 0.00 0.00 0.00 0.00 0.00 0.00 2,062.96 
A3 0.05 0.83 0.11 0.00 0.00 0.00 0.00 0.00 2,111.11 
A4 0.00 0.42 0.28 0.28 0.00 0.00 0.00 0.00 2,271.42 
A5 0.00 0.14 0.42 0.14 0.28 0.00 0.00 0.00 2,414.28 
A6 0.00 0.07 0.92 0.00 0.00 0.00 0.00 0.00 2,285.71 
A7 0.00 0.16 0.16 0.25 0.41 0.00 0.00 0.00 2,483.33 
A8 0.00 0.11 0.11 0.44 0.33 0.00 0.00 0.00 2,500.00 

 
Table 5. Forecast results table 

 
No. Date Actual Price (IDR) FLRG Forecasted (IDR) Error (IDR) Error (%) 
1 1/5/2020 2780 G3 2705,5 -74,5 -2,68 
2 1/12/2020 2670 G3 2705,5 35,5 1,33 
3 1/19/2020 2370 G3 2705,5 335,5 14,16 
4 1/26/2020 2210 G2 2296,474 86,4741 3,91 
5 2/2/2020 2320 G2 2296,474 -23,5259 -1,01 
6 2/9/2020 2330 G2 2296,474 -33,5259 -1,44 
7 2/16/2020 2410 G2 2296,474 -113,526 -4,71 
8 2/23/2020 2240 G2 2296,474 56,4741 2,52 
9 3/1/2020 2450 G2 2296,474 -153,526 -6,27 
10 3/8/2020 1970 G2 2296,474 326,4741 16,57 
11 3/15/2020 1800 G1 2021,104 221,1037 12,28 
⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ 

152 12/4/2022 3620 G6 3797,074 177,0735 4,89 
153 12/11/2022 3800 G6 3797,074 -2,9265 -0,08 
154 12/18/2022 3740 G6 3797,074 57,0735 1,53 
155 12/25/2022 3690 G6 3797,074 107,0735 2,9 
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Figure 3. Forecast prices result 
 

 
 

Figure 4. Forecast prices result 
 

To evaluate the performance of the Cheng FTS model in 
forecasting real-world financial data, Figure 3 presents a line 
chart comparing the actual stock prices and the forecasted 
prices of PTBA on a weekly basis over the full-time span of 
2020 to 2022. The blue line represents the actual closing 
prices, while the red line displays the output of the Cheng 
model after defuzzification. 

This figure provides a visual representation of how well the 
model adapts to price fluctuations across different market 
conditions including periods of growth, correction, and 
volatility. It helps validate the accuracy trends derived from 
earlier tabular and statistical metrics like MAPE and RMSE. 

As depicted in Figure 3, the Cheng Fuzzy Time Series 
model effectively captures the general directional movement 
of PTBA stock prices. The model performs well during 
moderate and stable periods, where the red forecast line 
closely follows the blue actual price line. However, during 
more volatile intervals, especially around late 2020 and mid-
2022, the forecast exhibits a slight lag, a known limitation of 
non-adaptive rule-based models. Despite this, the visual 
proximity between the two lines confirms the model’s ability 
to produce forecasts with acceptable error margins. This result 
supports the suitability of the Cheng model for short-term and 
trend-following applications in financial forecasting 
particularly when interpretability and computational 
efficiency are important.  

To further investigate the short-term forecasting behavior of 
the Cheng FTS model, Figure 4 presents a focused segment of 
stock price predictions for PTBA between June and October 
2020. This period includes multiple directional shifts, 
including a short bullish trend, a price stabilization phase, and 

a sharp upward rally toward the end of the quarter. This figure 
allows for a more detailed evaluation of the model’s ability to 
respond to moderate volatility and shifting trends over a short 
time horizon, providing valuable insight into how well the 
model adapts to rapid transitions in price movement. 

As shown in Figure 4, the model performs well in capturing 
the general shape and level of the stock prices during mid-
2020, maintaining a close trajectory with the actual values. In 
the early weeks of June and July, the forecast closely aligns 
with observed prices. However, starting in August and 
September, the model displays a conservative forecast (flat 
trajectory), while the actual prices experience several local 
dips and a late sharp rise. 

To validate the effectiveness of the Cheng FTS model, we 
benchmarked its performance against three established time 
series forecasting models: ARIMA, exponential smoothing 
(ETS), and simple moving average (SMA). Each model was 
applied to the same weekly dataset and tested using a 70–30 
holdout split. Forecasting accuracy was evaluated using 
MAPE and RMSE as shown in Table 6. 
 

Table 6. Performance comparison of Cheng FTS and 
baseline models 

 
Model MAPE (%) RMSE 

(IDR) 
Cheng FTS 4.93 128.6 

ARIMA (1,1,1) 5.21 122.3 
Exponential Smoothing (ETS) 6.48 149.7 

Simple Moving Average 
(SMA-3) 7.89 182.4 
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Figure 5. Forecast residuals over time 
 
As shown in Table 6, the Cheng FTS model achieves the 

lowest MAPE among all methods, while ARIMA slightly 
outperforms it on RMSE. However, Cheng FTS maintains a 
competitive trade-off between accuracy and interpretability. In 
contrast, SMA and ETS demonstrate significantly higher error 
margins, especially during non-linear transitions. This 
confirms that the Cheng FTS model is a viable forecasting tool 
for financial data where model transparency and adaptability 
to linguistic uncertainty are advantageous.  

To further evaluate the model's behavior across different 
market conditions, we conducted a residual analysis that 
compares forecast errors during stable versus volatile periods. 
By calculating and plotting the difference between actual and 
forecasted stock prices over time, we aimed to observe 
whether error patterns shift under changing market regimes. 
The data were segmented into two phases: a stable period 
(Weeks 1–15) characterized by gradual movements, and a 
volatile period (Weeks 16–30) with sharp fluctuations. The 
resulting visualization is shown in Figure 5. 

As shown in Figure 5, residuals remain small and consistent 
during the stable phase, confirming the model’s strength in 
trend-following conditions. In contrast, residuals become 
highly variable and periodically large during the volatile 
phase, indicating the Cheng model’s difficulty in responding 
to sudden market shifts. These errors show a repeating bias, 
where the model underestimates sharp upward price changes 
and overreacts during pullbacks. This highlights a key 
limitation of rule-based fuzzy models: while highly 
interpretable and stable, they may require hybrid 
enhancements (e.g., fuzzy-neural or adaptive rules) to 
maintain forecasting accuracy during turbulence. These 
findings align with the observed MAPE/RMSE metrics and 
reinforce the importance of regime-aware evaluation.  

This divergence suggests that during periods of increased 
volatility or trend reversals, the model’s reliance on previous 
fuzzy transitions may cause it to lag slightly behind real 
market movements. Nevertheless, the error margin remains 
contained, and the model still captures the overall upward 
movement by the end of September. These results indicate that 
while the Cheng FTS model is stable and interpretable for 
steady patterns, its responsiveness in high-volatility short 
windows may benefit from hybridization or integration with 
adaptive logic enhancements. 
 

3.3 Discussion 
 

This study aimed to evaluate the accuracy and applicability 
of the Cheng FTS model in forecasting weekly and quarterly 
stock prices of PTBA, a prominent energy sector company in 
Indonesia. The results demonstrate that the model performs 
well in capturing general trends, with forecasted prices closely 
tracking actual prices over several periods. The average 
MAPE across the full test period was 4.93%, indicating that 
the forecasted values deviated by less than 5% from actual 
prices on average. The RMSE was calculated at 128.6 IDR, 
providing a measure of absolute forecasting accuracy in 
currency units. These values confirm the Cheng FTS model’s 
effectiveness in tracking weekly price dynamics with 
acceptable precision for mid-range financial forecasting. 

Figure 2 presented the full series comparison between actual 
and forecasted prices across the 2020–2022 period. The visual 
proximity of the two curves validates the model’s ability to 
follow underlying stock price trends, particularly in periods of 
relative market stability. This alignment was also reflected in 
the acceptable MAPE and RMSE values calculated from the 
forecast error metrics. However, in periods of rapid market 
movement such as the second half of 2020 and early 2022 the 
model’s forecasts displayed a lagging behavior, likely due to 
its rule-based nature that depends on previously observed 
patterns. 

Figure 3 provided a more granular view, showing the 
model’s performance during mid-to-late 2020. While the 
Cheng model accurately predicted stock behavior in the early 
stages of the interval, it failed to adapt quickly to abrupt 
changes near the end of the quarter. This limitation is 
consistent with the expectations of fuzzy models, which tend 
to generalize behavior rather than respond to sudden or 
uncharacteristic deviations in the data. 

Figure 4 summarized average forecasted and actual prices 
on a quarterly basis. The results highlight that while some 
quarters saw slight under- or overestimation, the model 
consistently mirrored the directionality of price changes 
capturing peaks, valleys, and recovery patterns with 
reasonable precision. This suggests that the Cheng FTS model 
is a reliable tool for medium-term forecasting when 
interpretability, simplicity, and trend approximation are 
prioritized over high-frequency responsiveness. 

In terms of interpretability, the weighted fuzzy relationship 

2750



groups (FLRGs) and defuzzified outputs offered transparent 
insights into how forecasts were derived, enabling easier 
validation by human experts compared to black-box models 
like neural networks. However, this simplicity comes at the 
cost of responsiveness. The model does not self-adapt to 
unseen shocks, such as sudden shifts in investor sentiment or 
macroeconomic events highlighting a potential area for 
improvement through hybrid models that combine fuzzy logic 
with learning algorithms. In summary, the Cheng FTS model 
is suitable for analysts and decision-makers who seek 
interpretable, low-complexity forecasting tools that provide 
stable and trend-aligned predictions in relatively smooth 
financial environments. Nevertheless, it may require 
enhancements or supplementation when used in highly 
volatile market conditions. To better understand model 
behavior under different market conditions, we analyzed the 
relationship between weekly price change velocity 
(percentage difference from the previous week) and absolute 
forecast error. Results show that error magnitude tends to 
increase as weekly price volatility rises, particularly during 
periods of abrupt market shifts such as late Q1 2020 and Q2 
2022. This supports the observation that while the Cheng FTS 
model performs well during stable trends, it lags in high-
volatility episodes due to the inertia of its rule-based structure. 

Furthermore, analysis of FLRGs revealed that high error 
periods often coincided with a breakdown in recurrent pattern 
stability. For example, during stable periods, transitions within 
a single FLRG (e.g., G6) yielded consistent predictions. 
However, in turbulent markets, price transitions often moved 
across multiple fuzzy states unpredictably, reducing the 
forecasting power of established FLRGs. These findings 
suggest that the Cheng model’s performance could be 
enhanced through volatility-adaptive mechanisms or 
hybridization with dynamic models in future work. Although 
the performance metrics (MAPE and RMSE) suggest that the 
Cheng FTS model outperforms or closely matches classical 
models such as ARIMA and ETS, we recognize that these 
differences may not necessarily be statistically significant. 
Due to the static holdout validation approach used in this 
study, we did not apply the Diebold-Mariano (DM) test, which 
is typically designed for rolling or recursive forecasts that 
generate multiple error distributions over time. Future studies 
could incorporate a rolling window evaluation framework and 
employ DM testing or similar statistical tests to determine 
whether the observed differences in forecast accuracy are due 
to systematic model superiority or random variation. Such 
tests would enhance the robustness of performance 
benchmarking and deepen insights into model reliability under 
different forecasting horizons. 

The application of the Cheng FTS model to PTBA stock 
offers both sector-specific and generalizable insights. PTBA 
operates in the energy sector, specifically in coal mining, 
where stock price movements are heavily influenced by 
macroeconomic variables such as global commodity prices, 
government export regulations, and energy transition policies. 
These factors often lead to abrupt and policy-driven shifts in 
investor sentiment, resulting in nonlinear and fuzzy patterns 
that challenge traditional forecasting techniques. The model’s 
relative success in capturing medium-term trends during 
regulatory stability reflects its suitability for energy sector 
forecasting when macro indicators are slow-moving. 
However, the observed underperformance during volatile 
quarters such as those triggered by sudden coal price spikes or 
export bans suggests that the Cheng FTS model may require 

adaptive enhancements for energy firms like PTBA that are 
particularly vulnerable to exogenous shocks. In contrast, firms 
in sectors with smoother market cycles (e.g., consumer goods 
or banking) may experience fewer abrupt discontinuities, 
potentially allowing the Cheng FTS model to perform more 
consistently without modification. Therefore, while the 
findings on trend-tracking and interpretability are broadly 
applicable, the need for volatility responsiveness is more 
pronounced in energy-sector applications like PTBA. 
 
 
4. CONCLUSIONS 

 
This study applied the Cheng FTS model to forecast the 

weekly and quarterly stock prices of PTBA from 2020 to 2022. 
Through a series of fuzzification processes, fuzzy logical 
relationship constructions, weight matrix normalization, and 
defuzzification steps, the model successfully generated 
forecasts that captured the general movement and direction of 
PTBA’s stock price trends. The findings demonstrate that the 
Cheng FTS model is a reliable and interpretable method for 
time series forecasting in financial contexts characterized by 
moderate volatility. The model exhibited good performance in 
stable and trend-driven periods, as evidenced by its low MAPE 
and RMSE. It also provided visually accurate results, as shown 
in Figures 3-5, with forecast lines that closely tracked actual 
price movements over time. However, the model showed 
limitations in high-volatility phases, particularly when prices 
changed abruptly or when market sentiment shifted due to 
external shocks. These results underscore the need for 
potential enhancements to the basic Cheng method, such as 
integrating adaptive learning mechanisms or hybridizing with 
neural or probabilistic models to better handle dynamic and 
non-stationary financial environments. The Cheng Fuzzy 
Time Series model is well-suited for decision-makers, 
analysts, and investors seeking a transparent and efficient 
forecasting framework that balances simplicity with predictive 
capability. Its linguistic foundation and rule-based reasoning 
make it particularly advantageous in applications where model 
explainability is just as critical as numerical accuracy. 
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