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The quality of nutmeg seeds significantly influences their commercial value and 

applicability in food and pharmaceutical products. This study investigates the 

performance of three convolutional neural network (CNN) architectures, LeNet-5, 

AlexNet, and VGGNet, for classifying nutmeg seed quality using a dataset comprising 

200 labeled images. Experiments were conducted using two data partitioning schemes 

(80:20 and 90:10), and the models were evaluated based on classification accuracy, 

training loss, and processing efficiency, defined as the total training time required per 

epoch. The results indicate that VGGNet achieved the highest classification accuracy 

(88.3% on the test set), although it required the longest training time (718,229.12 

seconds for 50 epochs), due to its deep architecture and the absence of GPU acceleration 

during training. LeNet-5 demonstrated the shortest processing time (1,902.81 seconds) 

and achieved 85.2% accuracy, indicating its suitability for deployment in resource-

constrained environments. AlexNet produced a balanced result with moderate accuracy 

(86.5%) and training duration. These findings emphasize the trade-off between model 

complexity and computational cost, suggesting that model selection should be tailored 

to available resources and application-specific requirements.  
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1. INTRODUCTION

Nutmeg (Myristica fragrans) is a spice with significant 

economic value in both domestic and international markets. 

Due to its active compounds, which offer numerous benefits, 

nutmeg is utilized across various industries, including food and 

beverages, cosmetics, and pharmaceuticals [1]. Consequently, 

the quality of nutmeg seeds significantly impacts the quality of 

derivative products and their competitiveness in the global 

market [2]. However, the assessment of nutmeg seed quality is 

often conducted manually, requiring special expertise and 

being susceptible to inaccuracy due to human subjectivity. The 

process typically involves visual inspection to determine 

characteristics such as size, color, physical damage, and the 

level of ripeness [3]. 

With the advancement of artificial intelligence (AI), 

particularly in deep learning, numerous new solutions can be 

implemented to enhance or replace the process of assessing the 

quality of agricultural products [4, 5]. One promising approach 

is utilizing the convolutional neural network (CNN), an 

artificial neural network architecture that has proven effective 

in image processing and pattern recognition tasks [6, 7]. CNNs 

have been extensively utilized in various image processing 

applications across fields such as medicine, automotive, and 

agriculture, particularly in object classification based on 

images [8-10]. These networks extract important features from 

images through convolutional layers, enabling the model to 

understand visual patterns effectively [11]. In the context of 

assessing nutmeg seed quality, CNNs can analyze images to 

identify characteristics indicative of quality, such as damage, 

shape, or size, that may be difficult for the human eye to detect. 

Research on detecting the quality of nutmeg seeds and other 

agricultural products has produced various quantitative 

findings supporting the effectiveness of deep learning and 

image processing methods. For instance, Subhan and Basri [12] 

used Faster R-CNN to classify nutmeg fruit quality, achieving 

an accuracy of 91.2%. Margendy Bogar et al. [13] highlighted 

the development of an application for classifying nutmeg seed 

images based on shell color using the CNN method, resulting 

in an accuracy level of 82%. Qisthi and Siswono [14] created a 

CNN model for classifying nutmeg seed maturity with an 

accuracy of 97.92%. 

Although CNNs have proven effective, a significant gap 

remains: the absence of systematic comparisons between 

different CNN architectures for nutmeg seed quality 

assessment. Previous research has mainly focused on model 

implementation rather than model selection, with limited 

attention to balancing classification performance and 

computational efficiency. This gap is particularly relevant in 

real-world applications, where the deployment of deep learning 

models often requires consideration of resource constraints, 

such as limited processing power, memory, or training time. To 
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address this issue, a structured comparative analysis of CNN 

architectures is essential to identify which models offer the best 

trade-off between performance and efficiency in this specific 

context. 

The CNN models analyzed for nutmeg seed quality 

classification in this study include LeNet-5, AlexNet, and 

VGGNet. This comparison considers several key variables, 

including model accuracy, which is measured through accuracy 

and F1-score. Additionally, the number of parameters is also 

evaluated as it reflects model complexity; more parameters 

generally imply greater computational requirements [15]. 

Training time and inference time are measured to evaluate 

efficiency in processing data, especially in real-time 

implementations. Furthermore, computational efficiency, 

encompassing FLOPs and memory usage, determines how well 

the model can be applied to devices with limited resources. 

 

 

2. MATERIAL AND METHODS 
 

This study employed an experimental method to compare the 

performance of LeNet-5, AlexNet, and VGGNet models in the 

classification of image-based nutmeg seed quality. The stages 

began with data collection and preprocessing, which included 

resizing, normalization, data augmentation, and filtering to 

enhance input quality. During the model design stage, the three 

CNN architectures were implemented with adjusted 

hyperparameters such as learning rate, batch size, and 

optimizer. Subsequently, training and testing were conducted, 

with the dataset divided into training, validation, and testing 

sets to assess model performance. Evaluation was performed 

using metrics such as accuracy, precision, recall, F1-score, and 

loss function to determine the optimal model for classifying 

nutmeg seed quality. Figure 1 illustrates the flowchart of the 

proposed framework stages. 

 

 
 

Figure 1. Proposed framework stages flowchart 

 

2.1 Data collection 

 

At this stage, nutmeg seed images were collected using a 

high-resolution Canon EOS 5D camera to ensure that texture, 

shape, and color details were accurately recorded. The dataset 

consisted of 200 nutmeg seed images categorized according to 

the SNI 01-0006-1993 standard. The categories included 50 

calibrated nutmeg (CN) images, 50 ABCD average nutmeg 

images, 50 shriveled (rimpel) nutmeg images, and 50 BWP 

nutmeg images. Table 1 presents a sample of the nutmeg seed 

image dataset. 

 

Table 1. Nutmeg seed image dataset sample 

 

 

2.2 Preprocessing 

 

The data preprocessing stage aimed to optimize image 

quality for the CNN model training process [16, 17]. In this 

study, the process involved resizing or adjusting each image to 

meet the input standards of the respective CNN architectures: 

LeNet-5 (32 × 32 pixels), AlexNet (227 × 227 pixels), and 

VGGNet (224 × 224 pixels). All images were converted to 

dimensions compatible with the model architecture, ensuring 

consistency during training. After resizing, image 

normalization was performed, scaling pixel values from their 

original range of 0-255 to a normalized to range of either 0–1 

or -1 to 1. This step accelerated model convergence during 

training and prevented large pixel values from dominating 

network weights. Furthermore, data augmentation was applied 

to increase dataset variation and mitigate overfitting. 

Augmentation techniques included rotation (10-30 degrees) to 

vary image orientation, flipping (horizontal or vertical) to 

simulate different viewing angles, zooming and cropping to 

enable the model to capture the details of the nutmeg seeds 

better, and adjusting contrast and lighting to enhance the 

model's adaptability to changing lighting conditions. 

 

2.3 Model design 

 

At this stage, three CNN models (LeNet-5, AlexNet, and 

VGGNet) were configured according to their respective basic 

Image Category 

 

Calibrated Nutmeg (CN) 

 

ABCD Average 

 

Shriveled 

 

BWP 
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architectures. These models were subsequently implemented 

using various deep learning libraries, such as TensorFlow and 

PyTorch. Key hyperparameters tuned during training included 

the learning rate, which controls the learning speed of the 

model; the batch size, which determines the number of 

samples in one training iteration; and the optimizer, for which 

Adam was selected based on performance suitability with the 

dataset. 

 

2.4 Training and testing 

 

At this stage, the model was trained using a dataset featuring 

two testing scenarios: a ratio of 80:20 and 90:10. To ensure 

proportional representation of each nutmeg quality category, 

stratified sampling was employed during data splitting. During 

the training process, the Adam optimizer and the ReLU 

activation function were employed to accelerate convergence 

[18, 19].  

 

2.5 Classification 

 

The classification stage involved grouping nutmeg seed 

quality based on images using the LeNet-5, AlexNet, and 

VGGNet models. The CNN model automatically extracted 

important features from images, such as texture, color, pattern, 

and shape, through convolution and pooling layers designed to 

identify unique characteristics of each category [20, 21]. Once 

feature extraction was complete, the results were processed by 

the fully connected layer, which acted as a classifier to 

determine the nutmeg seed category based on the probability 

output, where the class with the highest probability was 

selected as the final prediction. This study classified nutmeg 

seeds into four quality categories: calibrated nutmeg (CN), 

ABCD average, shriveled, and BWP. The model was tested 

using test data to evaluate the classification results, and the 

results were analyzed using a confusion matrix to assess the 

distribution of correct and incorrect predictions. Additionally, 

metrics such as precision, recall, and F1-score were used to 

measure how effectively the model identified the correct class. 

Thus, this classification stage was crucial in determining the 

effectiveness of the model in automatically distinguishing 

nutmeg seed quality, which was expected to enhance 

efficiency in the quality selection process. 

 

2.6 Evaluation 

 

The evaluation stage was conducted to assess the 

performance of the trained model by comparing several key 

metrics [22, 23]. This evaluation aimed to identify the best 

model for classifying nutmeg seed quality based on images. 

The metrics used in the model performance analysis are defined 

as follows: 

Accuracy measures the percentage of correct predictions 

from the total test data [24]. The higher the accuracy, the better 

the model is at classifying nutmeg seeds as a whole. Eq. (1) 

presents the formula for accuracy: 

 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
 (1) 

 

Precision measures the number of correct positive 

predictions compared to the total number of positive 

predictions made by the model. Eq. (2) shows the formula for 

precision:  

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 (2) 

 

Recall measures the number of positive samples the model 

successfully recognizes from the total data that should be 

classified as positive. Eq. (3) shows the formula for Recall. 

 

𝑅𝑒𝑐𝑎𝑙𝑙 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 (3) 

 

F1-Score represents the harmonic mean of precision and 

recall and is used to obtain a balance between the two [25]. The 

equation for F1-Score is shown in Eq. (4): 

 

𝐹1 − 𝑆𝑐𝑜𝑟𝑒 = 2 ×
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ×  𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
 (4) 

 

Loss Function measures the amount of error the model 

produces during training and testing. One of the loss functions 

commonly used in classification is categorical cross-entropy 

[26], which is presented in Eq. (5). 

 

𝐿𝑜𝑠𝑠 = − ∑ 𝑦𝑖 𝑙𝑜𝑔

𝑁

𝑖=1

(𝑦𝑖̂) (5) 

 

where, 

yi = actual label of the ith sample.  

𝑦𝑖̂ = prediction probability of the model for the ith sample. 

N = total number of samples. 

The evaluation results were compared to identify the best 

model based on the balance between accuracy and 

computational efficiency. Models that achieved high accuracy 

with a lighter computational load were recommended as the 

optimal solution in the nutmeg seed classification automation 

system.  

To evaluate model performance, categorical cross-entropy 

was used as the loss function, as it is well-suited for multi-class 

classification tasks such as nutmeg seed quality assessment. 

This loss function measured the divergence between the 

predicted probabilities and the actual class labels, effectively 

guiding the optimization of model weights during training. 

Given the imbalanced distribution of classes in the dataset, the 

reported loss values across training, validation, and testing 

phases provided insight into both convergence and 

generalization. 

 

 

3. RESULTS AND DISCUSSION 

 

3.1 CNN model testing (LeNet-5, VGGNet, and AlexNet)  

 

To test three CNN architecture models (LeNet-5, VGGNet, 

and AlexNet), this experiment was designed using two data-

sharing scenarios, as shown in Table 1. Each model was 

evaluated under different scenarios to assess the impact of the 

training and validation data ratio on the performance of 

nutmeg seed quality classification. 

Table 2 presents the performance results of three deep 

learning models (LeNet-5, VGGNet, and AlexNet) used for 

nutmeg image classification. The evaluation was conducted 

with two data sharing ratios (80:20 and 90:10). The measured 

metrics include accuracy and loss at the training, validation, 

and testing stages. The evaluation results indicate that LeNet-
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5 has lower accuracy compared to VGGNet and AlexNet, 

although it still demonstrates reasonable performance. 

VGGNet displays the highest accuracy in training, validation, 

and testing, while AlexNet also performs well but has a 

slightly higher loss than VGGNet. In terms of data ratio, the 

90:10 ratio yields higher accuracy than 80:20 since more data 

were utilized for training. From the model loss results, it is 

evident that the training loss is lower than the validation loss, 

suggesting that the model tends to experience overfitting. 

VGGNet has the lowest loss, indicating its superiority over 

LeNet-5 and AlexNet. Meanwhile, AlexNet exhibits slightly 

higher loss, particularly on the testing data, suggesting it is 

inferior to VGGNet. Figure 2 illustrates the loss graphs for 50 

epochs separated by data ratio (80:20 and 90:10) for each 

model. 

 

Table 2. Model performance evaluation 

 

Model Ratio Category 
Accuracy Loss 

Training Validation Testing Training Validation Testing 

LeNet-5 

80:20 

CN 92.3 88.5 85.6 0.12 0.18 0.20 

ABCD Average 90.7 87.2 84.3 0.15 0.27 0.25 

Shriveled 91.2 86.9 83.8 0.14 0.22 0.23 

BWP 89.5 85.6 82.4 0.17 0.25 0.26 

90:10 

CN 94.1 89.7 86.5 0.10 0.16 0.18 

ABCD Average 92.8 88.9 85.2 0.13 0.17 0.21 

Shriveled 93.2 88.1 84.7 0.10 0.15 0.23 

BWP 90.9 86.4 83.1 0.16 0.22 0.26 

VGGNet 

80:20 

CN 95.3 91.6 88.2 0.08 0.13 0.16 

ABCD Average 93.9 90.5 87.4 0.12 0.10 0.13 

Shriveled 94.2 90.2 86.8 0.09 0.14 0.21 

BWP 92.7 88.8 85.6 0.14 0.22 0.23 

90:10 

CN 95.4 92.3 89.0 0.07 0.19 0.10 

ABCD Average 95.8 91.9 88.3 0.11 0.13 0.17 

Shriveled 94.2 90.6 87.1 0.06 0.09 0.13 

BWP 94.2 90.6 87.1 0.09 0.14 0.21 

AlexNet 

80:20 

CN 93.5 89.2 86.1 0.15 0.19 0.25 

ABCD Average 92.2 88.1 85.0 0.13 0.20 0.21 

Shriveled 92.6 87.9 84.4 0.10 0.13 0.23 

BWP 91.1 86.5 83.3 0.14 0.25 0.28 

90:10 

CN 95.0 91.3 87.8 0.09 0.14 0.19 

ABCD Average 93.6 90.1 86.5 0.12 0.15 0.23 

Shriveled 94.1 89.7 85.9 0.14 0.18 0.26 

BWP 92.5 88.3 84.6 0.09 0.13 0.20 

 

Table 3. Measurement of speed and efficiency of the model 

 
Model Epoch Processing Time (s) Inference Time (ms) 

LeNet-5 3 128.63 210.37 

AlexNet 3 3850.60 227.59 

VGGNet 3 250.32 241.89 

LeNet-5 10 396.91 223.35 

AlexNet 10 13271.77 303.86 

VGGNet 10 16112.98 401.23 

LeNet-5 20 725.02 150.57 

AlexNet 20 20718.02 298.23 

VGGNet 20 43161,65 601.88 

LeNet-5 30 1167.86 208.77 

AlexNet 30 30165.11 366.56 

VGGNet 30 54181.38 517.22 

LeNet-5 40 1490.93 236.78 

AlexNet 40 379810.32 422.90 

VGGNet 40 611917.71 710.11 

LeNet-5 50 1902.81 204.02 

AlexNet 50 514676.14 578.21 

VGGNet 50 718229.12 987.55 

 

3.2 Measurement of model speed and efficiency  

 

Following performance evaluation, the subsequent step was 

to measure the speed and assess the efficiency of the model. 

These results provide a clear picture of how quickly the model 

can be trained and perform inference, as well as how efficient 

the model is in terms of resource usage. Speed measurements 

included training time and inference time, which provided 

information on how swiftly the model can learn from data and 

produce predictions [27]. Table 3 presents the results of speed 

and efficiency measurements for each model. 

The model speed and efficiency results in Table 3 show that 

LeNet-5 delivers the best training and inference time 

efficiency among the three models. Although the training time 

increases by increasing epochs, from 128.63 seconds at 3 

epochs to 1902.81 seconds at 50 epochs, the increase is 
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relatively stable and insignificant. Inference time is relatively 

constant, with slight fluctuations between 210.37 ms at epoch 

3 to 204.02 ms at epoch 50. This shows that LeNet-5 is more 

efficient both in terms of training and in performing inference. 

In contrast, AlexNet shows an extremely high training time 

[28]. At epoch 3, the training time reached 3850.60 seconds, 

and at epoch 50, the training time increased drastically to 

514676.14 seconds, showing a significant and sharp increase 

as the epoch increases. The inference time also increased from 

227.59 ms at epoch 3 to 578.21 ms at epoch 50, although the 

increase was not as large as the training time. These results 

suggest that AlexNet, while more complex and potentially 

more accurate, requires significantly longer training and 

inference times. VGGNet, which has a deeper and more 

complex structure, shows a similar trend but shows even more 

pronounced increases in both training and inference metrics. 

Its training time at epoch 3 was 250.32 seconds, but increased 

sharply to 718229.12 seconds at epoch 50. The inference time 

also showed a significant increase from 241.89 ms at epoch 3 

to 987.55 ms at epoch 50. This increase is sharper than 

AlexNet, indicating that VGGNet requires greater 

computational resources and more time for training and 

inference [29]. Overall, LeNet-5 emerges as the most efficient 

model in terms of training and inference time, making it an 

optimal choice when speed is of utmost importance [30]. 

 

 
 

Figure 2. Loss graph of each model for 50 epochs 
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3.3 Overall analysis of best model selection 

 

The performance evaluation and model efficiency show 

that selecting the best model for nutmeg seed quality 

classification involves balancing accuracy and processing time 

efficiency. VGGNet achieves the best results with the highest 

accuracy in the training, validation, and testing stages 

compared to AlexNet and LeNet-5. This suggests that 

VGGNet has superior generalization capabilities in 

recognizing patterns in nutmeg seed image data. In addition, 

the loss in VGGNet is lower than the other two models, 

indicating that this model is more stable and able to learn data 

more optimally. Figure 3 shows the overall results of the 

model comparison based on accuracy and processing time. 

 

 
(b) 

 

Figure 3. (a) Comparison based on accuracy, (b) Processing time comparison 

 

 

4. CONCLUSIONS 

 

This study presented a comparative analysis of three CNN 

architectures, LeNet-5, AlexNet, and VGGNet, for digital 

image-based nutmeg seed quality classification. Experimental 

results showed that each model has distinct characteristics in 

terms of prediction accuracy and computational efficiency. 

LeNet-5 proved to be the lightest and fastest model, well-

suited for implementation in systems with limited computing 

resources or real-time applications. AlexNet displayed a 

relatively balanced performance between architectural 

complexity and feature extraction capabilities, while VGGNet 

demonstrated the highest classification accuracy despite its 

lengthy training and substantial resource requirements. 

Practically, LeNet-5 is recommended for an efficient and 

fast automated nutmeg quality classification system. Although 

VGGNet demonstrated the best prediction performance, it 

may not be suitable for systems without hardware acceleration 

or with small-scale datasets. Therefore, the selection of a CNN 

architecture should consider the trade-off between accuracy 

and efficiency, tailored to the specific needs and technical 

constraints of the planned implementation. 
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This study acknowledges several limitations. The relatively 

small training data set (200 images) may lead to overfitting, 

especially in models with large parameters such as VGGNet. 

CPU-only training conditions also affect the accuracy of 

training time estimates. Furthermore, this study did not include 

statistical significance tests, such as McNemar's test, to ensure 

that performance differences between models are statistically 

significant and not simply chance fluctuations. This limits the 

generalizability of claims of model superiority. 
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NOMENCLATURE 

 

B dimensionless heat source length 

CP specific heat, J. kg-1. K-1 

g gravitational acceleration, m.s-2 

k thermal conductivity, W.m-1. K-1 

Nu local Nusselt number along the heat source 

 

Greek symbols 

 

 thermal diffusivity, m2. s-1 

 thermal expansion coefficient, K-1 

 solid volume fraction 

Ɵ dimensionless temperature 

µ dynamic viscosity, kg. m-1.s-1 

 

Subscripts 

 

P nanoparticle 

F fluid (pure water) 

nf nanofluid 
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