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Effective collision avoidance and path planning are critical challenges in mobile 
robotics, especially in dynamic environments where obstacles continuously change 
positions. This research presents a real-time autonomous control system for a mobile 
robot using the Robot Operating System (ROS) and a camera-based collision avoidance 
system. Simultaneous Localization and Mapping (SLAM) enables the robot to navigate 
and construct maps of unknown environments. To optimize path planning and obstacle 
avoidance, a simulation model based on the Grey Wolf Optimization (GWO) algorithm 
is implemented in MATLAB, handling both fixed and dynamic obstacles. The system 
operates online, continuously updating the robot's path to ensure collision-free 
navigation in real time. Experimental results confirm that the robot successfully avoids 
obstacles, dynamically adjusts its speed and trajectory, and maps its surroundings. The 
simulation further demonstrates that the system adapts to varying obstacle sizes and 
positions, proving the effectiveness of the GWO algorithm in precise path planning and 
real-time collision avoidance in dynamic environments.  
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1. INTRODUCTION

Autonomous applications are a modern domain in
technology and should be implemented in all robotic models 
instead of conventional engineering controllers [1, 2]. 

Due to the rapid advancements in robotics, mobile robots 
used for indoor service applications have become increasingly 
prevalent. This is especially relevant during the current period, 
as the world is facing the spread of the Coronavirus. However, 
this type of robot encounters several challenges, the most 
significant being how to achieve autonomous mobility indoors 
[3]. 

To address this issue, mobile robots must be equipped with 
sensors that can gather information about their surrounding 
environment. This information is then used to generate a map 
of the environment, which helps determine the robot's location 
within its workspace. This process is known as Simultaneous 
Localization and Mapping (SLAM) [4-7]. 

Although mobile robots are considered robust and capable 
of supporting both software and hardware, they are costly and 
not highly scalable. This is primarily due to the fact that most 
robot programs are not open-source, making the development 
of mobile robot programs from scratch both complex and time-
consuming. 

Robot Operating System (ROS) is an open-source software 
framework that offers a low-cost and highly scalable solution 
for mobile robotics [8-10]. It provides tools and libraries that 
assist software developers in creating robotic applications. 
Additionally, ROS offers device drivers, libraries, 
visualization tools, message-passing capabilities, and software 

packages. 
ROS also enables the execution of specific parts of the code, 

allowing the robot to be operated and controlled remotely. 
Furthermore, it supports the integration of code written in 
different programming languages, such as Python, C++, and 
Lisp, into a single, unified network [11, 12]. 

2. RELATED WORK

There are many studies are done in the field of autonomous
mobility of mobile robots. 

Sayed et al. [13] focused on the model of an autonomous 
central multi-bot system. It is containing a golem Hexapod and 
a six-wheeled mobile robot. Where the Hexapod is used to 
scan and map the sector hospital setting with plotting a route, 
the six-wheeled mobile robot acts as delivery of the medical 
product entering supported by the map and path by SLAM. 

Khalifa et al. [14] presented development mechanical 
design for amphibious robot with navigation system-based 
reading of sensor Global Positioning System (GPS) and the 
soft were program LabVIEW from National Instruments (NI). 
The results did not appear because of the device inside the 
corridor so is blocked from picking up the satellite signal 
where it needs an open space and no roof to pick up the signal 
from the satellite. No collusion accrued depending on the 
mechanical design of wheel leg – propeller protects the robot 
body not depending on navigation system. 

Li et al. [15] addressed the path planning challenges of an 
intelligent vehicle in an unknown environment, this study 
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proposed a method for map construction and path planning 
based on multi-sensor data fusion. First, an extended Kalman 
filter (EKF) integrates information from LiDAR and a depth 
camera, while a pose sensor provides the robot’s pose and 
acceleration data. A SLAM system is then developed by 
combining LiDAR, a depth camera, and an inertial 
measurement unit. Next, an improved ant colony algorithm is 
employed for global path planning, while the dynamic window 
method is utilized for local planning and obstacle avoidance. 
Finally, experiments conducted on a robotic platform confirm 
the reliability of the proposed approach. Results showed that 
the multi-sensor fusion method enhances SLAM accuracy and 
robustness, producing maps that more accurately reflect the 
real environment. Additionally, the improved ant colony 
algorithm smooths path turns, while the dynamic window 
method enables real-time obstacle avoidance, leading to more 
efficient path planning and enabling automatic feedback 
control of the intelligent vehicle. 

Najim et al. [16] presented the designing and 
implementation of a mobile robot travels in any directions 
without using the steering gear, using four meconium wheels 
the proposed robot works in the hospital for deliver 
medications to patients for minimizing human touch. The main 
component was depth camera and LIDAR used as sensors to 
discover the. The robot is run by a ROS that employs the 
SLAM algorithm. 

According to the research by Chi et al. [17], the use of 
indoor laser mapping technology has advanced significantly in 
mobile robotics. However, traditional 2D LiDAR is limited to 
scanning at a fixed height, making it difficult to capture objects 
below that level, leading to inaccurate mapping and navigation 
errors. While 3D LiDAR provides a more comprehensive 
solution, its high cost and computational demands limit its 
application in indoor environments. To overcome these 
limitations, this study proposed a laser data compensation 
algorithm based on indoor depth map enhancement. The 
approach involved to Enhancing depth maps from a depth 
camera using bilateral filtering and reducing dimensionality 
through multi-layer projection to generate pseudo-laser data. 
Then Remapping laser data based on the spatial relationship 
between sensors and obstacles. Integrating the fused laser data 
into the SLAM front-end for improved multi-sensor data 
fusion. Simulations and real-world experiments demonstrated 
that this method significantly enhances environmental 
perception and improves mapping accuracy compared to 
existing fusion techniques. 

Yao [18] focused on indoor mobile robots, addressing both 
global and local path planning to enhance the design principles 
and theories of navigation algorithms. The proposed approach 
includes: Global path planning using an improved A 
algorithm*, and Local path planning based on an enhanced 
artificial potential field (APF) algorithm. Since a single 
planning method may not be sufficient for complex indoor 
environments, a hybrid path planning algorithm is introduced, 
combining static global optimization with dynamic real-time 
local adjustments. The improved algorithms were 
implemented on an actual robot platform to ensure precise 
obstacle avoidance and efficient pathfinding. The proposed 
method was validated through MATLAB simulations, 
confirming its effectiveness. Additionally, a ROS-based 
indoor mobile robot experiment demonstrated that the hybrid 
algorithm improves real-time path planning in complex 
environments, proving its reliability and advantages in 
practical applications. 

Wu et al. [19] introduced a LiDAR-inertial SLAM approach 
that integrates DA-LIO and MC-PGO to address challenges 
related to inaccurate movement distortion estimation, weak 
pose graph constraints, and frequent feature degeneracy. In 
particular, it presented an innovative dual B-spline-based 
motion distortion correction technique that leverages a 
continuous-time trajectory model to refine integrated IMU 
pose updates, improving correction accuracy. Furthermore, a 
degeneracy-aware Kalman update strategy is incorporated to 
enhance system robustness.  

Cooper-Baldocka et al. [20] presented a wake-informed 3D 
path planning method for Autonomous Underwater Vehicles 
AUVs, integrating wake effects and global currents. In this 
study the A* algorithm, are used due to their ability to find 
optimal paths in discretized environments. Two A* variants 
(current-informed and wake-informed) and neural network 
approximations are improved. The wake-informed A* planner 
reduces energy use by up to 11.3%, while neural networks 
provide faster computation but less optimal paths (4.51%–
19.79% higher energy). The findings highlight the importance 
of wake-aware planning for efficient and safe AUV 
navigation. 

Li et al. [21] presented an advanced control strategy for 
mobile robots navigating environments with obstacles. In this 
study Model Predictive Control (MPC) integrated with 
Terminal Sliding Mode Control (TSMC) to improve trajectory 
tracking and ensure robust obstacle avoidance. This combined 
approach leverages the predictive capabilities of MPC to 
anticipate and plan optimal paths, while TSMC contributes to 
system robustness against disturbances and uncertainties. 
Simulation results demonstrated that this integrated control 
scheme significantly improves the robot's ability to follow 
desired trajectories accurately while effectively avoiding 
obstacles, even in dynamic and uncertain settings. 

As reported by Qiu et al. [22], a 3D path planning approach 
is introduced, combining game theory and particle swarm 
optimization (PSO) in a hybrid framework (GTPHM). Firstly, 
the path planning task is reformulated into an optimization 
trouble by redefining the cost function, and a multi-robot 
motion model is structured to meet dynamic constraints. 
Within this framework, game theory is employed for multi-
robot path planning, when collision costs and multi-objective 
heuristic functions act as game payoffs to sustain interactive 
decision-making among robots. To improve performance, the 
PSO algorithm is incorporated, utilizing a three-dimensional 
vector-based particle position transformation technique as a 
game-theory-driven strategy update mechanism. For collision 
avoidance, each robot adapts its cooperative strategy in 
response to the actions of neighboring robots, gradually 
converging toward the Nash equilibrium. Experimental 
comparisons demonstrate that the proposed GTPHM 
effectively enables robots to generate safe and collision-free 
trajectories from the start to the target point, even in 
challenging 3D terrains such as mountainous and urban 
environments. 

In the study conducted by Chen et al. [23], an improved 
Multi-Strategy and Improved Adaptive Reinforcement Grey 
Wolf Optimization (MSIAR-GWO) algorithm for mobile 
robot path planning is presented. Development included 
reinforcement learning-based parameter tuning, an adaptive 
position-update strategy, and artificial rabbit foraging 
techniques to improve convergence speed, global search 
ability, and solution accuracy. Compared to traditional 
algorithms, MSIAR-GWO achieves shorter, smoother paths 
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with better stability and robustness, making it highly effective 
for autonomous navigation. 

Most previous studies either presented control system 
models that govern a mobile robot’s movement in practice or 
focused solely on simulations. Studies utilizing ROS and 
SLAM demonstrated system efficiency in practical 
applications, while those employing artificial intelligence 
algorithms successfully generated collision-free paths. 
However, they did not achieve real-time path planning that 
adapts immediately to dynamic obstacles. 

In the present work, a practical design model used ROS 
which is utilized for real-time control of mobile robots, and it 
is crucial in dynamic environments with moving obstacles. 
ROS offers extensive library support with a large collection of 
pre-built packages for robotics applications, reducing 
development time and enhancing functionality. It enables 
seamless communication between sensors (camera), 
improving perception and decision-making. 

SLAM is used to ensure that the robot can autonomously 
explore and localize itself by combining sensor data (camera) 
to enhance the accuracy of self-positioning, reduce drift errors, 
and generate an accurate map of its surroundings. 

In addition, this paper investigates a simulation model for 
path planning of a proposed robot using GWO which is a 
nature-inspired metaheuristic algorithm that mimics the 
hunting behavior of grey wolves to find optimal paths while 
avoiding obstacles. GWO provides an efficient, adaptive, and 
optimized path-planning method, making it ideal for real-
world robotics applications. 

The main contribution of this work combining between 
practical design and simulation model. The design of a real-
time control system for mobile robots, enabling autonomous 
navigation with collision avoidance. Additionally, the robot 
can map its surroundings. The simulation design is the novelty 
lies in the investigation of the GWO algorithm for path 
planning, allowing the robot to adapt to moving obstacles 
during program execution. 

 
 

3. TOOLS AND METHODOLOGY 
 

Mobile robot is ground vehicle trained to support humans in 
several fields, including military and civilian applications [24-
27].  

The robots are a combination of mechanical and electrical 
components, with computer science. Robot construction, in 
general, has an actuator may be DC, AC servo motors or 
hydraulic actuator to move the wheels or legs so induced the 
locomotion of the robot body, or that the robot can move from 
one point to another [28, 29].  

 
3.1 TurtleBot3 Burger mobile robot of a practical aspect 
 

The mobile robot in the present paper is a TurtleBot3 Burger 
robot as shown in Figure 1. This open-source robotics platform 
is used for learning and research. The  most specifications and 
features of the TurtleBot3 Burger is small size, and small 
lightweight, making it suitable for indoor use. 

The features are as follows: 
• Fully compatible with ROS. 
• The Controller is Raspberry Pi. 
• Autonomous Navigation Supports SLAM. 
• Sensors are 360° LIDAR (LDS-01) for mapping & 

obstacle detection, and IMU for motion tracking, and 

encoders for precise motor control. 
• Two Dynamixel XL-430-W250 motors for differential 

drive with omnidirectional movement. 
• Expandable with extra sensors (e.g., cameras, depth 

sensors), open-source hardware & software for 
modifications. 

 

 
 

Figure 1. TurtleBot3 Burger mobile robot 
 

Table 1 shows the main specifications of a proposed 
TurtleBot3 Burger robot. 
 

Table 1. Specifications of the TurtleBot3 Burger 
 

Items Specification 
Maximum translational 

velocity 0.22 m/s 

Maximum rotational 
velocity 2.84 rad/s (162.72 deg/s) 

Maximum payload 15 kg 
Size (L × W × H) 13.8 cm × 17.8 cm × 19.2 cm 

Weight (+ SBC + Battery 
+ Sensors) 1 kg 

Single Board Computers 
(SBC)  Raspberry Pi 

Actuator XM430-W250 
Laser Distance Sensor 

(LDS) 
360 Laser Distance Sensor LDS-

01 or LDS-02 

Battery Lithium polymer 11.1V 1800 mAh 
/ 19.98Wh 5C 

 
The control system is crucial, with the Raspberry Pi 4 

Model B (Pi4B) handling decision-making and high-
processing tasks (Figure 2). The MT9M001 AR0330 depth 
camera (Figure 3) is selected based on the operating 
environment. Using SLAM, the robot processes depth sensor 
data to generate a 2D map and perform real-time collision 
avoidance [6, 30]. 
 

 
 

Figure 2. Raspberry Pi [30] 
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Figure 3. Sensor MT9M001 AR0330 [30] 

3.2 SLAM 

SLAM enables autonomous navigation in unknown 
environments using sensors like lasers, depth cameras, and 
ultrasound. It is widely used in self-driving vehicles, security, 
warehouse management, and disaster relief [31]. 

SLAM integrates mapping and localization (Figure 4) to 
build real-time maps and track robot position in both indoor 
and outdoor settings. As a stochastic method, it processes 
environmental data probabilistically, allowing robots to 
generate optimal paths and navigate back to their starting point 
in unfamiliar areas [32-34]. 

Figure 4. Block diagram of autonomous robot navigation 
[32] 

3.3 ROS program 

In the past decade, robotics technology has advanced 
significantly, with open-source platforms like ROS playing a 
key role in expanding research and application opportunities. 
Initially developed for large-scale service robots in Stanford’s 
STAIR project and Willow Garage’s Personal Robots 
Program, ROS has since become widely adopted beyond these 
domains [6]. 

ROS has become a leading software framework for robot 
modeling, simulation, and development, offering a vast 
environment for transformation and innovation. It supports the 
creation of new applications and robots, with a variety of tools 
and infrastructure. 

ROS operates through nodes, executable programs that 
communicate via Topics to exchange information, as 
illustrated in Figure 5 [35, 36]. 

Figure 5. ROS components [35] 

3.4 Robot work methodology 

All algorithms were implemented in the ROS framework for 
real-time testing and visualization. The robot is equipped with 
two sensors: a depth camera and a 360° LiDAR scanner, 
allowing a performance comparison of the SLAM algorithm 
when using each sensor. 

The process begins with the robot navigating an unknown 
indoor environment with obstacles, which it must detect while 
simultaneously mapping the area. Rviz is used to simulate 
mobile robot movement, control the robot remotely, and 
visualize SLAM implementation. For practical testing, the 
TurtleBot3 Burger platform was selected and tested within the 
Rviz library on ROS (Linux). 

Figure 6 shows the basic operation where the depth camera 
provides depth images. These are converted into laser scans, 
which SLAM processes to estimate position. SLAM publishes 
transformations (pose updates) via /tf, linking frames like: 
Map → Base link (robot position in the global map) and Base 
link → Camera (camera position relative to the robot). The 
Rviz reads /tf to display real-time robot movement and SLAM 
generated maps accurately. 

Figure 6. Block diagram for basic operation of robot 
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4. SIMULATION MODEL FOR PATH PLANNING

To implement path planning for proposed mobile robot used 
the GWO algorithm with collision avoidance in MATLAB. 
Figure 7 shows the flowchart for general steps, where, search 
space limits [x_min x_max; y_min y_max] = [0 100; 0 100], 
and to show the starting point and end point of the path clearly 
used the starting position =[5,5], goal position =[95,95], in the 
current simulation, fixed and dynamic cuboidal obstacles with 
different dimensions like that are used in the practical testes.in 
the present algorithm was used seven fixed and four dynamic 
obstacles distributed by choosing center, length, width, and 
height for each of them, for any iteration the dynamic obstacles 
have arbitrary motion. 

Figure 7. Flow chart for GWO 

5. TEST SETUP FOR PRACTICAL RESULTS

To evaluate the effectiveness of the proposed mobile robot
and its collision avoidance control system, several 
experimental tests were conducted. The operation of the 
control system was verified in real-world conditions, 
demonstrating its ability to navigate smoothly while avoiding 
both fixed and dynamic obstacles.  

The setups and procedures are as follows: 
• The robot was equipped with a camera, LiDAR, and real-

time processing unit to detect obstacles and map the
environment.

• The navigation system utilized SLAM for mapping, path
planning algorithms for route optimization, and real-time
control strategies for collision avoidance.

• The tests were conducted in both structured (corridors) and
unstructured (real-world) environments to evaluate the
adaptability of the system.

5.1 Corridor navigation test 

The first test assessed the robot's movement in a narrow 
corridor with a length of 9.4 meters and a width of 0.7 meters, 
as shown in Figure 8. The robot's navigation was based on 
SLAM system, utilizing data from a camera. The results of this 
test are summarized as follows: 
• Time taken to move forward: Approximately 42.73

seconds.
• Time taken to rotate 180 degrees: Approximately 1.11

seconds.
• Time taken to return after rotation: Approximately 43.83

seconds.
• Total time for a round trip: Approximately 86.56 seconds.

During this test, the robot demonstrated smooth and stable
movement, accurately following the SLAM-generated path 
without significant deviations. 

Figure 8. The environment of corridor (a) The actual 
environment of corridor, (b) The environment of corridor in 

SLAM 

5.2 Obstacle navigation in a real environment 

In the second test, the robot was placed in a real-world 
environment with multiple distributed obstacles, as illustrated 
in Figure 9. The environment map was generated using 
SLAM, and the robot's navigation was visualized in RViz, a 
software tool in ROS, as shown in Figure 10. The red path 
indicates the robot’s movement while mapping. Black areas 

a b 
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represent obstacles detected by the robot’s LiDAR or depth 
camera. 

The robot successfully detected and avoided both fixed and 
dynamic obstacles, demonstrating the effectiveness of the 
control system. The movement results confirmed that the 
proposed system enables smooth and adaptive navigation, 
even in complex environments. 
 

 
(a)                               (b) 

Figure 9. The actual environment (a) Actual environment 
with dynamic obstacles, (b) Actual environment with static 

obstacles 
 

 
(a) Environment in SLAM with dynamic obstacles 

 
(b) Environment in SLAM with static obstacles 

 
Figure 10. Testing the environment of the robot 

 
 

6. SIMULATION RESULTS AND DISCUSSION 
 
For optimal path planning used GWO algorithm for many 

iterations to obtain the optimal path drawing with fixed and 
dynamic obstacles. the simulation model which is adaptive for 
any change in position of obstacles. The evaluation involved 
as follows: 

a) Initializing the Wolf Pack: 
o A population of 30 grey wolves was randomly 

positioned in the search space. 
o The wolves' positions were iteratively updated over 

100 iterations (maxIter), refining their movement 
toward the optimal path. 

b) Updating Positions Using Alpha, Beta, and Delta Wolves: 
o The alpha wolf represents the best solution (shortest, 

collision-free path). 
o The beta and delta wolves supply additional guidance 

to enhance the search. 
o Each wolf updates its position based on attraction to 

these leaders, with an adaptive step size (a = 2 - iter * 
(2 / maxIter)) that decreases over time. 

c) Collision Handling: 
o A collision penalty (1e6) was added to the fitness 

function if a path collided with any obstacle. 
o Both fixed and dynamic obstacles were checked for 

intersection with the computed path to ensure feasible 
motion planning. 

d) Obstacle Dynamics: 
o Movable obstacles were randomly repositioned at 

each iteration within the search space, simulating real-
world dynamic obstacles. 

The following metrics were used to evaluate the GWO 
algorithm's performance: 

o Path Length: The fitness function included the total 
Euclidean distance traveled from the start to the goal. 
A shorter path indicates better efficiency. 

o Computation Time: The execution time per iteration 
(not explicitly recorded but can be measured using 
MATLAB. Faster convergence implies better real-
time performance. 

The execution time for each experiment is approximately 17 
seconds. 

o Convergence Curve: The convergence curve recorded 
the fitness value of the best solution at each iteration. 
A steeper decrease in the convergence curve indicates 
rapid optimization. 

o Collision Avoidance Rate: The number of collisions 
detected vs. collision-free paths provides insight into 
GWO’s ability to navigate safely. 

o Dynamic Obstacle Handling: The algorithm was 
evaluated based on its ability to adapt to changing 
environments (due to dynamic obstacles) and still 
reach the goal efficiently. 

Several experimental tests were implemented as follows:  
The First Test: The fixed obstacles represented by red cubes 

and the dynamic obstacles represented by blue cubs. Figure 11 
shows the path planning of mobile robot collision avoidance, 
for a same running where Figure 11(a) shows when it reaches 
iteration 33. Figure 11(b) shows another position for dynamic 
obstacles for the same running at alteration 77, and Figure 
11(c) shows the path planning and last updating of obstacles 
position at full iteration 100. In this test the shortest path has 
been achieved, and the mobile robot skip obstacles without 
collision despite the movement of obstacles along the time of 
implementation of algorithm . 

Figure 12 shows the convergence curve. As iterations 
progress, the fitness value drops rapidly in the first few 
iterations, indicating fast initial convergence. After around 20 
iterations, the changes become minimal, and the fitness 
stabilizes close to 128, meaning that the algorithm has found 
an optimal path planning. 
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(a) Path planning at iteration 33 

 
(b) Path planning at iteration 72 

 
(c) Path planning at full iteration 100 

 
Figure 11. First testing for simulation path planning of 

mobile robot collision avoidance 
 

 
 

Figure 12. Convergence curve for first test 

The Second Test: In this steep the same dimensions of fixed 
and dynamic obstacles are used, but location for some of them 
is changed Figure 13 shows the path planning of a proposed 
robot for a one running with new positions for obstacles. 
Figure 14 shows the convergence curve for this stage. Despite 
the changing locations of the obstacles, the algorithm was able 
to plot the path planning accurately as shown in Figure 13. So, 
it is possible to adapt this algorithm to draw the path of any 
vehicle as soon as the sizes and locations of the obstacles 
change. 

 

 
(a) Path planning at iteration 61 

 
(b) Path planning at iteration 100 

 
Figure 13. Path planning of a proposed robot at one running 

with new positions for obstacles 
 

 
 

Figure 14. Convergence curve at second test 
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7. CONCLUSIONS

The data collected from the camera is used to generate a
map of the surrounding environment for SLAM, enabling the 
mobile robot to efficiently detect obstacles. The Rviz platform 
provides visualization of sensor data, including the camera 
feed and point clouds. By analyzing the raw sensor values, 
Rviz offers an autonomous representation of the input data 
structures. 

As a summary, the conclusions of the current research are: 
• SLAM enables the robot to autonomously explore, localize

itself, and generate an accurate map of its surroundings.
• ROS serves as a robust platform for developing intelligent,

real-time, and modular robotic systems.
The results indicate that the system can successfully

construct a map compatible with indoor and outdoor 
environments. 
• GWO provides an efficient and adaptive path-planning

method, making it ideal for real-world robotics
applications.

• The GWO algorithm was explored as an adaptive
controller for path planning and obstacle avoidance.
Simulation results confirm that the proposed algorithm
efficiently computes an optimal path, ensuring collision
avoidance even in the presence of continuously moving
dynamic obstacles. Unlike traditional path-planning
methods, GWO dynamically adjusts the robot’s trajectory
when obstacles move or change positions. Additionally, it
exhibits faster convergence and lower computational
complexity compared to conventional approaches.

The Main Contributions & Challenges:
The primary contribution of this work lies in enabling the

robot to navigate an unknown environment by mapping its 
surroundings and autonomously completing navigation tasks 
using the generated map. Furthermore, the control system, 
based on sensor feedback, ensures effective collision 
avoidance for all obstacles. 

The proposed intelligent GWO algorithm, implemented in 
MATLAB, successfully determines the shortest path with 
minimal execution time, even while adapting to real-time 
obstacle movement. Unlike previous studies, this work 
achieves real-time path optimization and visualization, 
making it a significant advancement in robotic navigation. 

8. FUTURE WORK

• Use machine learning models for enhanced obstacle
recognition, semantic mapping, and predictive path
planning.

• Extend GWO by integrating other metaheuristic
algorithms (e.g., PSO, ACO) to balance trade-offs like
speed, energy efficiency, and safety.

• Utilize cloud computing or edge AI for real-time data
processing and map sharing, enabling seamless multi-robot
collaboration.

• Transition to ROS2 for improved real-time performance,
security, and support for multi-threaded execution in high-
demand applications.
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