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Wireless networks such as the Internet of Things (IoT) integrate heterogeneous 
paradigms—including fog, cloud, and edge computing to provide pervasive services to 
users. The Quality of Service (QoS) depends on energy efficiency, resource scheduling, 
and optimal traffic management across the various employed paradigms. However, 
existing approaches often fail to dynamically adapt to varying resource demands while 
maintaining a balance between energy efficiency and service latency. This article 
introduces a Hybrid Energy Saving and Scheduling Scheme (HES3) to enhance QoS in 
wireless paradigms associated with IoT for service handling. HES3 incorporates multi-
level federated learning to achieve optimal resource sharing through demand analysis. 
The demands related to energy, delay, and applications are identified using federated 
learning, and local decisions over allocations are performed. The decisions on energy 
saving are constructed using resource allocation and revocation for resource sharing, 
whereas the maximum wait time of the service demands is used for decisions on delay-
less resource sharing. These decisions are adaptable to the pervasive paradigms 
integrated with IoT. This hybrid scheme effectively balances resource allocation and 
energy conservation with better Quality of Service.  
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1. INTRODUCTION

The Internet of Things (IoT) is a network that connects
physical objects using wireless sensors, software, and 
technologies. IoT provides effective interaction and 
communication services to users [1]. IoT exchange data from 
one user to another using an internet connection. Energy-
saving techniques and methods are used in IoT to ensure the 
energy-efficiency range of the network. The smart lighting 
system is used in IoT which reduces the overall energy 
consumption range of the network [2, 3]. The smart lighting 
system uses LED lights which save energy while performing 
tasks. The smart lighting system controls the energy 
consumption ratio by scheduling tasks based on priorities [4]. 
The smart lighting system is used in signals that maximize the 
efficiency level of the network. An optimization technique is 
also used for energy-saving processes in IoT-enabled 
applications [5]. Cloud computing (CC) system is used in 
optimization which analyzes the information to perform tasks 
in IoT. CC provides sustainable services to the users in the IoT 
network. The optimization technique improves the overall 
Quality of Service (QoS) and energy-efficiency range of the 
systems [6].  

Energy-efficient resources are used in the IoT which 
enhances the performance level of the systems. Energy-
efficient resources provide relevant resources to IoT that 
reduces the latency in performing tasks [7]. Energy-efficient 

resource sharing is a process that shares the necessary 
resources to the IoT network. Various energy-efficient 
resource-sharing techniques are used in IoT that share the 
resources to perform tasks [8]. Fog-enabled joint computation 
technique is commonly used for resource sharing process. The 
fog-enabled technique identifies the exact capabilities and 
functionalities of IoT-assisted devices [9]. The fog-enabled 
technique also provides optimal energy-efficient resources to 
the networks. The computation technique reduces both time 
and energy consumption levels in computation which 
enhances the feasibility level of IoT systems [10]. An efficient 
incentive mechanism is used for the resource-sharing process 
in IoT. The incentive mechanism uses the contract theory to 
analyze the servers which required resources to perform tasks 
in IoT. The actual computational resources are necessary to 
share among the individual which enhances the energy-
efficiency range of IoT networks [11, 12].  

Machine learning (ML) algorithms and techniques are 
widely used for the detection and production process. ML 
techniques are also used for energy-efficient resource-sharing 
processes in the IoT [13]. Deep reinforcement learning (DRL) 
based energy-efficient resource-sharing approach is used for 
IoT systems. DRL uses a feature extraction method that 
extracts the important features and patterns for the resource-
sharing process [14]. DRL also explores the sharing 
characteristics level of the system which produces necessary 
data for further processes [15]. The DRL-based energy-
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efficient sharing approach improves the QoS and Quality of 
Experience (QoE) range of the systems. The deep Q-learning 
network (DQN) technique is also used for the resource-sharing 
process in IoT systems [16]. The DQN identifies the agents 
and provides optimal resources for sharing and 
communication services. The DQN algorithm minimizes the 
latency in the computation process. The DQN stimulates the 
effectiveness level of the network which improves the 
performance ratio of the IoT systems [17, 18]. The existing 
network IoT connectivity facing challenges in QoS and service 
provider availability in heterogeneous users with difficult to 
identify the user requests, service availability, and density of 
the users, flexibility in resource utilization and service 
responses while allocating resources systems require to cover 
the constraint handling features for improving the resource 
allocation process. This study introduces a Hybrid Energy 
Saving and Scheduling Scheme (HES3) employs multi-level 
federated learning for classifying the energy and delay-based 
constraints and decentralized scheduling. Federated learning 
[19] is one of the effective machine learning approaches which
helps to collaborate the different devices to perform the task
effectively. The federated learning approach trains the
network to distribute the data in the network, which minimizes
the need for the data to be broadcast to the central server.
McMahan et al. [20] proposed the phrase "federated learning"
in 2016. In Federated learning, building machine learning
models for data-driven applications is a collaborative effort
across distributed clients without centralizing client data. So,
the federated learning process manages the energy while
performing the data broadcast. The federated learning process
creates the training architecture by considering the number of
nodes that forms the clusters to update every transaction,
which reduces the unwanted transaction and energy factors. In
addition, the federated learning factors maintain the Quality of
Services due to the effective generation of the training model.
The contributions/ objectives are listed below:
(a) Analyze the energy and delay constraint-causing factors

in QoS-centric integrations in IoT regardless of user
density and service availability.

(b) Identify and leverage the flexibility in resource sharing
and allocation that balances resources, energy
conservation, and delay suppression persistently.

(c) Evaluate the proposed scheme’s performance using
standard metrics such as resource allocation, delay,
energy conservation, and scheduling rate under varying
users, resources, etc.

2. RELATED WORK

Castillo-Atoche et al. [21] developed a power management
strategy (PMS) based weighted order statistics (WOS) 
classification technique for wireless sensor nodes. The 
developed technique is used for energy harvesting (EH) which 
enhances the efficiency of wireless sensor networks (WSN). 
The developed technique classifies the wireless nodes based 
on priorities and characteristics. The WOS classification 
technique gathers the necessary information from the WSN 
database that minimizes the latency in the computation 
process. 

Tong et al. [22] proposed a dynamic energy-saving 
offloading strategy for the IoT enabled devices. A Lyapunov 
optimization algorithm is used in the strategy which balances 
the tasks and reduces the energy consumption level in IoT 
devices. The actual bandwidth and frequency level of the 

devices is identified using mobile edge computing (MEC) 
systems. The proposed strategy maximizes the performance 
and efficiency level of IoT systems.  

Qi et al. [23] designed a two-stage queueing communication 
scheme for energy-saving in IoT networks. The designed 
scheme is a traffic-aware scheme that analyzes the access point 
(AP) level of the nodes. A queue analysis technique is used in 
the scheme which analyzes the power consumption level of the 
nodes and produces feasible data for the optimization process. 
The designed scheme provides optimal services to the IoT 
network that enhances the feasibility ratio of the systems.  

You et al. [24] introduced a multi-QoS disk scheduling 
strategy (MQDS) for cloud storage systems. The benefit 
function-based disk algorithm (BFDS) is used in the scheme 
which schedules the disks based on priorities and functions. 
BFDS minimizes the energy consumption ratio in the 
computation process. Experimental results show that the 
introduced MQDS improves the energy efficiency level of 
storage systems.  

Li et al. [25] designed an energy-saving service 
management model using edge computing for the IoT. The 
proposed model is used a prediction model which uses long 
short-term memory (LSTM) algorithm. LSTM algorithm is 
mainly used to predict the nodes and servers to perform tasks 
in IoT systems. The designed model improves the energy-
saving range while performing tasks that increase the 
reliability range of IoT devices. 

Feng et al. [26] introduced an extreme value theory (EVT) 
embedded in intelligent learning for energy-efficient 
offloading in IoT systems. The main aim of the introduced 
method is to minimize the energy optimization range of the 
systems. The offloading technique minimizes the problems 
which are presented in the database. When compared with 
other methods, the introduced method maximizes the QoS 
range of IoT systems.  

Liu et al. [27] presented a novel approach to enhance the 
energy efficiency of federated learning (FL) systems through 
dynamic hyper parameter tuning. The paper introduces a 
mechanism that allows hyper parameters to be adjusted in real-
time based on training performance and energy consumption. 
The experimental results show that FedEco significantly 
reduces energy consumption compared to baseline FL 
methods, demonstrating that energy efficiency can be 
achieved without sacrificing model accuracy. 

Liaq and Ejaz [28] addressed the challenges of 
computational resources and latency in federated learning 
scenarios enhanced by unmanned aerial vehicles (UAVs). The 
study proposes strategies to optimize the offloading of 
computations from edge devices to UAVs, aiming to improve 
the overall efficiency and performance of federated learning 
systems. Through simulations and experiments, the study 
demonstrates that the proposed methods significantly reduce 
delays and enhance the overall efficiency of federated 
learning, leading to improved model training times and 
resource utilization. 

Samikwa et al. [29] presented a novel approach to improve 
machine learning in IoT environments using a technique called 
Dynamic Federated Split Learning (DFL). DFL evaluates the 
capabilities of each IoT device and assigns tasks accordingly, 
optimizing both computation and communication. The 
learning model is adjusted based on the specific data 
distributions and computational power of participating 
devices. Table 1 summarizes the rest of the references with 
their results. 
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Table 1. Summary of the rest of the references 

Authors Titles Key Areas Advantages Results 

Wang et al. 
[30] 

Radiofrequency (RF) EH based 
data and energy integrated 

management (DEIN) strategy for 
IoT devices. 

DEIN manages the database 
which reduces the complexity of 

the identification process. 

Decreases the energy 
consumption level in the 

computation process. 

Improves the energy-
efficiency range of 

IoT devices. 

Chen et al. 
[31] 

Bandwidth-aware multi-interface 
(BMS) scheduling for IoT. 

The main aim is to improve the 
energy efficiency (EE) range in 

communication services. 

BMS is mainly used for 
the gateway-to-device 
(G2D) communication 

process. 

Minimizes the latency 
in the interaction 

process. 

Kaur et al. 
[32] 

ML based load scheduling 
method for IoT systems. 

ML classifies the tasks based on 
load and resources. 

ML train the datasets for 
the scheduling process. 

Enhances the 
performance and 

feasibility range of 
the systems. 

Kim et al. 
[33] 

Run-time scheduling method for 
service-oriented IoT systems. 

It is used as adaptive scheduling 
that enhances the efficiency 

level of the systems. 

An incremental heuristic 
method is used here for the 

task scheduling process. 

Increases the 
performance level of 

IoT systems. 

Abdul-Qawy 
et al. [34] 

Threshold-oriented and energy-
harvesting enabled multi-level 

stable election protocol 
(TEMSEP) for WSN. 

Identifies the parameters and 
variables for the scheduling 

process. 

Maximizes the feasibility 
and efficiency range of the 

systems. 

Increases the 
accuracy of the 

energy-harvesting 
process. 

Li et al. [35] 
DRL based throughput 

maximization for renewable 
ultra-dense IoT. 

Qualitative services are 
provided to IoT device users. 

DRL is mainly used here 
to solve the issues in the 

computation process. 

Enhances the 
feasibility range of 

the systems. 

Mahmoudi 
et al. [36] 

Quantum-inspired clustering 
method for IoT networks. 

The Firefly algorithm is used 
here to identify the problems 

which are presented in the 
optimization process. 

Increases the performance 
range of IoT networks. 

Reduces the energy 
consumption level of 

IoT systems. 

3. FEDERATED LEARNING IN WIRELESS
PARADIGMS WITH IOT

Federated Learning is called the collaborative learning 
process, one of the machine learning techniques [37]. The 
federated learning algorithm trains the network using the 
dataset to improve overall efficiency. The federated learning 
process is a robustness model that trains the system without 
sharing the data and addresses several factors, such as data 
security, data privacy, and access rights on heterogeneous 
data. During the learning process, network parameters such as 
weight and bias values are continuously observed and fine-
tuned to reduce the deviations between the outputs. In 
addition, the learning process exchanges the network 
parameters between the local nodes and gets the global 
solutions to improve the network performance [38]. The main 
objective of federated learning is to minimize the loss of 
function or deviation between the outputs. Then the federated 
learning objective function is defined as follows:  

𝑓𝑓(𝑥𝑥1, 𝑥𝑥2, … … 𝑥𝑥𝑘𝑘) =
1
𝑘𝑘
�𝑓𝑓𝑖𝑖(𝑥𝑥𝑖𝑖)
𝑘𝑘

𝑖𝑖=1

 (1) 

In Eq. (1), k is denoted as the number of nodes involved in 
the data transactions. 𝑥𝑥𝑖𝑖 is the weight value of node i, and the 
local objective function is defined as 𝑓𝑓𝑖𝑖. The main intention of 
federated learning is to train the entire node in the network to 
optimize the network performance and reduce the difficulties 
in data transmission like energy factor and network quality. 
During the training process, the number of learning rounds (T), 
the total number of nodes involved in the process (K), fractions 
of nodes in the iterations (C), batch size (B), learning rate (η), 
and the number of iterations in the pooling layer (N) is utilized 
as the parameters. These parameters are continuously 
observed according to the machine learning algorithm to 

improve the network performance. The frequent learning 
process maximizes the QoS without requiring centralized data 
[39]. The federated learning process ensures the QoS 
regarding personalization, low latency, resource efficiency, 
and robustness. Therefore, the federated learning procedure 
addresses the latency and robustness issues successfully. 

4. METHODOLOGY

The design goal of HES3 is to maximize the energy
conservation and response rate of the wireless networks-
assisted IoT users by reducing lag, delay, failures, and energy 
drain in IoT-based industrial platforms. In the IoT 
environment, the heterogeneous users and technological 
paradigms assimilated IoT QoS are identified through 
performance-hindering constraints. The wireless paradigms 
associated with IoT is controlled using privacy measure that is 
to be incorporated pervasive paradigm with IoT for secure and 
optimal operations pursued using HES3. The proposed scheme 
is capable of providing pervasive services for the users and 
QoS performance of wireless paradigms in all the IoT layers 
based on energy conservation, resource scheduling, and traffic 
management across different paradigms processed. In 
particular, resource sharing through IoT is employed from lag, 
delay, and failures to improve the wireless network 
performance in IoT for maximizing resource allocation for 
various paradigms. The proposed scheme is diagrammatically 
illustrated in Figure 1. 

The function of HES3 is to balance optimal resource 
allocation and optimal energy conservation for making-
decision on delay-less resource sharing. Gathered data from 
heterogeneous users and technological paradigms is pursued 
and reliable resources can be shared for a lot of service 
handling in IoT. The heterogeneous users and technological 
paradigms are connected through IoT for optimal resource 
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sharing. User demands rely on energy and delay is 
administered to prevent the forging of devices and energy 
drains in IoT. The heterogeneous paradigms ensure 
unchangeable resource sharing between the IoT layers and the 
processing center. The functions of energy-saving users' 
demand and delay-less used demands are segregated in the IoT 
layer and are performed for resource allocation, scheduling, 

sharing, and verification of energy conservation and user 
responses. The process of identifying lag, delay, failures, and 
energy drains in IoT-based service handling is analyzed using 
federated learning. The aforementioned energy-saving and 
scheduling processes and QoS are discussed in the following 
sections. 

Figure 1. Illustration of the proposed HES3 

4.1 QoS performance assessment 

The wireless network-assisted heterogeneous paradigms are 
performing two types of processes on both the sender and 
receiver sides. The two processes are user requests and user 
responses based on their demands and needs for improving 
optimal resource sharing. Request processing is responsible 
for collecting data from the IoT users and processing reliable 
services whereas response processing administers service 
providers monitoring user’s activities in IoT and then 
identifying forging devices and failures. The requests are 
processed for the set of IoT users that is denoted as 𝐼𝐼𝐼𝐼𝐼𝐼𝑈𝑈 =
{1,2, … 𝐼𝐼𝐼𝐼𝐼𝐼𝑢𝑢} ; these wireless field sensors are capable of 
processing data from all the operational layers of IoT. The 𝐹𝐹𝐹𝐹 
processes different user requests and quantity of data in any 
instance with 𝑇𝑇𝑇𝑇 = {1,2, … 𝑡𝑡𝑡𝑡}. Let 𝐿𝐿 illustrate the number 
of lag, failures, delay, and forging devices are occurs in the 
IoT layers. Based on the instance, the number of user requests 
processed per unit of time is ∅𝑝𝑝  such that the routine QoS 
performance of various wireless paradigms associated with 
IoT (𝑄𝑄𝑄𝑄𝑄𝑄𝑃𝑃𝑃𝑃) for service handling 𝑆𝑆𝐻𝐻 is given as: 

𝑄𝑄𝑄𝑄𝑄𝑄𝑃𝑃𝑃𝑃

=

⎩
⎪
⎨

⎪
⎧ 𝐼𝐼𝐼𝐼𝐼𝐼𝑈𝑈 × 𝑆𝑆𝐻𝐻 × 𝑡𝑡𝑡𝑡

∅𝑝𝑝
 ∀ 𝐼𝐼𝐼𝐼𝐼𝐼𝑈𝑈 ∷ 𝑇𝑇𝑇𝑇, 𝑖𝑖𝑖𝑖 𝑓𝑓 = 0

𝑟𝑟𝑄𝑄 ×
𝐼𝐼𝐼𝐼𝐼𝐼𝑢𝑢 − 𝐿𝐿
𝑅𝑅𝑅𝑅𝑅𝑅

× ∅𝑝𝑝  ∀ (𝐼𝐼𝐼𝐼𝐼𝐼𝑈𝑈 , 𝐿𝐿) ∷ 𝑇𝑇𝑇𝑇, 𝑖𝑖𝑖𝑖 𝑓𝑓 ≠ 0

(2) 

The total processed requests and requests under failure 

constraints are defined as: 

𝐼𝐼𝐼𝐼𝐼𝐼𝑈𝑈 ∷ 𝑇𝑇𝑇𝑇 = � ∅𝑝𝑝𝑖𝑖

𝐼𝐼𝐼𝐼𝐼𝐼𝑈𝑈

𝑖𝑖=1

(3) 

(𝐼𝐼𝐼𝐼𝐼𝐼𝑈𝑈 , 𝑓𝑓) ∷ 𝑇𝑇𝑇𝑇 = � ∅𝑝𝑝𝑖𝑖 − 𝑟𝑟𝑄𝑄�∅𝑝𝑝𝑖𝑖

𝑓𝑓

𝑖𝑖=1

𝐼𝐼𝐼𝐼𝐼𝐼𝑢𝑢

𝑖𝑖=1

(4) 

where, resource availability under failures is given by: 

𝑟𝑟𝑄𝑄 =
∅𝑝𝑝 + 𝑓𝑓

𝑟𝑟𝑆𝑆 + 𝑈𝑈𝑈𝑈𝑈𝑈𝐷𝐷𝐷𝐷
(5) 

where, the variables 𝑟𝑟𝑄𝑄  and 𝑓𝑓 used to represent user requests 
and failures in IoT layers in different time intervals 𝑇𝑇𝑇𝑇. If 𝑟𝑟𝑆𝑆 
and 𝑈𝑈𝑈𝑈𝑈𝑈𝐷𝐷𝐷𝐷  means the service response and user demands 
observed from the IoT environment. In the above performance 
hindering constraints 𝐼𝐼𝐼𝐼𝐼𝐼𝑈𝑈 ∷ 𝑇𝑇𝑇𝑇  and (𝐼𝐼𝐼𝐼𝐼𝐼𝑈𝑈, 𝑓𝑓) ∷ 𝑇𝑇𝑇𝑇  used 
to identify the causing factor in QoS in IoT layers regardless 
of user density and service availability at any time 
interval 𝑇𝑇𝑇𝑇. The flexibility of resource sharing is identified 
for balancing resources, energy conservations, and resource 
allocations in the IoT environment. 

4.2 Classification of failure and 𝑸𝑸𝑸𝑸𝑺𝑺𝑷𝑷𝑷𝑷 

The failure and 𝑄𝑄𝑄𝑄𝑆𝑆𝑃𝑃𝑃𝑃  classification from the continuous 
intervals are illustrated in Figure 2. 
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Figure 2. Classification of failure and 𝑄𝑄𝑄𝑄𝑆𝑆𝑃𝑃𝑃𝑃 

The 𝜙𝜙𝑃𝑃  per 𝑇𝑇𝑇𝑇 ∀ 𝐼𝐼𝐼𝐼𝑇𝑇𝑈𝑈  determines the  𝑈𝑈𝑈𝑈𝑟𝑟𝐷𝐷𝐷𝐷  at that 
interval. The distributed 𝑇𝑇𝑇𝑇  for 𝑟𝑟𝑄𝑄  improves 𝑆𝑆𝐻𝐻  provided 
if 𝑈𝑈𝑈𝑈𝑟𝑟𝐷𝐷𝐷𝐷 = 𝜙𝜙𝑃𝑃

𝑟𝑟𝑄𝑄
= 1 or 𝑓𝑓 = 0. However, due to the different 

time requirements if 𝑇𝑇𝑇𝑇 is prolonged, then 𝑇𝑇𝑇𝑇 is increment 
for the pending 𝑟𝑟𝑄𝑄. This part is classified for 𝑄𝑄𝑄𝑄𝑆𝑆𝑝𝑝𝑝𝑝 until 𝐿𝐿 is 
at most 0. Contrarily for 𝑄𝑄𝑝𝑝 = 𝑚𝑚𝑚𝑚𝑚𝑚 , the 𝐿𝐿 is computed for 
preventing further failures. These two classifications are 
performed if 𝑇𝑇𝑇𝑇 extends for �𝑟𝑟𝑄𝑄 −

𝜙𝜙𝑃𝑃
𝑇𝑇𝑇𝑇
� for which mapping is 

required (Figure 2). The classification process is tabulated in 
Table 2. 

Table 2. 𝑓𝑓 classification process 

Input: 𝑰𝑰𝑰𝑰𝑻𝑻𝑼𝑼, 𝒓𝒓𝑸𝑸 
Step 1: ∀𝐼𝐼𝐼𝐼𝑇𝑇𝑈𝑈{ 
Step 2: Compute �𝑟𝑟𝑄𝑄 ∗ 𝑇𝑇𝑇𝑇� and 𝑈𝑈𝑈𝑈𝑟𝑟𝐷𝐷𝐷𝐷 
Step 3: Set the condition ∀ 𝑓𝑓 = 0 and 𝑓𝑓 ≠ 0 using Eq. (1) 
Step 4: Compute 𝜙𝜙𝑃𝑃 = 𝑟𝑟𝑄𝑄∗𝑇𝑇𝑇𝑇

𝑈𝑈𝑈𝑈𝑟𝑟𝐷𝐷𝐷𝐷
 ∀ 𝐼𝐼𝐼𝐼𝑇𝑇𝑈𝑈

Step 5: If [𝜙𝜙𝑃𝑃
𝑇𝑇𝑇𝑇

= 𝑟𝑟𝑄𝑄‖𝜙𝜙𝑃𝑃 = 𝑚𝑚𝑎𝑎𝑎𝑎𝑖𝑖  ∀ 𝑖𝑖 ∈ (1,2, . . ,𝑇𝑇𝑇𝑇) then 
Step 6: Estimate (𝐼𝐼𝐼𝐼𝑇𝑇𝑈𝑈, 𝑓𝑓) ∷ 𝑇𝑇𝑇𝑇 using Eq. (3) 
Step 7: If �𝑟𝑟𝑄𝑄 ∉ (𝐼𝐼𝐼𝐼𝑇𝑇𝑈𝑈, 𝑓𝑓)� then 
Step 8: 𝜙𝜙𝑃𝑃 = 𝑚𝑚𝑚𝑚𝑚𝑚, 𝑓𝑓 = 0 
Step 9: Else: 𝑓𝑓 ≠ 0,𝑓𝑓 = (𝑟𝑟𝑄𝑄 − 𝜙𝜙𝑃𝑃/𝑇𝑇) 
Step 10: Allocate 𝑇𝑇𝑇𝑇 ∀ (𝑟𝑟𝑄𝑄 − 𝜙𝜙𝑃𝑃/𝑇𝑇)} end if 
Step 11: Update 𝐼𝐼𝐼𝐼𝑇𝑇𝑈𝑈 ∷ 𝑇𝑇𝑇𝑇 using Eq. (2) 
Step 12: } end if 
Step 13: } end for 

4.3 Analysis with federated learning representation 

The collected data from the IoT users are employed in two 
ways namely requests and responses based on user demands 
are analyzed for optimal resource sharing and scheduling is 
performed. In the request processing, the observed data 
sequence and 𝑄𝑄𝑄𝑄𝑄𝑄𝑃𝑃𝑃𝑃 are the buildup demands for ensuring the 
resource sharing for the optimal QoS performance of wireless 
paradigms in T is achieved by the multi-level federated 
learning. From the gathered IoT user data, the service 
responses identify the accurate and appropriate user demands 
maximizing resource allocation. The classification of user 
demands based on energy saving and delay-less 𝐼𝐼𝐼𝐼𝐼𝐼𝑢𝑢 ∈ 𝐼𝐼𝐼𝐼𝐼𝐼𝑈𝑈 
and 𝑓𝑓  is processed using the observation of user density, 
service availability, and timed response in IoT. Based on the 
above equations, the constraint  𝑓𝑓 > 𝐼𝐼𝐼𝐼𝐼𝐼𝑢𝑢  generates energy 
drain, lag, delay, and failures from the IoT layer. The resource 
allocation for the available users and the routine 𝑄𝑄𝑄𝑄𝑄𝑄𝑃𝑃𝑃𝑃  is 
analyzed based on  the  (𝐼𝐼𝐼𝐼𝐼𝐼𝑢𝑢 × ∅𝑝𝑝)  are the checking 

constraints for the classification of user demands computed as: 

𝑡𝑡𝑡𝑡𝑓𝑓 = �
𝛼𝛼𝐴𝐴 + 𝛽𝛽𝑑𝑑
𝑡𝑡𝑟𝑟𝑆𝑆

𝐼𝐼𝐼𝐼𝐼𝐼𝑢𝑢

𝑖𝑖=1

(6) 

and 

ℸ𝑄𝑄𝑄𝑄𝑄𝑄𝑃𝑃𝑃𝑃 =
𝑄𝑄𝑄𝑄𝑄𝑄𝑃𝑃𝑃𝑃

(𝐼𝐼𝐼𝐼𝐼𝐼𝑢𝑢 − 𝑓𝑓) −
(𝛼𝛼𝐴𝐴 − 𝑈𝑈𝑈𝑈𝑈𝑈𝐷𝐷𝐷𝐷) (7) 

In the above equation, 𝑡𝑡𝑡𝑡𝐿𝐿 and ℸ𝑄𝑄𝑄𝑄𝑄𝑄𝑃𝑃𝑃𝑃 variables represent 
the timed mapping and continuous IoT service processing 
instance. From Eqs. (2)-(7), the optimal resource sharing is 
performed through demand analysis of the IoT users 𝑅𝑅𝑆𝑆ℎ𝑟𝑟 is 
validated for each instance of  𝑇𝑇 . The variable 𝛼𝛼𝐴𝐴  and 𝛽𝛽𝑑𝑑 
represents the service availability and user density for energy 
saving and scheduling. Therefore, this computation is 
pursuedto identify the condition either 𝑓𝑓 ≠ 0 or 𝑓𝑓 = 0 for all 
T instances using federated learning. The FL representation for 
its processes is given in Figure 3. 

Figure 3. FL representation for its processes 

The FL processes are illustrated in the above Figure 3 for 
handling energy and time constraints. The resource allocation 
for  𝑄𝑄𝑄𝑄𝑆𝑆𝑝𝑝𝑝𝑝  is provided by suppressing different constraints 
such that 𝑡𝑡𝑚𝑚𝑓𝑓  and ℸ𝑄𝑄𝑄𝑄𝑆𝑆𝑝𝑝𝑝𝑝  are consistent. Depending on the 
𝛼𝛼𝐴𝐴  and 𝛽𝛽𝑑𝑑  from the user layer, the performance is retained. 
Therefore 𝐼𝐼𝐼𝐼𝑇𝑇𝑈𝑈 × 𝜙𝜙𝑃𝑃  is retained regardless of resource 
unavailability. In this case, the processes are classified from 
the previous TM such that 𝑈𝑈𝑈𝑈𝑟𝑟𝐷𝐷𝐷𝐷 is satisfied at the maximum 
rate. The FL classifies energy-saving-based demands and 
delay-less-based demands from the observed data such that 
𝑅𝑅𝑆𝑆ℎ𝑟𝑟 is determined for all the IoT mediate layer output (MLO) 
for the time interval. The linear solution of ℸ𝑄𝑄𝑄𝑄𝑄𝑄𝑃𝑃𝑃𝑃 in 𝑡𝑡𝑡𝑡𝑓𝑓 is 
the classification of user demands maximizing (𝐼𝐼𝐼𝐼𝐼𝐼𝑢𝑢 × ∅𝑝𝑝). 

4.4 Mediate layer output (MLO) and federated learning 

The 𝑀𝑀𝑀𝑀𝑀𝑀 and final output (∈𝑋𝑋) are crucial in determining 
𝑅𝑅𝑆𝑆ℎ𝑟𝑟. The serving inputs for user demand analysis based on 
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𝑄𝑄𝑄𝑄𝑄𝑄𝑃𝑃𝑃𝑃 for satisfying both 𝐼𝐼𝐼𝐼𝐼𝐼𝑈𝑈 ∷ 𝑇𝑇𝑇𝑇  and (𝐼𝐼𝐼𝐼𝐼𝐼𝑈𝑈 , 𝑓𝑓) ∷
𝑇𝑇𝑇𝑇 instances. The federated learning process analyses and 
schedule the resources for both instances differently based on 
the constraints  𝑓𝑓 ≠ 0, ℸ𝑄𝑄𝑄𝑄𝑄𝑄𝑃𝑃𝑃𝑃 = (𝐼𝐼𝐼𝐼𝐼𝐼𝑢𝑢 − 𝑓𝑓) , 𝛼𝛼𝐴𝐴  and 𝛽𝛽𝑑𝑑 . If 
the requestsfor handling services in IoT are available for 
delay-less resource sharing. In the result of 𝑀𝑀𝑀𝑀𝑀𝑀, the first user 
demand satisfies 𝐼𝐼𝐼𝐼𝐼𝐼𝑈𝑈 ∷ 𝑇𝑇𝑇𝑇 and outputs inoptimal traffic 
management, resource scheduling, and energy conservation 
whereas (𝐼𝐼𝐼𝐼𝐼𝐼𝑈𝑈 , 𝑓𝑓) ∷ 𝑇𝑇𝑇𝑇  extracts the output of 𝐼𝐼𝐼𝐼𝐼𝐼𝑢𝑢  from 
𝐼𝐼𝐼𝐼𝐼𝐼𝑈𝑈 with 𝑓𝑓 ≠ 0 cases. In Eqs. (8) and (9), the mediate output 
and final result for 𝐼𝐼𝐼𝐼𝐼𝐼𝑈𝑈 ∷ 𝑇𝑇𝑇𝑇  is estimated. The demands 
based on energy, delay, and applications are identified by the 
federated learning process for satisfying both the constraints 

and the conditional assessment of either 𝛼𝛼𝐴𝐴 = 1 or 𝛼𝛼𝐴𝐴 = 0 in 
different intervals  𝑇𝑇𝑇𝑇 . Therefore, the decisions on energy 
saving are required for all the resource allocated time 𝑇𝑇𝑇𝑇. In 
the above demand analysis, 𝑓𝑓 serves as an input, and after the 
detection of energy drain 𝐼𝐼𝐼𝐼𝐼𝐼𝑈𝑈 ∷ 𝑇𝑇𝑇𝑇  for reliable resource 
allocation: 
 

𝑀𝑀𝑀𝑀𝑀𝑀1 = ℸ𝑄𝑄𝑄𝑄𝑄𝑄𝑃𝑃𝑃𝑃1 ∗ 𝑡𝑡𝑡𝑡1 + ∅𝑝𝑝1𝛽𝛽𝑑𝑑
𝑀𝑀𝑀𝑀𝑀𝑀2 = ℸ𝑄𝑄𝑄𝑄𝑄𝑄𝑃𝑃𝑃𝑃2 ∗ 𝑡𝑡𝑡𝑡2 − 𝛼𝛼𝐴𝐴1 + ∅𝑝𝑝2𝛽𝛽𝑑𝑑
𝑀𝑀𝑀𝑀𝑀𝑀3 = ℸ𝑄𝑄𝑄𝑄𝑄𝑄𝑃𝑃𝑃𝑃3 ∗ 𝑡𝑡𝑡𝑡3 − 𝛼𝛼𝐴𝐴2 + ∅𝑝𝑝3𝛽𝛽𝑑𝑑

⋮
𝑀𝑀𝑀𝑀𝑀𝑀𝑇𝑇𝑇𝑇 = ℸ𝑄𝑄𝑄𝑄𝑄𝑄𝑃𝑃𝑃𝑃𝑇𝑇𝑇𝑇 ∗ 𝑡𝑡𝑡𝑡𝑇𝑇𝑇𝑇 − 𝛼𝛼𝐴𝐴𝑇𝑇𝑇𝑇 + ∅𝑝𝑝𝑇𝑇𝑇𝑇𝛽𝛽𝑑𝑑⎭

⎪
⎬

⎪
⎫

 (8) 

∈𝑿𝑿𝟏𝟏= 𝑴𝑴𝑴𝑴𝑴𝑴𝟏𝟏

∈𝑿𝑿𝟐𝟐= 𝑴𝑴𝑴𝑴𝑴𝑴𝟐𝟐 − 𝜶𝜶𝑨𝑨𝟏𝟏∅𝒑𝒑𝟏𝟏
∈𝑿𝑿𝟑𝟑= 𝑴𝑴𝑴𝑴𝑴𝑴𝟑𝟑 − 𝜶𝜶𝑨𝑨𝟐𝟐∅𝒑𝒑𝟑𝟑

⋮
∈𝑿𝑿𝑻𝑻𝑻𝑻= 𝑴𝑴𝑴𝑴𝑴𝑴𝑻𝑻𝑻𝑻 − 𝜶𝜶𝑨𝑨𝑻𝑻𝑻𝑻−𝟏𝟏∅𝒑𝒑𝑻𝑻𝑻𝑻−𝟏𝟏

∈𝑿𝑿𝟏𝟏= ℸ𝑸𝑸𝑸𝑸𝑸𝑸𝑷𝑷𝑷𝑷𝟏𝟏𝒓𝒓𝑸𝑸𝟏𝟏 − ∅𝒑𝒑𝟏𝟏𝒇𝒇𝟏𝟏
∈𝑿𝑿𝟐𝟐= ℸ𝑸𝑸𝑸𝑸𝑸𝑸𝑷𝑷𝑷𝑷𝟐𝟐𝒓𝒓𝑸𝑸𝟐𝟐 − 𝜷𝜷𝒅𝒅𝟏𝟏 − ∅𝒑𝒑𝟐𝟐𝒇𝒇𝟐𝟐
∈𝑿𝑿𝟑𝟑= ℸ𝑸𝑸𝑸𝑸𝑸𝑸𝑷𝑷𝑷𝑷𝟑𝟑𝒓𝒓𝑸𝑸𝟑𝟑 − 𝜷𝜷𝒅𝒅𝟐𝟐 − ∅𝒑𝒑𝟑𝟑𝒇𝒇𝟑𝟑

⋮
∈𝑿𝑿𝑻𝑻𝑻𝑻−𝟏𝟏= ℸ𝑸𝑸𝑸𝑸𝑸𝑸𝑷𝑷𝑷𝑷𝑻𝑻𝑻𝑻𝒓𝒓𝑸𝑸𝑻𝑻𝑻𝑻 − 𝜷𝜷𝒅𝒅𝑻𝑻𝑻𝑻−𝟏𝟏 − ∅𝒑𝒑𝑻𝑻𝑻𝑻−𝟏𝟏𝒇𝒇𝑻𝑻𝑻𝑻−𝟏𝟏⎭

⎪⎪
⎬

⎪⎪
⎫

 (9) 

From the above equation, the optimal resource sharing is 
given as 𝑄𝑄𝑄𝑄𝑄𝑄𝑃𝑃𝑃𝑃𝑇𝑇𝑇𝑇 ∗ 𝑡𝑡𝑡𝑡𝑇𝑇𝑇𝑇 − 𝛼𝛼𝐴𝐴𝑇𝑇𝑇𝑇 + ∅𝑝𝑝𝑇𝑇𝑇𝑇𝛽𝛽𝑑𝑑 . Therefore, in 
this constraint  𝑓𝑓 = 0 , then 𝛼𝛼𝐴𝐴 = 1  and ℸ𝑄𝑄𝑄𝑄𝑄𝑄𝑃𝑃𝑃𝑃𝑇𝑇𝑇𝑇 =
𝐼𝐼𝐼𝐼𝐼𝐼𝑈𝑈𝑄𝑄𝑄𝑄𝑄𝑄𝑃𝑃𝑃𝑃 . Hence, 𝑀𝑀𝑀𝑀𝑀𝑀𝑇𝑇𝑇𝑇 = 𝐼𝐼𝐼𝐼𝐼𝐼𝑈𝑈𝑄𝑄𝑄𝑄𝑄𝑄𝑃𝑃𝑃𝑃 . 𝑡𝑡𝑡𝑡 +
𝐼𝐼𝐼𝐼𝐼𝐼𝑈𝑈𝑄𝑄𝑄𝑄𝑄𝑄𝑃𝑃𝑃𝑃 = 𝐼𝐼𝐼𝐼𝐼𝐼𝑈𝑈𝑄𝑄𝑄𝑄𝑄𝑄𝑃𝑃𝑃𝑃(𝑡𝑡𝑡𝑡 + 1) is the optimal result for 
resource sharing and 𝑅𝑅𝑆𝑆ℎ𝑟𝑟 = 1. In this analysis, the reputation 
of such IoT devices/users is retained as 1 and the learning is 
trained using available resources and the constraint observed 
over the different distribution processes. The available 
resources store �𝑅𝑅𝑆𝑆ℎ𝑟𝑟 , 𝑟𝑟𝑄𝑄 , 𝐼𝐼𝐼𝐼𝐼𝐼𝑈𝑈� at each  𝑇𝑇  and these local 
decisions over resource allocations are performed using 
resource allocation and revocation for resource sharing and 

scheduling whereas the maximum wait time is estimated for 
the delay-less resource sharing. Instead, (𝐼𝐼𝐼𝐼𝐼𝐼𝑈𝑈 , 𝑓𝑓) ∷ 𝑇𝑇𝑇𝑇  is 
used for identifying the energy-saving-based or delay-less-
based user demand over the various distribution process. The 
accurate decision to the incorporated a pervasive paradigm 
with IoT is computed as: 
 

𝑀𝑀𝑀𝑀𝑀𝑀1 = 𝑄𝑄𝑄𝑄𝑄𝑄𝑃𝑃𝑃𝑃1
𝑀𝑀𝑀𝑀𝑀𝑀2 = 𝑄𝑄𝑄𝑄𝑄𝑄𝑃𝑃𝑃𝑃2 − 𝛼𝛼𝐴𝐴𝛽𝛽𝑑𝑑1 + 𝑟𝑟𝑆𝑆1∅𝑝𝑝1
𝑀𝑀𝑀𝑀𝑀𝑀3 = 𝑄𝑄𝑄𝑄𝑄𝑄𝑃𝑃𝑃𝑃3 − 𝛼𝛼𝐴𝐴𝛽𝛽𝑑𝑑2 + 𝑟𝑟𝑆𝑆2∅𝑝𝑝2

⋮
𝑀𝑀𝑀𝑀𝑀𝑀𝑇𝑇𝑇𝑇−1 = 𝑄𝑄𝑄𝑄𝑄𝑄𝑃𝑃𝑃𝑃𝑇𝑇𝑇𝑇−1 − 𝛼𝛼𝐴𝐴𝛽𝛽𝑑𝑑𝑇𝑇𝑇𝑇−1 + 𝑟𝑟𝑆𝑆𝑇𝑇𝑇𝑇−1∅𝑝𝑝𝑇𝑇𝑇𝑇−1⎭

⎪
⎬

⎪
⎫

 (10) 

∈𝑿𝑿𝟏𝟏= 𝑴𝑴𝑴𝑴𝑴𝑴𝟏𝟏 = 𝑸𝑸𝑸𝑸𝑸𝑸𝑷𝑷𝑷𝑷𝟏𝟏
∈𝑿𝑿𝟐𝟐  = 𝑴𝑴𝑴𝑴𝑴𝑴𝟐𝟐 + 𝒕𝒕𝒕𝒕𝒇𝒇𝟏𝟏 − ℸ𝑸𝑸𝑸𝑸𝑸𝑸𝑷𝑷𝑷𝑷𝟏𝟏 = 𝑸𝑸𝑸𝑸𝑸𝑸𝑷𝑷𝑷𝑷𝟐𝟐 − 𝜶𝜶𝑨𝑨𝜷𝜷𝒅𝒅𝟏𝟏 − ∅𝒑𝒑𝟏𝟏 + 𝒕𝒕𝒕𝒕𝒇𝒇𝟏𝟏𝑭𝑭

∈𝑿𝑿𝟑𝟑= 𝑴𝑴𝑴𝑴𝑴𝑴𝟑𝟑 + 𝒕𝒕𝒕𝒕𝒇𝒇𝟐𝟐 − ℸ𝑸𝑸𝑸𝑸𝑸𝑸𝑷𝑷𝑷𝑷𝟐𝟐 = 𝑸𝑸𝑸𝑸𝑸𝑸𝑷𝑷𝑷𝑷𝟑𝟑 − 𝜶𝜶𝑨𝑨𝜷𝜷𝒅𝒅𝟐𝟐 −  ∅𝒑𝒑𝟐𝟐 + 𝒕𝒕𝒕𝒕𝒇𝒇𝟐𝟐𝑭𝑭
⋮

∈𝑿𝑿𝑻𝑻𝑻𝑻−𝟏𝟏= 𝑴𝑴𝑴𝑴𝑴𝑴𝑻𝑻𝑻𝑻−𝟏𝟏 + 𝒕𝒕𝒕𝒕𝒇𝒇𝑻𝑻𝑻𝑻−𝟏𝟏 − ℸ𝑸𝑸𝑸𝑸𝑸𝑸𝑷𝑷𝑷𝑷𝑻𝑻𝑻𝑻−𝟏𝟏 = 𝑸𝑸𝑸𝑸𝑸𝑸𝑷𝑷𝑷𝑷𝑻𝑻𝑻𝑻−𝟏𝟏 − 𝜶𝜶𝑨𝑨𝜷𝜷𝒅𝒅𝑻𝑻𝑻𝑻−𝟏𝟏  − ∅𝒑𝒑𝑻𝑻𝑻𝑻−𝟏𝟏 + 𝒕𝒕𝒕𝒕𝒇𝒇𝑻𝑻𝑻𝑻−𝟏𝟏𝑭𝑭⎭
⎪⎪
⎬

⎪⎪
⎫

 (11) 

The Eqs. (10) and (11) are required by verifying the 
constraints ℸ𝑄𝑄𝑄𝑄𝑄𝑄𝑃𝑃𝑃𝑃 = (𝐼𝐼𝐼𝐼𝐼𝐼𝑢𝑢 − 𝑓𝑓)𝑄𝑄𝑄𝑄𝑄𝑄𝑃𝑃𝑃𝑃  and the service 
flexibility  𝐹𝐹 = 1  or  𝐹𝐹 = 0  are analyzed in a step-by-step 
manner for balancing energy conservation and resource 
allocation with better QoS. If  𝑓𝑓 = 0  and then ∈𝑋𝑋𝑇𝑇𝑇𝑇−1=
𝑄𝑄𝑄𝑄𝑄𝑄𝑃𝑃𝑃𝑃 − 𝛼𝛼𝐴𝐴∅𝑝𝑝 − ℸ𝑄𝑄𝑄𝑄𝑄𝑄𝑃𝑃𝑃𝑃 is the last decision. Instead, 𝑓𝑓 = 1, 
then  𝐹𝐹 = 0,  and hence the decision on energy saving is 
constructed using resource allocation and revocation for 
optimal resource sharing.  

For this decision, 𝑅𝑅𝑆𝑆ℎ𝑟𝑟 = �𝐹𝐹−𝛼𝛼𝐴𝐴×∅𝑝𝑝
𝐼𝐼𝐼𝐼𝐼𝐼𝑈𝑈

� is the energy-saving 
resource sharing whereas the maximum wait time of the 
service demands is used for decisions on delay-less resource 
sharing. In this case, is not applicable for the first user request 
processing as in above Eqs. (7) and (8) because it relies on all 
heterogeneous paradigms in different 𝑇𝑇𝑇𝑇  intervals. 
Therefore, the optimal resource sharing across various 
paradigms with local decisions over the allocation is observed 
by the federated learning and hence it remains unchanged. 
The 𝑀𝑀𝑀𝑀𝑀𝑀 process is diagrammatically illustrated in Figure 4. 

 

 
 

Figure 4. 𝑀𝑀𝑀𝑀𝑀𝑀 process illustration 
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Table 3. MLO process for delay and energy constraints 
 

Delay Constraint Energy Constraint 
Input: 𝑡𝑡𝑚𝑚𝑓𝑓 ,𝛽𝛽𝑑𝑑 Input: 𝛼𝛼𝐴𝐴,𝐿𝐿 
Step 1: ∀ 𝑈𝑈𝑈𝑈𝑟𝑟𝐷𝐷𝐷𝐷 𝑑𝑑𝑑𝑑 { Step 2: ∀ 𝛼𝛼𝐴𝐴 𝑑𝑑{ 
Step 2: Compute 7𝑄𝑄𝑄𝑄𝑠𝑠𝑝𝑝𝑝𝑝 ∀𝑇𝑇𝑇𝑇 Step 2: Compute 𝑡𝑡𝑚𝑚𝑓𝑓∀ 𝑇𝑇𝑇𝑇 
Step 3: If �(𝐼𝐼𝐼𝐼𝑇𝑇𝑈𝑈 − 𝑓𝑓) = 7𝑄𝑄𝑄𝑄𝑆𝑆𝑃𝑃𝑃𝑃� then Step 3: If {𝐹𝐹 = 1} then 
Step 4: Compute 𝑀𝑀𝑀𝑀𝑂𝑂𝑇𝑇𝑇𝑇 using Eq. (7) until 𝜙𝜙𝑃𝑃𝑃𝑃𝑃𝑃𝛽𝛽𝑑𝑑 = max�𝑅𝑅𝑄𝑄𝑇𝑇𝑇𝑇� Step 4: Compute ∈𝑋𝑋𝑇𝑇𝑇𝑇  using Eq. (8) 
Step 5: Compute 𝑀𝑀𝑀𝑀𝑂𝑂𝑇𝑇𝑇𝑇−1 using Eq. (9) Step 5: Compute 𝑀𝑀𝑀𝑀𝑂𝑂𝑇𝑇𝑇𝑇 using Eq. (9) 
Step 6: If {�𝑡𝑡𝑚𝑚𝑓𝑓.𝐹𝐹� = �7𝑄𝑄𝑄𝑄𝑆𝑆𝑝𝑝𝑝𝑝 − 𝑄𝑄𝑄𝑄𝑠𝑠𝑝𝑝𝑝𝑝� = 0 then  Step 6: If {𝑀𝑀𝑀𝑀𝑂𝑂𝑇𝑇𝑇𝑇 = 𝐼𝐼𝐼𝐼𝑇𝑇𝑈𝑈.𝑄𝑄𝑄𝑄𝑠𝑠𝑝𝑝𝑝𝑝∀ (𝑡𝑡𝑡𝑡 + 1) then 
Step 7: Update 𝑟𝑟𝑆𝑆𝑇𝑇𝑇𝑇−1 = �𝑟𝑟𝑄𝑄𝑇𝑇𝑇𝑇−2 − 𝜙𝜙𝑑𝑑 .𝛽𝛽𝑑𝑑� Step 7: Compute ∈𝑥𝑥𝑇𝑇𝑇𝑇−1 
Step 8: 𝑡𝑡𝑚𝑚𝑚𝑚 = 𝑡𝑡𝑡𝑡 − 𝑟𝑟𝑆𝑆𝑇𝑇𝑇𝑇−1 Step 8: If �∈𝑥𝑥𝑇𝑇𝑇𝑇−1 ~ ∈𝑥𝑥𝑇𝑇𝑇𝑇� = 0 then 
Step 9: } end if Step 9: Update 7𝑄𝑄𝑄𝑄𝑆𝑆𝑇𝑇𝑇𝑇 = 𝑄𝑄𝑄𝑄𝑆𝑆𝑇𝑇𝑇𝑇−1 
Step 10: } end if  Step 10: Update ∈𝑥𝑥𝑇𝑇𝑇𝑇  using Eq. (10) 
Step 11: Update 𝐹𝐹 = 1 Step 11: } end if 
Step 12: } end for Step 12: Update 𝑇𝑇𝑇𝑇 = 𝑇𝑇𝑇𝑇 + 1 
 Step 13: } end if  
 Step 14: } end if 
 Step 15: } end for 

The inputs 𝑇𝑇𝑇𝑇  and  𝑓𝑓  from the initial allocation are 
influenced by 𝛼𝛼𝐴𝐴 and 𝛽𝛽𝑑𝑑. This is validated for 𝜙𝜙1 to 𝜙𝜙𝑇𝑇𝑇𝑇 until 
∈×1 to ∈×𝑇𝑇𝑇𝑇 be computed. The major difference between the 
two considerations is utilized for local decisions on  𝑓𝑓 = 1 
or 𝑓𝑓 = 0. Contrarily the completion results of 𝐹𝐹 = 0 or 𝐹𝐹 = 1 
are a global variation for energy and delay constraint 
existence. Based on the available 𝑡𝑡𝑚𝑚 allocated for suppressing 
𝑓𝑓 and 𝐹𝐹 the 𝑀𝑀𝑀𝑀𝑀𝑀 outputs are tuned. The tuning relies on 𝑇𝑇𝑇𝑇 
or the previous (𝑟𝑟𝑄𝑄 − 𝜙𝜙𝑃𝑃/𝑇𝑇) for avoiding 𝑓𝑓. These processes 
form the MLO of the federated learning process (Figure 4). In 
Table 3, the MLO process is explained for delay and energy 
constraints. 
 
4.5 Resource sharing and allocation mechanism 
 

In this proposed hybrid energy saving and scheduling 
scheme, the demand analysis is pursued based on 𝑅𝑅𝑆𝑆ℎ𝑟𝑟 on its 
previous processand identify the energy drain in IoT layers. If 
energy drain has occurred in any instances 𝑓𝑓 > 𝐼𝐼𝐼𝐼𝐼𝐼𝑢𝑢, then the 
processing is discarded to prevent lag, failures, and forging 
devices in the IoT environment. The IoT assimilates 
heterogeneous paradigmsand generates an alert to the service 
providers and users to ensure appropriate actions to identify 
the failures. The demandof the IoT users relies on the energy, 
delay, and applications are detected using the learning process 
and then local decisions over allocations are performed in 𝑇𝑇 
intervals. This continuous demand analysis prevents failures 
and lag by processing incorrect data/unnecessary requests 
whereas, the response rate and waiting time are high. The 
decisions are adaptable and it ensures delay-less resource 
sharing within the IoT platform. However, the chance for 
sensitive data modification in the IoT environment is high and 
hence the end-to-end authentication is performed for secured 
resource sharing and allocation. 

Demand analysis in IoT-assisting heterogeneous paradigms 
is becoming unmanageable based on increasing user 
requirements, energy, and applications. Amid the challenges 
in this proposed scheme, QoS and service availability and user 
density are the available demands satisfied by the IoT users in 
all the layers. The layers of users from diverse services are 
monitored and their energy can be saved through multi-level 
federated learning. Therefore, regardless of the user requests, 
service availability, and density of the users, flexibility in 
resource utilization and service responses is an important 

consideration here. The proposed scheme is focusing on this 
consideration by providing pervasive services for the users 
through optimal resource allocation and sharing. In this 
proposal, flexibility is administrable for IoT users and their 
service handling with the available service providers is 
analyzed for identifying energy drain occurrence. The IoT 
users used their resources through requests and responses by 
the applications. HES3 operates between IoT users and 
technological paradigms. In this scheme, resource allocation 
and energy conservation for the available resources are 
computed for achieving optimal resource sharing for the 
varying users and resources. Further, this proposed scheme 
aims to provide delay-less resource sharing and maximize 
resource utilization. The proposed scheme functions in two 
forms service handling and resource allocation. The optimal 
resource allocation is different for centralized and de-
centralized scheduling, to handle different services for IoT 
users. 
 

max
𝑖𝑖∈𝑇𝑇𝑇𝑇

∅𝑝𝑝 ∀ 𝑟𝑟𝑄𝑄 = 𝑟𝑟𝑆𝑆
and

min
𝑗𝑗∈𝑟𝑟𝑆𝑆

𝐹𝐹  ∀ 𝑟𝑟𝑄𝑄
� (12) 

 
The overall requests and user services are admittable for 

processing in IoT. Resource allocation and energy 
conservation are reliable based on user density and service 
availability of future requests. From these instances, the 
classification of energy saving and delay-less resource sharing 
is essential to identify decentralized scheduling in an IoT 
environment. Figure 5 presents the resource allocation based 
on energy and delay constraints. 

The resource sharing and allocation are determined using 
𝑡𝑡𝑚𝑚𝑓𝑓  and 𝑇𝑇𝑇𝑇  computed at the end of 𝑈𝑈𝑈𝑈𝑟𝑟𝐷𝐷𝐷𝐷 . The proposed 
Scheme segregates the energy and delay demands based on 
𝐼𝐼𝐼𝐼𝑇𝑇𝑈𝑈, 𝑓𝑓) such that 𝑓𝑓 = 0 or 1 is balanced with  𝐹𝐹 = 0 or 1. 
Therefore, the learning process relies on  𝑀𝑀𝑀𝑀𝑀𝑀 
until 𝑚𝑚𝑎𝑎𝑎𝑎𝑖𝑖∈𝑇𝑇𝑇𝑇∀ 𝑟𝑟𝑄𝑄 is achieved. Thus, if a 𝑟𝑟𝑄𝑄 is pending then it 
relies on  𝑡𝑡𝑚𝑚𝑓𝑓  and 𝑇𝑇𝑇𝑇  for sharing else  𝑇𝑇𝑇𝑇  is alone utilized 
(Figure 5). The demanding requirement is identified based on 
the energy, delay, and applications using federated learning for 
improving resource utilization and allocation. The final 
decision is adapted for service assigning for the available 
resources that are performable using the learning process. 
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Later, depending upon the user demands classification, 
resource scheduling, and allocation is the augmenting factor 
and reducing failures. From the above discussion, a few 

metrics are self-analyzed in this section. First, 𝐿𝐿 classification 
before and after constraints for 𝑟𝑟𝑄𝑄 is analyzed in Figure 6. 

Figure 5. Resource allocation based on energy and delay constraints 

Figure 6. 𝐿𝐿 analyses Figure 7. Energy and delay continuous analyses 
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The 𝐿𝐿 analyses for failure, lag, and delay are presented in 
Figure 7. The 𝐿𝐿 due to energy are classified under failure and 
lag; 𝐿𝐿 due to time are lag and delay. The MLO, to 𝑀𝑀𝑀𝑀𝑂𝑂𝑇𝑇𝑇𝑇 are 
used for suppressing the constraints using 𝐹𝐹𝐹𝐹. The previous 
local knowledge of (𝐼𝐼𝐼𝐼𝑇𝑇𝑈𝑈, 𝑓𝑓) ∷ 𝑇𝑇𝑇𝑇 and new 𝑡𝑡𝑚𝑚𝑓𝑓 allocation 
determining the constraint suppression. This is pursued based 
on the available 𝑟𝑟𝑄𝑄  that is applicable for 𝑇𝑇𝑇𝑇  and 𝑡𝑡𝑚𝑚𝑓𝑓  for 
allocation and sharing respectively. Pursued by this analysis, 
the energy efficiency and delay reduction for the 𝑆𝑆𝐻𝐻  is 
analyzed using Figure 7 representation. 
 

 
5. RESULTS AND DISCUSSION 
 

This section presents a comparative analysis using resource 
allocation, energy conservation, energy utilization, delay, and 
scheduling rate metrics. The # users and # resources are varied 
from 10 and 120, and 1 and 16 respectively. The experiments 
are performed using the ONE simulator with the above setting 
and 100Mbps bandwidth for different user applications. In the 
experiment, a small city environment considering 
heterogeneous applications such as navigation, direction, 
search engines, etc. is considered. The service providers are 
distributed for file, data, multimedia, map, and storage-based 
applications. The methods considered with the proposed 
scheme for the comparative study are MQDS [24], LPM-
LSTM [25], and QM-FF+PSO [33].  

 
5.1 Resource allocation 
 

In Figure 8, the energy saving and scheduling, and service 
handling in IoT assimilate wireless paradigms increasing 
resource access based on user demands, and does not provide 
pervasive services between the users and service providers in 
different time intervals. The wireless networks require service 
availability and user density is compared with the previous 
data for balancing resource allocation and energy 
conservation. The lag, delay, and failures are identified from 
the QoS performance of wireless paradigms satisfying both the 
constraints of 𝐼𝐼𝐼𝐼𝐼𝐼𝑈𝑈 ∷ 𝑇𝑇𝑇𝑇  and (𝐼𝐼𝐼𝐼𝐼𝐼𝑈𝑈, 𝑓𝑓) ∷ 𝑇𝑇𝑇𝑇  for demand 
analysis from the observed data in IoT layers. The user 
demands are identified using resource allocation and 
revocation based on the (𝐼𝐼𝐼𝐼𝐼𝐼𝑢𝑢 × ∅𝑝𝑝) and ℸ𝑄𝑄𝑄𝑄𝑄𝑄𝑃𝑃𝑃𝑃 = (𝐼𝐼𝐼𝐼𝐼𝐼𝑢𝑢 −
𝑓𝑓)  achieves successive responses and maximizes resource 
allocation for the available services, preventing failures. 
Therefore, further service handling in IoT for optimal resource 
sharing is achieved. Both cases satisfy high resource allocation 
using federated learning based on energy saving and delay less 
resource sharing is identified from the wireless network the 
energy utilization is reduced and improving resource 
allocation due to adaptable decisions. 

 
5.2 Energy conservation 
 

This proposed scheme achieves high energy conservation 
for wireless networks-based resource access and QoS relies on 
energy, resource scheduling, and optimal traffic management 
in different time intervals is aided for identifying the energy 
drains (Figure 9). The lag, delay, and failure are mitigated 
using the condition  𝑓𝑓 > 𝐼𝐼𝐼𝐼𝐼𝐼𝑢𝑢  for maintaining QoS with 
continuous service handling in IoT for improving energy 
conservation based on increasing user density and service 
availability through multi-level federated learning. The user 
demands are identified using federated learning and local 

decisions over the multiple distribution process due to the 
maximum wait time of the service demands in IoT. This 
waiting time is computed for making decisions on delay-less 
resource sharing and thereby reducing energy utilization and 
delay is accounted for based on both the constraints 𝐼𝐼𝐼𝐼𝐼𝐼𝑢𝑢 ∈
𝐼𝐼𝐼𝐼𝐼𝐼𝑈𝑈  and 𝑓𝑓  for processing timed response and high energy 
conservation for optimal resource allocation is achieved. 
Therefore, if the energy drain occurs in any sequence, then that 
network is discarded for reducing delay and verifying the user 
response and energy scheduling depends on other computing 
factors in the proposed scheme, and hence, the energy 
conservation is high.  
 

 

 
 

Figure 8. Resource allocation 
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Figure 9. Energy conservation 
 

 

 
 

Figure 10. Energy utilization 
 
5.3 Energy utilization 
 

In Figure 10, the hybrid energy saving and scheduling 
scheme is aided for reliable QoS performance of 
heterogeneous paradigms associated with IoT and is identified 
for optimal resource allocation and sharing in any instance. 
The current user density and service availability are analyzed 
using federated learning for differentiating energy-based 
resource sharing and delay-based resource sharing for QoS 
performance. The energy drain is considered for improving 
resource allocation and distribution for IoT user services. The 

observed data from the IoT environment is analyzed and𝑄𝑄𝑄𝑄𝑄𝑄𝑃𝑃𝑃𝑃  
are used to buildup the demands for ensuring optimal resource 
sharing and scheduling based onthe QoS performance of 
wireless paradigms in 𝑇𝑇. Both the constraints of 𝐼𝐼𝐼𝐼𝐼𝐼𝑈𝑈 ∷ 𝑇𝑇𝑇𝑇 
and(𝐼𝐼𝐼𝐼𝐼𝐼𝑈𝑈 , 𝑓𝑓) ∷ 𝑇𝑇𝑇𝑇 balances resource allocation and energy 
conservation with better QoS. This delay-less resource sharing 
is addressed using service handling and the service response 
timing is computed for identifying the accurate and 
appropriate user demands and then maximizing resource 
allocation. The wireless networks are analyzed and the 
learning is trained using the available resources and the 
constraints observed from the different processes in IoT. 
Based on the flexibility, energy saving, and scheduling are 
achieved in which the proposed scheme satisfies less energy 
utilization. 
 

 

 
 

Figure 11. Delay 
 
5.4 Delay 
 

The lag, delay, and failure identification and demand 
analysis in IoT assimilate heterogeneous paradigms is 
illustrated in Figure 11. In this proposed scheme satisfies less 
energy drain and delay by computing the user density and 
service availability relies on delay-less resource sharing in 
different time intervals and the decisions are adaptable based 
on energy saving. In this energy drain and delay-less resource 
sharing detection from the available services. In the above 
performance hindering constraints of 𝐼𝐼𝐼𝐼𝐼𝐼𝑈𝑈 ∷ 𝑇𝑇𝑇𝑇 
and(𝐼𝐼𝐼𝐼𝐼𝐼𝑈𝑈 , 𝑓𝑓) ∷ 𝑇𝑇𝑇𝑇 used to identify the energy drain in QoS 
with IoT layers used regardless of user density and service 
availability at any time interval  𝑇𝑇𝑇𝑇 . The user density is 
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controlled using multi-level service handling depending upon 
the demands and requirements of the user in IoT whereas the 
maximum wait time of the service demands used for making 
decisions is preceded using Eqs. (8)-(11) estimations. This 
sequential demand analysis in wireless networks reduces lag, 
delay, and failures as in Eq. (12). Therefore, the energy drain 
is high compared to the other factors in service handling. 
Based on this consecutive analysis, the delay is less with better 
QoS. 
 

 

 
 

Figure 12. Scheduling rate 
 
5.5 Scheduling rate 
 

The wireless networks assimilated paradigms administered 
based on energy, delay, and application for improving optimal 
resource sharing and management with two decisions for 
preventing lag, delay, failures, and energy drain occurrence is 
represented in Figure 12. In this proposed energy saving and 
scheduling scheme, the decisions can be changed for service 
demands and resource allocation require QoS performance of 
all services in IoT platform. The high energy conservation 
satisfies fewer failures and waiting times over the different 
distribution processes using multi-level federated learning. 
The user density and flexibility of the resources are analyzed 
by the heterogeneous paradigms for differentiating the 
centralized and de-centralized scheduling for time. Hence, this 
differentiation is pursued by identifying the condition either 
satisfied this case  𝑓𝑓 ≠ 0  or  𝑓𝑓 = 0  in all sequences using 
federated learning. The FL classifies energy-saving-based 
demands and delay-less-based demands such that 𝑅𝑅𝑆𝑆ℎ𝑟𝑟  are 

defined for all IoT users concerning time intervals. Based on 
the hybrid energy saving and scheduling process, resource 
scheduling is less in this scheme. Tables 4 and 5 present the 
comparative analysis results for the varying users and 
resources. 

The proposed scheme improves resource allocation, energy 
conservation, and scheduling rate by 14.38%, 8.25%, and 
9.15% individually. Besides the energy utilization and delay 
are lowered by 11.27% and 10.59% correspondingly (Table 
4). 
 

Table 4. Comparative analysis results for # users 
 

Metrics MQDS LPM-
LSTM 

QM-
FF+PSO HES3 

Resource 
Allocation (%) 70.02 81.59 88.25 94.357 

Energy 
Conservation (J) 4.2 9.31 15.27 19.145 

Energy Utilization 
(J) 363.79 261.17 154.71 82.998 

Delay (ms) 2400.5 1837.1 1258.4 668.098 
Scheduling Rate 

(Demand/ 
Resource) 

10.11 25.92 43.17 58.499 

 
Table 5. Comparative analysis results for # resources 

 
Metrics MQDS LPM-

LSTM 
QM-

FF+PSO HES3 

Resource 
Allocation (%) 72.26 81.54 89.72 94.315 

Energy 
Conservation (J) 5.72 11.78 14.57 18.921 

Energy Utilization 
(J) 361.4 264.22 179.21 99.27 

Delay (ms) 2257.2 1680.4 1089.2 526.014 
Scheduling Rate 

(Demand/ 
Resource) 

11.44 25.12 44.03 57.523 

 
For the varying resources proposed scheme improves 

resource allocation, energy conservation, and scheduling rate 
by 13.14%, 7.25%, and 8.88% individually. Besides the 
energy utilization and delay are lowered by 10.5% and 11.44% 
correspondingly (Table 5). 
 
 
6. CONCLUSION 
 

In this article, the hybrid energy saving and scheduling 
scheme for QoS enhancement in IoT is introduced and 
discussed. The proposed scheme is supported using federated 
learning for classifying energy and delay-based constraints. 
The classified constraints are suppressed using optimal 
resource sharing and allocations based on the user demands. 
In this process, the local decisions are performed using 
distributed federated learning process for preventing 
unnecessary energy consumption/ wastage. Besides the local 
decisions on resource sharing and allocation are performed by 
addressing the maximum and minimum wait times for 
different user demands. Considering the pervasive nature of 
the network, adaptable decisions of scheduling and resource 
allocations are performed. Precisely the goal is to improve 
resource sharing and request responses avoiding energy 
failures and high response delays. The learning process 
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recurrently identifies the chances of energy failures and delay 
improvements through user demand satisfaction and constraint 
analysis. Therefore, for the varying resources proposed 
scheme improves energy conservation by 7.25%, and reduces 
delay by 11.44%. The future work is planned to incorporate 
multi-objective improvements based on allocation constraints 
and offloading issues due to request-to-response mapping. In 
particular, the high-density factors and their influence on QoS 
retention are also planned to be considered. 
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