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This article analyzes the development of computational thinking dimensions by gender 
among students from Industrial Engineering and Systems Engineering programs at 
universities in the Andean region of Peru. Two key dimensions were assessed: 
computational concepts (including sequence, events, conditionals, loops, operators, 
data, and parallelism) and computational practices (experimenting and interacting, 
testing and debugging, reusing previous projects, and abstracting and modularizing). 
The study employed a post-test quasi-experimental design with intentional non-
probability sampling. Technological projects with a contextual and community-based 
focus—related to agriculture, livestock, environment and safety—were developed 
using a STEM Learning Kit with sensors, actuators, and the mBlock visual 
programming environment. Results showed no statistically significant differences 
between male and female students in overall computational thinking performance. 
However, when analyzing achievement levels, the researchers found that notable 
differences emerged: most women in Systems Engineering reached expected or 
outstanding conceptual levels, while most students in both programs and genders 
remained at the beginning level in computational practices. Women in Industrial 
Engineering exhibited greater variability in practical achievement, suggesting higher 
potential for progress. These findings confirm that integrating contextualized 
technological projects with visual programming is an effective pedagogical strategy to 
enhance computational thinking across genders and promote gender equity in STEM 
from the early years of university education. 
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1. INTRODUCTION

It is widely recognized that there is a significant gender gap
in Science, Technology, Engineering, and Mathematics 
(STEM) career choices, with women disproportionately 
underrepresented. This disparity suggests that women may 
feel less engaged in solving context-specific problems, a 
challenge particularly pronounced in rural areas where 
opportunities for women are even more limited. However, 
numerous studies highlight global efforts to enhance education 
and promote equality across various sectors [1]. This gap 
largely stems from low female participation in STEM fields 
worldwide; only 10% of women choose to pursue STEM 
careers globally, and in Peru, only 29% of those who opt for 
science and technology fields are women, due to gender-
related barriers [2]. In response, UNESCO emphasizes the 
need to cultivate interest in science and technology from an 
early age, dismantle stereotypes, train educators to encourage 

girls to pursue STEM fields, develop gender-sensitive 
curricula, and provide guidance to challenge preconceived 
notions. 

Despite growing global interest in promoting gender equity 
in STEM education, there remains a significant lack of 
inclusive interventions during the early years of university 
education [3, 4]. While several studies have addressed gender 
gaps in computational thinking at the secondary education 
level [5, 6], university-level efforts—especially in rural or 
underserved regions—are still underexplored. This lack of 
research at the university level, particularly in marginalized 
regions like the Andes, highlights a critical gap in 
understanding how inclusive, gender-sensitive approaches 
may foster computational thinking in higher education. Most 
interventions fail to consider the intersection of gender, 
geographic location, and educational equity, leaving students 
in marginalized contexts without access to strategies that could 
enhance their participation and success in STEM fields [7]. 
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In Peru, data on PRONABEC [8] scholarship recipients as 
of the 2015-II semester reveals that 88% of graduates are 
pursuing studies in engineering and technology, with a gender 
distribution of 73% male and 27% female. The rising number 
of female graduates has led to increased participation in fields 
such as Art and Architecture (78%), Economics and related 
disciplines (57%), Basic Sciences (57%), and Agriculture and 
related fields (56%). In the Huancavelica region, Beca 18 has 
supported 2,655 young people between 2012 and 2015 in 
accessing higher education; of these, 55% of scholarships were 
awarded to men and 45% to women. Notably, 69% of 
scholarships funded engineering and technology studies, with 
most awarded to men, while 25% went to business-related 
studies, among others. Regarding researchers in science and 
technology by gender in Peru, men account for 68% and 
women for 32%; in the Huancavelica region specifically, 77% 
are men and 23% are women [9]. 

According to the United Nations Educational, Scientific and 
Cultural Organization [10], advances in STEM disciplines 
have driven progress in various aspects of life, including 
health, agriculture, infrastructure, and renewable energy. 
However, a persistent issue is the underrepresentation of 
women in STEM fields, often stemming from early exposure 
to prejudices and stereotypes that discourage interest in 
science and technology. To encourage greater female 
participation in STEM, computational thinking has been 
identified as a promising strategy through classroom activities 
involving technological resources [11]. STEM fields naturally 
align with computational thinking through activities such as 
algorithm development, programming, modeling, simulation, 
and experimental methods [12].  

In academia, computational thinking has been adopted as a 
classroom strategy to inspire more women to pursue STEM 
disciplines. This approach involves activities related to STEM, 
such as utilizing technological resources (e.g., 
microcontrollers, sensors, actuators) alongside problem-
solving methods [13]. STEM disciplines and computational 
thinking share common elements, including tasks that involve 
algorithm development, coding, using technological tools, and 
teamwork [12].  

Today, electronic prototypes—such as robotics kits, 
sensors, and actuators equipped with visual programming 
environments—play a crucial role for students beginning their 
university studies. These tools facilitate conceptual learning 
by simplifying fundamental programming and logic concepts 
essential for research. They also encourage creativity, 
allowing students to experiment and innovate without the 
constraints of textual code. Moreover, they foster collaborative 
skills by including group components that promote teamwork 
and communication across genders [14]. 

While many studies focus on robotics or conventional 
STEM programs, the present study stands out by integrating 
community-centered problem-solving, a visual programming 
environment, and a gender perspective [13, 15, 16]—an 
innovative combination rarely explored in current STEM 
education research. 

This study aims to address this gap by evaluating the 
effectiveness of community-based technological projects—
integrating a STEM Kit and visual programming 
environment—in developing computational thinking among 
male and female students in Industrial and Systems 
Engineering programs in Peru’s Andean region. Although the 
data is drawn from a specific national context, the educational 
challenges it highlights—such as underrepresentation of 

women in STEM and the limited availability of inclusive, 
practice-oriented learning experiences—are common across 
many global contexts [17]. Therefore, the results and 
methodology presented may be relevant and transferable to 
other regions facing similar equity challenges. 

2. RELATED WORK

2.1 Computational thinking in the early years of college 

Computational thinking is a crucial 21st-century skill that 
students need to develop to effectively solve problems across 
various domains. According to existing literature, 
computational thinking originally focused on skill 
development for primary and secondary education students. 
However, successful interventions in university settings have 
emerged, particularly during the initial years of study. Best 
practices suggest introducing computational thinking to first-
year students in ICT or computing courses, as well as 
incorporating it into non-computing courses [18]. This 
approach establishes a reference framework for computational 
thinking that educators can apply across diverse courses. Many 
authors agree that "we must go beyond merely training 
students to solve problems using programming languages" and 
instead emphasize nurturing their skills and motivations, 
which are essential for enhancing student performance. 

Terreni [19] describes computational thinking as 
encompassing a range of complex skills, commonly linked 
with computer programming. He emphasizes that 
computational thinking involves a sequence of processes, 
starting with problem comprehension and definition, followed 
by identifying alternative solutions, argumentation, using 
technological tools, executing activities, testing performance, 
and gathering feedback. These processes can be applied to 
various disciplines, depending on the curriculum design. 

In terms of computational tools, a variety of resources are 
available. Common tools include programming languages and 
IDEs, with Python being a typical choice in introductory 
courses for computer science and engineering students. 
Through programming, students engage with computational 
concepts and develop tailored applications. Additionally, pre-
programming gamified experiences are popular, as are 
educational tools for teaching algorithms, programming 
structures, and variables using platforms like Lightbot, 
mBlock, and educational robotics kits, which emphasize 
foundational programming and computational thinking skills 
[20]. As a cognitive problem-solving process, computational 
thinking comprises five key skills: algorithmic thinking, 
decomposition, pattern recognition, abstraction, and 
simplified presentation, and evaluation for decision-making 
[21]. 

Brennan and Resnick [22] argue that computational 
thinking thrives in design-based learning activities, such as 
creating interactive media, facilitated by visual software 
environments or block programming. This approach is 
generally defined by two primary dimensions: computational 
concepts and practices. Many authors highlight visual 
programming as a powerful tool for developing computational 
thinking, as it provides an intuitive and accessible means to 
understand and apply computational concepts. Furthermore, it 
promotes creativity, logical reasoning, and problem-solving 
skills, all of which are essential for engaging with STEM 
disciplines. Table 1 outlines the main dimensions of 
computational thinking. 
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Table 1. Dimensions of computational thinking 

Computational Dimensions Indicators Definition 

Computational Concepts 

Sequences Activity that is expressed through a series of instructions that 
the computer executes. 

Cycles It executes a sequence of instructions repetitively. 

Events It is related to “when an event occurs, then it causes another 
event to happen.” 

Parallelism A sequence of instructions is executed simultaneously. 

Conditionals They are decisions or alternatives to choose to solve a 
problem. 

Operators Mathematical, logical and string expressions that are used in 
programs. 

Data They are related to variables that store data, such as numbers, 
characters, among others. 

Computing Practices 

Incremental and 
iterative 

These are iterative steps that are taken when developing a 
program (for example: developing little by little, then testing, 

and continuing to develop a little more) 
Testing and 
debugging 

It refers to constant “trial and error” testing; also, to 
requesting support from a third party or a community. 

Reusing and remixing Developing a program based on other pre-existing programs. 
Abstracting and 

modularizing 
“Characterizing the process of building something large, by 

adding sets of smaller elements.” 

2.2 Computational thinking and gender 

Gender is a significant factor in education, as differences in 
attitudes and performance between girls and boys are evident, 
even in basic tasks like reading and writing. However, research 
comparing the development of computational thinking skills 
between genders, particularly in K-12 robotics activities, 
remains limited [23]. Social stereotypes surrounding computer 
science can negatively impact women’s motivation to engage 
in computational activities [24]. 

Several studies have highlighted gender as a relevant 
variable in the development of computational thinking skills. 
For instance, one study found that computational thinking 
activities often favored boys in regular education settings [25]. 
Meta-analyses also suggest that computational thinking may 
exhibit a moderate gender bias, as many activities tend to be 
more male-oriented [26]. Furthermore, it appears that the types 
of projects preferred by boys often require more programming 
complexity, resulting in higher computational thinking scores 
compared to girls. This suggests that gender differences in 
computational thinking can be influenced by the nature of the 
projects undertaken [27]. 

Significant differences have also been observed in the 
strategies and approaches boys and girls use during 
computational thinking activities. When teaching techniques 
are designed to support a comprehensive understanding of 
computational thinking principles and to inspire exploration 
among both genders, the gender gap in computational thinking 
competency nearly disappears. It has been suggested that 
instructional design should accommodate these gender-
specific strategies, as girls often approach learning with 
different methods than boys. Adapting coding activities to 
these differences, by offering differentiated support, can lead 
to more equitable learning outcomes [28]. 

By implementing appropriate teaching strategies and 
tools—such as educational games, virtual programming 
languages, and robotics—specifically designed with a gender-
based approach, recent years have seen substantial progress in 
reducing the gender gap [29]. Additionally, research has 
shown that collaboration and teamwork can play a crucial role 
in bridging gender differences. For example, pairing female 
students with male peers showed that female students 

performed on par with male students, demonstrating that both 
genders benefit equally from teamwork in computational 
problem-solving [30]. 

These insights contribute to the development of age-
appropriate, evidence-based pedagogies and learning 
progressions for computational thinking [31]. While scientific 
literature reflects growing interest in computational thinking 
and related skills, gender-specific research in this area remains 
relatively sparse. However, interest is increasing, particularly 
in K-12 education, where there is a push to incorporate 
educational strategies that encourage more women to pursue 
technology-related careers. In this context, computational 
thinking plays a vital role in addressing the gender gap. 

2.3 STEM Kit with visual programming environment 

To carry out the activities, an educational STEM Kit was 
used, consisting of sensors, actuators, and a microcontroller 
board compatible with visual programming environments 
[32]. This allowed the implementation of technological 
classroom projects in an accessible and interactive way. The 
board and its components were integrated into the mBlock 
environment, a block-based interface known for its intuitive 
design, which facilitates the acquisition of basic programming 
concepts and computational thinking skills among first-year 
university students [11]. 

The use of such tools aligns with previous studies that 
highlight their potential to democratize programming 
education, especially for students with no prior experience [14, 
33]. However, it is important to acknowledge some of the 
limitations of the mBlock environment. One limitation is its 
restricted scalability to more advanced programming levels, 
which may limit the development of more sophisticated skills 
in higher-level courses [34, 35]. Additionally, some 
functionalities rely on internet connectivity, which can be a 
barrier in rural or low-resource settings [12]. 

Despite these limitations, the tool is well suited for the 
objectives of this study, which aim to foster computational 
thinking among first-year students. Its use facilitates 
experimentation, collaboration, and the creation of visual 
narratives—key elements for motivating female students in 
particular to develop technological skills [36, 37]. 
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Figure 1. STEM educational kit 
 
Overall, the STEM Kit offers an accessible and user-

friendly platform that effectively supports the educational 
needs of first-year university students. It enables them to 
engage in hands-on projects that address real-world challenges 
relevant to their local communities. Figure 1 illustrates the 
components of the STEM Education Kit. 

The software component of the STEM Kit features a visual 
programming environment with blocks specifically designed 
to interact with sensors and actuators. These programming 
blocks were created using Python libraries within the mBlock 

development platform [38]. At the core of the STEM Kit is this 
visual programming environment based on mBlock, allowing 
students to represent solutions for their projects in a 
straightforward and intuitive manner, minimizing cognitive 
complexity. This is particularly suitable for university 
freshmen. The visual nature of the programming environment 
engages students in scientific and technological activities, 
enabling them to see results instantly and continue refining 
their projects to meet their objectives. 

Using mBlock, students can break down a problem into 
smaller parts and understand how to sequence steps toward a 
solution. The programming blocks cover fundamental 
concepts such as loops, conditionals, and events, which are 
essential for algorithmic thinking. Working with these 
concepts helps students learn to decompose and structure 
problems—core skills in computational thinking. This 
approach not only encourages programming but also facilitates 
the application of knowledge to fields like electronics, physics, 
and creative design. Through these activities, students develop 
competencies that integrate various areas of knowledge, 
promoting a comprehensive, multidisciplinary learning 
experience. 

The STEM Kit also supports project-based learning, 
allowing students to learn actively by creating tangible 
solutions. This fosters collaboration, as projects can be shared 
and improved upon in teams, enhancing teamwork and 
communication skills. Figure 2 shows the mBlock-based 
visual programming environment. 

 

 
 

Figure 2. Visual programming environment based on mBlock 
 

2.4 Importance of visual programming for beginner 
students 

 
Block-based programming languages have become a 

popular, low-cost method for teaching programming and 
computational thinking to students and educators with limited 
computing experience, as well as for beginner students. 
Studies have shown that block-based programming is an 
effective approach to developing skills in computer science 
and computational thinking [39]. For instance, programs like 

Scratch and mBlock [40] enable novice students to create 
projects, such as city stories set in specific historical periods, 
where they apply skills and knowledge from mathematics, 
technology, communication, and social sciences [41]. 
Common programming tools for beginners include Scratch, 
mBlock, and AppInventor, while visual assessment tools, like 
Dr. Scratch, are also block-based [42]. These tools, with their 
virtual programming environments, enhance the teaching and 
learning of computational thinking. The visual programming 
environment creates a drag-and-drop interface, using 
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functional and control blocks to describe programs. Scratch 
and mBlock are now benchmarks in visual programming, 
useful for everything from introductory programming to more 
complex application development [43]. The colored block 
categories assist students in selecting the correct block, 
reducing some of the barriers to programming by preventing 
errors and minimizing cognitive overload. Syntax errors 
common in text-based languages are largely avoided or 
eliminated [44]. 

Different visual programming environments serve as both 
tools and pedagogical resources that strengthen students' 
cognitive and problem-solving skills. Educators can select 
these tools based on the specific educational context. 
However, the diverse range of languages and tools presents a 
challenge, as trends, development environments, and 
curricular needs constantly evolve [45]. These software tools 
are supported by constructivist theory, promoting knowledge 
construction as a dialectical interaction between the 
knowledge of the teacher and the student. This interaction 
fosters intrinsic motivation, class integration and participation, 
student-centered focus, interaction and feedback, and seamless 
integration of educational content into problem-solving [46]. 
Additionally, there is broad consensus that programming, in 
its various forms, is essential for developing computational 
concepts and best practices that form the core of computational 
thinking [47]. 

Selecting appropriate visual programming environments is 
crucial, as it impacts student learning outcomes and the 
development of computational thinking and creativity. Most 
visual programming environments are free or partially free, 
compatible with various platforms, and often web-based, 
requiring a continuous internet connection. This can be a 
limitation in certain educational settings, such as rural areas 
with slow connectivity [48]. 

 
 

3. METHODOLOGY 
 
3.1 Research approach and participants 

 
This study employed a quasi-experimental design with 

pretest and posttest measurements, framed within a 
quantitative approach. The participants were first-year 
students enrolled in the "Information Management" course, 
part of the Industrial and Systems Engineering programs at a 
public university located in the Andean region of Peru. The 
course lasted 16 weeks, with weekly sessions of 4 hours, and 
was aligned with pedagogical objectives aimed at promoting 
computational thinking, strengthening problem-solving skills 
related to the profession, and developing technological 
competencies from the early stages of the academic cycle. 
Some of the co-authors of this study served as instructors for 
the course. 

The sample consisted of 95 university students from the 
Industrial and Systems Engineering programs. Of these, 70 
were male and 25 females, reflecting a representative gender 
distribution in these fields, particularly in rural contexts where 
female participation in STEM areas remains low [4]. Although 
the difference in group sizes could limit some comparative 
analyses, all available participants were included in the study. 
The students’ ages ranged from 17 to 20 years. Table 2 
presents the distribution of participants by gender. 

 
 

Table 2. Students who participated in the study 
 

Population/Sample Men Women Total 
Industrial Engineering 2022-II 32 16 48 
Systems Engineering 2022-I 38 09 47 

Total 70 25 95 
 
3.2 Analysis instruments 

 
To assess computational thinking in university students, two 

instruments were used, one for each dimension: computational 
concepts (7 items) and computational practices (4 items). 
Achievement levels in both dimensions were evaluated based 
on the Peruvian Ministry of Education’s grading system 
(2024), which uses a literal scale ranging from 0 to 20: AD 
(Outstanding Achievement, 18–20), A (Expected 
Achievement, 14–17), B (In Progress, 11–13), and C 
(Beginning, 0–10). 

A. Instrument for the Computational Concepts Dimension 
For this dimension, a multiple-choice objective test was 

used, including visual activities and closed-ended questions, 
with a total score of 20 points. The instrument was adapted 
from the computational thinking test developed by Román-
Gonzalez [49], originally designed for secondary education, to 
fit the university context. This adaptation is justified by the 
compatibility between the indicators used to assess 
computational concepts and the digital competencies required 
during the early semesters of engineering programs. 
Furthermore, previous studies have validated this framework 
in higher education contexts [50], confirming its relevance for 
evaluating transversal skills related to computational concepts. 
Table 3 and Figure 3 present the instrument used for this 
dimension. Internal consistency was assessed using 
Cronbach's alpha coefficient, yielding a value of α = 0.81, 
indicating acceptable to good reliability. 

 
Table 3. Instrument for the evaluation of computational 

concepts 
 

Computational Dimensions Indicators Items Score 

Concepts 

Sequences Item1 2 
Cycles Item2 3 
Events Item3 3 

Parallelism Item4 3 
Conditionals Item5 3 

Operators Item6 3 
Data Item7 3 

 
B. Instrument for the Computational Practices Dimension 
For this dimension, an analytical performance rubric was 

used, focusing on the direct observation of computational 
thinking and programming skills during project execution 
using mBlock. The rubric was developed based on the 
cognitive domain levels of Bloom’s taxonomy, as adapted by 
Selby [51]. Level “1” represents a basic performance, where 
the student is able to identify a specific pattern; level “3” 
corresponds to an intermediate performance, where the student 
recognizes the need to apply a practice and develops a simple 
solution; and level “5” indicates a competent performance, 
where the student is able to choose among various 
implementation strategies for a given practice. Table 4 and 
Figure 4 present the instrument used to assess this dimension. 
Internal consistency was measured using Cronbach’s alpha 
coefficient, yielding a value of α = 0.77, which indicates 
acceptable to good reliability. 
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Figure 3. Item 1 corresponding to the instrument on computational concepts 
 

Table 4. Instrument for the evaluation of computational practices 
 

Score Computational Practices: Indicators 
Incremental and Iterative Testing and Debugging Reusing and Remixing Abstracting and Modularizing 

1 
Experiment and iterate 
minimally during the 

execution of the activity 

Test and debug minimally 
during the execution of the 

activity 

Reuses previous projects (set of 
blocks) minimally in the 

proposed solution 

Minimally abstract and 
modularize during the execution 

of the activity 

3 Experiment and iterate during 
the execution of the activity 

Test and debug during the 
execution of the activity 

Reuses previous projects (set of 
blocks) moderately in the 

proposed solution 

Medium abstract and 
modularize in the proposed 

solution 

5 
Experiment and iterate until 

the proposed solution is 
completed 

Test and debug until the 
proposed solution is 

complete 

Reuses previous projects (set of 
blocks) of large size in the 

proposed solution 

High abstraction and 
modularization in the proposed 

solution 
 

 
 

Figure 4. Item 1 corresponding to the instrument on computational practices 
 
3.3 Proposal and development of technological projects in 
the classroom 

 
To strengthen the dimensions of computational thinking, 

technological projects were implemented (see Table 5) 
focused on solving contextualized problems related to areas 
such as livestock, environment, agriculture, safety, and 
education, based on the students’ local context. These projects 
were structured around the four phases of Pólya’s method [13]: 
understanding the problem, designing activities, executing 
activities, and reviewing the solution. In each phase, students 
carried out tasks aimed at enhancing both computational 
concepts and practices. They used the STEM educational 
board along with various sensors, including an ultrasonic 

distance sensor (HC-SR04), a temperature and humidity 
sensor (DHT11), an infrared sensor (HC-SR501), a light 
sensor (LDR), and a multicolor LED. Additionally, they 
developed applications using the visual programming 
environment mBlock to contextualize and simulate solutions 
to the identified problems. 

The planning of activities was structured around the four 
phases of Pólya’s method: understanding the problem, 
planning activities, executing activities, and reviewing the 
solution. These sessions were carried out over 16 academic 
weeks, progressively strengthening the dimensions of 
students' computational thinking. The activities were part of 
the "Information Management" course, corresponding to the 
first year of both academic programs, with a load of 4 hours 
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per week over 16 sessions. All activities were conducted in the 
classroom, under the constant supervision and continuous 
feedback of the instructor (co-author of the study). 
− Understanding the problem (5 sessions): Students 

investigated the assigned issue using tools such as 
ChatGPT, Scopus, and SciELO. They created descriptive 
summaries with scientific citations using the Mendeley 
reference manager and visually represented cause-effect 
relationships through graphic organizers. 

− Planning activities (3 sessions): They identified scientific 
background, analyzed prior experiences, and designed 
feasible activities contextualized to the local environment, 
considering technical feasibility and the use of the STEM 
educational kit. 

− Executing activities (2 sessions): Students were trained in 
using the STEM Kit, assembled circuits, and programmed 
applications in mBlock to monitor parameters such as air 
quality, water turbidity, body temperature, among others. 
They also built models and wrote articles describing their 
experiences. 

− Reviewing the solution: Students evaluated the 
functioning of the developed models, optimized results 
based on teacher feedback, and completed their research 
articles. The solutions addressed contextualized health 
issues, such as anemia, stomach infections, and risks in 
fish farms, validated through the use of sensors and visual 
programming. 

 
Table 5. Proposed technological projects and STEM educational kit 

 
Technological Project Sensor STEM Educational Kit 

Monitoring soil moisture in vegetable crops to prevent anemia in school-aged 
children in the district of Acraquia, Tayacaja province  

Capacitive soil moisture 
sensor 

 

Monitoring river flow to prevent flooding in the city of Huancavelica 

 
Ultrasonic distance sensor 

Monitoring environmental parameters to protect crops from frost 
 

Temperature and 
humidity sensor (DHT11) 

Monitoring animals to prevent predator attacks in the highlands of Huancavelica 

 
PIR infrared sensor 

 
 

Figure 5. Classroom activities using the STEM Kit and 
mBlock 

Figure 5 illustrates the activities carried out by the students 
during the implementation of the project “Monitoring soil 
moisture in vegetable crops to prevent anemia in school-age 
children in the district of Acraquia, Tayacaja Province.” 

 
3.4 Strengthening the dimensions of computational 
thinking 

 
A. Computational Concepts 
To strengthen computational concepts—sequence, loops, 

events, parallelism, conditionals, operators, and data—
students carried out various activities within their assigned 
technological projects. As an illustrative example, Figure 6 
shows a programming routine in mBlock corresponding to the 
project “Monitoring soil moisture in vegetable crops to 
prevent anemia in school-age children in the district of 
Acraquia, Tayacaja province”, which uses a soil moisture 
sensor from the STEM educational kit. 

Throughout the development of the project, students applied 
computational concepts in a contextualized manner. The 
sequence concept was addressed by executing instructions in 
a logical order, such as displaying messages or creating timed 
pauses. The event concept was demonstrated by starting the 
routine with the block “when green flag is clicked.” 
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Conditionals were used through “if–then–else” structures to 
make decisions based on the value of the “Soil Moisture” 
variable. Operators were reinforced by applying logical 
comparisons (<, >, =, and, or) to define specific threshold 
values. The data concept was applied by manipulating the 
variable’s value to control the program's flow. These activities 
promoted not only a theoretical understanding but also the 
practical application of computational concepts, linking them 
to a real-world agricultural problem relevant to the students’ 
local context. 

 
B. Computational Practices 
The programming routine shown in Figure 6 demonstrates 

the strengthening of various computational practices among 
students. First, experimentation and iteration are evident, as 
students adjusted logical conditions to simulate different soil 

moisture levels and their effects on crops, conducting 
successive tests and refining their code until achieving a 
functional solution. Testing and debugging were also 
developed by verifying the program’s behavior in response to 
different sensor values and correcting logical errors to ensure 
coherent responses. Additionally, reuse and remixing of prior 
structures can be seen, such as conditional blocks and familiar 
messages adapted to a new contextualized problem. Finally, 
abstraction and modularization were promoted by organizing 
the code into clearly differentiated conditional blocks based on 
moisture ranges, facilitating the understanding of the 
program's logical flow and preparing students for more 
structured programming. This integrative experience enabled 
the meaningful application of computational practices to real-
world problems in their local context. 

 

 
 

Figure 6. Programming routine in mBlock that strengthens computational concepts 
 
 

4. RESULTS 
 
The evaluation of computational thinking dimensions was 

conducted by gender for both Industrial Engineering and 
Systems Engineering programs. The dimensions assessed 
included computational concepts and practices, each involving 
specific indicators. Additionally, the level of achievement was 
evaluated according to the established grading scale for 

computational thinking dimensions: AD (Outstanding 
Achievement, 18-20), A (Expected Achievement, 14-17), B 
(In Progress, 11-13), and C (Beginning, 0-10). 
 
4.1 Student distribution 

 
Table 6 shows the percentage of enrolled students by gender 

in the Industrial Engineering and Systems Engineering 
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programs. In both the 2020 and 2021 academic periods, the 
Industrial Engineering program had a higher percentage of 
female participation compared to 2022. The students from the 
2022 period were enrolled in the Systems Engineering 
program, where it is evident that more women tend to prefer 
Industrial Engineering, possibly due to its less technical nature 
compared to Systems Engineering. 

 
Table 6. Percentage of enrolled students by gender 

 
Professional Careers Men Women 

Industrial Engineering 2022-II 67% 33% 
Systems Engineering 2022-I 81% 19% 

 
4.2 Evaluation of computational thinking dimensions by 
gender and academic program 

 
An inferential analysis was conducted using the Shapiro-

Wilk test, which determined that the data for all subgroups did 
not follow a normal distribution (p-value < 0.05) for students 
in both Industrial Engineering and Systems Engineering 
programs. Consequently, the non-parametric Mann-Whitney 
U test for independent samples was used for each program. 
Tables 7-10 present the inferential analysis of computational 
thinking skills, specifically the computational concepts and 
practices, for students in the Industrial Engineering and 
Systems Engineering programs. 

 
Table 7. Computational concepts by gender: Industrial 

Engineering 
 

Computational 
Concepts 

Average U 
Statistician 

p 
value Women Men 

Sequences 1.41 1.35 256 0.851 
Cycles 2.29 2.90 210 0.310 
Events 1.76 1.74 262 0.970 

Parallelism 2.12 1.65 222 0.297 
Conditionals 1.06 1.74 204 0.139 

Operators 1.76 2.52 198 0.060 
Data 2.29 1.94 232 0.405 

 
Table 8. Computational practices by gender: Industrial 

Engineering 
 

Computational 
Practices 

Average U 
Statistician 

p 
value Women Men 

Incremental and 
iterative 1.353 0.581 188 0.057 

Testing and 
debugging 1.235 0.677 2224 0.314 

Reusing and remixing 0.824 0.613 258 0.872 
Abstracting and 

modularizing 0.706 0.548 258 0.883 

 
Table 9. Computational concepts by gender: Systems 

Engineering 
 

Computational 
Concepts 

Average U 
Statistician 

p 
value Women Men 

Sequences 1.33 1.16 156 0.645 
Cycles 2.67 2.68 170 0.980 
Events 2.33 1.66 133 0.227 

Parallelism 3.00 2.29 131 0.113 
Conditionals 1.67 1.74 167 0.912 

Operators 2.33 2.45 165 0.812 
Data 2.00 1.42 138 0.310 

 

Table 10. Computational practices by gender: Systems 
Engineering 

 
Computational 

Practices 
Average U 

Statistician 
p 

value Women Men 
Incremental and 

iterative 0.778 0.895 166 0.894 

Testing and 
debugging 1.556 1.079 128 0.205 

Reusing and 
remixing 1.444 1.026 124 0.134 

Abstracting and 
modularizing 0.556 0.737 161 0.761 

 
The population means for female and male students in the 

Industrial Engineering program were compared. As shown in 
Table 7, there are no statistically significant differences 
between the groups for any of the computational concepts, as 
indicated by p-values greater than 0.05. This suggests that, 
based on these data, gender does not significantly influence 
scores for these computational concepts: sequences, loops, 
events, parallelism, conditionals, operators, and data. 

The population means for female and male students in the 
Industrial Engineering program were compared. As shown in 
Table 8, there are no statistically significant differences 
between the groups for any of the computational practices, as 
indicated by p-values greater than 0.05. This suggests that, 
based on these data, gender does not significantly influence 
scores for these computational practices: incremental and 
iterative development, testing and debugging, reusing and 
remixing, and abstracting and modularizing. 

The population means for female and male students in the 
Systems Engineering program were compared. As shown in 
Table 9, there are no statistically significant differences 
between the groups for any of the computational concepts, as 
indicated by p-values greater than 0.05. This suggests that, 
based on these data, gender does not significantly influence 
scores for these computational concepts: sequences, loops, 
events, parallelism, conditionals, operators, and data. 

The population means for female and male students in the 
Systems Engineering program were compared. As shown in 
Table 10, there are no statistically significant differences 
between the groups for any of the computational practices, as 
indicated by p-values greater than 0.05. This suggests that, 
based on these data, gender does not significantly influence 
scores for these computational practices: incremental and 
iterative development, testing and debugging, reusing and 
remixing, and abstracting and modularizing. 

 
4.3 Achievements in the development of computational 
thinking dimensions by gender and academic program 

 
Figures 7 and 8 show the graphs corresponding to the 

achievement levels in computational concepts and practices of 
students from the Industrial and Systems Engineering 
programs, disaggregated by gender. 

Figure 7, which presents the achievement levels in 
computational concepts by gender and academic program, 
reveals a more balanced distribution across the different 
performance levels. In Industrial Engineering, both women 
and men show significant percentages in all levels. Women 
stand out with 40% at the beginning level, 7% in progress, 
40% at the expected achievement level, and 13% at the 
outstanding level. In contrast, men have a lower percentage at 
the beginning level (16%), but higher percentages in progress 
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(27%) and outstanding (18%). 
In Systems Engineering, no women are found at the 

beginning level, while 67% reach the expected achievement 
level and 22% reach the outstanding level. Meanwhile, men 
show 21% at the beginning level, 24% in progress, 39% at the 
expected level, and 16% at the outstanding level. Overall, 
these results reflect a more evenly distributed performance 
across all levels compared to computational practices, and a 
greater presence of students—especially women in Systems 
Engineering—at the higher levels of conceptual achievement. 

Figure 8 illustrates the achievement levels in computational 
practices by gender and academic program, and reveals that 

the majority of students are at the beginning level. In Industrial 
Engineering, 86% of women and 94% of men fall into this 
category. However, among women in this program, a greater 
diversity in performance levels is observed, with 7% in 
progress and another 7% achieving the outstanding level, 
while 6% of men reach the expected level. In the case of 
Systems Engineering, 100% of women and 95% of men are at 
the beginning level, with the latter group being the only one to 
show 5% in progress. Overall, the results reflect a predominant 
concentration at the beginning level in computational 
practices, with minimal representation in higher achievement 
levels, especially in Systems Engineering. 

 

 
 

Figure 7. Achievement levels in computational concepts by gender and academic program 
 

 
 

Figure 8. Achievement levels in computational practices by gender and academic program 
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5. DISCUSSION 
 
The results show that while there are no statistically 

significant differences between male and female students in 
the dimensions of computational thinking—aligned with 
previous studies [52, 53]—there are notable distinctions when 
disaggregating achievement levels by gender and academic 
program. Specifically, women in the Systems Engineering 
program exhibit higher conceptual achievement levels, with 
67% reaching the expected level and 22% the outstanding 
level. None remained at the beginning level. This contrasts 
with the 45% of male students in the same program who were 
at the beginning or in-progress stages. 

In Industrial Engineering, both genders present more evenly 
distributed performance in conceptual understanding. Female 
students stand out with 40% in the beginning level and another 
40% achieving the expected level, while 13% reached the 
outstanding level. Among males, 27% were in progress and 
18% in the outstanding level. These results confirm that 
women can perform equally or even better in conceptual 
computational thinking when provided with supportive and 
inclusive environments [54, 55]. 

However, achievement in computational practices reveals a 
persistent concentration in the beginning level across all 
groups. In Systems Engineering, 100% of women and 95% of 
men remained in the beginning stage, with only 5% of men 
progressing. Similarly, in Industrial Engineering, 86% of 
women and 94% of men were in the beginning level. Only a 
small percentage of women (7%) reached the outstanding 
level, and 6% of men achieved the expected level. These data 
suggest a gap between conceptual understanding and practical 
application, as also reported in references [56, 57]. 

This trend can be explained by the high cognitive demand 
involved in computational practices, such as incremental and 
iterative design, testing and debugging, reusing and remixing 
solutions, as well as abstraction and modularization. These 
practices require not only technical skills but also advanced 
reasoning processes, complex problem-solving, and strategic 
thinking, which develop progressively through greater 
exposure to real-world practical scenarios [58]. Unlike 
computational concepts, which can be addressed through a 
more structured and sequential logic, computational practices 
demand greater autonomy, experimentation, and critical 
reflection, which may have hindered their mastery during the 
short intervention period. In this regard, the results do not 
indicate an ineffective intervention, but rather the need for a 
pedagogical approach that reinforces teacher guidance, 
iterative practical activities, and the use of cognitive 
scaffolding to support the progressive development of these 
competencies [59-61]. 

The use of project-based and community-driven 
technological activities in this study was a key strategy for 
engaging students equally. These projects, which focused on 
environmental protection and solving local problems, helped 
neutralize gendered preferences that may arise in activities like 
robotics [62, 63]. Women showed strong motivation when 
using microcontrollers and sensors with visual feedback, 
allowing them to experiment and improve functionality [33, 
37]. Additionally, the block-based visual programming 
environment supported their creativity through interactive 
scenes and storytelling, which, according to Sáinz and 
Meneses [36], aligns with how many women prefer to express 
their creativity. 

Finally, gender-based strengths were observed during 

classroom execution of technological projects. Men were more 
practical in executing tasks but showed less organizational 
structure, whereas women excelled in planning and 
teamwork—skills that enhanced collaborative learning and 
strengthened computational thinking across both genders [64]. 
These results reinforce the importance of designing learning 
environments that combine conceptual development with 
inclusive, practice-oriented experiences to close gender gaps 
in computational education [17]. 

 
 

6. CONCLUSIONS 
 
The implementation of technology-based projects focused 

on real community challenges promoted the development of 
computational thinking among students in Industrial and 
Systems Engineering. Key concepts such as sequences, 
conditionals, loops, data, and parallelism—as well as 
computational practices like testing, debugging, and 
modularization—were strengthened through the use of the 
STEM Kit and the mBlock visual programming environment. 

The results show that 67% of women in Systems 
Engineering reached the expected level in computational 
concepts, and 22% reached the outstanding level; none 
remained at the beginning level. In contrast, 45% of male 
students in the same program were still at the beginning or in-
progress levels. In Industrial Engineering, female students 
achieved 40% at the expected level and 13% at the outstanding 
level, also outperforming their male counterparts. These 
findings highlight the potential of female students to reach 
high levels of conceptual understanding in inclusive 
educational settings. 

However, over 90% of students, regardless of gender or 
academic program, remained at the beginning level in 
computational practices. This gap may be attributed to the high 
cognitive demand of these practices, which require autonomy, 
advanced reasoning, and real-world problem-solving 
experience. Therefore, there is a need to reinforce pedagogical 
strategies through structured guidance, scaffolding, and 
extended hands-on practice to support the progressive 
development of these skills. 

The STEM Kit proved to be an effective educational tool, 
enabling learning through sensors, actuators, and an accessible 
visual programming interface. In addition to strengthening 
technical skills, it sparked greater motivation and interest 
among female students, fostering their inclusion in STEM 
fields. 

It is recommended to integrate contextualized technological 
projects and visual programming environments from the early 
stages of university education. This approach can enhance 
students’ scientific and technical competencies and contribute 
to closing gender gaps in STEM. Furthermore, the 
methodology is adaptable to basic education in areas such as 
Science, Technology and Environment, computing, and 
vocational orientation. 
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