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Accurate direction of arrival (DOA) estimation is critical for modern communication 

systems, enabling precise signal localization in various applications. However, classical 

algorithms like the Multiple Signal Classification (MUSIC) struggle under challenging 

conditions, such as low signal-to-noise ratios (SNRs) or signal imperfections, leading 

to significant estimation errors. This study demonstrates that convolutional neural 

networks (CNNs) outperform the classical MUSIC algorithm in DOA estimation under 

high noise conditions. While MUSIC struggles with significant errors at low SNRs (e.g., 

-20 dB), CNNs deliver accurate azimuth and elevation estimates with strong

correspondence to true values. The CNN model was trained on over 23,000 synthetic

examples, simulating noisy environments with signal imperfections such as up-and-

down tilts. The CNN achieved a mean absolute error (MAE) of 0.80° and a mean

squared error (MSE) of 0.0465 at -20 dB SNR, outperforming traditional algorithms.

Unlike MUSIC, which falters in scenarios involving interference and tilts, CNNs

effectively predict angles with precision, highlighting their adaptability and robustness.

These findings emphasize the potential of deep learning for real-world signal processing

challenges, particularly in noisy and complex environments. CNN-based DOA

estimation presents a reliable, effective solution to contemporary communication

demands, overcoming the limitations of classical methods like MUSIC.
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1. INTRODUCTION

The increasing requirements for higher data volume users 

on 5G networks have brought about new issues on how to 

efficiently transmit data and optimize its efficiency. One of the 

characteristics of the direction towards which these networks 

are headed is the increase in the quality of wireless 

communication systems, especially in critical, moving, and 

complex scenarios. One of the outstanding issues of concern 

is enhancing the signal transmission reliability and efficiency 

ratios, particularly in multi-user and multi-device 

environments [1]. The explosion of the 5G network has come 

along with numerous issues in embedding reliable and 

efficient communication; this gets worse in urban cities where 

multipath propagation and interference of signals are common. 

Advanced beamforming and network performance tend to rely 

greatly on achieving spatial resolution through accurate 

direction of arrival (DOA) measurement. Multiple signals 

classification (MUSIC) algorithm, for example, long passed 

the test with both high resolution and accurate DOA 

estimation; however, its application is complicated and only 

useful with minimal noise and smaller antenna arrays. Tactical 

approaches to communication are static and, therefore, 

unsuitable to the dynamic 5G environment, which requires 

real-time processing [2]. The introduction of 5G networks has 

put wireless technology on a new paradigm shift due to 

reduced latency and improved connectivity. This expansion, 

however, does have some caveats, which include but are not 

limited to urban sites that experience dense user traffic, 

interference, and multipath propagation, resulting in dynamic 

and complex propagation of radio waves. DOA estimation is 

therefore crucial in tackling the challenges brought by 5G 

networks, specifically in multiple-input multiple-output 

(MIMO) systems, as the accuracy of beamforming 

significantly influences the network quality of service (QoS) 

and capacity [3]. 

DOA estimation has a wide range of applications and is 

primarily used to the DOA of a signal relative to a given 

receiver. This is required in beamforming as well as in modern 

communication systems that rely on special multiplexing or 

interference suppression since they are invaluable for modern 

communication systems. Algorithms, like MUSIC [4], provide 

high-resolution DOA estimation but lack efficiency in high-

noise environments when working with larger antenna arrays 

in 5G networks, which are known to be dynamic. Additionally, 

the large computational complexity prevents MUSIC from 

operating in time real-time, which is essential in fluctuating 

5G standards. 

Convolutional Neural Networks (CNNs), to learn complex 

patterns from large volumes of data [5], are the best suited to 

perform tasks that deal with real-time information, including 

wireless communication. Through the application of CNNs, 

we focus on enhancing the level of accuracy with which angle 

of arrival estimation is made, and this will imply efficiency in 
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beam steering methods, which explains an enhancement in the 

performance of the comprehensive network [6]. The present 

work aims to demonstrate the applicability of CNNs in the 

optimization of DOA estimation and show how this is 

expected to benefit beamforming and the overall performance 

of 5G radio link systems. The unitary approach adjusts based 

on the change of channel conditions and is more dependable 

than conventional methods [7]. 

Given these challenges, signal processing stands to benefit 

greatly from the adoption of deep learning techniques. 

Specifically, CNNs have demonstrated great potential in 

feature extraction from covariance matrices and processing 

data with noise effectively [8]. However, the application of 

deep learning algorithms to classical signal processing 

methods remains an open area of research. Because deep 

learning models can extract a stream of complex patterns from 

complicated datasets, they are particularly useful for 

overcoming the shortcomings of classical approaches such as 

MUSIC in dynamic real-time environments. This research 

develops a methodology which improves the accuracy in the 

direction of estimation for 5G MIMO systems by using both 

deep learning techniques and the modified MUSIC algorithm. 

The main concept is to apply the use of convolutional neural 

networks to improve on the covariance matrices generated by 

the conventional MUSIC algorithm to address its challenges 

of high noise, high computation costs, and deployment on 

large antennas. The new approach proposed reduces the load 

on the computational infrastructure while simultaneously 

enhancing the accuracy of the estimates, approach allows it to 

be used in real-life scenarios that are required in 5G systems. 

The design architecture in question incorporates CNNs with 

traditional signal processing approaches for real-time 

applications in location information retrieval. Due to the 

versatility of deep learning systems, the model takes advantage 

of CNN’s ability to run complex operations in parallel, 

extracting relevant spatial features from the massive amounts 

of input data. This type of hybrid fusion is vital in modern 

signal processing systems because it integrates classical 

approaches with intelligent solutions for smart technologies 

used in advanced wireless communication systems. This 

hybrid fusion framework desires to solve barriers set by 

traditional signal processing techniques and sets a mode for 

the future of intelligent and adaptive communication systems. 

Combining deep learning with traditional approaches such as 

MUSIC advances the future of the 5G networks by improving 

their efficiency, scalability, and real-time applications.  

Due to its high accuracy, the MUSIC Algorithm is 

commonly used for DOA estimation. However, it has critical 

drawbacks in terms of high noise conditions and large antenna 

arrays associated with 5G networks. Its dependence on 

eigenvalue decomposition brings about heavy computational 

requirements, rendering real-time execution impractical and 

worse still, performing poorly under low signal-to-noise ratio 

(SNR) scenarios. With increasing 5G network requirements, 

the necessity for adaptive and efficient DOA estimation 

techniques capable of dealing with changing channel 

conditions highlight the inadequacy of traditional approaches 

such as MUSIC. To counter these issues, this research 

undertakes a hybrid paradigm that combines CNN with 

MUSIC aimed at improving DOA estimation in noisy 

conditions by extracting features from covariance matrices. 

This approach reduces computation requirements enabling 

real-time processing and allows for changes to be 

accommodated for in the wireless channel. By designing an 

optimized CNN model for 5G network integration that 

spatially localizes antenna signals and learns them, this study 

aims to simplify the computational burden of DOA estimation 

to enhance intelligent communication systems for 5G 

networks. 

 

 

2. RELATED WORK 

 

Recently, signal processing applications have begun to 

integrate deep learning approaches, in particular, the usage of 

CNN while augmenting the DOA estimation for radio 

communication systems. Established algorithms such as 

MUSIC require an ideal SNR of the system for accurate angle 

determination, which limits their potential in real-life 

applications, especially in dense environments where noise is 

an issue. Many researchers have sought to integrate CNN into 

such studies to address these limitations. The work of Lu et al. 

[9] presented a new deep learning framework featuring a 

convolutional neural network to better estimate the DOA of a 

signal through analysis of the received signal matrix. More 

importantly, this method outperformed existing ones and 

lowered the root mean square error (RMSE) by 30 degrees at 

low SNR, which verifies the importance of the approach 

suggested. 

Lately, artificial neural networks (ANNs) have become 

quite popular in estimating DOA in numerous signal 

processing applications. In comparison, traditional techniques 

like time-difference-of-arrival (TDOA) methods are often 

questioned for robustness in accuracy, mainly in the presence 

of noise. For tackling this concern, ANN-based methods have 

been recognized increasingly due to their impressive ability to 

learn the complex relationships present in the input data sets. 

Efimov and Neudobnov [10] proposed potential solutions for 

DOA, such as multi-layer perceptron (MLP) and specific 

angular networks, which were investigated. Their work shows 

that if prior knowledge about the type of angle to be 

normalized is given the angular network tends to perform 

better than existing models. The angular model presented in 

their work improves on existing models by a large margin, 

demonstrating the potential of an angular network in DOA 

with prior knowledge of the angle, achieving ±0.75 degrees of 

error compared to MLPs ±20 degrees. Other research has 

noted the value of CNNs to concerning their ability to boost 

the accuracy of DOA estimation, especially in cases when 

hardware restrictions and impairments are in place. Other 

models, such as MUSIC and deep MUSIC, always seem to be 

performing quite poorly as these relative approaches lack 

robustness against noise and interference. Liu et al. [11] 

focused on the development of a model-based approach where 

deep learning is fused with a mathematical model to address 

the angular inaccuracies originating from hardware 

constraints. Their experiments depict dramatic enhancement 

in amplitude measurement during angle of arrival (AOA) and 

estimation when the signal-to-noise ratio indicators became 

weak. This is in line with the objectives of this work seeking 

improvement in DOA estimation accuracy with the application 

of CNN-based models. 

Yang et al. [12] explored the use of 3D beamforming to 

enhance network security in 5G and beyond. These methods 

employ a vertical and horizontal radiation pattern to target 

law-abiding users and reduce eavesdropping. Deep learning 

improves beamforming for imprecise channel state 

information. Researchers have shown that deep neural 
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networks (DNNs) can construct beamforming matrices to 

maximize secrecy and system performance. This method 

offers advantages over static optimization, but real-time 

optimization on moving and diverse 5G networks is most 

intriguing. Aljohani et al. [13] implemented beamforming, 

power control, and interference management in 5G systems 

through the use of deep reinforcement learning. Their ideas, 

which are suitable for mmWave and sub-6 GHz bands, are also 

adaptive and effective in maximizing SINR as well as network 

capacity while minimizing computational overhead. Neural 

networks for antenna array beamforming have gained traction 

with researchers; this is what Al Kassir et al. [14] aimed to do 

in their work. They set out to compare four different 

approaches: feed-forward neural networks (FFNN), CNN, 

long short-term memory (LSTM), and gated recurrent units 

(GRUs). Their research serves as evidence that beamformers 

based on deep learning techniques would easily and 

effectively find the optimum constant ratio of the array of 

antennas in every external condition. Among the architectures 

tried out, the GRU network consisting of four layers, each with 

128 neurons, produced the most remarkable results with the 

least RMSE value and comparatively shorter latencies for its 

computation than the more well-known techniques such as 

NSB. This underscores the ability of deep learning to bring 

about time and accuracy to beamforming processing in highly 

sophisticated wireless communication systems.  

Zamzami [15] discussed how deep learning can forecast 5G 

adoption. Deep reinforcement learning, long short-term 

memory, and convolutional neural networks were used to 

predict 5G user subscriptions utilizing throughput, channel 

quality, and context parameters. They found that deep 

reinforcement learning and CNN models predicted 5G uptake 

better and quicker than computation-intensive techniques. 

This study shows that deep learning algorithms can estimate 

5G network deployment and growth, which is consistent with 

the trend toward using machine learning algorithms for 

wireless forecasting and decision-making. Lavdas et al. [16] 

developed a deep learning-based adaptive beamforming 

solution for massive MIMO millimeter wave 5G networks. 

Beamforming with two neural networks improves spectral and 

energy efficiency. By training networks using channel state 

information (CSI), channel and power changes may be 

captured, improving energy efficiency, particularly for high-

data-rate applications. However, enhanced energy efficiency 

comes at the expense of somewhat higher blocking probability 

(BP) and radiating element (RE) numbers. Energy efficiency 

benefits more than offset these expenditures. They 

demonstrate how machine learning techniques might enhance 

beamforming systems in 5G networks, particularly in crowded 

and high-traffic areas. According to Rahman et al. [17], deep 

learning frameworks enable optimal decoding of 5G 

Reinforcement Learning Intelligent Surfaces-aided MIMO 

systems. This was improved further using a hybrid system 

which was made up of a CNN and GRU model to represent 

nonlinear dependencies between the received signal features 

and the signal features of interest. The research showed 

significant improvements in bit error rate (BER) and symbol 

error rate (SER) compared to other standard techniques, 

especially at high SNR settings. This study shows how deep 

learning can automate signal decoding and improve system 

performance in difficult environments, as seen in recent 

machine learning algorithm optimizations for 5G networks.  

 

 

3. SYSTEM MODEL 

 

For DOA estimation of multiple uncorrelated narrowband 

sources, this paper employs a uniform rectangular array 

(URA). The array consists of M elements on a horizontal axis 

and N elements on the vertical axis, thus forming a 2D antenna 

array. This configuration permits any plane wave, which may 

come from anywhere in the horizontal and vertical planes, to 

be captured. It is assumed that each source approaches the 

array from a unique direction which is defined in terms of its 

azimuthal (θi) and elevation angle (φi). The signal captured on 

the m-th antenna element is a function of both the directional 

cosines of theta and the phi of the source. The signal received 

at the m-th antenna can be expressed as: 

 

𝑥𝑚(𝑛)

= ∑  

𝐿

𝑖=1

𝑠𝑖(𝑛)𝑒−𝑗2𝜋
(𝑚−1)𝑑

𝜆
sin(𝜃𝑖)

𝑒−𝑗2𝜋
(𝑛−1)𝑑

𝜆
sin(𝜙𝑖)

+ 𝛿𝑚(𝑛) 

(1) 

 

where, λ is the wavelength of the signal, given by 𝜆 = 𝑐/𝑓, 

with c being the speed of light and f the carrier frequency. d is 

the spacing between adjacent antenna elements. The received 

signal vector may be articulated as: 

 

𝑥(𝑛) = 𝐴(𝜃)𝑠(𝑛) + 𝛿(𝑛) (2) 

 

x(n) denotes the received signal vector. s(n) denotes the 

vector of signals sent by all L sources. δ(n) represents the noise 

vector over all antennas. The information regarding the 

directionality of every source is captured by the steering 

matrix A(θ). This forms L steering vectors, one for each 

source. A cylindrical coordinate system is therefore utilized, 

with the steering vector for the ith source being a (θi, φi), a 

column vector that describes the direction of the source to the 

array via azimuth and elevation angles: 

 

𝑎(𝜃𝑖 , 𝜙𝑖)

= [1, 𝑒−𝑗2𝜋
𝑑
𝜆

sin (𝜃𝑖)
, … , 𝑒−𝑗2𝜋

(𝑀−1)𝑑
𝜆

sin (𝜃𝑖)
]

𝑇

⊗ [1, 𝑒−𝑗2𝜋
𝑑
𝜆

sin (𝜙𝑖)
, … , 𝑒−𝑗2𝜋

(𝑁−1)𝑑
𝜆

sin (𝜙𝑖)
]

𝑇

 

(3) 

 

Thus, the steering matrix A(θ) is given by: 

 

𝐴(𝜃) = [𝑎(𝜃1, 𝜙1), 𝑎(𝜃2, 𝜙2), … , 𝑎(𝜃𝐿, 𝜙𝐿)] ∈ ℂ𝑀×𝐿 (4) 

 

This matrix contains the steering information for all L 

sources arriving at the array location from their respective 

angles. To evaluate the direction of arrival of the sources, we 

calculate the covariance matrix of the incoming signal 

provided as: 

 

𝑅𝑥𝑥 = 𝐸[𝑥(𝑛)𝑥𝐻(𝑛)] = 𝐴𝑃𝐴𝐻 + 𝑈 (5) 

 

Here, P is the covariance matrix of the signal vector s(n). U 

= σ2, and I is the covariance matrix of the noise, with σ2 being 

the noise power and I being the identity matrix.  

In practical scenarios, the covariance matrix is typically 

estimated from a finite number of snapshots, yielding the 

sample covariance matrix: 
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𝑅̃𝑥𝑥 =
1

𝑇
∑  

𝑇−1

𝑛=0

𝑥(𝑛)𝑥𝐻(𝑛) (6) 

 

The data accumulated via the estimation of the covariance 

matrix works as an input for the MUSIC algorithm which does 

an eigenvalue decomposition for the purpose of estimating the 

DOA of the sources. With the use of this matrix, MUSIC is 

capable of resolving multiple sources in the presence of noise 

or signal interference. 

 

 

4. DESIGNED CNN  
 

In this study, employed a one-dimensional convolutional 

neural network to classify and analyze time-dependent data 

obtained from the MIMO signals. The end goal is to use the 

attributes of the convolutional layers to ascertain the evenness 

in signals, which in turn will make the model robust enough to 

estimate the angles of the incoming signals for the different 

antennas in a MIMO system. 
 

4.1 Input layer 
 

The input layer is constructed to reflect the covariance 

matrix that is formed from the signals received in the MIMO 

system. A signal may be embedded in the time-domain 

bringing about increase in the level of noise interference; 

instead, the covariance matrix focuses on the space and time 

utilization among the signals received which captures the 

signals in a more fortified manner for which the DOA 

estimation is more accurate. The covariance matrix is 

computed as follows [18]: 
 

𝑅𝑥𝑥 =
1

𝑇
∑  

𝑇

𝑡=1

𝑥(𝑡)𝑥𝐻(𝑡) (7) 

 

where, the Rxx is the covariance matrix that characterizes the 

set of relationships that exist on the various signals received 

by the different antennas in the MIMO array. x(t) is the signal 

vector received at all the antennas at a given time t. T is the 

number of temporal snapshots used to compute the covariance 

matrix to make the sup estimates more stable. xH(t) is the 

Hermitian transpose of x(t), which is utilized in the 

determination of cross-correlation between the signals of the 

antennas. 

The covariance matrix is provided as an input to the neural 

network enabling the algorithm to learn the covariant aspects 

of the received signals. This method improves the performance 

of the network in estimating the DOAs even if 

noise/interference is present. 
 

4.2 Convolutional layers 
 

One-dimensional convolutional layers (Conv1D) are used 

to capture chronological information from the data. The 

process of convolution can be defined as [19]: 
 

𝑧𝑗(𝑡) = ∑  

𝑘

𝑖=1

𝑤𝑖𝑗 ⋅ 𝑥𝑖(𝑡) + 𝑏𝑗 (8) 

 

where, Zj(t) represents the features extracted by filter, wij 

represents the filter weights, bj represents the bias difference. 

4.3 Max-pooling layers 

 

A max-pooling layer is applied after the convolution layer 

to reduce the temporal sizes. This is done by taking the highest 

value of a set of values [20]: 

 

𝑧𝑗
pool

(𝑡) = max (𝑧𝑗(𝑡1), 𝑧𝑗(𝑡2), … , 𝑧𝑗(𝑡𝑘)) (9) 

 

Reduce computational complexity while retaining 

important information. 

 

4.4 Dropout layers 

 

To counteract the problem of overfitting, dropout layers 

temporarily deactivate random units when a model is being 

trained as follows [21]: 

 

𝑧̃𝑗 = {
𝑧𝑗 if active

0 if dropped
 (10) 

 

4.5 Flatten layers 

 

As the name flatten suggests, the output is reshaped to a 

one-dimensional array, and is expressed as follows: 

 

𝑧flat = [𝑧1, 𝑧2, … , 𝑧𝑛] (11) 

 

This stage is essential to feed the data onto the modern 

multilayer perceptron. 

 

4.6 Dense layers 

 

A dense layer receives the flattened vector supplied to the 

neural network, and it performs feature extraction and model 

building:  

 

𝑦𝑘 = 𝑓 (∑  

𝑛

𝑗=1

  𝑧𝑗
flat ⋅ 𝑤𝑗𝑘 + 𝑏𝑘) (12) 

 

where, yk is the output of the dense layer, wjk represents the 

weights, bk is the bias, and f (reLU) is the activation function.  

 

4.7 SoftMax output layer 

 

The SoftMax layer is a great procedure to do because it 

allows for transforming the features into the angles of a 

rotation probability [22]:  

 

𝑃(𝑦𝑘) =
exp (𝑦𝑘)

∑  𝑛
𝑗=1  exp (𝑦𝑗)

 (13) 

 

The proposed CNN model ś output layer the design for an 

optimal match to the nature of DOA estimation. While DOA 

estimation is fundamentally a regression problem, it has been 

approached here using a classification technique with SoftMax 

activation that is applied to 18 discretized bins of azimuth 

angle range for this analysis, 18 output classes were set in the 

SoftMax layer, splitting the angular range into 10° intervals. 

An initial assessment was carried out to analyze the effect of 

bin size on estimation precision, accuracy, and associated 

costs. A larger number of bins (e.g., 24 bins with a 7.5° 

resolution) provide a better angular split, but add extra 
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complexity and increase the time required to train the model. 

Alternatively, fewer bins (e.g. 12 bins with 15° resolution) 

make less accurate estimates due to oversimplification. The 

configuration with 18 bins was selected as it meets the 

requirements unobtainable with other configurations because 

it provided reasonable precision for the angle estimation while 

conserving computational resources. This decision conforms 

to other similar works in the literature that use classification 

by bins for estimating angle-of-arrival. 

This method improves noisy and unstable outcomes, 

particularly for low-SNR situations, because it allows the 

model to probabilistically output results that aid in resolving 

uncertain decision-making scenarios. In contrast, for use cases 

that need the estimation of angles to be continuous, a linear 

activation can be implemented, resulting in direct regression-

based DOA estimation. This feature provides assurance that 

the proposed model meets the requirements of other 5G 

MIMO systems at different levels of accuracy and processing 

time depending on the deployment specification. 

The defined 1D CNN model for DOA estimation 

implements multiple layers which are tailored for efficient 

computing while extracting spatial features from the 

covariance matrices. The model has two Conv1D structures, 

two MaxPooling layers, two dropout layers, and two fully 

connected dense layers, as it is shown in Table 1. 

 

Table 1. CNN model architecture for DOA estimation 

 

Layer Type 
Number of 

Filters  

Neurons 

Kernel Size 

Activation 

Function 

Input Layer - - - 

Conv1D Layer 1 64 5 ReLU 

MaxPooling1D - 2 - 

Dropout Layer - - (rate = 0.3) 

Conv1D Layer 2 128 3 ReLU 

MaxPooling1D - 2 - 

Flatten Layer - - - 

Dense Layer 1 256 - ReLU 

Dropout Layer - - (rate = 0.3) 

Dense Layer 2 128 - ReLU 

Dropout Layer - - (rate = 0.3) 

Output Layer 18 (DOA Bins) - 
SoftMax/ 

Linear 

 

The activation ReLU is used on the first Conv1D layer 

which has 64 filters of kernel size five; this helps with the 

capturing of the low-level spatial structures. A MaxPooling1D 

layer with size 2 follows, and helps in feature retention while 

lowering dimensionality. To handle overfitting, a dropout 

layer of rate 0.3 is used. The second Conv1D layer utilized 128 

filters with a kernel size of 3 for additional spatial feature 

extraction, followed by another MaxPooling1D layer. The 

subsequent features are flattened and moved through the fully 

connected dense layers containing 256 and 128 neurons with 

dropout for better generalization. 

In order to carry out the DOA estimation, an output layer 

with a SoftMax activation function is used, which effectively 

classifies the angles of the DOA spectrum by splitting it into 

18 regions, or categories. The partitioning of the angular space 

using SoftMax may improve noise resilience and model 

consistency, especially in high SNR situations, even though 

the estimation in question is fundamentally a regression 

problem. In addition, SoftMax is advantageous for 

applications involving real-time beamforming since it outputs 

probabilities. On the other hand, in situations where a seamless 

estimation of DOA is needed, a linear regression activation 

function may be used instead, which allows the model to be 

framed as a prediction task based on direct regression. 

 

 

5. METHODOLOGY  

 

The evolution of the conventional MUSIC algorithm was 

utilized to find the DOA of signals in a high noise 

environment, and then its efficiencies and shortcomings were 

examined. The physical implementation comprised a URA of 

8 × 8 elements arranged in such a way that the distance 

between them was half a wavelength. Signals with known 

directions (azimuth and elevation angles) were received while 

additive white Gaussian noise was present. The frequency of 

the signal that was transmitted was done at 28 GHz. The signal 

that was transmitted can be described as a sinusoidal wave 

with a 1000 Hz frequency. To achieve an SNR of -20 dB, the 

noise was added to create a low noise signal. 

The covariance matrix Rxx was derived from the signal data 

wrecks received at the antenna array, which thus shows the 

time-dependent relation between the signals coming from the 

diversity of angular incidence. After necessary filtering, 

eigenvalue decomposition was performed on this matrix. After 

implementing the MUSIC algorithm and organizing the 

information, the angles of arrival were extracted from the 

power spectral density. To enhance the accuracy in the 

estimation of the covariance matrix, 8000 temporal snapshots 

were used. Several performance metrics were evaluated, such 

as absolute error, mean error and overall accuracy, alongside 

visual error distributions to assess the performance of the 

MUSIC algorithm. Based on the results, it showed that 

MUSIC was unable to correctly localize the azimuth angles in 

high-noise environments but did achieve relative accuracy for 

the elevation angle estimates. These findings illustrate the 

shortcomings of the MUSIC technique in this scenario under 

analysis. Thus, we propose that hybrid techniques, such as 

CNN could be used to better handle the covariance matrix by 

extracting sophisticated features, thereby enhancing 

estimation accuracy while mitigating the effect of noise. In 

employing the deep learning-based approach, attempts have 

been made to guard against the shortcomings of the MUSIC 

algorithm in high-noise scenarios. CNN were developed, and 

models were trained to breast the accuracy of the DOA 

estimation by establishing patterns in MATLAB simulated 

data. To broaden the horizon for the DOA estimation 

algorithm, a total of 23,000 samples were made in MATLAB. 

This was one of the models, alongside other models, made for 

about eighteen degrees of freedom, which included the 

elements of the covariance matrix obtained from the received 

signals of antennae arrays. The signals were narrowband 

signals which were modeled as if emanating in a geographic 

reference area that had variable ranges of azimuth angles and 

variable ranges of elevation and were added with whit 

Gaussian noise (AWGN) to simulate a more reasonable 

environment for communication. The data process 

incorporated an aspect of training, validation, and testing 

subsets of the dataset to reflect different conditions of signal-

to-noise ratios. The framework in Figure 1 details the structure 

of the CNN architecture that was employed in the undertaking 

of this work. 

A learning rate scheduler was applied while training the 

Adam optimizer thus eliminating the stark reality of over or 

under-fitting whenever the set learning rate was inappropriate. 

The technique further employed cross-entropy loss in 
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minimizing the error of the presented model in the – DOA 

classification. Batch normalization accelerated the training at 

the same time stabilizing it, while dropout helped avoid over-

training. The use of the covariance matrices as input motivated 

the training of the model to predict the azimuth and elevation 

angles of the incoming signals. Once the network was trained, 

a model test was carried out on a separate dataset where the 

results were better than those attained with the MUSIC 

algorithm, especially for high-noise situations. This 

improvement further underscores the robustness of the 

features extracted by the CNN from the covariance matrices 

and the consequent accurate estimation of the DOA in difficult 

cases. The CNN architecture proposed is composed of several 

layers as highlighted in Figure 1, including convolutional, 

pooling, dropout and dense layers. This design uses covariance 

matrices as inputs in order to estimate the azimuth and 

elevation angles accurately even in the presence of significant 

noise. 

 

 
 

Figure 1. Architecture of the proposed CNN model for DOA 

estimation 

The dataset for training and testing the proposed CNN 

model encompasses 23,000 synthetically generated samples of 

5G urban-propagation scenarios with DOAs synthesized using 

MATLAB. The azimuth angle range of 0° to 180° is 

subdivided into 18 bins for estimation. Phase shifts, noise, 

multi-source interference, and noise levels defined across -20 

dB to 20 dB SNR were added for enhanced robustness and 

generalization. 

The dataset was split randomly where 80% was allocated to 

train (18,400 samples), 10% were used for validation (2,300 

samples), and 10% for testing (2,300 samples). With this 

configuration, model performance can be assessed with 

confidence. Such partitioning supports the training of the CNN 

model to spatially relevant features of the 5G channel, 

achieving greater accuracy in practical implementations. 

The datasets used for both training and testing were both 

built using synthetic data, but it was generated by means of 

standardized 5G urban channel models which closely mimic 

actual multipath propagation environments. The simulations 

in these models are capable of creating realistic reflections, 

noise conditions, and signal behavior similar to those 

characteristics found in dense urban areas. This synthetic 

approach enabled variation in SNR and signal directions to be 

controlled hence it is important for robust training. However, 

we would like to highlight that future developments should 

involve the use of real-world 5G measurements to validate the 

model. As a result of lack of public 5G datasets and limited 

access to real world deployments considered herein, this study 

has been based on simulated data; nevertheless, further 

research is expected to apply experimental verification so as 

improve practical validity of the model. 

Training was carried out entirely in MATLAB using the 

Adam optimizer at an initial learning rate of 0.01. This was 

adjusted with a piecewise schedule reducing by a factor of 

0.002 every 5 epochs. The model trained for 25 epochs, each 

with a mini-batch size of 10, and the dataset shuffled each 

epoch to enhance generalization. Validation was set every 30 

iterations and was accompanied with monitoring training 

progress through accuracy metrics. Computational efficiency 

was improved by running the model in automatic mode 

enabling the selection of GPU or CPU based on availability. 

 

 

6. RESULTS 

 

The MUSIC algorithm underwent testing under conditions 

of very high noise, where SNR was -20 dB. The algorithm’s 

performance for truly estimating the DOA of the signals was 

poor. The extracted azimuth angle was estimated as −25.50° 

and the elevation angle as 0.00° which was compared to the 

true angles for azimuth of −37° and elevation of 0°. The 

azimuth estimation was biased by a large margin of 11.50°, 

while plenty of errors were not noted in the elevation 

estimation, indicating higher accuracy in this vertical angle 

estimation. Statistical analysis of 100 test samples showed a 

mean azimuth error equal to 32.73° and a mean elevation error 

equal to 16.80°/estimated. The number of correct responses for 

horizontal angles (azimuth and elevation) corresponded 

roughly with cutoff corrected results: The overall accuracy 

was tested with azimuth being equal to 12.00% while elevation 

was equal to 16.00%. These results were acquired concerning 

an allowance for errors set at ±5°. The scatter plot shows the 

algorithm's accuracy by comparing genuine and estimated 

DOAs' angles of arrival. They perform best when all points are 
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on the reference line and true and estimated values are 

identical. Figure 2 demonstrates significant variation, 

especially in azimuth predictions, with most sites far from the 

reference line. When noise is present, the MUSIC algorithm 

has trouble determining horizontal angles. However, elevation 

predictions are more clustered since several sites are near to 

the reference line, indicating improved vertical angle 

estimation. This discrepancy in azimuth and elevation angle 

estimation accuracy shows how noise affects the method, 

especially azimuth computations. 

 

 
 

Figure 2. Variation in azimuth predictions 

 

The PSD plot in Figure 3 indicates the estimated DOAs, 

with clear peaks witnessed at the specific values of azimuth 

and elevation angles. As an outcome, surrounding noise 

artefacts are present, which indicates how tough it is for the 

algorithm to find the directions of the true signal due to the 

noise. Other regions in the noise level and additional peaks in 

the PSD suggest interference and low accuracy in estimating 

DOA, especially the estimation of the azimuth angles. This 

graphical figure explains the performance of MUSIC in poor 

environments; nevertheless, it serves as a point of reference 

for further comparisons and analysis with more sophisticated 

techniques. 

 

 
 

Figure 3. Estimated DOAs 

 

The results from the CNN for estimation of DOA are 

indicative of the applicability and the robustness of such deep 

learning techniques in DOA estimation even in complicated 

scenarios. When there is noise interference, CNN was able to 

compute both the down tilt and up tilt angles, which are not 

pronounced in the case of conventional techniques. A 

multitude of performance metrics and visualizations were 

employed, which allowed assessing the network and 

confirming its ease of adaption and high accuracy in numerous 

SNR environments. The technique recorded a low mean 

square error (MSE) of 0.04649807885289192 which 

underlines the strength of the network in estimating the DOA 

even when its task is done in a challenging environment. 

Furthermore, Figure 4 depicts the trends of both loss and 

MSE beginning from training to a validation phase during the 

various epochs. The learning of those parameters present in the 

input data by the model is evident from the drop in both 

training loss and MSE while on the other hand, both the 

validation loss and MSE are on a downward trend and 

eventually level out at lower values. Such patterns seem to 

envision good results showing that the model has been 

overtime minimizing overtime and increasing the level of 

accuracy of its predictions. The fact that both metrics converge 

at the very final stage and the gap between the training and 

validation curves is narrow implies that the model has not 

over-fitted and a reasonable level of generalization ability has 

been obtained. This is seen as underscored by the performance 

of CNN on constant and variable data for the estimation of the 

DOA. The very low loss and low MSE are indicators of the 

performance of the network on patterns with DOA that may 

have been machine or human-impaired as a good performance. 

The obtained accuracy of the CNN estimation of DOAs 

performance is shown in the given two snapshots bearing 

details of the comparison between the real angles and 

predicted angles for elevation and azimuth, respectively. 

 

 
(a) 

 
(b) 

 

Figure 4. Loss and MSE curves 
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(a) 

 
(b) 

 

Figure 5. The comparison between the real and predicted 

angles for elevation and azimuth 

 

The relationship indicated by the two plots reveals some 

good aspects concerning how precise the model was able to 

estimate elevation angles because it was able to estimate 

angles even with the difference in snapshots of the elevation 

plot of the red curve, which represents predicted elevation 

angles versus the blue curve showing actual elevation angles. 

The azimuth plot has similar elements in the predicted azimuth 

angles shown by the red curve and compared to the actual 

azimuth angles that the blue curve represents. These results 

agree with the previous findings where most portions of the 

two curves exhibit a good fit except for some snapshots of 

frames where slight mismatches arise. These errors are 

minimal, which confirms the strength of the model concerning 

azimuth estimation in the face of challenges. All in all, both 

plots affirm the impression of the efficacy of the CNN in 

estimating the elevation and azimuth angles respectively with 

no disagreements whatsoever, even with the introduction of 

some noise into the input data. Such results affirm with a better 

degree the stability of the model. The comparison of the actual 

and predicted angles of elevation and azimuth in Figure 5 

compares the model’s estimations and actual values 

confirming the CNN model's stability and efficacy even in the 

presence of noisy conditions. 

 

 
 

Figure 6. Correlation between MSE and SNR 

Figure 6 displays the correlation between MSE and SNR. 

The relatively horizontal lines at different SNR values suggest 

that the CNN’s effectiveness does not change as the noise level 

of the input signals changes. The extremely low MSE values 

obtained for all SNR regimes also underscore the ability of the 

network to provide reasonably precise DOA predictions, even 

with a great deal of noise. Further, the constancy of the MSE 

indicates that the model successfully represents the most 

discriminative aspect of the signals and generalizes well, 

which makes it suitable for many real-world scenarios since 

the noise level may differ considerably. This performance 

further emphasizes the superiority of CNN-based methods in 

comparison with classical methods of DOA estimation under 

difficult working conditions of the signal. 

The findings obtained endorse the CNN-based approach as 

being good in estimating the DOA even under difficult 

situations having high noise. The low MSE values at all SNR 

levels indicate the good generalization capabilities of the 

network whereby it is still able to nearly perfectly estimate the 

azimuth and elevation even in highly interfered areas. The 

comparison plots between real and predicted angles for both 

elevation and azimuth confirm that there is a good fit, which 

underscores the accuracy of CNN. Slight deviations observed 

in some snapshots, especially in azimuth estimation, are quite 

normal, given the azimuth estimation was barely able to beat 

the SNR. The reason is obvious: signals vary, and noise always 

interferes. Overall, this level of accuracy and consistency 

prove that the network surpasses the performance obtained 

from the currently existing systems, such as MUSIC, which 

unfortunately failed to achieve satisfying results under iced-

upon circumstances. The stability of the training and the 

validation loss curves also the convergence of MSE point out 

how well the model was able to learn the task and how well it 

was able to avoid overfitting. This guarantees credible 

performance in all scenarios. Furthermore, analysis of the 

error points out as well the robustness of the model as even the 

distributions of errors were within favorable limits for both 

elevation and azimuth. The results indicate that the CNN-

based methods are quite accurate and reliable in radiating 

structures or antennas and, in fact, surpasses traditional 

methods, especially noise and complex environments. This 

emphasizes its applicability in actual communication systems 

where there is a need for accurate estimation of the direction 

of arrival. 

To validate the effectiveness of the CNN-based DOA 

estimation model, a performance comparison with other deep 

learning techniques was executed, particularly the LSTM, 

GRU and the hybrid deep MUSIC model. In spite of the 

usefulness LSTM and GRU have for sequential data, these 

models lack the capability of spatial feature extraction which 

is critical for DOA estimation in large MIMO antenna arrays. 

Generally, RNN type architectures have a poor performance 

in highly noisy 5G contexts because they do not model spatial 

dependencies in an efficient manner. This is more problematic 

for estimating multi-dimensional DOAs as the estimates 

depend more on spatial covariance matrices than on temporal 

ones [23]. 

Deep MUSIC is handy in multi-dimensional DOA 

estimation because it merges deep learning with classical 

spectral estimation techniques. However, the speed and 

efficiency for real-time applications is reduced because of the 

complex eigenvalue decomposition deep network processing.  

On the contrary, the implemented CNN model with the rest 

of the architecture is capable of spatial feature extraction with 
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impressive accuracy for real-time practical use with reduced 

computational cost. The experimental results demonstrate that 

in highly noisy and degraded environments, deep CNNs 

outperforms LSTM, GRU, and deep MUSIC by providing 

minimal MAE and fast inference times, thus making it more 

suitable for real-time 5G MIMO applications [24]. 

In order to thoroughly analyze the performance of the 

proposed CNN-based DOA estimation model, its accuracy 

was measured against the MUSIC algorithm on multiple SNR 

levels (-20 dB-20 dB). The outcomes indicate that did much 

better than the rest of the algorithms tested, especially in the 

low SNR scenarios where MUSIC gets stuck due to the noise. 

At SNR = -20 dB, MUSIC performs with up to 11.50° MAE, 

while CNN garners an astonishing 0.80° MAE which proves 

it has a lot of strength in harsh environments. Besides, CNN 

continues to have successes across all SNRs, whereas MUSIC 

does not do well at low SNRs. The comparison summary is 

shown in Table 2. 

 

Table 2. Performance comparison of CNN and MUSIC across different SNR levels 

 
SNR 

(dB) 

MUSIC MAE 

(°) 

CNN MAE 

(°) 

MUSIC RMSE 

(°) 

CNN RMSE 

(°) 

MUSIC Success Rate 

(%) 

CNN Success Rate 

(%) 

-20 11.50 0.8 11.50 0.80 0.00 100.0 

-10 8.20 0.85 8.50 0.75 10.00 100.00 

0 5.50 0.90 6.00 0.70 35.00 100.00 

10 3.20 0.95 3.80 0.65 70.00 100.00 

20 1.50 1.00 1.80 0.60 95.00 100.00 

 

The analysis through multiple SNR levels (-20 dB to 20 dB) 

for the proposed CNN model with the MUSIC algorithm 

suggests that the CNN significantly outperforms it in both 

MAE and RMSE metrics as well as success rate (within ±5° 

error margin) calculation. The CNN model results show that 

the algorithm performed particularly well in low-SNR 

conditions, where MUSIC struggled with pronounced 

estimation errors.  

 

 

7. DISCUSSION 

 

This study aimed to address the challenges of DOA 

estimation in noise by using a CNN trained on a dataset 

consisting of 23,000 artificial samples. The method proposed 

here enhances the accuracy and robustness of DOA estimation 

by integrating two main areas: deep learning and traditional 

signal processing techniques, as suggested in prior works. 

The previous studies majorly handled DOA estimation 

using the MUSIC algorithm due to its spectral analysis 

capabilities. However, the performance of this algorithm 

degrades significantly as the SNR diminishes or in cases of 

strong signal interference. For example, research conducted by 

Merkofer et al. [25] introduced a hybrid model-based/data-

driven DOA estimation architecture. Although their approach 

augmented the classical MUSIC algorithm with deep learning 

techniques to enhance performance in complex scenarios, it 

faced challenges in handling low SNR environments 

effectively. 

Similarly, another study proposed a deep neural network 

framework that demonstrated improved accuracy over 

traditional methods in high dynamic SNR scenarios [26]. 

Despite its contributions, the approach used required specific 

preprocessing techniques that may limit its adaptability in 

broader applications. Furthermore, a study by Merkofer et al. 

[27] introduced a hybrid architecture combining classical 

MUSIC with deep learning. While their model improved 

certain aspects of DOA estimation, it remained dependent on 

the MUSIC algorithm's spectral capabilities, which can be 

restrictive in noisy or complex environments. 

On the other hand, the CNN approach presented in this 

study outperformed MUSIC in low SNR scenarios, achieving 

an MSE of 0.0465 and consistent accuracy over different SNR 

ranges, including the challenging −20 dB. Unlike MUSIC, 

which suffers from errors in azimuth estimation due to its 

dependence on spectral peaks, CNN utilized covariance 

matrices directly, enabling it to learn complex spatiotemporal 

correlations. This made it particularly effective in scenarios 

where traditional techniques failed. 

A table which encompasses the comparison of the various 

models discussed in the literature as well as their strengths and 

weaknesses using CNN as a benchmark is included as Table 

3. 

Additionally, this study builds upon the foundation laid by 

previous works by further diversifying the dataset to include a 

larger number of test cases that span a wide range of azimuth 

and elevation angles. Advanced architectural methods, such as 

dropout layers and max pooling, were applied to handle 

overfitting. By focusing solely on deep learning, this approach 

eliminates the need to rely on predetermined signal models, 

thus making the proposed technique more adaptable to various 

real-world settings. 

 

Table 3. Qualitative comparison between CNN and other deep learning models for DOA estimation 

 
Model Strengths Limitations References 

CNN 
Strong in spatial feature extraction; effective in noisy 

5G environments; lower inference cost 
Less suited for temporal sequence modeling [24] 

LSTM 
Good at modeling temporal dependencies in signal 

sequences 

Limited spatial modeling; performance degrades in 

highly noisy conditions 
[14, 23] 

GRU 
Similar to LSTM but faster convergence; reduced 

complexity 

Suffers in spatial covariance modeling; sensitive to 

SNR variation 
[14, 23] 

Deep 

MUSIC 

Hybrid of classical spectral estimation with deep 

learning; suitable for multidimensional DOA 

High computational complexity; less efficient for 

real-time inference due to eigen analysis 
[25, 27] 

DNN 
Improved accuracy under high dynamic SNR; adaptable 

learning capabilities 

Requires complex preprocessing; limited 

generalizability 
[26] 
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In this study, integrating deep learning techniques and the 

structured dataset demonstrates a significant improvement 

compared to previous methods. The CNN achieved high 

accuracy that was resilient to noise, making it a dependable 

alternative to traditional methods such as MUSIC. These 

findings indicate that data-driven approaches can significantly 

enhance DOA estimation techniques for modern wireless 

communication systems. 

The execution time was used as a metric for comparing the 

computational efficiency of the advanced CNN model against 

the traditional MUSIC algorithm. The findings suggest that 

MUSIC performs the DOA estimation in 0.3830 seconds while 

CNN does it in 0.5951 seconds, thus leading CNN achieving a 

speedup factor of 0.64x against MUSIC. 

Due to the eigenvalue decomposition, MUSIC is faster in 

computation, but at low SNR levels, it significantly degrades 

with performance. On the other hand, CNN maintains higher 

degrees of precision and reliability at lower speed values, 

which can be improved upon with GPU acceleration. These 

results indicate that there is a balance between spatial 

efficiency and accuracy. Although increasing time, CNN still 

provides superior performance with DOA estimation. For 5G 

MIMO applications in real-time, techniques such as model 

compression and quantization could be implemented to 

optimize the speed without losing the accuracy that the CNN 

provides. 

While the suggested CNN model employed GPU 

acceleration and exhibited quick inference properties during 

simulation, there were no formal latency evaluations in this 

research (such as frames per second or exact inference time). 

Thus, it would be inappropriate to conclude that the model is 

suitable for real-time deployment. The next step will involve 

performance profiling and optimization on deployment-grade 

hardware to validate practical 5G MIMO system’s real-time 

applicability. 

The stability of the suggested CNN model was verified 

through statistical analysis over multiple training iterations. It 

was noted that the model’s estimation of mean MAE was 

maximally 2.05° with SD of 3.35°; therefore, confirming his 

consistency. Furthermore, the 95% CI of ±2.40° denotes a 

small degree of dispersion which further strengthens the 

model’s reliability through different noise conditions. As such, 

these outcomes show that the CNN model provides high 

precision alongside stability which makes it appropriate for 5G 

MIMO features. 

This CNN-based DOA estimation model is ideal for real-

world 5G urban networks with significant beamforming 

accuracy requirements. CNN outperforms traditional 

techniques such as MUSIC that struggles in multipath and 

interference rich environments by learning spatial patterns 

from covariance matrices and ensuring spatially robust 

estimation. Moreover, CNN was shown to be retrainable with 

real-world measurements. Therefore, it can adapt to hardware 

impairments, including but not limited to phase noise and 

mutual coupling. Its low inference complexity makes the 

model applicable in real time scenarios of massive MIMO 5G 

systems where high traffic user density and low latency is 

needed. 

 

 

8. CONCLUSIONS 

 

The results of this study highlight the effectiveness and 

robustness of using a CNN for DOA estimation in challenging 

high-noise environments. Unlike traditional methods such as 

MUSIC, which exhibited significant limitations in azimuth 

estimation under low SNR conditions, CNN demonstrated 

consistent accuracy and stability across a range of SNR levels. 

The low MSE values, strong alignment between real and 

predicted angles, and stable training and validation 

performance confirm CNN’s ability to generalize well and 

handle complex signal environments. These findings suggest 

that CNN-based approaches provide a promising alternative 

for accurate and reliable DOA estimation, particularly in real-

world applications where noise and interference are prevalent. 

This study underscores the potential of integrating deep 

learning techniques into modern communication systems to 

overcome the limitations of traditional algorithms. 

 

 

REFERENCES  

 

[1] Belhadj, S., Lakhdar, A.M., Bendjillali, R.I. (2021). 

Performance comparison of channel coding schemes for 

5G massive machine type communications. Indonesian 

Journal of Electrical Engineering and Computer Science, 

22(2): 902-908. 

https://doi.org/10.11591/ijeecs.v22.i2.pp902-908 

[2] Ali, E., Ismail, M., Nordin, R., Abdulah, N.F. (2017). 

Beamforming techniques for massive MIMO systems in 

5G: Overview, classification, and trends for future 

research. Frontiers of Information Technology & 

Electronic Engineering, 18: 753-772. 

https://doi.org/10.1631/FITEE.1601817 

[3] Michelucci, U. (2019). Advanced Applied Deep 

Learning: Convolutional Neural Networks and Object 

Detection. Apress. 

[4] Kase, Y., Nishimura, T., Ohgane, T., Ogawa, Y., 

Kitayama, D., Kishiyama, Y. (2019). Performance 

analysis of DOA estimation of two targets using deep 

learning. In 2019 22nd International Symposium on 

Wireless Personal Multimedia Communications 

(WPMC), Lisbon, Portugal, pp. 1-6. 

https://doi.org/10.1109/WPMC48795.2019.9096165 

[5] Zhao, X., Wang, L., Zhang, Y., Han, X., Deveci, M., 

Parmar, M. (2024). A review of convolutional neural 

networks in computer vision. Artificial Intelligence 

Review, 57(4): 99. https://doi.org/10.1007/s10462-024-

10721-6 

[6] Bendjillali, R.I., Beladgham, M., Merit, K., Taleb-

Ahmed, A. (2020). Illumination-robust face recognition 

based on deep convolutional neural networks 

architectures. Indonesian Journal of Electrical 

Engineering and Computer Science, 18(2): 1015-1027. 

https://doi.org/10.11591/ijeecs.v18.i2.pp1015-1027 

[7] Ilyas, B.R., Abderrazak, T.A., Sofiane, B.M., Bahidja, 

B., Imane, H., Miloud, K. (2023). A robust-facial 

expressions recognition system using deep learning 

architectures. In 2023 International Conference on 

Decision Aid Sciences and Applications (DASA), 

Annaba, Algeria, pp. 541-546. 

https://doi.org/10.1109/DASA59624.2023.10286798 

[8] Wei, F., Zheng, S., Zhou, X., Zhang, L., Lou, C., Zhao, 

Z., Yang, X. (2022). Detection of direct sequence spread 

spectrum signals based on deep learning. IEEE 

Transactions on Cognitive Communications and 

Networking, 8(3): 1399-1410. 

https://doi.org/10.1109/TCCN.2022.3174609 

2872



 

[9] Lu, Y., Li, X., Guan, H., Yang, K., Peng, T. (2024). 

Enhanced angle-of-arrival estimation via convolutional 

neural network-based MUSIC algorithm. In International 

Conference on Image, Signal Processing, and Pattern 

Recognition (ISPP 2024), Guangzhou, China, pp. 1056-

1061. https://doi.org/10.1117/12.3033545 

[10] Efimov, E., Neudobnov, N. (2021). Artificial neural 

network based angle-of-arrival estimator. In 2021 

Systems of Signals Generating and Processing in the 

Field of on Board Communications, Moscow, Russia, pp. 

1-5. 

https://doi.org/10.1109/IEEECONF51389.2021.941606

2 

[11] Liu, S., Li, X., Mao, Z., Liu, P., Huang, Y. (2024). 

Model-driven deep neural network for enhanced AoA 

estimation using 5G gNB. In Proceedings of the AAAI 

Conference on Artificial Intelligence, Vancouver, 

Canada, pp. 214-221. 

https://doi.org/10.1609/aaai.v38i1.27773 

[12] Yang, H., Lam, K.Y., Nie, J., Zhao, J., Garg, S., Xiao, L., 

Guizani, M. (2021). 3D beamforming based on deep 

learning for secure communication in 5G and beyond 

wireless networks. In 2021 IEEE Globecom Workshops 

(GC Wkshps), Madrid, Spain, pp. 1-6. 

https://doi.org/10.1109/GCWkshps52748.2021.9681960 

[13] Aljohani, K., Elshafiey, I., Al-Sanie, A. (2022). 

Implementation of deep learning in beamforming for 5G 

MIMO systems. In 2022 39th National Radio Science 

Conference (NRSC), Cairo, Egypt, pp. 188-195. 

https://doi.org/10.1109/NRSC57219.2022.9971327 

[14] Al Kassir, H., Zaharis, Z.D., Lazaridis, P.I., Kantartzis, 

N.V., Yioultsis, T.V., et al. (2022). Antenna array 

beamforming based on deep learning neural network 

architectures. In 2022 3rd URSI Atlantic and Asia Pacific 

Radio Science Meeting (AT-AP-RASC), Gran Canaria, 

Spain, pp. 1-4. https://doi.org/10.23919/AT-AP-

RASC54737.2022.9814201 

[15] Zamzami, I.F. (2022). Deep learning models applied to 

prediction of 5G technology adoption. Applied Sciences, 

13(1): 119. https://doi.org/10.3390/app13010119 

[16] Lavdas, S., Gkonis, P.K., Tsaknaki, E., Sarakis, L., 

Trakadas, P., Papadopoulos, K. (2023). A deep learning 

framework for adaptive beamforming in massive MIMO 

millimeter wave 5G multicellular networks. Electronics, 

12(17): 3555. 

https://doi.org/10.3390/electronics12173555 

[17] Rahman, M.H., Sejan, M.A.S., Aziz, M.A., Baik, J.I., 

Kim, D.S., Song, H.K. (2023). Deep learning-based 

improved cascaded channel estimation and signal 

detection for reconfigurable intelligent surfaces-assisted 

MU-MISO systems. IEEE Transactions on Green 

Communications and Networking, 7(3): 1515-1527. 

https://doi.org/10.1109/TGCN.2023.3237132 

[18] Goodfellow, I., Bengio, Y., Courville, A., Bengio, Y. 

(2016). Deep Learning. Cambridge: MIT Press. 

[19] Goodfellow, I. (2016). Nips 2016 tutorial: Generative 

adversarial networks. arXiv preprint arXiv:1701.00160. 

https://doi.org/10.48550/arXiv.1701.00160 

[20] LeCun, Y., Kavukcuoglu, K., Farabet, C. (2010). 

Convolutional networks and applications in vision. In 

Proceedings of 2010 IEEE International Symposium on 

Circuits and Systems, Paris, France, pp. 253-256. 

https://doi.org/10.1109/ISCAS.2010.5537907 

[21] Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., 

Salakhutdinov, R. (2014). Dropout: A simple way to 

prevent neural networks from overfitting. The Journal of 

Machine Learning Research, 15(1): 1929-1958. 

https://doi.org/10.5555/2627435.2670313 

[22] Bishop, C.M., Nasrabadi, N.M. (2006). Pattern 

Recognition and Machine Learning. New York: 

Springer, p. 738.  

[23] Shiri, F.M., Perumal, T., Mustapha, N., Mohamed, R. 

(2023). A comprehensive overview and comparative 

analysis on deep learning models: CNN, RNN, LSTM, 

GRU. arXiv preprint arXiv:2305.17473. 

https://doi.org/10.48550/arXiv.2305.17473 

[24] Li, Y., Shi, B., Shu, F., Song, Y., Wang, J. (2023). Deep 

learning-based DOA estimation for hybrid massive 

MIMO receive array with overlapped subarrays. 

EURASIP Journal on Advances in Signal Processing, 

2023(1): 110. https://doi.org/10.1186/s13634-023-

01074-3 

[25] Merkofer, J.P., Revach, G., Shlezinger, N., Routtenberg, 

T., Van Sloun, R.J. (2023). DA-MUSIC: Data-driven 

DoA estimation via deep augmented MUSIC algorithm. 

IEEE Transactions on Vehicular Technology, 73(2): 

2771-2785. https://doi.org/10.1109/TVT.2023.3320360 

[26] Li, Y., Huang, Z., Liang, C., Zhang, L., Wang, Y., et al. 

(2023). DOA estimation using deep neural network with 

angular sliding window. Electronics, 12(4): 824. 

https://doi.org/10.3390/electronics12040824 

[27] Merkofer, J.P., Revach, G., Shlezinger, N., van Sloun, 

R.J. (2022). Deep augmented music algorithm for data-

driven DoA estimation. In ICASSP 2022-2022 IEEE 

International Conference on Acoustics, Speech and 

Signal Processing (ICASSP), Singapore, pp. 3598-3602. 

https://doi.org/10.1109/ICASSP43922.2022.9746637 

 

2873




