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The traditional concrete mix design in Peru presents significant limitations due to the 

lack of consideration of the nonlinear behavior of materials. This study developed a 

predictive model based on Artificial Neural Networks (ANNs) to optimize material 

dosage in concrete mixes, using the physical and mechanical properties of locally 

sourced aggregates from Ayacucho during 2024. The city’s high-altitude conditions 

(2,761 m a.s.l.), unique aggregate mineralogy, and economic constraints make 

conventional methods less accurate and less efficient, leading to excess cement use and 

material waste. A database of 806 experimental records from local research, including 

granulometric, absorption, compressive strength, and proportion variables, was 

statistically cleaned and validated. Multilayer Perceptrons (MLPs) with a feedforward 

architecture were trained in MATLAB using the Levenberg-Marquardt algorithm with 

backpropagation. The optimal architecture (18-11-12-4, representing 18 input variables, 

two hidden layers with 11 and 12 neurons, and 4 output variables) achieved a correlation 

coefficient (R) of 0.9947, coefficient of determination (R²) of 0.9895, and a Nash-

Sutcliffe Efficiency (NSE) of 0.9784, with a global Mean Absolute Percentage Error 

(MAPE) of only 0.9175%, outperforming a multivariate multiple linear regression 

model (R² = 0.9507; NSE = 0.9413; MAPE = 1.4130%). Practical evaluation indicates 

that the ANN can reduce cement overuse by up to 3%, lowering production costs by 

approximately USD 2.12 per cubic meter and decreasing waste generation. Bland-

Altman analysis confirmed acceptable agreement with the ACI 211.1 method, 

validating its technical applicability. In conclusion, ANN-based modeling represents a 

robust, adaptable, and resource-efficient tool for concrete mix design in high-altitude 

regions such as Ayacucho, offering both economic and environmental benefits. 
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1. INTRODUCTION

Concrete mix design is a fundamental task in civil 

engineering, aimed at achieving an optimal balance between 

workability, durability, strength, and cost-efficiency. In high-

altitude Andean environments such as Ayacucho, Peru 

(≈2,400-2,465 m a.s.l.), conventional empirical mix-design 

procedures often fail to capture the nonlinear interactions 

among locally sourced materials. Aggregates from 

Ayacucho’s two principal quarries, La Moderna and Chillico 

exhibit distinct mineralogical and granulometric profiles, with 

water absorption ranging from 1.56–3.81% (fine) and 0.99–

4.04% (coarse) in La Moderna, and 1.80–4.70% (fine) and 

1.18–3.01% (coarse) in Chillico. Combined with the region’s 

marked dry/wet seasons and daily thermal fluctuations, these 

characteristics directly affect effective water demand, water-

cement ratio control, early-age hydration kinetics, and long-

term durability factors often neglected by generic ANN 

adaptations calibrated on lowland or laboratory datasets. 

Artificial Neural Networks (ANNs) have long been 

recognized for their ability to model complex, nonlinear 

relationships between mix variables and performance 

indicators. Notably, several pioneering and applied studies 

have addressed direct mix proportioning rather than merely 

strength prediction. Oh et al. [1] first applied a 

backpropagation ANN to proportion concrete mixes; Setién et 

al. [2] implemented ANN for ready-mixed concrete design, 

emphasizing the need for local calibration; Yousif et al. [3] and 

Gowda and Prasad [4] developed ANN frameworks to 

estimate constituent dosages from target properties; Hasan [5], 

Sachan and Ramashankar [6] provided accessible ANN-based 

mix design implementations. Das et al. [7] and Rahmani et al. 

[8] extended these approaches to account for target strength

and supplementary cementitious materials, respectively. More

recent research has introduced hybrid and multi-objective

schemes that incorporate cost and sustainability criteria, such

as those by Açikgenç et al. [9], Huang et al. [10], and Jagadesh

et al. [11], while Adil et al. [12] examined ANN architecture

choices and their implications for model generalization. Zheng

et al. [13] applied multi-objective optimization to mix design
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using machine learning, and Arbazoddin et al. [14] presented 

further ANN-based methodologies adaptable to diverse 

contexts. 

Despite this substantial body of literature, relatively few 

studies have calibrated ANN proportioning models for high-

altitude Andean contexts, where aggregate absorption and 

granulometry systematically differ from commonly used 

datasets. Such regional differences can bias water and cement 

dosing when generic models are applied, leading to material 

overuse or inconsistent field performance. Evidence from 

Jagadesh et al. [11] and other site-specific studies underscores 

the value of localized models for recycled or regionally unique 

aggregates. 

This study addresses this methodological gap by developing 

a Multilayer Perceptron (MLP) ANN tailored to Ayacucho’s 

materials and climatic conditions. The network is trained on 

806 experimental records obtained from local laboratory 

studies, incorporating 18 input variables (material physical 

and granulometric properties, absorption, moisture, and target 

strengths) and four outputs (cement, fine aggregate, coarse 

aggregate, water). The chosen architecture, denoted 18-11-12-

4, comprises 18 inputs, two hidden layers with 11 and 12 

neurons, and four outputs. Model performance is evaluated 

using Root Mean Squared Error (RMSE), Mean Absolute 

Error (MAE), Mean Absolute Percentage Error (MAPE), 

coefficient of determination (R²), and the Nash-Sutcliffe 

Efficiency (NSE) index. The ANN was benchmarked against 

a Multivariate Linear Regression Model (MLRM), whose 

significance was assessed through Analysis of Variance 

(ANOVA) and Multivariate Analysis of Variance 

(MANOVA), providing a robust statistical framework to 

compare predictive performance. Furthermore, Bland–Altman 

analysis confirmed acceptable agreement between the 

concrete mix proportions estimated by the ANN and those 

obtained using the ACI 211.1 normative method, validating its 

practical applicability. Beyond predictive accuracy, the study 

also evaluates sustainability outcomes potential cement 

reduction, water-use optimization, and minimization of 

material waste demonstrating how localized, data-driven mix 

design can yield tangible economic and environmental 

benefits for regional construction practices. 
 

 

2. MATERIALS AND METHODS 
 

2.1 Experimental design and dataset 
 

This study developed predictive models for concrete mix 

design using ANNs and MLRMs. The dataset comprised 806 

experimental records, which is considered adequate for ANN 

training, validation, and testing when the input dimensionality 

(18 variables) and network complexity (18-11-12-4 

architecture) are taken into account. This sample size ensures 

sufficient representation of variability in local material 

properties while reducing the risk of overfitting. 

The concrete mixes covered three standard compressive 

strength classes widely used in Ayacucho’s construction 

practice: 140, 175, and 210 kg/cm². All materials were sourced 

from two representative local quarries La Moderna and 

Chillico chosen for their distinct mineralogical compositions 

and granulometric characteristics. Fine aggregates from La 

Moderna typically exhibited a fineness modulus between 

2.86–3.53, whereas Chillico sands ranged from 2.58–3.89. 

Coarse aggregates from both quarries had nominal maximum 

sizes of ½, ¾″, and 1″ and bulk specific gravities between 

2.35–2.88. 

Data were collected from validated experimental 

procedures documented in undergraduate theses from the 

Universidad Nacional de San Cristóbal de Huamanga 

(UNSCH) and complementary academic reports. Each record 

included 18 input variables describing physical, 

granulometric, and mechanical properties of the constituent 

materials, as well as mix design parameters. Two strength 

variables were recorded: (1). Specified design strength (f′c): 

the target compressive strength established in the mix design 

process, typically at 28 days. (2). Measured compressive 

strength (fc): the experimentally obtained value from 

laboratory-cured specimens, which may differ from f′c due to 

material variability, curing conditions, and testing dispersion. 
 

Table 1. Input and output variables used in the modeling of concrete mix design 
 

Variable Description Unit Mean ± SD Range 

Input Variables     

TMN Nominal Maximum Size of Aggregate inches 0.77 ± 0.19 0.5-1.5 

mf AF Fineness Modulus of Fine Aggregate - 3.14 ± 0.29 2.6-3.9 

mf AG Fineness Modulus of Coarse Aggregate - 7.33 ± 0.45 6.8-8.7 

Pus AF Loose Unit Weight of Fine Aggregate kg/m³ 1620.90 ± 66.30 1470.0-1741.0 

Pus AG Loose Unit Weight of Coarse Aggregate kg/m³ 1401.79 ± 44.93 1267.2-1483.5 

Pusc AF Compacted Unit Weight of Fine Aggregate kg/m³ 1768.61 ± 83.34 1599.7-1907.5 

Pusc AG Compacted Unit Weight of Coarse Aggregate kg/m³ 1523.66 ± 43.89 1423.6-1614.8 

Pec Specific Gravity of Cement - 3.14 ± 0.02 3.0-3.1 

Pem AF Bulk Specific Gravity of Fine Aggregate - 2.57 ± 0.10 2.4-2.7 

Pem AG Bulk Specific Gravity of Coarse Aggregate - 2.57 ± 0.05 2.5-2.7 

Abs AF Absorption Capacity of Fine Aggregate % 2.70 ± 0.69 1.6-4.7 

Abs AG Absorption Capacity of Coarse Aggregate % 2.09 ± 0.78 1.0-4.0 

Ch AF Moisture Content of Fine Aggregate % 4.64 ± 3.12 0.4-10.4 

Ch AG Moisture Content of Coarse Aggregate % 1.47 ± 0.84 0.4-3.9 

a/c D Design Water-Cement Ratio - 0.67 ± 0.72 0.4-8.6 

E Curing Age days 16.76 ± 8.53 7.0-28.0 

f′c Specified Design Strength kg/cm² 210.31 ± 45.50 140.0-350.0 

fc Measured Compressive Strength kg/cm² 252.49 ± 71.63 98.4-473.6 

Output Variables     

C Cement Content kg/m³ 363.22 ± 45.98 277.0-481.8 

AF Fine Aggregate Content kg/m³ 847.15 ± 76.48 705.2-1015.8 

AG Coarse Aggregate Content kg/m³ 901.80 ± 83.59 666.3-1092.0 

A Water Content liters/m³ 195.86 ± 27.14 146.1-247.5 
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The four output variables corresponded to the dosages, 

expressed per cubic meter, of cement, fine aggregate, coarse 

aggregate, and water. 

Table 1 presents the input and output variables with 

descriptions, units, and basic statistics (mean ± standard 

deviation and observed ranges), allowing reproducibility and 

characterization of the dataset. 
 

2.2 ANN model 
 

A custom-built NeuroMAT Toolbox v1.0, developed by the 

research team in MATLAB R2020a, was used to implement 

the predictive ANN model, providing flexible configuration, 

real-time performance monitoring, and reproducible, scalable 

concrete mix design tailored to local conditions. 
 

2.2.1 ANN Architecture and configuration 

The optimal network architecture was selected after 

evaluating 25 MLP feedforward configurations. Considering 

multi-metric performance (MSE, RMSE, MAE, R, R²) and 

training efficiency, the final topology (18-11-12-4; Figure 1) 

comprised 18 input neurons (physical, granulometric, and 

mechanical parameters; Table 1), two hidden layers with 11 

and 12 neurons, and 4 output neurons: Cement (C), Fine 

Aggregate (AF), Coarse Aggregate (AG), and Water (A). 
 

 
 

Figure 1. Architecture of the optimized ANN model (18-11-

12-4) 
 

All layers employed the hyperbolic tangent sigmoid 

activation (tansig), as shown in Eq. (1). Its bounded [−1, 1] 

range ensured compatibility with normalized data, avoided 

saturation beyond the scaling range, and enabled smoother 

convergence during regression of continuous targets, 

providing advantages over ReLU in stability and learning 

efficiency for this dataset [15-17]. 
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Figure 2. Training performance (MSE vs. epochs) and 

stopping at epoch 169 

Compared to simpler architectures (e.g., 18-8-4 and 18-10-

4), the 18-11-12-4 network (Figure 1) achieved lower errors 

and faster convergence, completing training in 4.577 seconds 

over 169 epochs (Figure 2), while avoiding overfitting. 
 

2.2.2 Data preprocessing and normalization 

Prior to training, data underwent two preprocessing steps: 

(1). Outlier removal: A modified Z-score method was 

applied univariately to each of the 18 inputs and 4 outputs, 

using a threshold equivalent to a standard z-score > 3, to 

remove extreme values while preserving representative 

variability. Multivariate outlier detection was additionally 

performed using Mahalanobis distance. 

(2). Normalization: All variables were scaled to the range 

[−1, 1] using MATLAB’s mapminmax function: 
 

[X_norm, X_settings] = mapminmax(X, -1, 1); 

[Y_norm, Y_settings] = mapminmax(Y, -1, 1); 
 

(3). The [−1, 1] range was selected over [0, 1] because the 

tansig activation function outputs within this interval, enabling 

faster convergence, symmetric gradient propagation, and 

reduced bias shift during training. 

New predictions were also automatically normalized and 

reversed: 

Xnew_norm = mapminmax('apply', X_new, X_settings); 

Ypred_norm = net(Xnew_norm); 

Ypred = mapminmax('reverse', Ypred_norm, Y_settings); 

Data were randomly split into mutually exclusive subsets: 

•70% (564 samples) for training the model, 

•15% (121 samples) for validation (early stopping and 

generalization assessment), 

•15% (121 samples) for final testing of model performance. 

All statistical analyses and modeling tasks were performed 

using MATLAB R2020a and RStudio 2024.12.0. 
 

2.2.3 Training algorithm and parameters 

The ANN was trained using the Levenberg-Marquardt 

(trainlm) backpropagation algorithm, ideal for small to 

medium-sized regression problems due to its fast convergence 

properties [18-20]. The learning process minimized the MSE 

between predicted and actual values using the following 

weight update rule: 
 

( )
1

T T

new currentW W J J I J E
−

= − +  (2) 

 

where, J: Jacobian matrix of partial derivatives, E: error 

vector, μ: damping parameter, I: identity matrix. 

Training parameters included: 

•Max. epochs: 1000, 

•Performance goal: MSE < 0.001, 

•Early stopping: Based on validation loss to avoid 

overfitting. 

The final selected model converged in 169 epochs, reaching 

a minimum validation MSE of 6.7179×10⁻⁵, with training 

completed in 4.577 s. 
 

2.2.4 Model evaluation and selection 

Performance was assessed using MSE, RMSE, MAE, the 

correlation coefficient (R), and the coefficient of 

determination (R²). The selected network, saved as 

Mi_Red_23_30-Apr-2025_12-50-18, achieved the lowest 

prediction errors and the highest correlation among all 

candidates, with results summarized in Table 2.
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Table 2. Selection of the RNA model with optimal number of neurons 

 

Neural Network Configuration No. of Neurons Layers Time (s) Epochs MSE RMSE 

Mi_Red_2_04-Apr-2025_09-54-11 2 2 1 0.997 265 0.0403131 0.2007812 

Mi_Red_3_04-Apr-2025_09-58-12 3 3 1 1.203 283 0.0123689 0.1112158 

Mi_Red_4_04-Apr-2025_10-05-38 4 4 1 1.510 343 0.0030578 0.0552977 

Mi_Red_5_04-Apr-2025_10-10-32 5 5 1 3.009 575 0.0010155 0.0318667 

Mi_Red_6_04-Apr-2025_10-19-14 6 6 1 7.983 1000 0.0003107 0.0176256 

Mi_Red_7_04-Apr-2025_10-36-55 7 7 1 4.456 491 0.0001571 0.0125331 

Mi_Red_8_04-Apr-2025_10-42-47 8 8 1 4.366 437 0.0001342 0.0115865 

Mi_Red_9_04-Apr-2025_10-53-42 9 9 1 1.869 182 0.0001825 0.0135090 

Mi_Red_10_04-Apr-2025_11-10-12 10 10 1 6.021 496 0.0001163 0.0107854 

Mi_Red_11_05-Apr-2025_18-21-26 11 11 1 4.465 335 0.0000967 0.0098344 

Mi_Red_12_06-Apr-2025_21-06-02 12 12 1 9.297 548 0.0001001 0.0100050 

Mi_Red_13_07-Apr-2025_15-50-34 13 13 1 2.661 175 0.0002341 0.0152994 

Mi_Red_14_07-Apr-2025_17-08-16 5-9 14 2 1.377 135 0.0003616 0.0190161 

Mi_Red_15_07-Apr-2025_19-42-51 15 15 1 0.873 46 0.0002623 0.0161951 

Mi_Red_16_07-Apr-2025_22-18-31 16 16 1 5.965 280 0.0001059 0.0102927 

Mi_Red_17_08-Apr-2025_22-40-24 11-6 17 2 1.366 86 0.0002042 0.0142885 

Mi_Red_18_09-Apr-2025_15-35-39 9-9 18 2 1.718 107 0.0001406 0.0118593 

Mi_Red_19_09-Apr-2025_19-16-44 8-11 19 2 2.952 192 0.0001366 0.0116881 

Mi_Red_20_09-Apr-2025_21-18-17 20 20 1 2.920 95 0.0001964 0.0140128 

Mi_Red_21_30-Apr-2025_05-52-10 10-11 21 2 3.669 120 0.0001225 0.0110674 

Mi_Red_22_30-Apr-2025_12-13-28 11-11 22 2 4.455 135 0.0001120 0.0105809 

Mi_Red_23_30-Apr-2025_12-50-18 11-12 23 2 4.577 169 0.0000790 0.0088878 

Mi_Red_24_30-Apr-2025_16-28-26 12-12 24 2 5.478 223 0.0000886 0.0094144 

Mi_Red_25_29-Apr-2025_22-25-05 25 25 1 4.76317 93 0.0002174 0.0147438 

Mi_Red_26_30-Apr-2025_16-54-40 13-13 26 2 9.29952 295 0.0001574 0.0125477 

Neural Network MAE R R² R_Train R_Val R_Test R_All 

Mi_Red_2_04-Apr-2025_09-54-11 0.1411534 0.9057636 0.8056782 0.9005815 0.9225107 0.9132399 0.9057636 

Mi_Red_3_04-Apr-2025_09-58-12 0.0669657 0.9716091 0.9403778 0.9699969 0.9767442 0.9741472 0.9716091 

Mi_Red_4_04-Apr-2025_10-05-38 0.0343151 0.9931767 0.9852603 0.9935817 0.9925506 0.9919635 0.9931767 

Mi_Red_5_04-Apr-2025_10-10-32 0.0197422 0.9977045 0.9951050 0.9978015 0.9975035 0.9974901 0.9977045 

Mi_Red_6_04-Apr-2025_10-19-14 0.0088247 0.9992988 0.9985025 0.9993334 0.9992414 0.9991804 0.9992988 

Mi_Red_7_04-Apr-2025_10-36-55 0.0048894 0.9996445 0.9992428 0.9996857 0.9996013 0.9995004 0.9996445 

Mi_Red_8_04-Apr-2025_10-42-47 0.0044917 0.9996967 0.9993529 0.9996826 0.9997900 0.9996695 0.9996967 

Mi_Red_9_04-Apr-2025_10-53-42 0.0058671 0.9995870 0.9991203 0.9996217 0.9996659 0.9993383 0.9995870 

Mi_Red_10_04-Apr-2025_11-10-12 0.0038229 0.9997365 0.9994393 0.9997988 0.9996702 0.9995125 0.9997365 

Mi_Red_11_05-Apr-2025_18-21-26 0.0033469 0.9997807 0.9995338 0.9998178 0.9996800 0.9997043 0.9997807 

Mi_Red_12_06-Apr-2025_21-06-02 0.0034740 0.9997733 0.9995175 0.9997928 0.9996812 0.9997753 0.9997733 

Mi_Red_13_07-Apr-2025_15-50-34 0.0050154 0.9994702 0.9988717 0.9996609 0.9994423 0.9986847 0.9994702 

Mi_Red_14_07-Apr-2025_17-08-16 0.0104667 0.9991824 0.9982569 0.9993331 0.9989912 0.9986538 0.9991824 

Mi_Red_15_07-Apr-2025_19-42-51 0.0079158 0.9994134 0.9987357 0.9994486 0.9992448 0.9994271 0.9994134 

Mi_Red_16_07-Apr-2025_22-18-31 0.0032436 0.9997598 0.9994893 0.9997782 0.9997456 0.9996817 0.9997598 

Mi_Red_17_08-Apr-2025_22-40-24 0.0062812 0.9995404 0.9990159 0.9995366 0.9995996 0.9995034 0.9995404 

Mi_Red_18_09-Apr-2025_15-35-39 0.0047115 0.9996824 0.9993221 0.9997333 0.9996383 0.9994792 0.9996824 

Mi_Red_19_09-Apr-2025_19-16-44 0.0045869 0.9996907 0.9993415 0.9997218 0.9995517 0.9996811 0.9996907 

Mi_Red_20_09-Apr-2025_21-18-17 0.0052839 0.9995547 0.9990535 0.9996573 0.9994404 0.9992002 0.9995547 

Mi_Red_21_30-Apr-2025_05-52-10 0.0031081 0.9997226 0.9994096 0.9997918 0.9997799 0.9993803 0.9997226 

Mi_Red_22_30-Apr-2025_12-13-28 0.0035718 0.9997464 0.9994603 0.9997739 0.9996152 0.9997520 0.9997464 

Mi_Red_23_30-Apr-2025_12-50-18 0.0030581 0.9998210 0.9996192 0.9998215 0.9998393 0.9998035 0.9998210 

Mi_Red_24_30-Apr-2025_16-28-26 0.0032353 0.9997993 0.9995728 0.9998162 0.9997897 0.9997303 0.9997993 

Mi_Red_25_29-Apr-2025_22-25-05 0.0054465 0.9995081 0.9989522 0.999623 0.999042 0.9994180 0.9995080 

Mi_Red_26_30-Apr-2025_16-54-40 0.0038596 0.9996500 0.9992411 0.999639 0.99968 0.9996740 0.9996500 
Notes: The selection was based on a multi-metric evaluation framework. As summarized in Table 2, the chosen model achieved extremely low prediction errors, 

high correlation, and rapid convergence. 
 

2.2.5 External validation with experimental mixes 

The external validation of the artificial neural network 

(ANN) model Mi_Red_23_30-Apr-2025_12-50-18 was 

carried out using fifteen concrete mix designs that were not 

included in the training phase and were developed according 

to the ACI 221.1 procedure. These mixes were prepared with 

aggregates sourced from the La Moderna and Chillico 

quarries, with nominal compressive strengths of 140, 175, and 

210 kg/cm². A total of 135 cylindrical specimens (6″×12″) 

were molded and cured following the guidelines of NTP 

339.033:2021 and ASTM C31/C31M-2021. All specimens 

were stored in a curing chamber maintained at 20℃ ± 2℃ with 

a relative humidity above 95%, ensuring uniform curing 

conditions. 

Table 3 provides a detailed description of the experimental 

datasets used in this validation stage. The data were 

subsequently processed by the neural network based on the 

previously learned weights, yielding predictions for the four 

main mixture components: cement, fine aggregate, coarse 

aggregate, and water. The validation procedure was 

implemented using the graphical interface of the NeuroMAT 

Toolbox v1.0, where the corresponding independent variables 

were entered. Finally, the model predictions are presented in 

Table 4, demonstrating the ANN’s predictive capacity when 

applied to experimental mixtures independent from the 

training dataset.
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Table 3. Experimental data for the validation of the RNA model 
 

Origin  Mix ID f′c Design (kg/cm²) 
Real 

Cement (kg/m³) Fine Agg. (kg/m³) Coarse Agg. (kg/m³) Water (l/m³)  

La Moderna 

MM1 

140 299.708 897.444 848.030 206.092 

175 326.433 875.151 848.030 206.266 

210 367.120 841.212 848.030 206.530 

MM2 

140 299.708 889.552 880.604 202.169 

175 326.433 867.147 880.604 202.487 

210 367.120 833.037 880.604 202.971 

MM3 

140 299.708 890.326 848.302 216.663 

175 326.433 868.403 848.302 216.660 

210 367.120 835.028 848.302 216.657 

Chillico 

CM1 

140 315.789 937.104 704.650 243.416 

175 343.949 914.895 704.650 243.042 

210 386.819 881.085 704.650 242.472 

CM2 

140 315.789 1007.228 668.061 233.392 

175 343.949 984.458 668.061 233.199 

210 386.819 949.792 668.061 232.905 
 

Table 4. Mixture dosages predicted by the RNA model 
 

Origin  Mix ID f′c Design (kg/cm²) 
ANN 

Cement (kg/m³) Fine Agg. (kg/m³) Coarse Agg. (kg/m³) Water (l/m³)  

La Moderna 

MM1 

140 297.798 888.337 864.137 207.701 

175 323.153 866.991 865.078 207.656 

210 364.680 835.383 866.994 207.625 

MM2 

140 299.109 873.601 883.039 202.990 

175 327.562 854.552 881.121 203.240 

210 369.580 818.376 879.184 203.310 

MM3 

140 298.387 885.999 852.950 217.512 

175 323.527 862.334 855.073 216.920 

210 363.301 826.224 856.347 216.995 

Chillico 

CM1 

140 319.874 937.484 730.811 243.821 

175 350.470 912.830 732.990 243.497 

210 393.537 875.978 732.169 243.213 

CM2 

140 311.638 1003.826 666.547 233.763 

175 338.243 974.313 666.582 233.498 

210 381.394 932.745 666.601 233.305 
 

Table 5. Percentage Error (PE) and Mean Squared Error (MSE) for ANN predictions compared to experimental dosages 
 

Origin Mix ID f′c Design (kg/cm²) 

Percentage Error (PE) (%) 

Cement PE (%) Fine Agg. PE (%) Coarse Agg. PE (%) Water PE (%) 

La Moderna 

MM1 

140 0.64 1.01 1.90 0.78 

175 1.00 0.93 2.01 0.67 

210 0.66 0.69 2.24 0.53 

MM2 

140 0.20 1.79 0.28 0.41 

175 0.35 1.45 0.06 0.37 

210 0.67 1.76 0.16 0.17 

MM3 

140 0.44 0.49 0.55 0.39 

175 0.89 0.70 0.80 0.12 

210 1.04 1.05 0.95 0.16 

Chillico 

CM1 

140 1.29 0.04 3.71 0.17 

175 1.90 0.23 4.02 0.19 

210 1.74 0.58 3.91 0.31 

CM2 

140 1.31 0.34 0.23 0.16 

175 1.66 1.03 0.22 0.13 

210 1.40 1.79 0.22 0.17 

MAPE (%) 1.01 0.93 1.42 0.31 

MSE 15.76 92.01 220.10 0.62 

Max PE (%) 4.02 

Table 5 shows that the ANN model achieves a high level of 

accuracy, with both absolute and percentage errors generally 

low. The coarse aggregate registers the highest percentage 

error (4.02%), while the overall average error across all 

components remains below 1.5%. The higher deviation 

observed for coarse aggregate can be attributed to the intrinsic 

variability in particle packing and gradation within the 

experimental dataset, as well as the underrepresentation of 

certain high-strength mixes in which coarse aggregate 

proportions deviate more markedly from the mean. Regarding 
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the MSE, the largest value also corresponds to coarse 

aggregate (220.10), followed by fine aggregate (92.01), 

although both remain within acceptable tolerance limits, 

confirming the model’s robustness despite these localized 

variations. 

Figure 3 compares the experimental values (ACI 211.1) 

with those estimated by the ANN for cement, fine aggregate, 

coarse aggregate, and water. The blue line represents the 

experimental data, while the red dashed line corresponds to the 

model predictions. An adequate fit is observed between both 

curves, particularly for cement and water, with minor 

discrepancies in fine and coarse aggregates. These results 

confirm the accuracy and predictive capability of the ANN in 

the efficient design of concrete mixes. 

 

 
 

Figure 3. Experimental vs. predicted concrete mix components (ANN) 

 

2.3 MLRM 

 

2.3.1 Model specification and estimation 

To benchmark the predictive capacity of the ANN, an 

MLRM was implemented using the same 18 input variables 

and 4 output variables. This method captures linear 

dependencies between predictors and dosage components. 

Recent studies have successfully applied similar models in 

concrete mix design and property prediction [21-23]. 

The multivariate regression model is formally expressed in 

matrix notation as: 

 

Y X B E=  +  (3) 

 

where, 

Y ∈ ℝⁿˣ⁴: Matrix of dependent variables (dosage outputs: 

C, AF, AG, A) 

X ∈ ℝn×19: Matrix of independent variables, including an 

intercept and 18 predictors 

B ∈ ℝ19×4: Matrix of regression coefficients 

E ∈ ℝn×4: Matrix of residual errors 

The coefficient matrix B was estimated using the Ordinary 

Least Squares (OLS) method: 

( )
1

. . .T TB X X X Y
−

=  (4) 

 

This estimation minimizes the sum of squared residuals and 

provides the best linear unbiased estimators (BLUE), 

assuming the classical regression assumptions hold (linearity, 

homoscedasticity, independence, and normality of residuals). 

 

(1) Implementation in R 

The MLRM was implemented in RStudio 2024.12.0 using 

the built-in lm() function and the command summary(modelo) 

was used with the following structure: 

 

modelo <- lm(cbind(y1, y2, y3, y4) ~ x1 + x2 + ... + x18, 

data = datos) 

summary(modelo) 

 

where, y1 to y4 denote the four output variables (C, AF, AG, 

A), and x1 to x18 represent the 18 input predictors. 

(2) Regression equations 

The resulting system produced four independent regression 

equations of the form: 
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𝑦̂𝑘 = 𝛽0𝑘 +∑𝛽𝑗𝑘𝑥𝑗 + 𝜀𝑘

18

𝑗=1

 (5) 

 

where,  

𝑦̂𝑘: Predicted value of output variable k 

𝛽0𝑘: Intercept for equation k 

𝛽𝑗𝑘: Coefficient for predictor xj in equation k 

𝜀𝑘: Random error term associated with output k 

Each equation captures the additive linear influence of the 

18 input features on a specific output variable. 

 

2.3.2 Statistical evaluation of fit 

Residual diagnostics, statistical significance (p-values), and 

performance metrics were computed for each dependent 

variable. The complete data matrix included 806 samples with 

full multivariate observations. 

(1) Goodness-of-fit metrics 

All R² values were statistically significant (p < 0.001), 

indicating strong model performance, particularly for water 

and coarse aggregate prediction, as summarized in Table 6. 

 

Table 6. Goodness-of-fit metrics for each dependent variable 

in the MLRM 

 

Output Variable R² 
Adj. 

R² 
RMSE MSE 

Cement (y₁) 0.8418 0.8382 18.34 336.25 

Fine Aggregate (y₂) 0.9069 0.9047 23.54 554.34 

Coarse Aggregate 

(y₃) 
0.9710 0.9703 14.38 206.81 

Water (y₄) 0.9968 0.9967 1.59 2.52 

 

(2) Model significance: ANOVA and MANOVA tests 

Two complementary statistical tests were applied: 

•Univariate ANOVA assessed each dependent variable 

individually, confirming that the predictors significantly 

influenced all four outputs (p < 0.001) [24]. 

•Multivariate MANOVA evaluated the predictors’ joint 

effect across all dependent variables, using Wilks’ Lambda, 

Pillai’s Trace, Hotelling-Lawley, and Roy’s Root, all of which 

confirmed strong multivariate significance (p < 0.001) as 

shown in Table 7 [25, 26]. 

 

Table 7. MANOVA statistics summary 

 
Test Statistic p-value Interpretation 

Wilks’ 

Lambda (Λ) 
≈ 0 < 0.001 Strong multivariate effect 

Pillai's 

Trace (V) 
≈ 1 < 0.001 

Robust multivariate 

significance 

Hotelling-

Lawley (U) 
High < 0.001 

Large proportion of 

variance explained 

Roy’s Root 

(θ) 
High < 0.001 

Key variables (x₄, x₇, x₁₃, 

x₁₇) dominate the model 

 

Table 8. Computational demand comparison (MLRM vs. 

ANN) 

 
Model Runtime Complexity 

MLRM < 1 s Low (direct OLS) 

ANN 1-10 s 
High (iterative training over ~46-1000 

epochs) 

 

The rationale for using MANOVA alongside ANOVA is 

that while ANOVA detects effects in each response variable 

independently, MANOVA accounts for correlations among 

responses, providing a more comprehensive assessment when 

dependent variables are related (as in concrete mix 

proportions) [24-26]. 

(3) Collinearity diagnostics 

Variance Inflation Factor (VIF) analysis was conducted to 

assess multicollinearity among predictors. All VIF values 

were below the commonly accepted threshold of 5, indicating 

that collinearity was not a concern and that coefficient 

estimates are stable. 

(4) Computational demand 

Computational efficiency was compared between the 

MLRM and the ANN. As shown in Table 8, the MLRM 

computed solutions in less than one second via direct Ordinary 

Least Squares (OLS), while the ANN required 1–10 seconds 

due to iterative weight optimization over approximately 46–

1000 epochs. This highlights a trade-off: the MLRM offers 

speed and simplicity for linear relations, whereas the ANN 

provides greater flexibility and non-linear mapping 

capabilities, albeit with higher computational cost. 

 

2.3.3 Assumption diagnostics 

Model assumptions were evaluated as follows (see Figures 

4–6): 

•Normality: Mahalanobis Q-Q plots (Figure 4) confirmed 

approximate multivariate normality. 

•Homoscedasticity: Residual vs. fitted plots (Figure 5) 

showed no significant patterns, indicating constant variance. 

•Independence: Serial correlation plots of MD² values 

(Figure 6) showed no significant autocorrelation. 

 

 
 

Figure 4. Chi-square Q-Q plot for multivariate residuals 

 

Following the validation protocol applied to the ANN 

model, a similar evaluation was performed for the MLRM. 

Table 9 presents the predicted mix proportions for 15 concrete 

mix designs obtained with the MLRM model. Table 10 

summarizes the absolute (AE) and percentage errors between 

measured and predicted values. The average percentage errors 

for cement, fine aggregate, coarse aggregate, and water were 

2.62%, 1.21%, 0.96%, and 0.87%, respectively, with a 

maximum PE of 6.24% observed in cement dosage. 

Finally, Figure 7 shows the comparison between the actual 

experimental values (ACI 211.1) and those predicted by the 

RLMM model for the variables: cement, fine aggregate, coarse 

aggregate, and water. The blue lines represent the 

experimental data, while the dashed red lines represent the 

predictions. Overall, good agreement is observed, with a close 

fit for coarse aggregate and water. Cement and fine aggregate 

exhibit some variations but maintain the overall trend, 

demonstrating the model’s effectiveness. 
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Figure 5. Residuals vs. fitted values plot 
 

 
 

Figure 6. Serial correlation plot of MD² 

 

Table 9. Predicted mix proportions using the MLRM model 

 

Origin  Mix ID f′c Design (kg/cm²) 
MLRM 

Cement (kg/m³) Fine Agg. (kg/m³) Coarse Agg. (kg/m³) Water (l/m³) 

La Moderna 

MM1 

140 296.237 902.372 847.958 202.096 

175 320.053 882.616 843.373 203.415 

210 347.345 858.967 841.461 204.848 

MM2 

140 309.156 885.479 882.843 202.420 

175 335.426 862.983 880.146 203.814 

210 359.443 842.993 875.715 205.147 

MM3 

140 300.157 885.021 849.347 216.404 

175 326.834 862.069 846.962 217.810 

210 350.213 842.792 842.041 219.124 

Chillico 

CM1 

140 322.025 912.891 725.596 243.599 

175 350.880 887.507 724.886 245.071 

210 376.885 865.295 721.984 246.466 

CM2 

140 335.496 992.856 679.344 233.932 

175 358.123 974.430 673.845 235.214 

210 382.928 953.560 670.020 236.572 
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Table 10. PE and MSE for MLRM predictions compared to experimental dosages 

 

Origin Mix ID f′c Design (kg/cm²) 
PE (%) 

Cement PE (%) Fine Agg. PE (%) Coarse Agg. PE (%) Water PE (%) 

La Moderna 

MM1 

140 1.16 0.55 0.01 1.94 

175 1.95 0.85 0.55 1.38 

210 5.39 2.11 0.77 0.81 

MM2 

140 3.15 0.46 0.25 0.12 

175 2.75 0.48 0.05 0.66 

210 2.09 1.20 0.56 1.07 

MM3 

140 0.15 0.60 0.12 0.12 

175 0.12 0.73 0.16 0.53 

210 4.61 0.93 0.74 1.14 

Chillico 

CM1 

140 1.97 2.58 2.97 0.08 

175 2.02 2.99 2.87 0.83 

210 2.57 1.79 2.46 1.65 

CM2 

140 6.24 1.43 1.69 0.23 

175 4.12 1.02 0.87 0.86 

210 1.01 0.40 0.29 1.57 

MAPE (%) 2.62 1.21 0.96 0.87 

MSE 116.61 170.92 96.63 5.26 

Max PE (%) 6.24 
 

 
 

Figure 7. Experimental vs. predicted concrete mix components (C, AF, AG, A) by the MLRM model 

 

 

3. RESULTS AND DISCUSSION 

 

3.1 Performance of the ANN model 

 

The predictive performance of the ANN and the MLRM 

was evaluated using the same experimental dataset. To enable 

a clearer comparison, the results are presented in Table 11, 

which summarizes the performance metrics for each target 

variable: cement, fine aggregate, coarse aggregate, and water. 

The ANN, implemented as a MLP with an 18-11-12-4 

topology and trained via the Levenberg-Marquardt algorithm, 

demonstrated excellent predictive capability across all 

variables. This architecture was selected after iterative testing 

for its balance between complexity and computational 

efficiency, effectively capturing nonlinear interactions. 

By contrast, the MLRM, although capable of modeling 

general trends, showed reduced predictive accuracy for 

cement and fine aggregate due to its inability to account for 

such nonlinearities. Interestingly, for coarse aggregate, the 

MLRM performed slightly better in RMSE and MAE, likely 

because this variable presents a more linear relationship with 

other mix parameters.
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Table 11. Performance metrics for ANN and MLRM models by output variable 

 

Variable RMSE (ANN) 
RMSE 

(MLRM) 

MAE 

(ANN) 

MAE 

(MLRM) 

MSE 

(ANN) 

MSE 

(MLRM) 

MAPE% 

(ANN) 

Cement 3.970 10.799 3.498 8.958 15.759 116.610 1.013 

Fine Aggregate 9.592 13.074 8.243 10.887 92.011 170.924 0.926 

Coarse 

Aggregate 
14.836 9.830 10.829 7.005 220.103 96.627 1.416 

Water 0.787 2.293 0.675 1.906 0.619 5.257 0.314 

Variable 
MAPE% 

(MLRM) 
R (ANN) R (MLRM) R² (ANN) 

R² 

(MLRM) 
NSE (ANN) NSE (MLRM) 

Cement 2.620 0.992 0.935 0.984 0.874 0.982 0.867 

Fine Aggregate 1.208 0.996 0.973 0.991 0.947 0.964 0.933 

Coarse 

Aggregate 
0.958 0.992 0.997 0.984 0.994 0.970 0.987 

Water 0.867 0.999 0.994 0.998 0.988 0.997 0.978 

 

3.2 Global performance summary 

 

3.2.1 Variable-level evaluation 

Table 12 shows the ANN demonstrates superior 

performance to the MLRM across all evaluation metrics, with 

particularly strong improvements in error reduction (18.9-

35.1%) while maintaining excellent correlation and efficiency 

scores (all above 0.97). The most significant improvement is 

seen in MAPE (35.1% better), indicating the ANN's particular 

strength at minimizing percentage errors. 
 

Table 12. Global average performance metrics for ANN and 

MLRM 

 

Metric ANN MLRM 
ANN 

Improvement 

RMSE (kg/m³) 7.296 8.999 18.9% 

MAE (kg/m³) 5.811 7.189 19.2% 

MSE (kg²/m⁶) 82.123 97.355 15.6% 

MAPE (%) 0.918 1.413 35.1% 

Correlation (R) 0.9947 0.9747 2.1% 

Determination (R²) 0.9895 0.9507 4.1% 

Nash-Sutcliffe 

(NSE) 
0.9784 0.9413 3.9% 

 

3.3 Trends and visual validation 

 

Visual comparison between predicted and experimental 

values (Figures 8-11) confirmed that both models reproduced 

the general experimental trends. However, the ANN 

consistently exhibited higher precision, particularly for 

cement and water content, where the MLRM showed greater 

dispersion. The only variable where MLRM slightly 

outperformed ANN was coarse aggregate likely due to its 

more linear dependence on volumetric constraints. 

 

3.4 Bland-Altman agreement analysis 

 

To complement the correlation and error-based 

performance metrics, a Bland-Altman analysis was conducted 

to evaluate the agreement between the ANN predictions and 

the conventional ACI 211.1 method for each output variable 

(Figures 12-15). This approach quantifies the systematic bias 

(mean difference) and the 95% limits of agreement, offering a 

more robust assessment of predictive consistency than 

correlation alone [27, 28]. 

For cement (Figure 12), the ANN showed a negligible bias 

of −0.71 kg/m³ with limits of agreement from −8.63 to +7.21 

kg/m³, indicating strong agreement and no proportional bias. 

Fine aggregate (Figure 13) presented a slightly larger 

underestimation (−8.19 kg/m³) but remained within acceptable 

limits (−18.31 to +1.93 kg/m³). Coarse aggregate (Figure 14) 

exhibited a tendency toward overestimation (+10.05 kg/m³) 

and higher variability (limits: −12.10 to +32.19 kg/m³), 

suggesting an opportunity for further refinement. In contrast, 

water content (Figure 15) demonstrated excellent agreement, 

with a minimal bias of +0.67 l/m³ and narrow limits (−0.15 to 

+1.50 l/m³). 

 

 
 

Figure 8. Comparison between predicted and experimental 

cement content using ANN and MLRM models 

 

 
 

Figure 9. Comparison between predicted and experimental 

fine aggregate content using ANN and MLRM models 
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Overall, the Bland-Altman plots confirm that the ANN 

achieves high concordance with ACI 211.1, particularly for 

cement and water the most critical parameters in mix design 

while fine aggregate performance remains acceptable and 

coarse aggregate results highlight an area for targeted 

improvement. 

 

 
 

Figure 10. Comparison between predicted and experimental 

coarse aggregate content using ANN and MLRM models 
 

 
 

Figure 11. Comparison between predicted and experimental 

water content using ANN and MLRM models 

 

 
 

Figure 12. Bland-Altman plot for cement content: ANN vs. 

ACI 211.1 

 
 

Figure 13. Bland-Altman plot for fine aggregate content: 

ANN vs. ACI 211.1 

 

 
 

Figure 14. Bland-Altman plot for coarse aggregate content: 

ANN vs. ACI 211.1 

 

 
 

Figure 15. Bland-Altman plot for water content: ANN vs. 

ACI 211.1 
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3.5 Sustainability impact 

 

The ANN-based mix design yielded an average cement 

reduction of 10.644 kg/m³ compared to ACI 211.1 without 

compromising strength predictions. Assuming an emission 

factor of 0.90 tCO₂/t cementa standard value reported in the 

literature for clinker-based Portland cement production this 

reduction translates into ≈9.58 tCO₂ saved per 1000 m³ of 

concrete. 

 

 

4. CONCLUSIONS 

 

This study confirms that ANNs, particularly a multilayer 

perceptron with an 18-11-12-4 architecture, are a robust and 

efficient solution for optimizing concrete mix design under the 

unique high-altitude conditions of Ayacucho, Peru. By 

incorporating local aggregate mineralogy and site-specific 

environmental factors, the ANN achieved R² = 0.9895, NSE = 

0.9784, and a global MAPE = 0.9175%, outperforming 

MLRM in all metrics (R² = 0.9507, NSE = 0.9413, MAPE = 

1.4130%). Bland-Altman analysis further validated its strong 

agreement with the ACI 211.1 method for critical mix 

variables. 

From a sustainability standpoint, the ANN-based approach 

reduced cement overuse by 3.0%, generating an average cost 

saving of USD 2.12 per cubic meter and lowering waste and 

CO₂ emissions. These results demonstrate the model’s 

potential to deliver both economic and environmental benefits 

in regions with similar geological and climatic characteristics. 

Future work should include: (1) calibrating the model for 

diverse aggregate sources considering mineralogical and 

absorption variability; (2) integrating mobile design 

applications and real-time sensor data feeds; (3) incorporating 

advanced algorithms—Random Forest, Gradient Boosting, 

XGBoost, LightGBM, and Support Vector Machines—to 

evolve from predictive to prescriptive mix design, optimizing 

for strength, cost, and sustainability; and (4) expanding scope 

to durability parameters such as chloride penetration resistance 

and freeze-thaw performance to ensure long-term structural 

reliability. 
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