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The study uses embedded machine learning (ML) to focus on solar energy harvesting and 

storage optimisation. The research investigated environmental parameters, input features, 

including temperature, relative humidity, target variable, month and day, and solar surface 

radiation. A dataset for 5 years was used. An ML algorithm was employed for the study, 

and the linear regression feedforward neural network (FFNN) was used. The normal root 

mean squared (nRMSE) and R-squared (R2) scores were used as criteria to evaluate the 

model's performance. A solar tracker system, built with Arduino and ESP32 

microcontrollers, maximises energy collection. The system harnesses the power of solar 

panels to convert sun radiation into electrical energy, which is then stored in a 3.7 V 

rechargeable battery. This battery powers the sensors, ensuring continuous operation. The 

root mean squared error (RMSE) value was 80.48 W/m², which measures the typical 

prediction error and optimises energy harvesting. The R2 of 0.896 shows the model 

experiences ~90% of the solar irradiance variability data. The higher R2 ensures the model 

reliably captures environmental parameters critical for adjusting solar panels and 

maximising energy efficiency. The research's practical implications show that we can have 

a high uptime for solar power systems, close to 24 hours. Embedded ML can enhance 

renewable energy management.  
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1. INTRODUCTION

In current times, the explosive growth of artificial 

intelligence (AI) has had transformative changes in several 

sectors [1, 2]. The capability of machine learning (ML) to 

process large data and derive meaningful insights has brought 

in an era of unique innovations [3, 4]. This paradigm shift 

prompts us to study novel applications, especially in fields 

where intelligent decision-making will make a substantial 

difference [5, 6]. One such area is in renewable energy 

management, considering solar energy systems [7-9]. Solar 

energy has a promising solution for various sectors [10-12]. 

Practical strategies for harnessing solar energy are essential to 

achieve robustness and reduce dependence on fossil fuel 

resources [13-15].  

In recent years, the coming in of ML and AI into various 

domains has spurred advancements, and one such domain of 

great benefit is renewable energy management technologies, 

especially solar energy harvesting and storage optimisation. 

[16, 17]. Harnessing the power of ML in energy harvesting, 

storage, and management laid the foundations for more 

structured and sustainable practices [18]. Integrating ML 

algorithms enhances energy harvesting efficiency and 

introduces predictive maintenance and optimisation strategies 

[19, 20]. AI and ML have turned out to be powerful tools that 

can be deployed to transform the method of generating, 

distributing, and consuming solar energy. The study also 

explored how the challenges of solar energy can be addressed 

using AI and ML, and as a way to help create a more 

sustainable energy future [21]. The study [22] proposed a 

system to solve solar tracking by arranging the solar module 

to track the Sun, handling the air velocity and pressure created 

on the structure due to the different angles, and creating air 

resistance, thereby tracking the sun and achieving structural 

stability and optimisation. Study [23] reviewed types of solar 

PV and solar tracking systems, focusing on the design and 

performance analysis of the various dual-axis tracking solar 

systems. The choice of the use of trackers depends mainly on 

the physical features of the land. 

Embedded ML integration can have transformative 

potential in renewable energy, involving solar energy systems, 

emphasizing their role in improving solar cell efficiency and 

contributing to a greener future. ML revolution in renewable 

energy systems is providing innovative solutions for 

optimising efficiency and performance in solar energy 

systems, thereby optimising the output of energy [24, 25]. 

Hence, the significance of this study lies in its potential to 

contribute to global sustainable energy solutions [26], 

demonstrating the effectiveness of embedded ML and edge 

computing in optimising solar energy systems. This study is 

vital in many dimensions, looking at sensitive aspects of 

renewable energy management and technological 
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convergence. Efficient energy harvesting and optimised 

battery management contribute to steady equipment life, 

reducing the need for recurring replacements and minimising 

environmental impact [27]. This study explores how advanced 

technologies can be harnessed to address pressing 

environmental challenges and improve the sustainability of 

energy systems. Hence, the study aims to develop a system to 

demonstrate an efficient solar energy harvesting and storage 

optimisation system using embedded ML. 

 

 

2. RELATED WORK 

 

Solar energy systems often grapple with inefficiencies in 

energy harvesting, leading to sub-optimal performance, 

increased downtime, and heightened environmental impact 

[28, 29]. As the integration of solar trackers becomes more 

common, there is a need for innovative solutions that enhance 

energy yield through precise solar panel alignment and 

incorporate advanced technologies that can handle the 

evolving intricacy of renewable energy systems [30, 31].  

The ability of ML algorithms to analyse data patterns and 

make informed decisions that align seamlessly with the 

intricacies of managing solar energy systems is vital [32, 33]. 

Exploiting these technologies promises to enhance energy 

yield from solar panels and introduce intelligent techniques for 

system optimisation to ensure a sufficient economic return on 

investment in solar energy systems. Dobrilovic et al. [34] 

analysed the use of ML techniques for evaluating solar panel 

performance in edge sensor devices. The study utilised Python 

Scikit-learn and micromlgen libraries on Arduino clone boards 

(ESP8266) to implement edge intelligence to predict solar 

panel voltage output and deploy a decision tree model. 

However, the study was limited to UV and BH1750 sensors, 

which did not cover all ambient conditions; the scope was 

confined to voltage prediction and did not extend to other 

performance metrics like current or power. Khadka et al. [35] 

presented current solar photovoltaic panel cleaning systems 

practices and prospects of ML implementation. The paper 

reviewed current solar panel cleaning practices and potential 

ML implementations, but lacked real-time data integration and 

actuator implementation.  

In study [36], the authors used regression models to predict 

solar irradiance with all-sky image features but did not 

incorporate real-time actuator adjustments for optimisation. 

Peltonen et al. [37] analysed many faces of edge intelligence, 

considering edge intelligence applications and benefits, and 

highlighted diverse applications and benefits of edge 

computing, including reduced latency and improved data 

processing. The study had a limitation focused on specific 

environmental monitoring applications. Satyanarayanan [38] 

presented the Emergence of Edge Computing, exploring edge 

computing technologies and their implications. The study 

identified edge computing as a critical enabler for real-time 

data processing and reduction in latency, and the paper had a 

limitation in the application of not extending the work to 

renewable energy systems [39]. The paper examined the 

impact of AI on photovoltaic systems, revolutionising solar 

energy.  

The study considered AI applications in photovoltaic 

systems. It demonstrated significant improvements in solar 

energy efficiency through AI, but with insufficient focus on 

small-scale integrated systems with real-time adjustments. 

The authors [40] presented an innovative solar energy 

management system supplying energy to several loads within 

intervals and charging and discharging battery banks. The 

study used a modularised method to design, simulate, 

construct, and test the energy conversion. Soomar et al. [41] 

conducted a statistical analysis, emphasising the efficiency 

and performance of some solar technologies and identifying 

their global rankings in terms of power output. The study also 

assumes that the main goals of optimisation methods are to 

reduce investment, operation, and maintenance costs and 

emissions to improve system dependability. Ogundipe et al. 

[42] presented advancements in energy storage solutions, 

including high-capacity batteries and hybrid systems that 

enhance the reliability and efficiency of solar energy, making 

it a practical alternative for residential, commercial, and 

industrial applications. The study also noted that reducing the 

cost of solar energy increases its accessibility and promotes its 

adoption worldwide. 

The authors in the study [43] explored Efficiency and 

Sustainability in Solar Photovoltaic Systems, considering 

Maintenance, sizing technologies, optimisation, material 

degradation, and advanced monitoring systems as essentials 

for sustaining solar system efficiency over time. 

 

 

3. MATERIALS AND METHODS 

 

ML models are an essential element of AI that crucially 

enhances the function of energy storage systems, including 

batteries. The algorithms can predict energy demand and 

adjust charge and discharge cycles accordingly [44]. 

Operational optimisation of renewable energy systems can 

deploy ML by continuously adjusting system parameters to 

maximise system output. The orientation and tilt of solar 

panels can be optimised by ML models using real-time 

weather data of solar PV systems to ensure that the panels 

receive the most sunlight when positioned [45]. The study 

methodology overview is given in Figure 1. 

 

 
 

Figure 1. The solar PV tracking system block diagram 
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3.1 Method overview 

 

3.1.1 The system setup 

This involves selecting appropriate components and 

preparing them for integration. The Arduino Uno and ESP32 

microcontrollers were chosen for their low power 

consumption and computational efficiency, making them ideal 

for energy-constrained applications. The light intensity sensor 

(photodiode), temperature sensor, and humidity sensor are 

configured to monitor environmental conditions accurately. A 

3.7 V rechargeable lithium-ion battery is the primary energy 

storage medium, while a solar panel converts sunlight into 

electrical energy to power the solar PV tracker system.  

 

 
 

Figure 2. Solar tracker logic flowchart 

 

3.1.2 Sensor integration 

The sensors were calibrated before integration into the 

system to ensure accurate data collection. The light intensity, 

temperature, and humidity sensors are installed and connected 

to the Arduino Uno, which handles data gathering and 

preprocessing. This setup ensures the sensors provide reliable 

input for subsequent system operation stages.  

 

3.1.3 Data transmission 

A robust communication protocol is established between 

the Arduino Uno and ESP32 to facilitate seamless data 

transfer. The Arduino transmits preprocessed data from the 

sensors to the ESP32 using serial communication. This 

transmission allows the ESP32 to analyse the data and make 

predictions for optimising system performance.  

 

3.1.4 ML model deployment 

Key features for the ML model were identified to guide 

energy optimisation decisions. Sample data is collected and 

preprocessed to train a lightweight ML model suitable for 

embedded systems, which is linear regression. The trained 

model is then optimised to minimise memory and 

computational requirements, ensuring efficient deployment on 

the ESP32 microcontroller.  

 

3.1.5 System implementation 

Once the ML model is trained, it is deployed on the ESP32 

microcontroller. The model is configured to operate in real 

time, analysing incoming data from the Arduino and making 

predictions about optimal sensor operations and energy 

management strategies. This implementation ensures the 

system operates autonomously and efficiently. 

 

3.1.6 Energy management 

The energy management strategy leverages predictions 

from the ML model to adjust the solar panel's orientation 

dynamically, maximising energy harvesting throughout the 

day. Low-power modes are implemented to conserve battery 

life, where sensors and microcontrollers are deactivated during 

periods of inactivity, such as nighttime or extended cloudy 

conditions.  

 

3.1.7 Simulation and testing 

Performance metrics were deployed to assess the energy 

harvested, battery charge cycles, system uptime, and overall 

optimisation. The system was tested to evaluate its 

functionality and performance. Figure 2 illustrates the solar 

tracker logic flowchart of the study. 

 

3.2 Solar PV system description 

 

The solar PV system assembles components comprising the 

solar tracker kit, designed to optimise energy harvesting. The 

Keystudio Solar Panel Tracking Kit provided sensors such as 

the light intensity module, a pivotal component selected for its 

accuracy, low power consumption, and adaptability to varying 

environmental conditions. This module, strategically 

positioned on the solar tracker, is the primary sensor capturing 

real-time data on ambient light conditions. The solar tracker 

system operates by continuously monitoring the intensity and 

direction of sunlight through its sensors. 

 

3.3 Key components 

 

3.3.1 Keystudio Uno 

Keystudio Uno is a variation of the Arduino Uno. The 

primary control unit handles sensor data acquisition and servo 

motor control. The Keystudio Uno has 14 digital input/output 

pins, USB connection, 16 MHz crystal oscillator, power jack, 

reset button, and 2 ICSP headers. The VCC can be switched 

through a slide switch between 3.3 V and 5 V. The Keystudio 

Uno is given in Figure 3. 

 

 
 

Figure 3. Keystudio Uno 
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3.3.2 Solar panel 

The solar panel is a crucial solar energy harvesting system 

for converting sunlight into electrical energy. The solar panel 

with dimensions of 137 mm by 85 mm is given in Figure 4. 

The main factors affecting solar panels' output performance 

include load impedance, sunlight intensity, temperature, and 

illuminance. The Polyethene Terephthalate (PET) Solar PV 

Panel was deployed in the study, a type of thin-film solar panel 

known for being durable and flexible. The Solar Panel 

specifications are shown in Table 1. The maximum charging 

current provided by the solar panel is 80 mA. The solar panel 

requires extended periods of direct sunlight to charge the 

battery sufficiently. 

 

 
 

Figure 4. Solar panel 

 

Table 1. Parameters of the solar panel 

 
Solar Panel Ratings  Specification Values  

Power rating 1.5 W 

Panel dimensions 137 mm × 85 mm × 2 mm 

Rating of voltage 6 V 

Rating of current 250 mA 

Weight 36.5 g 

 

3.3.3 BH1750 digital light intensity module 

The module measures ambient light intensity accurately, 

supplementing the photo-resistor. Figure 5 shows the module 

mounted beside the aforementioned solar panel.  

 

 
 

Figure 5. BH1750 light intensity module 

 

3.3.4 Photo-resistor module 

The module detects light intensity from different directions, 

enabling the system to determine the optimal panel orientation. 

The photo-resistor module is given in Figure 6. 

 

 
 

Figure 6. Photo-resistor 

3.3.5 DHT11 temperature and humidity sensor 

The Sensor monitors environmental conditions to assist in 

predicting optimal operational parameters for energy 

conservation. Figure 7 presents the DHT11 temperature and 

humidity sensor. 

 

 
 

Figure 7. DHT11 temperature and humidity sensor 

 

3.3.6 Solar USB charging module 

The module charges the lithium-ion battery 2200 mAh, 

ensuring a sustainable power supply. The boost module 

increases the battery output voltage to 6.6 V. Figure 8 shows 

the solar charging module. The parameters for the module are 

given in Table 2. 

 

 
 

Figure 8. Solar USB charging module 

 

Table 2. Parameters of solar USB charging module 

 
External Battery 2200 mAh Battery 

Solar panel interface input 

voltage 
4.4-6 V 

Battery constant voltage charging 

value 
4.15-4.24 V 

Maximum output current 1 A 

Output voltage 6.6 V 

Output interface 3 P 2.54 mm Bent Needle 

Maximum charging current 800 mA 

Charging interface 

1. Micro USB 

2. HP2.0MM interface for 

solar panel 

Environmental attributes ROHS 

 

3.3.7 Servo motors 

The solar panel's position is adjusted based on the processed 

data from the sensors, making it face the direction of 

maximum sunlight. There are 2 of them provided to ensure the 

flexibility of the solar panel's movements.  

 

 
 

Figure 9. LCD display with I2C interface 
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3.3.8 LCD display with I2C interface 

This is used to view the illuminance, temperature, and 

humidity at a particular time. Figure 9 shows the LCD display 

in front and with the I2C interface behind it. 

 

3.3.9 Smartphone charging module 

The solar kit also has a charging module that can be 

deployed to charge mobile devices. Figure 10 depicts the 

smartphone charging module. 

 

 
 

Figure 10. Smartphone charging module 

 

3.3.10 Battery and the battery box 

The kit uses a 2200 mAh lithium battery, which is 

recommended to have a capacity greater than 2200 mAh. The 

energy harvested from the solar panel is stored in the battery. 

Figure 11 shows the 2200 mAh lithium battery and the battery 

box that holds the battery. 

 

 
              (a)                            (b) 

 

Figure 11. (a) 2200 mAh lithium battery; (b) Battery box 

 

3.4 Solar PV system description 

 

The weather conditions dataset used in this study was taken 

from an open source as incorporated in Solcast [46]. The 

spreadsheet had over 80,000 data points. The resolution was 

set to Ota, Ogun state as the location, with coordinates 

Latitude 6.6927°N, Longitude 3.23655°E. Past data was 

collected over about 5 years (from June 2019 to June 2024) to 

ensure a comprehensive dataset that takes seasonality into 

account and captures various environmental conditions. The 

dataset includes temperature, time of the day, relative 

humidity, solar radiation, and detailed day/year information, 

which are essential for optimizing energy production from 

solar panel sources. The data were taken at 30-minute regular 

intervals. Table 3 presents the solar data sample from the file. 

 

Table 3. Parameters of solar USB charging module 

 
Day of Year (Day no. in 365 Days.) Time of Day (mins) Relative Humidity (%) Air Temperature (℃) Solar Irradiance (W/m2) 

160 30 94.8 26 0 

160 60 94.8 26 0 

160 90 94.9 26 0 

160 120 95.2 26 0 

160 150 95.3 25 0 

160 180 95.3 25 0 

160 210 95.2 25 0 

160 240 94.9 26 0 

160 270 94.9 26 0 

160 300 95.2 26 0 

160 330 95.2 26 0 

160 360 94.9 26 9 

160 390 94.4 26 54 

3.5 Data preparation 

 

Historical data mentioned in section 3.4 were used to train 

ML models. The dataset was split into training and test sets. 

Out of the total dataset, 80% of the samples were used for 

training the model, while the remaining 20% were used for 

testing to evaluate its performance on unseen data. Data 

preprocessing technique, normalisation was deployed for the 

study dataset, to reduce the size, increase the robustness of the 

model, and improve the training time of the neural network. 

The solar surface radiation values as the target value were 

scaled with a MinMaxScaler to ensure consistent scaling 

across all inputs, and the input features were normalised using 

a StandardScaler. The variable's features were standardised to 

ensure consistency and enhance ML models' effectiveness. 

The features are split into two: the input features, temperature, 

relative humidity, month, and day, and the target variable. 

Temporal aggregation was conducted to capture seasonal 

patterns and variations over time. The daily weather data 

includes temperature, relative humidity, month, and day. A 

regression-trained TensorFlow type of ML program was 

employed in the study to predict solar energy generation in 

terms of global horizontal irradiance (GHI) [47, 48]. A batch 

size of 32 was deployed for a more frequent model update. The 

model was built using features such as sinusoidal 

transformations of time of day and day of the year, along with 

temperature and humidity, to capture both the cyclical nature 

of solar irradiance and its dependence on environmental 

factors. The sinusoidal transformation of the time of day was 

specifically chosen to represent its periodic nature, as solar 

irradiance follows a daily cycle that repeats every 24 hours. 

This transformation allows the model to learn these cyclical 

patterns more effectively than using raw time values. The 

proposed model was trained and evaluated using a 

feedforward neural network (FFNN). The FFNN was 

employed to predict solar irradiance for optimizing solar 

energy harvesting. The model is implemented as an FFNN, 

consisting of an input layer with ReLU activation functions, 

hidden layers, and an output layer. A FFNN consists of 

multiple layers of interconnected neurons with a deep learning 
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architecture [49]. Figure 12 shows the common configuration 

of FFNN. 

 

 
 

Figure 12. FFNN general configuration 

 

3.6 Neural network 

 

The neural network was implemented using TensorFlow 

and consists of three layers: 

 

3.6.1 Input layer 

The input receives the data that was used to train the model. 

The input layer processed environmental features such as 

sinusoidal transformations of time of day and day of the year, 

as well as temperature and humidity. These features were 

normalised to ensure consistent scaling across inputs. 

 

3.6.2 Hidden layers 

The model included two dense hidden layers using the 

ReLU activation function. These layers extracted non-linear 

relationships between input features and solar irradiance, 

enabling the model to capture complex patterns of solar 

irradiance values. 

 

3.6.3 Output layer 

The output layer consists of a single neuron that provides a 

continuous regression output, predicting solar irradiance in 

watts per square meter. 

 

3.7 Loss function 

 

The loss function measures how well the model predicts the 

solar energy output for a given set of inputs [50], considering 

the numerous features that affect energy production. The 

features include temperature, relative humidity, and the month 

and day. The loss function adjusts its parameters to optimize 

its predictions over time. The learning rate controls the step 

size taken towards the minimum of the loss function when 

training the dataset. Hence, a learning rate of 0.001 was used 

for the study to give the model optimal, accurate predictions. 

 

3.8 The proposed model features 

 

3.8.1 Time of day 

The time parameter captures daily changes in solar radiation 

levels. Solar energy availability varies throughout the day. 

This feature helps predict optimal energy harvesting times and 

manage sensor activity. 

 

3.8.2 Day of the year 

Seasonal changes affect sunlight intensity and duration. 

Including this feature allows the model to give results for 

seasonal variations in solar energy. The day of the year helps 

to identify seasonal cycles, such as solar angle changes and 

day length, that affect solar radiation.  

3.8.3 Temperature 

Temperature influences the amount of solar radiation. 

Atmospheric absorption and scattering are usually increased 

by higher temperatures, which affects solar radiation levels. 

Monitoring temperature helps optimise energy storage and 

system operation, thereby influencing battery efficiency and 

performance.  

 

3.8.4 Relative humidity 

Relative humidity impacts how solar radiation is 

transmitted and scattered, and also influences the atmosphere's 

composition. Changes in relative humidity can affect cloud 

formation and the amount of atmospheric particulates 

interacting with solar radiation.  

 

3.9 Performance criteria  

 

The selection of performance criteria relies on the nature of 

the task, which can be regression, classification, or 

optimisation. The study deployed two regression performance 

metrics, including root mean squared error (RMSE) [51] and 

coefficient of determination, R-squared (R2) [52], deploying 

predicted and actual values. RMSE and R2 as performance 

metrics were chosen for this study because RMSE is easier to 

interpret in a research study when compared with other metrics 

and R2 normally provides a baseline for comparing models, 

when also compared with other metrics. The metrics predict 

continuous variables like energy generation or consumption. 

Eqs. (1) and (2) show the R2 and the RMSE matrices, 

respectively. 

 

R2 =1-
∑ (yactual,i−ypred,i )

2n
i=1

∑ (yactual,i− y̅actual,i)
2n

i=1

 (1) 

 

The RMSE metric was used to penalize more significant 

errors heavily. RMSE gives insight into the performance of the 

model under extreme conditions. 

 

nRMSE =
√1

n
∑ (yactual,i −  ypred,i)

2n
i=1

ymax − ymin
 

(2) 

 

where, ypred,i is the predicted value of the ith data, yactual,i is 

the actual value for the ith data point, and n is the total number 

of data points. y̅actual,i is the mean of the actual values, ymax is 

the maximum value of the actual data, and ymin is the minimum 

value of the actual data. 

 

3.10 Feature conversion 

 

Time of day conversion: The study uses a sinusoidal 

function to convert the time of day into a format suitable for a 

M=- model that helps to capture the periodic nature of daylight 

as given in Eqs. (3) and (4). This conversion transforms the 

time into two features representing the cyclical pattern of a 

day. 

 

Time of day (sin) = sin (
2π ×  hour

24
) (3) 

 

Time of day (𝑐𝑜𝑠) = cos (
2π ×  hour

24
) (4) 

 

Day of the year conversion: Convert the date into a day-of-
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the-year format: 

 

Day of the Year = Date (5) 

 

Eq. (5) represents the day of the year using sinusoidal 

functions to capture seasonal variations as with the time-of-

day conversion. The expression for energy harvesting is given 

in Eq. (6). 

 

Energy Harvesting Efficiency 

=
Power Output

Solar Irradiance
× Area of the Solar Panel  

(6) 

 

Battery charge and discharge rates are given in Eqs. (7) and 

(8). 

 

Charging Rate =
Energy Harvested

Battery Capacity
 (7) 

 

Discharging Rate =
Energy Consumed 

Battery Capacity
 (8) 

 

The duty cycle to balance energy consumption and 

operational efficiency used for power management is given in 

Eq. (9). 

 

Duty Cycle =
Active Duration 

Total Duration
 (9) 

 

3.11 Implementing embedded ML with the ESP32 

 

The ESP32 microcontroller was selected for the study to 

add an intelligence layer by using embedded ML algorithms 

to predict the best times and positions for solar panel 

adjustments. It considers several factors, including time of 

day, day of the year, temperature, and humidity, to optimize 

energy harvesting and minimize power consumption. The 

ESP32, shown in Figure 13, is designed for energy efficiency, 

which is crucial for a solar-powered system where conserving 

battery life is essential due to its low power consumption. The 

ESP32's built-in real-time clock (RTC) allows it to keep 

accurate time, providing essential factors critical for the ML 

model. Arduino does not come with a built-in RTC. Its 

features of Wi-Fi and Bluetooth capabilities facilitate wireless 

communication and data transmission, making it easier to 

interface with other devices if needed. With its dual-core 

processor, the ESP32 can handle complex tasks, including 

running ML algorithms, without significant latency, with 

robust processing power. The external sensors and modules 

make it an essential solar tracking and optimisation system 

component. 

 

 
 

Figure 13. ESP32 microcontroller unit 

 

3.11.1 Hardware setup 

The core hardware components included an Arduino Uno 

and an ESP32 microcontroller. The Arduino Uno controlled 

the solar panel's physical movements, while the ESP32 

handled data processing and ML tasks. Various sensors were 

integrated into the system to monitor environmental 

conditions such as light intensity, temperature, and humidity. 

These sensors provided real-time data for optimising the solar 

panel's orientation and performance. Figures 14, 15, and 16 

present the prototype of the designed solar tracking system, the 

solar panel tracker when not powered and when powered, 

respectively. The LCD displayed parameters such as 

temperature, humidity, and luminous intensity. 

 

 
 

Figure 14. Prototype of the designed solar tracking system 

 

 
 

Figure 15. Solar tracker, when not powered 

 

 
 

Figure 16. Solar tracker, when powered 

 

3.11.2 Software development 

The software was modular, with separate code bases for the 

Arduino and ESP32. The Arduino was programmed to control 

the servo motors to adjust the solar panel's angle, considering 

the input from the ESP32. ML algorithms were trained and 

embedded into the ESP32. 

 

3.11.3 System optimisation and testing 

System testing was conducted to validate the accuracy of 

the ML models and the responsiveness of the hardware. It was 

placed beside the window of a room on the second highest 

floor of a 4-storey building for nearly a week straight. It was 

observed that the system was able to stay active for most of 

the day; the sensors were active for about a third of the day, 

and the system completely shut down after 7 days, primarily 

due to how often it rained during that period. After confirming 

that the system was operating optimally, it was deployed in the 

same position to monitor its performance over about 10 days. 

Data collected during this phase was used to determine the 

201



 

system performance metrics. Figure 17 presents the solar 

tracking system used to charge devices, such as laptops. 

 

3.12 Implementing embedded ML with the ESP32 

 

The solar tracking system begins its operation with the 

initialisation of the Arduino Uno and ESP32 microcontrollers. 

The battery powers the calibrated sensors. The Arduino 

monitors the environmental parameters throughout the day 

using integrated sensors to collect data. The data is transmitted 

to the ESP32, where an embedded ML algorithm processes the 

information to predict the solar irradiance. The ESP32 sends 

the calculated adjustment values back to the Arduino, which 

drives the servo motors to reorient the solar panel toward the 

optimal position. As sunlight is converted into electrical 

energy by the solar panel, the system stores the energy in a 3.7 

V lithium-ion battery via a solar USB charging module. The 

system operates autonomously, with the ML algorithm 

ensuring that sensors and motors are only active when 

necessary, conserving battery life. The operational approach 

ensures efficient energy harvesting and storage while 

maintaining minimal energy consumption, enabling the solar 

tracking system to function sustainably for extended periods. 

After training, the model was converted to TensorFlow Lite 

format and deployed on an ESP32 microcontroller for real-

time inference. This lightweight deployment enables the 

system to operate autonomously, predicting GHI and 

optimising solar panel orientation efficiently without reliance 

on cloud-based resources. 

 
 

Figure 17. Solar tracker connected to a laptop 

 

 

4. RESULTS AND DISCUSSION 

 

Harvesting solar energy and optimising storage using ML 

was the focus of the research. Incorporating ML into renewable 

energy systems introduces a positive application in power 

systems [53]. The study explored an ML model for harvesting 

solar energy, management, and optimising energy. 

 

4.1 Daily energy parameter harvested 

 

The solar panel was exposed to sunlight on consecutive days 

during the testing period. The energy harvested was recorded 

every hour over 10 days. The daily energy parameter harvested 

results are summarised in Table 4. The average energy 

harvested per day was approximately 1.35 Wh. This data 

indicates a relatively consistent energy capture, with variations 

due to changing weather conditions. 

 

Table 4. Daily energy parameter harvested 
 

Day Energy Harvested (Wh) Charge Cycles Weather Simulation Light Intensity (W/m²) Uptime (Hours) Activation Duration (Hours) 

1 1.2 0.5 Cloudy 300 23.5 8.5 

2 1.4 0.6 Slightly cloudy 500 23.9 9.0 

3 1.1 0.4 Cloudy 250 22.9 8.0 

4 1.5 0.6 Sunny 850 24.0 9.5 

5 1.3 0.5 Slightly cloudy 450 23.2 8.2 

6 1.6 0.7 Sunny 900 24.0 9.7 

7 1.4 0.6 Slightly cloudy 500 23.7 8.8 

8 1.2 0.5 Cloudy 300 23.5 8.6 

9 1.3 0.5 Slightly cloudy 500 23.4 8.3 

10 1.5 0.6 Sunny 860 24.0 9.0 

4.2 Battery charge cycles 

 

The battery's number of charge cycles during the testing 

period was monitored. The process of charging the battery 

from 0 percent to 100 percent and then discharging it back to 

0% is known as the charge cycle. The average number of daily 

charge cycles was approximately 0.55, indicating efficient use 

of the harvested energy. 

 

4.3 System uptime 

 

The system uptime was recorded to evaluate the operational 

duration of the system without interruptions. The system was 

designed to enter low-power mode during periods of inactivity 

to conserve energy. The system maintained an uptime of 

approximately 24 hours on most days, demonstrating the 

effectiveness of the power management strategies. 

 

4.4 Sensor activity duration 

 

The duration for which the sensors were active was also 

tracked to ensure they were powered only when necessary. 

The sensors were active for an average of 8.76 hours per day, 

showing that the ML model effectively predicted the optimal 

times for sensor operation. The ML model optimised sensor 

activity, reducing unnecessary power consumption and 

extending the battery's lifespan. This approach ensured that the 

system remained energy-efficient even under varying 

environmental conditions. The solar tracker energy system 

results indicate that integrating embedded ML and edge 

computing significantly improved the efficiency of solar 

energy harvesting and storage efficiency [54]. The consistent 

energy harvesting and high system uptime suggest that the 

solar tracker and power management strategies were 

effectively implemented. The normal root mean squared 

(nRMSE) was 80.48 W/m², approximately 44.57% of the 

mean GHI and 8.31% of the maximum GHI. This indicates 

that the model performs well during peak energy production 

conditions while maintaining reasonable accuracy overall. The 

R2 score of 0.896 shows that the model captures nearly 90% 

of the variance in GHI, demonstrating strong predictive 

capabilities. Multiple optimisers were tested, including Adam 
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Optimiser, Stochastic Gradient Descent (SGD), and root mean 

square propagation (RMSprop). RMSprop achieved a slightly 

better loss of 0.0063 compared to 0.0068 for Adam and 0.0068 

for SGD, reflecting a minor performance advantage as given 

in Table 5. The low loss values across all optimisers reaffirm 

the model's architecture and preprocessing pipeline suitability 

for this regression task. Therefore, the loss (0.0064) reflects 

how well the model minimises errors during training. That 

means the model learned the patterns in the data effectively, 

enabling accurate solar irradiance predictions. 

 

Table 5. Multiplier optimiser 

 
Optimizer Adam Sdg Rmsprop 

Loss 0.0068 0.0068 0.0064 

 

The study had an RMSE value of 80.48 W/m², which 

measures the typical prediction error. The low RMSE directly 

improves solar panel alignment, leading to more accurate solar 

irradiance predictions and optimising energy harvesting. R2 

had 0.896; this shows the model experiences ~90% of the solar 

irradiance variability data. A higher R2 ensures the model 

reliably captures environmental parameters critical for 

adjusting solar panels and maximizing energy efficiency. The 

experimental results show the viability of deploying 

embedded ML for efficient renewable energy management.  

The findings provide valuable insights that can be scaled up 

for larger applications. The key findings of the research are 

summarised as follows: 

i. Efficient battery charge cycles, with an average of 

0.55 cycles per day. 

ii. High system uptime, close to 24 hours on most days. 

iii. Optimised sensor activity reduces unnecessary power 

consumption and extends battery life. 

The study examined the feasibility and effectiveness of 

using embedded ML for renewable energy management, 

providing valuable insights that can be scaled up for larger 

applications. 

Aside from the environmental benefits of optimising solar 

energy harvesting that leads to energy efficiency, the 

economic impact of harvesting solar energy includes a 

reduction of electricity bills for residential homes and 

businesses, reduces health costs by mitigating air pollution, 

and increases economic resilience by selling the excess energy 

generated.  

 

 

5. CONCLUSIONS 

 

The paper presented practical results for renewable energy 

management and climate change evaluation. The study 

accurately predicted surface solar radiation. The system's 

dynamic response to environmental changes ensures optimal 

energy yield, making it especially valuable for large-scale 

solar installations. System's potential and value in practical 

applications includes real-time optimisation performance, 

because the embedded ML models will predict maximum 

angle tilt of the solar panel, detect panel soiling early signs and 

inefficiencies of the inverters. Also, the model can 

conveniently decide when to supply excess power to the grid, 

thereby enabling local demand, in case of a solar system 

connected to the grid, hence improving the efficiency and 

reliability of solar energy systems. The system currently uses 

a set of features, including temperature, day of the year, 

humidity, and time of day, as needed for the Arduino and 

ESP32 for this study. The model's limitations, such as having 

data from different locations being trained, can give the model 

issues because of climate variations; moreover, the battery's 

nonlinear ageing process gives less precision.  

Investigating the integration of cloud-based ML models for 

more extensive data analysis and management, and 

overcoming potential limitations the embedded systems pose, 

developing more powerful and specialized microcontrollers 

capable of handling more complex ML models and larger 

datasets tailored to renewable energy applications could be 

used for enhanced performance, which can be an area for 

further studies. The energy stakeholders can make decisions 

and develop sustainable policies for tropical locations. 
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NOMENCLATURE 

 

GHI global horizontal irradiance 

nRMSE normal root mean square 

 

Subscripts 

 

 

max maximum 

min minmium 
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