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In this study, Artificial Neural Network (ANN) models were developed to predict the 

indirect tensile strength (ITS) of cold asphalt mixes (CAMs) incorporated with different 

industrial waste materials. Input variables were determined as variables including 
emulsion content, curing time, sludge ash content, additive type, and aggregate grading, 

which were investigated the influence on ITS of CAMs from 163 experimental mix 

designs. The ANN model structure was formulated, and the multilayer feedforward 

perceptron was trained, while the number of neurons in hidden layer was set to adjust the 

structure of the network. The neuron number analyze process shown that 5:3:1 structure 
selected as the final pattern. The efficient of the trained model is reasonably high with a 

prediction correlation coefficient (R) of 0.963, and it gives a low Mean Absolute 

Percentage Error (MAPE) equal to 11.9%. The sensitivity analysis also showed that the 

curing time and water content were the two highest parameters impacting the ITS, and 
the emulsion content and initial moisture content were the two lowest parameters  

influencing the ITS. The test error is increased as the neuron of hidden layer was selected 

as 4, 6, and 7, however the minimum error is seated as the neuron number was 3. We 

recommend that ANN-based methodologies show great potential in being reliable and 

efficient tools that can be used to emulate the mechanical responses of the CAMs tested 
in this study, as well as aid in designing more sustainable pavement materials. 
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1. INTRODUCTION

The growing global trend toward sustainable infrastructure 

has cranked up the interest in alternative techniques to Hot 

Mix Asphalt (HMA) production. One alternative in particular 

are the new cold asphalt mixes (CAMs). They’re a carbon 

lightweight alternative to HMA because they’re produced and 

used at room temperature, leading to significantly reduced 

energy consumption and Greenhouse Gas Emissions (GHGs) 

because production energy moves from the tier 5 stovetop to 

near zero with CAMs, because of lowered emissions carbon 

dioxide emissions and the lack of required active ingredient  

persistence it’s a great, new, trending approach to 

infrastructure [1]. Accessibility for CAMs use perseveres in 

terms of use in inaccessible or underdeveloped areas globally 

and is suitable for temporary, low traffic pavements, like 

caravan sites and patching of highways [2, 3]. 

In comparison to conventional HMA, cold-applied mixtures 

(CAMs) report inferior mechanical performances, especially 

during the early stages after their application. This includes a 

range of material properties such as indirect tensile strength 

(ITS), flow, rutting resistance, and moisture susceptibility. 

These limitations are mainly due to its low initial cohesion 

made worse by prolonged curing periods, which are the 

primary reasons for its poor properties. To overcome this 

drawback, the utilization of additives within CAM 

compositions has emerged as a popular method respondents 

have tested to enhance the mechanical behavior of these 

mixtures. 

Various types of polymers, cement, natural and synthetic 

fibers, waxes, and even recycled materials such as 

polyethylene terephthalate (PET) bottles, rubber, and fly ash, 

have been used as modifying agents to improve the mechanical 

properties and durability of cold mixes. In general, the addition 

of these modifiers influences and changes the internal 

structure of the asphalt matrix and the interaction between the 

binder and the aggregate, thereby enhancing the mechanical 

properties such as strength, stiffness, adhesion, and durability 

of the mixtures, towards environmental factors [4]. Despite the 

significant potential of these additives’ effects on the 

mechanical properties of cold mixtures, predicting the 

mechanical behavior of modified cold mixes remains complex. 

This is due to the largely nonlinear and interdependent 

relationships between a range of mixture parameters, 

including the type and amount of the additive, the 

characteristics of the binder used, the curing period, and 

environmental factors (namely the environmental temperature 

which significantly affects the curing process of cold mixes). 
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To respond to the intricacy, current studies ha ve inclined 

towards data based models, which Artificial Neural Networks 

(ANNs) are newly found to have great capacities [5, 6]. ANNs 

imitate the behaviour of the organic neural system and are 

notable for its ability to depict the most complicated patterns 

and associations through large multidimensional databases 

without needing specific mathematical formulas [7, 8]. ANNs 

mainly consist of neurons and synaptic weights, and these 

qualities provide the flexibility and resilience necessary to 

model civil engineering materials, which are difficult to 

analyse with traditional linear mathematical models. 

ANN applications in the field of construction and pavement 

engineering have grown at staggeringly rates in last few years. 

A few examples include the forecast of compressive strength 

of concrete, modeling of asphalt binder viscosity with  

changing temperature, and long-term behavior of pavement 

under traffic loading constraints. According to the researches 

done by Uwanuakwa et al. [9]. ANN has ability to predict the 

mix proportion of self-compacting concrete by the help of 

slump flow and compressive strength which was helped by 

the_help_word multi-output ANN. Similarly, Mugume [10] 

utilized ANN integrated with multi scale modelling to predict 

the strength of fly ash enhanced mortar, and the prediction 

answer was found to be highly correlated with the 

experimental result. 

Aiming at proposing an ANN forecast model for ITS of 

CAMs which were modified with different common industry 

additives and exposed to many premature aging conditions, 

this paper applied the ANNs method to establish the 

theoretical model under a selection of comprehensively 

designed and statistically perfect model serial production test 

data. The accuracy of the model was evaluated based on 

statistical performance measures and sensitivity analysis, 

while also use the performance of the model to identify the 

most prominent factors in the model. Finally, this research 

focus on providing practical applications for engineers, as a 

flexible and reliable estimating tool, to optimize the mix 

design of the cold asphalt and better achieve the requirements 

of road engineering design, considering economical and 

spatial distribution issues to apply more sustainable and 

performance based flexible pavement systems. 

 

 

2. NEURAL NETWORK MODELING 

 

The method behind this entire study was to use ANN to 

predict the mechanical test results of cold mix asphalt (CMA) 

modified with various additives and production parameters. 

Specifically, the goal was to estimate the residual ITS across 

different aggregate types used in the asphalt mixture. In 

essence, the ANN model aimed to capture the complex 

nonlinear relationships between the input variables and the 

target outputs. 

For this study, a feedforward multilayer perceptron (MLP) 

model, commonly referred to as ANN, was implemented with 

backpropagation learning, an approach extensively applied in 

civil engineering materials modeling [11-15]. The MLP 

architecture included three layers: an input layer (e.g., 

emulsion content, additive percentage, curing time, moisture 

condition), hidden layers for nonlinear transformations, and an 

output layer representing the predicted residual ITS. 

The input variables consisted of both categorical and 

continuous data across seven scenarios, including types of 

emulsion, presence of stabilizers (cement, lime, ash), and 

curing duration (in days). The output variable was the residual 

ITS obtained under controlled laboratory conditions. 

The dataset for model training and validation was compiled 

from prior verified experiments, including those involving 

sludge ash-modified CMA. For model development, IBM 

SPSS Modeler was chosen due to its intuitive interface and 

powerful learning engine, facilitating flexible architecture 

adjustments and accurate model performance validation. 

 

 

3. STATISTICAL TRAINING AND EVALUATION OF 

ANN PERFORMANCE 

 

The ANN was developed using a structured dataset where 

the dependent variable was the post-curing ITS, and the 

independent variables are shown in Table 1. These inputs 

encompass design parameters of the CMA, such as emulsion 

content, sludge ash content, curing period, and additive types. 

To ensure robust evaluation, the dataset was partitioned into 

three subsets: 

Training set (86%) – used for weight optimization; 

Testing set (9%) – monitored during training to avoid 

overfitting; 

Validation set (5%) – used for final model performance 

assessment. 

The training process was halted once the error on the testing 

set began to increase, a  standard practice to mitigate 

overfitting and ensure generalizability. 

 

Table 1. Definition of variables used in the ANN model for 

CMA 

 

Variable 

Type 
Symbol Description 

Output ITS% Residual Indirect Tensile Strength (%) 

Input EC Emulsion content (%) 

Input SA Sludge ash content (%) 

Input CT Curing time (days) 

Input AT 
Additive type (cement = 1, lime = 2, 

silica = 3, none = 0) 

Input WC Water content (%) 

Input GR 
Gradation type (coarse = 1, medium = 

2, fine = 3) 

Input MC 
Initial moisture condition (dry = 1, 

wet = 2) 

 

The development of the linear model structure did facilitate 

the ability to identify which variables were most influential to 

the mechanical performance of CMA. Based off the initial 

results, it was discovered that ITB and SSA had the most 

significant influence on the ITS, and ATB and MS did in the 

MBV. The critical level of interaction that was found in the 

CMA formulation was between ATB and MC. 

 

 

4. DATA COLLECTION AND MODEL INPUT 

STRUCTURING 

 

To train the ANN, numerous experiments on CMA were 

used 163 mix designs from these studies [16-35]. This 

database aimed at investigating the residual mechanical 

properties of CMA, represented by the ITS, by considering 

several mix design and processing parameters. 

Temperature and humidity control in lab - with the 

exception of a few mix designs described in the paper, the 
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majority of experiments were conducted in the lab under 

conditions of ambient air temperature ranging from 20-25℃ 

and relative humidity of 50-65%. For studies that looked at 

curing at elevated or reduced temperatures, the higher and 

lower ranges (e.g., 5-40℃) were also recorded to reflect 

environmental variation. Curing and moisture control: Curing 

times ranged from 3 to 28 days, and moisture contents were 

adjusted to represent typical field compaction conditions (i.e., 

any free moisture is lost before ITS testing). Of the final 

materials, the ANN study included replicate measurements for 

several mix designs tested under different curing or 

environmental conditions to allow the ANN to capture the 

influence of environmental variation on ITS without 

overfitting to a specific situation. Duplicate samples and 

variability: Outliers were rejected if the ITS of any replicate 

sample was >25% different from the mean ITS of the 

replicates, or if the material composition data were incomplete. 

Support vector regressions were performed to investigate the 

relationships between the effective diffusivity and other SOC 

properties. 

The ANN model development followed a structured trial-

and-error process to identify the optimal data split among the 

training, testing, and validation sets. This process aimed to 

maximize the correlation coefficient (r) between the predicted 

and actual tensile strength values, ensuring high predictive 

reliability. Data splitting ratios were systematically varied to 

evaluate their impact on prediction accuracy. 

 

 

5. MODEL OPTIMIZATION AND VARIABLE 

REDUCTION 

 

The performance of the ANN was analyzed for different 

data division ratios, with results summarized in Table 2. The 

optimal split was determined as 86% training, 9% testing, and 

5% validation, which yielded the highest correlation 

coefficient of 96.3% and the lowest testing error of 2.9%. This 

configuration was found to provide the best generalization 

capability of the model. The dataset, consisting of 163 mix 

designs, was partitioned using integrated random and striped 

sampling techniques, with the striped division yielding 

superior performance. 

 

Table 2. Effect of data division ratios on ANN performance for CMA 

 
Training (%) Testing (%) Validation (%) Training Error (%) Testing Error (%) Correlation (r%) 

60 20 20 8.6 10.7 91.7 

76 12 12 6.5 9.6 91.9 
80 12 8 6.4 3.8 92.0 

88 8 4 8.3 9.9 94.9 

68 20 12 6.4 14.6 95.1 

80 15 5 6.1 8.6 94.1 

86 9 5 5.2 2.9 96.3 
67 20 13 8.0 6.7 92.1 

 

Table 3. Effect of data division ratios on ANN performance for CMA 

 

Input Variable Symbol Relative Importance Normalized (%) 

Curing time (days) CT 0.340 100.0% 

Additive type (cement, lime) AT 0.144 42.3% 

Emulsion content (%) EC 0.003 1.0% 
Sludge ash content (%) SA 0.069 20.4% 

Water content (%) WC 0.230 67.8% 

Gradation type GR 0.208 61.2% 

Moisture condition MC 0.006 1.7% 

 

 
 

Figure 1. Effect of data division ratios on ANN performance 

 

In order to get optimal performance, particular in 

computation, and to avoid overfitting a sensitivity analysis was 

carried out to discover the effect ratio of each input variable. 

Finally, there were five inputs found in the ANN model out of 

the seven at first. Pretesting experiments such as curing time, 

water content, gradation type and additive type percentage 

indicated the most influence on the output predictions while 

emulsion content, and moisture condition showed the very low 

effect and they were deleted. 

The process of modeling is able to show the promising of 

machine learning tools in attempting to predict key mechanical 

outcomes of sustainable CMA. The research shows that use 

inclusive of machine learning techniques in predications 

important mechanical characteristics of interest his globally  

appears its capacity to reduce the volumes of physical testing 

required as well to as accelerate material design cycle what 

been sought for. The significance of the physical of the 

primary variables: curing time, moisture content, gradation 

type, type of additive, percentage of additive etc. reflects the 

main physical mechanisms for the performance of CMAs. The 

curing time means moisture evaporation and binder setting, in 

this sense, it has directly dominance on stiffness and cohesion. 

The moisture content means the method to provide 

workability; excess of water gives down to a down of strength 

because pore pressure or incomplete bonding etc. The 
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gradation type gives us internal structure, which means how 

much percentage of aggregate could take load and how the 

load would be distributed etc. The additive type and its dosage 

changes binder-aggregate adhesion and viscoelasticity, etc. On 

the contrary, emulsion content and initial moisture condition 

are less significant because of low weightage which means 

little differentiation, or other significant variables would be 

less affect under lower variation of laboratory test conditions 

in Table 3 and Figure 1. 

 

 

6. ANN ARCHITECTURE AND OPTIMIZATION OF 

HIDDEN NEURONS 

 

To auto design the optimal number of neurons in the hidden 

layer, Eq. (1) has been adopted, which expresses the maximum 

number of nodes in the hidden layer. The ANN model was 

modelled with six number of input neurons which represent 

the six number of critical variables of CMA composition and 

processing, namely emulsion content, additive type, curing 

duration, Sludge ash percentage, gradation type and moisture 

condition and single neuron was designed in the output layer 

to predict the ITS of the CMA mix. 

 

Max.No.of Node=1+2×I (1) 

 

where, I is the number of input variables (in this study (6)). 

Maximally, 13 hidden nodes were considered in the 

equation. In order to enhance the ANN model structure, a  

series of trials was done by increasing the count of hidden 

neurons is 1 to 13. In this regard, the model was trained and 

validated by finding out the training and testing error 

percentages as well as correlation coefficient (r) between 

predicted VS experimental ITS. 

 

 

7. HIDDEN LAYER PERFORMANCE EVALUATION 

 

Table 4 presents the productive units of the ANN model 

with diverse hidden nodes. The best prediction accuracy is 

achieved at having 3 hidden neurons (testing error of 2.9% and 

correlation coefficient of 96.3%), the test set with the highest 

correlation coefficient and lowest error rate was chosen 

because it is the highest set and provides greater reliability of 

the results because it was trained on more elements., which 

represents better generalization and stability than that of the 

others. And also, ANN model with the architecture of 7:3:1, as 

shown in Figure 2, provides the mapping of non-linear 

relationships of the cold asphalt mix parameters and 

mechanical performance. The hyperbolic tangent (tanh) 

activation function with 0.4 learning rate and 0.9 momentum 

coefficient is applied in Hidden Layer nodes which leads to 

faster convergence and improved error backpropagation. 

The seventh model architecture, as seen in Figure 2, simple 

and shorten dependent on the result of relative importance 

became contains six input nodes, three hidden nodes and a 

single output node which is capable of accurately predicting 

the mechanical behaviour of cold-laid asphalt mixtures 

modified with eco-friendly industrial by-products such as 

sludge ash. 

 

Table 4. Effect of hidden neurons on ANN prediction accuracy for ITS in CMA 

 
Hidden 

Neurons 

Training 

Error (%) 

Testing 

Error (%) 

Correlation 

(r%) 

Hidden 

Neurons 

Training 

Error (%) 

Testing 

Error (%) 

Correlation 

(r%) 

1 6.8 10.1 91.6 8 7.1 4.9 94.1 
2 5.3 10.8 93.0 9 5.5 9.8 93.8 

3 5.2 2.9 96.3 10 6.7 12.1 94.2 

4 8.1 3.2 92.6 11 9.8 15.3 92.1 

5 6.3 18.4 92.4 12 8.4 20.9 91.3 

6 7.5 6.6 92.7 13 7.0 13.4 91.2 
7 6.6 8.8 95.7 — — — — 

 

 
 

Figure 2. Neural network for CMA 
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8. DEVELOPMENT OF PREDICTIVE ANN MODEL 

FOR INDIRECT TENSILE STRENGTH 

 

Synapse weight is found in ANNs that process connection 

between each neuron, and it is amount of the effect of the 

output of one neuron affects another one. In general, neurons 

receive a number of input signals where each of them is 

multiplied by its corresponding synapse weight, the result of 

which is then summed and passes through an activation 

function [36-38]. This mechanism provides learning and 

generalizing characteristic of ANNs. A three-layer feed 

forward ANN model used learning was designed to predict 

ITS of cold asphalt mixtures with the confidence of different 

types of additives, such as wastewater sludge ash (WSA). The 

final model which is designed from learning/analytics using 

SPSS software, has 6 neurons in the input layer, 3 neurons in 

the hidden layer, and 1 neuron in the output layer. Connection 

weights of each inter layer connection were determined by the 

training process provided by the SPSS, and specific inter layer 

connection weights are given in Table 5. 

 

Table 5. Connection weights and threshold limits in the 

ANN model predicting ITS of cold asphalt mixes 

 

Parameter Estimates 
Predictor 

Samble 
Predicted Hidden Layer 1 

H(1:1) H(1:2) H(1:3) 

Input Layer 

(Bias) -0.030 -0.410 -0.538 

EC 0.391 0.490 -0.036 

SA -0.281 -0.170 0.530 

CT -0.491 -0.018 -0.791 
AT 0.539 -0.133 0.083 

WC 0.277 0.349 -0.388 

GR 0.153 -0.438 0.080 

MC 0.089 0.217 -0.339 

 

For consistent weight scaling or to improve the convergence 

behaviour of the model, all input variables have been 

normalized to give a range [-1, 1] as pre-processing protocol 

for SPSS. Where so final model can give predictive ITs 

expression given will be the resultant of weighted summation 

and activation operations going across the layers of network. 

The network takes some bias terms inside input a nd hidden 

layer(s) functioning as adjustable and trainable thresholds that 

the response of an activation function to move it (these bias 

terms play an important role of fine tuning the model during 

training phase) [39, 40]. The modelling of ANN offers a 

powerful and capable machine learning means to predict main 

mechanical performance property of cold asphalt mixtures 

across varying levels of material compositions, temperatures 

and mix designs as compared with the classical regression -

based prediction method which is always a linear approach. 

 

 

9. ANN-BASED PREDICTION OF MECHANICAL 

PERFORMANCE IN COLD ASPHALT MIXTURES 

 

The objective of this study was to develop a feed-forward 

ANN model for predicting key mechanical properties of cold 

asphalt mixtures incorporated with industrial additives such as 

WSA. The developed ANN architecture adopted a hyperbolic 

tangent (tansig) as activation function at the hidden layer and 

a linear activation function (purelin) at the output node, given 

the prior modeling techniques reported by Cui-hong [40] and 

Al Nageim et al. [17] for asphalt materials. 

The mathematical form of the ANN model is given by: 

𝑦 = ∑ (𝑤𝑗 ∗ (tanh⁡(∑ (𝑤𝑗𝑖 . 𝑥 𝑖)+ 𝛽𝑗
3
𝑖=1

𝑛
𝑗=1 ))) + 𝛽   (2) 

 

where, 

y: is the predicted output, 

𝑥 𝑖: are the normalized input variables (such as aggregate 

gradation, binder content, curing time), 

Wji: denotes the weight between input neuron i and hidden 

node j, 

βj: is the bias associated with the hidden neuron j, 

Wj: is the weight between the hidden node jjj and the output 

node, 

β: represents the bias at the output layer, 

n: is the number of hidden neurons. 

To assess the accuracy of prediction of the developed ANN 

model for CAMs with WSA, different structures of network 

were checked. Out of the various structures tested, it was 

found that the perfect architecture having 8 input neurons, 

three neurons in hidden layer and single output neuron gave 

better performance in term of high correlation coefficient (r = 

0.963) and low testing error (2.9%). The prediction capability 

of the configuration of such network was found quite good for 

the indirect tensile stiffness modulus in terms of the high  

consistency between the ANN estimations and laboratory 

evaluation of CMA specimens. This confirms the high 

performance ability of the ANN model in capturing the 

nonlinear interaction of the input parameters with the asphalt 

mixture behavior, which can be an effective decision support 

tool for optimal CMA design. 

 

 

10. MODEL VALIDATION AND STATISTICAL 

ASSESSMENT 

 

In order to assess the performance of the developed ANN-

based model in predicting the mechanical behaviour of cold 

asphalt mixtures (response variables), some statistical indices 

have been employed. The ones used in this study were Mean 

Absolute Percentage Error (MAPE), Average Accuracy 

Percentage (AA%), Coefficient of Determination (R²) and 

Correlation Coefficient (R).  

The values resulting from the implementation of each of 

these indices were evaluated in order to ensure the consistency 

of the predicted ANN’s outcomes in similar laboratory 

conditions when compared to the corresponding experimental 

results. The MAPE was calculated using Eq. (3), where it gives 

the average or mean percentage deviation of the predicted 

outputs from the experimental results for the selected 

mechanical property, which is indirect tensile stiffness 

modulus (A) as shown in Eq. (3). Then, the AA% value was 

given in Eq. (4), F-Statistic at Eq. (5), and the p-value is not 

computed from a formula directly but derived from the F (or t) 

distribution. Once you compute the F-statistic, the p-value p =
P(F ≥ F⁡calculated )  which determines the accuracy of the 

ANN and its precision in predicting the input values. 

 

𝑀𝐴𝑃𝐸 =⁡
(∑

⎸𝐴−𝐸⎹

𝐴
)∗100

𝑛
  (3) 

 

𝐴𝐴⁡% = 100⁡% − 𝑀𝐴𝑃𝐸  (4) 

 

𝐹 = ⁡
SSR/k

SSE/(n−k−1)
  (5) 

 

where, 
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A: Actual value of the mechanical property (Residual Indirect 

Tensile Strength)(%P) 

E: Estimated value using the ANN model 

n: Number of data samples 

SSR = Sum of Squares for Regression 

SSE = Sum of Squares for Error 

k = number of predictors 

 

Table 6. Statistical evaluation of the ANN model for CMA 

 

Statistical Indicator Value 

Average Accuracy Percentage (AA%) 88.1% 

Mean Absolute Percentage Error (MAPE) 11.9% 

Coefficient of Determination (R²) 92.4% 

Correlation Coefficient (R) 96.3% 
F-Statistic 109.3 

P-value < 0.0001 

 

Validation subset was used to check the generalization 

ability of the model, where 5% of the total dataset was taken. 

The statistical results presented in Table 6 exhibited that the 

ANN model exhibited good predictive ability since the value 

of the coefficient correlation (R) of 96.3% implying a strong 

correlation between the actual and network prediction data, the 

MAPE value of 11.9% to provide a good predictive accuracy 

of the ANN network, the value of the MAPE (A) of 88.1% also 

indicates the good average of the prediction accuracy with the 

corresponding experimental results as shown in Figure 3. 

 

 
 

Figure 3. The agreement between predicted and practical 

values 

 

By using the ANN model, sensitivity of all input parameters 

on predicting fresh mechanical properties of CMA designed 

using low carbon emitting materials had been observed. 

Relative significance of each input parameter on predicting the 

output response is obtained through this investigation. Based 

on the analysis conducted in this investigation, the most 

significant parameter that affecting the output response is the 

asphalt to emulsion ratio, particularly stiffness modulus, 

followed by the percentage of WSA and the additive content. 

Furthermore, the significance of each input parameters was 

varying with the output response parameters, either rutting 

resistance, moisture and fuel resistance or fatigue performance. 

 

11. CONCLUSIONS 

 

The optimized ANN model of 5:3:1 structure has exhibited 

a strong predictive accuracy with the R-Square value of 96.3% 

and the low testing error of 2.9% for estimating the indirect  

tensile strength of the cold asphalt mixes. 

Curing time and water content were identified as the most 

influential factors on mechanical performance, while emulsion 

content and moisture condition had minimal impact. 

A dataset of 163 mix designs ensured robust training, 

validation, and testing, enabling generalizable predictions 

across various cold mix asphalt formulations. 

The sensitivity analysis confirmed sludge ash content and 

additive type as key modifiers influencing the mechanical 

behavior of CAMs. 

This ANN model provides a reliable, data -driven tool for 

optimizing sustainable cold asphalt mixtures, reducing 

reliance on extensive laboratory testing. 

The ANN model can be integrated with on-site construction 

data, enabling parameter adjustments such as curing duration 

or emulsion rate to suit varying temperature and moisture 

conditions in field applications. 

The model supports stepwise mix optimization by 

predicting ITS under adjusted aggregate gradations and 

moisture contents, providing a practical decision-making tool 

for engineers. 
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