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The growing demand for sustainable, high-performance materials has led to the 

development of hybrid composites that integrate natural and synthetic fibers. This study 

explores the tensile properties of kenaf/fiberglass reinforced polyester hybrid composites 

fabricated through the hand lay-up technique. Composites incorporating varying kenaf 

fiber weight percentages (15%, 45%, 60%, and 75%) were evaluated in accordance with 

American Society for Testing and Materials (ASTM) D3039 standards. Additionally, an 

Artificial Neural Network (ANN) model was constructed to predict tensile strength based 

on fiber content, composite thickness, and defect levels. The model was trained using 

three different algorithms: Levenberg-Marquardt (LM), Bayesian Regularization (BR), 

and Scaled Conjugate Gradient (SCG). The composite with 45% kenaf fiber 

demonstrated the optimal tensile performance. The highest measured tensile strength 

reached 50.47 MPa. The ANN model achieved a high prediction accuracy with a 

correlation coefficient (R) of 0.9686 and a Mean Squared Error (MSE) of 0.0063. Among 

the training algorithms, the LM algorithm outperformed the others in terms of prediction 

accuracy. These findings highlight the effectiveness of ANN modelling in optimizing 

hybrid composite formulations, minimizing experimental requirements, and advancing 

their use in structural applications. 
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1. INTRODUCTION

Because of their remarkable qualities, composite materials 

are used extensively in a wide range of industrial applications, 

including the maritime, aviation, and civil infrastructure 

sectors. Because of their exceptional stiffness-to-weight ratio, 

high strength-to-weight ratio, and superior corrosion 

resistance, these materials are a great option for structural 

elements in a variety of sectors. Fiber-reinforced polymers, or 

FRPs, have therefore proliferated in these industries. Their 

exceptional durability, low weight, and adaptable mechanical 

qualities have made them essential in a variety of industries, 

including maritime engineering and aerospace [1]. 

Understanding the fatigue behaviours of composite materials 

has become crucial for engineering design considerations as 

their use in structural designs grows. Maintaining the 

dependability and functionality of components subjected to 

repeated loads over time requires materials that can tolerate 

long-term loading and cyclic stress. As a result, design 

engineering now prioritises maximising profit while 

maintaining customer comfort and safety [2]. 

Composite material production is dominated by synthetic 

fibres, which are mostly made by chemical synthesis from 

basic materials. These synthetic fibres are ideal for structural 

reinforcement in composites because they have many benefits, 

such as high strength, durability, and resilience to different 

environmental variables. However, there are serious negative 

effects on the environment and human health associated with 

the manufacture and use of synthetic fibres. The creation of 

synthetic fibres, particularly those derived from raw materials 

derived from petroleum, has a significant environmental cost. 

Environmental pollution results from the widespread usage of 

synthetic fibres, which also presents disposal issues at the 

conclusion of the product lifecycle [3]. Glass fibre is one of 

the most popular synthetic fibres used in composite 

applications, particularly in the boat hull construction sector. 

Although fibreglass has good mechanical qualities, is 

waterproof, and requires little upkeep, its long-term 

environmental effects and disposal challenges have caused 

serious concerns. Fiberglass's toughness and endurance allow 

it to be used with a wide range of building materials, but at the 

end of its lifecycle, its properties make recycling and disposal 

more difficult, which causes waste management problems. 

However, for thousands of years, people have used natural 

fibres made from plants, animals, and minerals for a variety of 

uses, from clothing to shelter. Because of their sustainability, 

biodegradability, and minimal environmental impact, these 

fibres are becoming more and more popular in composite 

materials [4]. Natural fibres are especially appealing for green 

engineering applications since they are environmentally 

beneficial and renewable, in contrast to synthetic fibres. 

Cultivating and using kenaf in industrial settings, including for 
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automotive components, helps mitigate climate change by 

lowering the demand for wood and other non-sustainable 

resources, which further lowers CO2
 [5]. However, natural 

fibres have certain intrinsic disadvantages, such as lower 

processing temperatures, more moisture absorption, and 

poorer strength when compared to synthetic fibres [6]. Their 

usage in high-performance applications where synthetic fibres 

like glass or carbon fibre predominate has long been restricted 

by these problems. 

One of the main reasons natural fibres haven't been able to 

completely replace synthetic fibres in structural composites is 

their low strength and mechanical qualities. Researchers have 

created hybrid composites, which blend the greatest qualities 

of synthetic and natural fibres, to get around these restrictions. 

These hybrid composites combine synthetic fibres like glass 

fibre with natural fibres like kenaf to provide a special blend 

of strength, weight reduction, and environmental advantages. 

With the fibreglass providing the high strength needed for 

demanding applications and the kenaf fibres offering 

sustainable reinforcement, the hybridization of these fibres 

produces a composite material with remarkable mechanical 

performance [7]. Hybrid composites have been suggested by 

researchers as a way to lessen the drawbacks of natural fibres 

while lowering dependency on artificial, non-sustainable 

materials [8]. 

It is essential to test these hybrid composites' mechanical 

qualities to make sure they can withstand the demanding 

requirements of real-world applications. One of the most 

significant mechanical tests is tensile testing, which offers 

vital information on properties including ductility, yield 

strength, and tensile strength. Engineers can determine the 

force needed to stretch a material and the amount of elongation 

it experiences before rupture by subjecting a specimen to 

uniaxial strain until it fails. These measurements are essential 

for figuring out how well the material performs under stress 

and making sure it can support the loads that are anticipated in 

practical applications. Additionally, in sectors like structural 

construction and maritime engineering, where materials must 

function dependably under both constant and changing 

stresses, tensile testing aids in forecasting how composite 

materials will behave [9]. 

Material optimisation can be significantly improved by 

integrating machine learning techniques, especially Artificial 

Neural Networks (ANNs), after experimental data has been 

gathered. Analysing complicated datasets is made possible by 

ANN algorithms, which are strong instruments that can reveal 

patterns, correlations, and anomalies that conventional 

analytical techniques could miss [10]. ANNs increase the 

predictive accuracy of material models and help researchers 

comprehend intricate interactions between factors. Based on a 

variety of input variables, including fibre loading, matrix type, 

and processing conditions, ANN models may forecast the 

mechanical properties of hybrid composites in the context of 

composite materials. Advanced training algorithms like 

Levenberg-Marquardt (LM), Bayesian Regularization (BR), 

and Scaled Conjugate Gradient (SCG) are used in conjunction 

with ANN models to help researchers optimize their models 

and produce more accurate predictions about the behaviour of 

composite materials under various circumstances. During 

training, these methods modify the neural network's weights 

and biases to guarantee that the model can correctly forecast 

the strength, durability, and other mechanical properties of the 

composite. The efficiency and dependability of composite 

materials for industrial applications are improved by the use of 

ANNs in material science, which also speeds up the design and 

optimization process. 

The creation of hybrid composites, which combine the 

advantages of natural and synthetic fibres, is a result of the 

rising need for high-performance composite materials in 

structural applications as well as environmental concerns 

about synthetic fibres [6, 8]. With the aid of cutting-edge 

computational methods like machine learning, testing and 

optimization of these composites have enormous potential to 

enhance the mechanical performance, sustainability, and 

affordability of composite materials utilized in sectors like 

civil infrastructure, aviation, and maritime. Without 

sacrificing structural integrity, natural fibres can be used into 

composite compositions to lessen environmental effects and 

encourage the use of eco-friendly products. Materials that can 

satisfy the exacting specifications of contemporary 

engineering applications will become more economical, 

efficient, and sustainable as a result of the ongoing 

development and use of these cutting-edge techniques. 

2. METHODOLOGY

2.1 Materials 

Polyester resin (Reversol P-9509) was used as the polymer 

matrix, while surface-treated kenaf fibres and chopped strand 

mat (CSM) 225 fibreglass were used as reinforcement 

materials to create the Kenaf/Fiberglass Polyester Reinforced 

Hybrid Composite materials. To get rid of impurities, lower 

the amount of lignin, and smooth up the surface, the natural 

kenaf fibres were chemically treated, usually with alkaline 

treatment (NaOH). The interfacial adhesion between the 

hydrophilic natural fibres and the hydrophobic polyester resin 

is greatly improved by this surface modification, which is 

essential for improving mechanical qualities and long-term 

stability. The natural kenaf fibre that used in the fabrication 

(Figure 1). 

Figure 1. Kenaf fibre 

Because of its uniform fibre orientation and simplicity of 

impregnation with the polyester resin, the fibreglass 

component CSM 225 (Figure 2) was chosen for reinforcing 

applications that demand durability and homogeneous stress 

distribution. 

A balanced composite that combines the strength and water 

resistance of fibreglass with the affordability, renewable 

nature, and biodegradability of kenaf is made possible by the 

610



 

hybrid format of natural and synthetic fibres. 

 

 
 

Figure 2. CSM 225 (Fibreglass) 

 

The controlled hand lay-up method, a popular technology in 

composite fabrication that enables uniform resin application 

and exact fibre mat placement, was utilised to fabricate the 

composite [11]. In order to improve compaction, remove air 

gaps, and guarantee consistent fibre dispersion throughout the 

matrix, the laminates underwent compression moulding after 

the hand lay-up. In addition to strengthening the fiber-to-

matrix link, this procedure lessens the possibility of internal 

flaws that could impair mechanical performance, like 

delamination or void formation. 

The resulting hybrid composite is a promising candidate for 

lightweight, sustainable structural applications in a variety of 

industries because of its optimised internal structure and 

enhanced tensile, flexural, and impact strength properties, 

which are guaranteed by this meticulous fabrication process. 

 

2.2 Fabrication process 

 

Different weight ratios of fibreglass and kenaf 

reinforcements in relation to the polyester resin matrix were 

used to create the hybrid composite samples. This was done in 

order to evaluate the effects of varying fibre loading levels on 

the Kenaf/Fibreglass Reinforced Polyester Hybrid 

Composite's tensile strength. 15%, 45%, 60%, and 75% fiber-

to-resin weight compositions were made for testing, and a 

control sample with 0% reinforcement (pure polyester resin) 

was also made. The quantity of reinforcing fibres in the 

composite is represented by these proportions, and it has a 

major impact on the material's resistance to tensile stresses. 

The polyester resin (Reversol P-9509) was completely 

combined with a catalyst, usually methyl ethyl ketone 

peroxide (MEKP), to start the polymerisation and curing 

process and start the fabrication process. The MEKP was 

added at a concentration of 2% by weight of the resin to ensure 

proper curing based on industry standard practice. For all 

specimens to exhibit consistent mechanical behaviour and 

appropriate curing, uniform mixing was necessary. 

To ensure a precise fit in the mould, the kenaf and CSM 

fibreglass layers were manufactured with conventional 

specifications of 230 mm for length, 160 mm for breadth, and 

5 mm for thickness. Because of its ease of use and efficiency 

in producing laminate composites with regulated fibre 

distribution, the hand lay-up process was selected for the 

fabrication. To avoid sticking and make it easier to demould 

after curing, the mould surface was coated with wax and a 

release agent before the lay-up. 

Layers of fibreglass and kenaf were alternately inserted into 

the mould during the fabrication process, according to the 

desired weight % for each sample. To guarantee complete 

impregnation and remove air pockets between layers, 

polyester resin was applied to each layer using a brush and 

roller. In order to improve resin-fibre interaction, reduce voids, 

and encourage consistent thickness across the laminate, a 

roller was employed to compress the material after each layer. 

The layering process is shown in Figure 3. 

 

 
 

Figure 3. Hand lay-up process 

 

The curing process was conducted at room temperature, 

approximately 28–32℃, under ambient humidity conditions 

typical of Malaysia's tropical climate (around 70–85% relative 

humidity), with an initial curing time of 24 hours followed by 

an additional 48 hours of post-curing at the same temperature 

to ensure complete cross-linking of the polymer matrix. 

The panels were demolded and cut to size after curing, 

resulting in specimens that met tensile testing requirements. 

Later, tensile tests were performed on these specimens to 

assess how well they performed mechanically under uniaxial 

tension. 

Each sample's designation is shown in Table 1 according to 

the weight proportion of fibreglass and kenaf. Tensile test 

findings precisely represent the impact of fibre composition on 

the hybrid composite's mechanical strength, thanks to the 

methodical and consistent fabrication process. 

 

Table 1. Designation of each weight percentage materials 

 
Percentage 

of Materials 

(%) 

0% 

(Control 

Sample) 

15% 45% 60% 75% 

Polyester + 

Catalyst 
90 75 45 30 15 

Natural 

Fibres 

(kenaf) 

0 15 45 60 75 

Fibreglass 10 10 10 10 10 
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2.3 Tensile testing 

 

The American Society for Testing and Materials (ASTM) 

D3039 standard was followed in evaluating the manufactured 

kenaf/fibreglass reinforced polyester hybrid composites' 

tensile strength. The process for figuring out the tensile 

properties of polymer matrix composite materials reinforced 

with high-modulus fibres is described in this standard 

approach. An Instron Universal Testing Machine, which has 

sophisticated load cell and data collecting technologies to 

guarantee excellent precision and reproducibility in 

mechanical testing, was used to perform the tests. 

To prevent adding edge flaws that would affect the results, 

each composite panel was meticulously sliced into tensile test 

specimens, or "coupons," using a precision cutting tool. As 

advised by ASTM D3039 rules, the specimens were 

constructed in the shape of a rectangular ruler, measuring 250 

mm in length and 20 mm in width. Although it was kept within 

reasonable bounds for a precise comparison, the coupons' 

thickness varied somewhat based on the fibre content. 

Five test coupons were made for each of the fibre loading 

parameters: 0% (control), 15%, 45%, 60%, and 75%. This 

made it possible to evaluate tensile strength with statistical 

reliability. Before testing, every coupon was examined 

visually for flaws that could affect the structural integrity or 

cause variations in the test findings, such as surface voids or 

delamination. 

The testing equipment was adjusted to a constant crosshead 

speed of 2 mm/min to apply a consistent rate of load 

throughout elongation, and the tensile test was conducted at 

room temperature. In order to reduce environmental 

variability, tensile tests were conducted under ambient lab 

conditions (25 ± 2℃, 60 ± 5% RH) to minimize environmental 

variability. To avoid slippage or uneven loading, the 

specimens' ends were firmly fastened in the machine grips. 

The machine recorded each sample's stress-strain response as 

the load was applied until it failed. 

Calculating the highest stress the composite could sustain 

before breaking allowed for the determination of the Ultimate 

Tensile Strength (UTS). The following formula was used to 

calculate it: 

 

UTS, σ max = 
𝑃𝑚𝑎𝑥

𝐴0
 

 

where, 𝑃𝑚𝑎𝑥  is the maximum load applied (N) to the 

composite and 𝐴0 is the area of the cross-section (mm2). 

In order to minimise any irregularities or inconsistencies, 

five samples per configuration were tested, following ASTM 

D3039. This number is suggested for classical methodology as 

in laboratory experiment to obtain the average performance of 

the sample [12]. Each tensile test was repeated five times per 

group, and the results are presented as mean ± standard 

deviation to ensure reproducibility and statistical validity as 

per ASTM D3039. Clear insights into how varying fibre 

content levels affect the hybrid composites' mechanical 

behaviour under tensile stress were revealed by the resulting 

data. In order to spot patterns and determine the ideal 

composition that produces the best tensile performance, these 

data were subsequently compared. 

 

2.4 ANN optimization 

 

The complex, nonlinear relationship between fibre weight 

percentage (%), composite thickness (mm), defect levels, and 

the tensile strength of hybrid polymer composites reinforced 

with kenaf and fibreglass was modelled in this study using a 

Multi-Layer Perceptron (MLP) neural network. Predicting the 

composites' tensile behaviour using quantifiable input factors 

and evaluating the impact of each variable on mechanical 

performance were the goals. The Neural Network Fitting Tool 

in MATLAB®, a powerful platform frequently used in 

engineering applications for machine learning and data-driven 

modelling, was employed to carry out the modelling 

procedure.  

Scanning Electron Microscopy (SEM) analysis and visual 

inspection were used to assess the composite samples' defect 

levels. A qualitative rating system from Level 1 to Level 5 was 

used in the assessment; Level 1 denotes outstanding quality 

with few noticeable flaws, while Level 5 denotes very low 

quality with many flaws. More serious flaws include fibre 

pull-out, matrix cracking, delamination, and poor fiber–matrix 

adhesion is correlated with higher defect levels. This 

qualitative classification has inherent limits in terms of 

objectivity and precision, even if it offered helpful initial 

insights into the structural integrity and failure processes of the 

composites. Future studies will therefore use quantitative 

methods, such as image-based analysis, to quantify variables 

including crack density, fibre orientation, and void. Using 

advanced image processing technologies, these metrics will be 

retrieved from high-resolution SEM pictures, providing a 

more reliable and repeatable way to assess the severity of 

defects. 

Initially, the min-max normalization technique was used to 

pre-process the experimental dataset, which was gathered 

from physical tensile tests. Min-Max normalisation was 

applied to scale all variables within the range of 0 to 1 using 

the following equation: 

 

Xnorm = 
𝑋−𝑋𝑚𝑖𝑛

𝑋𝑚𝑎𝑥− 𝑋𝑚𝑖𝑛
  

 

By ensuring that every input contributes equally during the 

training process, this normalisation strategy helps to prevent 

bias towards variables with wider ranges of numbers. Defect 

level (1–5), composite thickness (5.0–6.0 mm), and fibre 

weight percentage (15–75%) were the minimum and 

maximum parameters utilised for normalisation. 

In order to ensure that every feature contributes 

proportionately to the model training process and to prevent 

bias caused by different units or magnitudes, this 

normalisation method was chosen to scale all input parameters 

into a consistent range, usually between 0 and 1 [13]. During 

training, this pre-processing phase improves the neural 

network's accuracy and pace of convergence. To guarantee a 

fair assessment of the model's accuracy and generalization 

potential, 70% of the data was used to train the model, 15% 

was put aside for validation to improve the model and avoid 

overfitting, and the remaining 15% was used for performance 

assessment and final testing [14]. 

The neural network was subjected to three distinct training 

procedures to evaluate how well each one optimised the 

model's functionality. These consist of the SCG, LM, and BR 

methods, each chosen for its distinct advantages in managing 

nonlinear regression issues. In small-to-medium-sized 

datasets, LM is renowned for its quick convergence and high 

accuracy [15], but BR effectively reduces overfitting by 

adding a regularisation term [16]. SCG provides dependable 

performance and is frequently chosen for large datasets despite 
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being computationally lighter [17]. The study sought to 

ascertain which training strategy would produce the most 

reliable and accurate model for forecasting the composites' 

tensile strength by utilising all three algorithms. 

Iterative trial-and-error optimisation was used to further 

optimise the neural network design, which started with a 

default configuration of 3:6:2 as is Figure 4 (input layer: 

hidden layer: output layer). To determine the optimal 

arrangement, this procedure entailed altering the number of 

hidden layers from one to six and modifying the number of 

neurones within each layer. A widely recognised heuristic was 

used to direct this optimisation, which states that in order to 

avoid model overfitting and guarantee generalisation ability, 

the hidden layer's neurone count should typically be less than 

twice that of the input neurones [18]. In order to minimise error 

and maximise the model's predictive power, the final design 

was chosen based on the model's performance measures, such 

as the Mean Squared Error (MSE) and correlation coefficient 

(R-values). 

 

 
 

Figure 4. Neural network architecture 

 

The final ANN model fitted the regression-based prediction 

by using a linear activation function in the output layer and a 

Rectified Linear Unit (ReLU) activation function in the hidden 

layer. Full-batch learning using the Adaptive Moment 

Estimation (Adam) optimiser, 1000 epochs, and a fixed 

learning rate of 0.01 were used for training. 70% of the dataset 

was used for training, 15% for testing, and 15% for validation. 

This division was made at random. To perform a 

generalisation test and confirm the model's prediction power, 

an additional 70% random subset of the data was taken out. To 

ensure the correctness and robustness of the trained model, the 

model's performance was assessed using common regression 

metrics, such as Mean Squared Error (MSE) and the R-squared 

(R²) value. 

Three different parameters as shown in Table 2, made up 

the network's input layer: the weight percentage of fibre, the 

thickness of the composite, and the degree of defect. These 

parameters were chosen because they were found to have a 

significant impact on the material's tensile performance in 

testing results. The model's comprehension of how each 

component influences the composite's mechanical reaction is 

based on these parameters. Six neurones made up the hidden 

layer at first, however throughout optimisation, this number 

was changed as necessary. Based on the given input 

parameters, the output layer was intended to generate a single 

value that represented the composite's anticipated UTS. 

 

Table 2. Processing parameters for tensile strength 

 
Weight of Fibre 

(%) 

Thickness of 

Composite (mm) 
Level of Defects 

15 

45 

60 

75 

5.00 

5.50 

6.00 

1 (Excellent) 

2 (Fair) 

3 (Moderate) 

4 (Poor) 

5 (Very poor) 

 

Due to experimental limitations, the current model focused 

on three primary inputs due to their strong experimental 

relevance. Future studies will include additional parameters 

such as fibre orientation and curing time to enhance model 

generalizability. 

 

 

3. RESULT AND DISCUSSION 

 

3.1 Ultimate tensile strength 

 

A thorough examination of tensile strength was carried out 

across a variety of fibre weight percentages in order to assess 

the effect of natural fibre loading on the mechanical 

performance of the Kenaf/Fiberglass Reinforced Polyester 

Hybrid Composite. Tensile strength and fibre content were 

found to be strongly correlated as in Figure 5, and the addition 

of kenaf fibres considerably enhanced mechanical 

performance, although to a limited scale. 

The composite showed a steady increase in tensile strength 

up to a weight percentage of 45% kenaf fibre. This finding 

implies that with this fibre loading, the natural kenaf fibres and 

the synthetic fibreglass reinforcement were in the best possible 

proportion. The ability to transfer tensile loads was improved 

by the kenaf fibres' efficient reinforcement in the composite 

matrix. The fibres' and the polyester matrix's well-balanced 

interfacial interaction, which promotes effective stress 

transmission and improved load distribution throughout the 

material, is responsible for this synergistic impact. As a 

synthetic fibre, the fibreglass reinforcement provided 

exceptional strength and durability, complementing the 

natural fibres and adding to the hybrid composite's overall 

enhanced mechanical qualities. 

At 45% of kenaf fibre content, the highest tensile strength 

was recorded, indicating that this particular composition is the 

ideal matrix-fiber interaction point. Superior interfacial 

adhesion, fibre dispersion, and uniform stress distribution 

were the results of optimal matrix-fiber bonding, as 

demonstrated by the composite's performance at this fibre 

concentration. These elements helped the material achieve its 

ideal tensile strength and overall mechanical integrity. 

Conversely, as anticipated, the control sample, which was 

made entirely of the polyester matrix with no reinforcement, 

showed the lowest tensile strength. This outcome 

demonstrated how crucial fibre reinforcing is to improving the 

mechanical qualities of composite materials. 

However, a discernible decrease in tensile strength was 

noted as the kenaf fibre content rose above the 45% threshold, 

especially at 60% and 75%. This decrease is mostly due to the 
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higher concentration of natural fibres in the matrix, which 

caused the fibres to aggregate, disperse poorly, and form weak 

interfacial bonds with the matrix. Natural fibres have a 

tendency to group together at greater fibre loadings, which can 

cause irregular fibre distribution and make it more difficult for 

stress to be transferred from the matrix to the fibres. 

Furthermore, microstructural flaws including void formation, 

fibre pull-outs, and irregular fibre orientation are made worse 

by excessive fibre loading, all of which lower the structural 

integrity of the composite. Defect analysis corroborated these 

findings, showing that composites with increased fibre content 

exhibited more voids and uneven fibre distribution, which 

further weakened the mechanical capabilities of the material. 

 

 
 

Figure 5. Ultimate tensile strength 

 
The hydrophilic properties of natural fibres, such as kenaf, 

are important factors in this deterioration at larger fibre 

loadings, according to the defect analysis. Because of their 

propensity to absorb moisture, natural fibres may have trouble 

connecting with the hydrophobic polymer matrix. Poor fiber-

matrix adhesion results from a weakening of the link between 

the kenaf fibres and the polyester matrix as the moisture 

content rises. The overall strength of the composite is further 

compromised by the excessive presence of natural fibres, 

which breaks the continuity of the polymer matrix. These 

results are in line with earlier studies that show that excessive 

loading of natural fibres tends to reduce composite strength 

even if they can greatly improve mechanical qualities when 

utilized in the right amounts. Thus, maintaining a balance 

between the reinforcement's contribution and the composite's 

structural integrity requires optimizing the fibre loading. 

The study's findings highlight how crucial it is to carefully 

choose and maximize the fibre content in hybrid composites, 

especially when trying to achieve a balanced blend of synthetic 

and natural fibres. It has been demonstrated that combining 

kenaf and fibreglass greatly improves the composite material's 

mechanical qualities, providing a more environmentally 

friendly substitute for conventional composite materials 

without sacrificing structural integrity. But this study also 

highlights how important fibre loading is to getting the greatest 

mechanical qualities. The benefits of natural fibre 

reinforcement and the drawbacks of an excessive fibre content 

are perfectly balanced by the 45% kenaf fibre loading. 

To sum up, this study's results emphasize how crucial it is 

to combine natural and synthetic fibres to create high-

performance composite materials. The mechanical strength of 

these materials may be increased by carefully regulating the 

fibre quantity and guaranteeing ideal dispersion and fiber-

matrix adhesion. This makes them appropriate for a variety of 

structural applications, including those in the automotive and 

maritime sectors. The study also emphasizes how important it 

is to optimize material compositions in order to satisfy 

performance criteria and environmental sustainability goals. 

Future studies could look into ways to improve fibre 

dispersion at higher fibre loadings, possibly by adding more 

surface treatments to promote fiber-matrix compatibility or by 

using sophisticated processing techniques. Furthermore, more 

research on these hybrid composites' long-term resilience to 

several environmental factors, like moisture exposure or 

thermal cycling, will be helpful in improving the materials' 

performance forecasts. 

 

3.2 ANN analysis 

 

Three crucial parameters, fiber weight percentage, 

composite thickness, and defect levels, were used to forecast 

the tensile strength of Kenaf/CSM fibreglass reinforced 

polyester hybrid composites using ANN modelling. These 

input factors were selected due to their known influence on the 

mechanical performance of fiber reinforced composites. The 

predictive strength of the ANN technique lies in its ability to 

simulate complex and nonlinear relationships between input 

data and output responses, which are often difficult to capture 

using traditional statistical or analytical models. Table 3 

presents the compiled results for each training algorithm. 

Among the three training methods used in the ANN 

modelling of tensile strength for kenaf/CSM fibreglass 
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reinforced polyester hybrid composites, the LM approach 

demonstrated the best performance. This was evident from its 

superior statistical indicators, including the highest R values 

and the lowest MSE across all phases of model evaluation: 

training, validation, testing, and overall analysis. The R values 

achieved by the LM algorithm were 0.9686 for overall, 0.9846 

for testing, 0.9999 for validation, and 0.9686 for training. 

These results indicate excellent model performance and a very 

strong linear relationship between the predicted and actual 

experimental outcomes. 

 

Table 3. Performance indicator of the training algorithm 

 
Training 

Algorithm 
PI Training Validation Testing 

LM 
MSE 0.0063 0.0075 0.0053 

R 0.9686 0.9846 0.9999 

BR 
MSE 0.0053 - 0.0158 

R 0.9653 - 0.9911 

SCG 
MSE 0.009 0.009 0.011 

R 0.9351 0.9808 0.9647 

 

Figure 6 shows the regression plot of tensile strength for LM 

training algorithm. This finding is further supported by the 

regression graphs produced for the LM model. There seemed 

to be little difference between the observed and anticipated 

values, as the forecasted data points nearly matched the 

optimum fit line (Y = T). This level of precision demonstrates 

how well the LM algorithm handles the intricate and nonlinear 

relationships between the three main input parameters that 

affect the hybrid composite's tensile strength: fibre weight 

percentage, composite thickness, and defect levels. The 

superiority of LM can be ascribed to its distinct optimisation 

strategy, which blends the Gauss-Newton algorithm with the 

gradient descent method [19]. Even with noisy or nonlinear 

data, the algorithm can converge quickly because of this 

hybrid approach, which makes it possible to minimize the 

error function more effectively. Because of its resilience, LM 

is particularly well-suited for materials science applications 

where input-output interactions frequently involve numerous 

sources of uncertainty and are rarely linear. 

On the other hand, although it performed marginally worse 

overall than LM, the BR algorithm likewise yielded very good 

predictions. The resultant R values, which were 0.9653 for 

training, 0.9911 for testing, and 0.9514 for overall, continue to 

show a high degree of agreement between the experimental 

and predicted values of tensile strength. Even though BR's 

MSE was slightly higher than LM's, the model demonstrated 

exceptional stability and resistance to overfitting, which is a 

big plus when working with sparse datasets or ambiguous 

measurement conditions. This is mostly because the BR 

algorithm's built-in regularization technique introduces a 

penalty term into the performance function. This feature 

guarantees that the ANN retains its generalizability when 

exposed to unknown input and helps keep the model from 

growing unduly complex. 

 

 
 

Figure 6. Correlation for actual and predicted tensile strength for Levenberg-Marquardt (LM) 
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Figure 7. Correlation for actual and predicted tensile strength for Bayesian Regularization (BR) 

 

 
 

Figure 8. Correlation for actual and predicted tensile strength for Scaled Conjugate Gradient (SCG) 
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Figure 7 shows the regression plot of tensile strength for BR 

training algorithm. With just slight departures from the 

optimum fit line, the regression plots for the BR model 

similarly showed a strong agreement between the expected 

and actual values. This implies that BR can accurately model 

the intricate linkages seen in the composite system. Even 

though BR's prediction accuracy was slightly lower than LM's, 

it is still a very dependable approach, particularly in situations 

where robustness and avoiding overfitting are more important 

than exact prediction accuracy. 

The SCG, the third algorithm under evaluation, performed 

the least well out of the three, although it still produced results 

that were passably good. The SCG model's recorded R-values 

were 0.9374 (overall), 0.9808 (validation), and 0.9352 

(training). These numbers show a reasonable degree of 

connection between the expected tensile strength and the 

actual experimental values, albeit being lower than those 

obtained by LM and BR. A greater degree of forecast 

variability was indicated by the SCG regression plots, which 

showed a wider distribution of data points around the optimal 

fit line. This implies that, in comparison to LM and BR, the 

SCG model struggled more to generalize the intricate 

nonlinear interactions and had somewhat lower consistency. 

The simplified optimization procedure of the SCG 

algorithm, as in Figure 8, which sacrifices computational 

efficiency for predictive capacity, may be the cause of its 

comparatively poorer performance. SCG is based on a 

conjugate gradient approach, which might not be as effective 

at adjusting to the complexities of highly nonlinear material 

behaviour as LM and BR, which use adaptive error 

minimization and regularization techniques [20]. For larger 

datasets or real-time applications with constrained processing 

resources, its reduced memory requirements and quicker 

computation times nevertheless make it a desirable option. 

Overall, the complex, nonlinear relationships between the 

fibre content, composite thickness, defect levels, and their 

combined effect on tensile strength were effectively captured 

by the ANN model used in this investigation [21]. This was 

particularly clear from the LM algorithm's performance, which 

yielded incredibly high R-values and a low MSE, indicating a 

robust and reliable predicting ability. These findings support 

the usefulness of ANN-based modelling in materials 

engineering and offer a potent substitute for time-consuming, 

resource-intensive, and experimentally limited traditional 

empirical techniques. 

Furthermore, the results of this modelling experiment 

highlight ANN's potential as a tool for hybrid composite 

design optimization. ANN speeds up formulation cycles, 

improves resource efficiency, and enhances decision-making 

throughout the development phase by eliminating the need for 

extensive trial-and-error testing. While reducing material 

waste and development expenses, it enables researchers and 

engineers to find the best combinations of fibre reinforcement, 

matrix composition, and structural properties that satisfy 

certain mechanical performance requirements. 

In the future, there will be many chances to improve and 

expand the use of the ANN framework created in this work. 

To anticipate composite behaviour under real-world 

conditions, the current model can be expanded to include 

environmental and service condition factors, such as exposure 

to freshwater or saltwater, temperature cycling, UV radiation, 

or long-term ageing effects [22]. By adding more varied 

information and broadening the network architecture, it is also 

possible to mimic attributes like fatigue performance, flexural 

strength, and impact resistance. 

In the end, incorporating machine learning technologies 

such as ANN into advanced composites' design, analysis, and 

lifecycle prediction provides a method to create material 

systems that are more intelligent and sustainable [23]. It backs 

the larger trend towards green engineering, in which high-

performance materials are created with consideration for 

resource efficiency and environmental impact. As 

demonstrated in this work, the knowledge gathered from ANN 

modelling not only speeds up the creation of environmentally 

friendly hybrid composites but also fosters innovation in the 

materials field by facilitating better-informed, data-driven 

engineering methods. 

4. CONCLUSION

By employing hand lay-up procedures and ANN modelling 

to examine and optimise the tensile properties of Kenaf/CSM 

fibreglass reinforced polyester hybrid composites, this study 

effectively achieved its goal. Due to the best fibre dispersion 

and robust interfacial interaction between the fibres and 

matrix, the composite with a 45% weight percent kenaf 

content had the maximum tensile strength, measuring 50.47 

MPa. With an R value of 0.9686 and a MSE of 0.0063, the 

ANN model, which was trained using fibre weight percentage, 

composite thickness, and defect level as input parameters, 

showed excellent predictive accuracy using the LM technique. 

These results demonstrate how well experimental testing and 

ANN modelling work together to minimise trial-and-error in 

composite design and enhance material performance. The 

optimized composition (45% kenaf) is being considered for 

marine applications, with prototype testing planned in 

collaboration with industry. It is recommended that future 

research evaluate the composites' resilience to environmental 

factors like moisture and heat exposure, investigate improved 

fibre treatments and cutting-edge fabrication techniques like 

vacuum infusion, and extend the ANN model to forecast more 

mechanical attributes like flexural strength, impact resistance, 

and fatigue life for broader structural applications. Although 

the ANN model showed good predicted accuracy for the 

current investigation, it has not yet been evaluated to see if it 

can be applied to different fibre kinds and matrix systems. 

Future studies should examine the model's scalability to 

industrial-scale production and a broader range of material 

systems, as it is currently restricted to lab-scale composite 

samples. 
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